1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #include <linux/device.h> 13 #include <linux/jiffies.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mtd/spinand.h> 17 #include <linux/of.h> 18 #include <linux/slab.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 22 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand, 23 const struct nand_page_io_req *req, 24 u16 *column) 25 { 26 struct nand_device *nand = spinand_to_nand(spinand); 27 unsigned int shift; 28 29 if (nand->memorg.planes_per_lun < 2) 30 return; 31 32 /* The plane number is passed in MSB just above the column address */ 33 shift = fls(nand->memorg.pagesize); 34 *column |= req->pos.plane << shift; 35 } 36 37 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 38 { 39 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, 40 spinand->scratchbuf); 41 int ret; 42 43 ret = spi_mem_exec_op(spinand->spimem, &op); 44 if (ret) 45 return ret; 46 47 *val = *spinand->scratchbuf; 48 return 0; 49 } 50 51 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 52 { 53 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, 54 spinand->scratchbuf); 55 56 *spinand->scratchbuf = val; 57 return spi_mem_exec_op(spinand->spimem, &op); 58 } 59 60 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 61 { 62 return spinand_read_reg_op(spinand, REG_STATUS, status); 63 } 64 65 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 66 { 67 struct nand_device *nand = spinand_to_nand(spinand); 68 69 if (WARN_ON(spinand->cur_target < 0 || 70 spinand->cur_target >= nand->memorg.ntargets)) 71 return -EINVAL; 72 73 *cfg = spinand->cfg_cache[spinand->cur_target]; 74 return 0; 75 } 76 77 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 78 { 79 struct nand_device *nand = spinand_to_nand(spinand); 80 int ret; 81 82 if (WARN_ON(spinand->cur_target < 0 || 83 spinand->cur_target >= nand->memorg.ntargets)) 84 return -EINVAL; 85 86 if (spinand->cfg_cache[spinand->cur_target] == cfg) 87 return 0; 88 89 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 90 if (ret) 91 return ret; 92 93 spinand->cfg_cache[spinand->cur_target] = cfg; 94 return 0; 95 } 96 97 /** 98 * spinand_upd_cfg() - Update the configuration register 99 * @spinand: the spinand device 100 * @mask: the mask encoding the bits to update in the config reg 101 * @val: the new value to apply 102 * 103 * Update the configuration register. 104 * 105 * Return: 0 on success, a negative error code otherwise. 106 */ 107 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 108 { 109 int ret; 110 u8 cfg; 111 112 ret = spinand_get_cfg(spinand, &cfg); 113 if (ret) 114 return ret; 115 116 cfg &= ~mask; 117 cfg |= val; 118 119 return spinand_set_cfg(spinand, cfg); 120 } 121 122 /** 123 * spinand_select_target() - Select a specific NAND target/die 124 * @spinand: the spinand device 125 * @target: the target/die to select 126 * 127 * Select a new target/die. If chip only has one die, this function is a NOOP. 128 * 129 * Return: 0 on success, a negative error code otherwise. 130 */ 131 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 132 { 133 struct nand_device *nand = spinand_to_nand(spinand); 134 int ret; 135 136 if (WARN_ON(target >= nand->memorg.ntargets)) 137 return -EINVAL; 138 139 if (spinand->cur_target == target) 140 return 0; 141 142 if (nand->memorg.ntargets == 1) { 143 spinand->cur_target = target; 144 return 0; 145 } 146 147 ret = spinand->select_target(spinand, target); 148 if (ret) 149 return ret; 150 151 spinand->cur_target = target; 152 return 0; 153 } 154 155 static int spinand_init_cfg_cache(struct spinand_device *spinand) 156 { 157 struct nand_device *nand = spinand_to_nand(spinand); 158 struct device *dev = &spinand->spimem->spi->dev; 159 unsigned int target; 160 int ret; 161 162 spinand->cfg_cache = devm_kcalloc(dev, 163 nand->memorg.ntargets, 164 sizeof(*spinand->cfg_cache), 165 GFP_KERNEL); 166 if (!spinand->cfg_cache) 167 return -ENOMEM; 168 169 for (target = 0; target < nand->memorg.ntargets; target++) { 170 ret = spinand_select_target(spinand, target); 171 if (ret) 172 return ret; 173 174 /* 175 * We use spinand_read_reg_op() instead of spinand_get_cfg() 176 * here to bypass the config cache. 177 */ 178 ret = spinand_read_reg_op(spinand, REG_CFG, 179 &spinand->cfg_cache[target]); 180 if (ret) 181 return ret; 182 } 183 184 return 0; 185 } 186 187 static int spinand_init_quad_enable(struct spinand_device *spinand) 188 { 189 bool enable = false; 190 191 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 192 return 0; 193 194 if (spinand->op_templates.read_cache->data.buswidth == 4 || 195 spinand->op_templates.write_cache->data.buswidth == 4 || 196 spinand->op_templates.update_cache->data.buswidth == 4) 197 enable = true; 198 199 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 200 enable ? CFG_QUAD_ENABLE : 0); 201 } 202 203 static int spinand_ecc_enable(struct spinand_device *spinand, 204 bool enable) 205 { 206 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 207 enable ? CFG_ECC_ENABLE : 0); 208 } 209 210 static int spinand_write_enable_op(struct spinand_device *spinand) 211 { 212 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); 213 214 return spi_mem_exec_op(spinand->spimem, &op); 215 } 216 217 static int spinand_load_page_op(struct spinand_device *spinand, 218 const struct nand_page_io_req *req) 219 { 220 struct nand_device *nand = spinand_to_nand(spinand); 221 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 222 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); 223 224 return spi_mem_exec_op(spinand->spimem, &op); 225 } 226 227 static int spinand_read_from_cache_op(struct spinand_device *spinand, 228 const struct nand_page_io_req *req) 229 { 230 struct spi_mem_op op = *spinand->op_templates.read_cache; 231 struct nand_device *nand = spinand_to_nand(spinand); 232 struct mtd_info *mtd = nanddev_to_mtd(nand); 233 struct nand_page_io_req adjreq = *req; 234 unsigned int nbytes = 0; 235 void *buf = NULL; 236 u16 column = 0; 237 int ret; 238 239 if (req->datalen) { 240 adjreq.datalen = nanddev_page_size(nand); 241 adjreq.dataoffs = 0; 242 adjreq.databuf.in = spinand->databuf; 243 buf = spinand->databuf; 244 nbytes = adjreq.datalen; 245 } 246 247 if (req->ooblen) { 248 adjreq.ooblen = nanddev_per_page_oobsize(nand); 249 adjreq.ooboffs = 0; 250 adjreq.oobbuf.in = spinand->oobbuf; 251 nbytes += nanddev_per_page_oobsize(nand); 252 if (!buf) { 253 buf = spinand->oobbuf; 254 column = nanddev_page_size(nand); 255 } 256 } 257 258 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 259 op.addr.val = column; 260 261 /* 262 * Some controllers are limited in term of max RX data size. In this 263 * case, just repeat the READ_CACHE operation after updating the 264 * column. 265 */ 266 while (nbytes) { 267 op.data.buf.in = buf; 268 op.data.nbytes = nbytes; 269 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 270 if (ret) 271 return ret; 272 273 ret = spi_mem_exec_op(spinand->spimem, &op); 274 if (ret) 275 return ret; 276 277 buf += op.data.nbytes; 278 nbytes -= op.data.nbytes; 279 op.addr.val += op.data.nbytes; 280 } 281 282 if (req->datalen) 283 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, 284 req->datalen); 285 286 if (req->ooblen) { 287 if (req->mode == MTD_OPS_AUTO_OOB) 288 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 289 spinand->oobbuf, 290 req->ooboffs, 291 req->ooblen); 292 else 293 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 294 req->ooblen); 295 } 296 297 return 0; 298 } 299 300 static int spinand_write_to_cache_op(struct spinand_device *spinand, 301 const struct nand_page_io_req *req) 302 { 303 struct spi_mem_op op = *spinand->op_templates.write_cache; 304 struct nand_device *nand = spinand_to_nand(spinand); 305 struct mtd_info *mtd = nanddev_to_mtd(nand); 306 struct nand_page_io_req adjreq = *req; 307 void *buf = spinand->databuf; 308 unsigned int nbytes; 309 u16 column = 0; 310 int ret; 311 312 /* 313 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset 314 * the cache content to 0xFF (depends on vendor implementation), so we 315 * must fill the page cache entirely even if we only want to program 316 * the data portion of the page, otherwise we might corrupt the BBM or 317 * user data previously programmed in OOB area. 318 */ 319 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); 320 memset(spinand->databuf, 0xff, nbytes); 321 adjreq.dataoffs = 0; 322 adjreq.datalen = nanddev_page_size(nand); 323 adjreq.databuf.out = spinand->databuf; 324 adjreq.ooblen = nanddev_per_page_oobsize(nand); 325 adjreq.ooboffs = 0; 326 adjreq.oobbuf.out = spinand->oobbuf; 327 328 if (req->datalen) 329 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 330 req->datalen); 331 332 if (req->ooblen) { 333 if (req->mode == MTD_OPS_AUTO_OOB) 334 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 335 spinand->oobbuf, 336 req->ooboffs, 337 req->ooblen); 338 else 339 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 340 req->ooblen); 341 } 342 343 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 344 345 op = *spinand->op_templates.write_cache; 346 op.addr.val = column; 347 348 /* 349 * Some controllers are limited in term of max TX data size. In this 350 * case, split the operation into one LOAD CACHE and one or more 351 * LOAD RANDOM CACHE. 352 */ 353 while (nbytes) { 354 op.data.buf.out = buf; 355 op.data.nbytes = nbytes; 356 357 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 358 if (ret) 359 return ret; 360 361 ret = spi_mem_exec_op(spinand->spimem, &op); 362 if (ret) 363 return ret; 364 365 buf += op.data.nbytes; 366 nbytes -= op.data.nbytes; 367 op.addr.val += op.data.nbytes; 368 369 /* 370 * We need to use the RANDOM LOAD CACHE operation if there's 371 * more than one iteration, because the LOAD operation might 372 * reset the cache to 0xff. 373 */ 374 if (nbytes) { 375 column = op.addr.val; 376 op = *spinand->op_templates.update_cache; 377 op.addr.val = column; 378 } 379 } 380 381 return 0; 382 } 383 384 static int spinand_program_op(struct spinand_device *spinand, 385 const struct nand_page_io_req *req) 386 { 387 struct nand_device *nand = spinand_to_nand(spinand); 388 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 389 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); 390 391 return spi_mem_exec_op(spinand->spimem, &op); 392 } 393 394 static int spinand_erase_op(struct spinand_device *spinand, 395 const struct nand_pos *pos) 396 { 397 struct nand_device *nand = spinand_to_nand(spinand); 398 unsigned int row = nanddev_pos_to_row(nand, pos); 399 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); 400 401 return spi_mem_exec_op(spinand->spimem, &op); 402 } 403 404 static int spinand_wait(struct spinand_device *spinand, u8 *s) 405 { 406 unsigned long timeo = jiffies + msecs_to_jiffies(400); 407 u8 status; 408 int ret; 409 410 do { 411 ret = spinand_read_status(spinand, &status); 412 if (ret) 413 return ret; 414 415 if (!(status & STATUS_BUSY)) 416 goto out; 417 } while (time_before(jiffies, timeo)); 418 419 /* 420 * Extra read, just in case the STATUS_READY bit has changed 421 * since our last check 422 */ 423 ret = spinand_read_status(spinand, &status); 424 if (ret) 425 return ret; 426 427 out: 428 if (s) 429 *s = status; 430 431 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 432 } 433 434 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf) 435 { 436 struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf, 437 SPINAND_MAX_ID_LEN); 438 int ret; 439 440 ret = spi_mem_exec_op(spinand->spimem, &op); 441 if (!ret) 442 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 443 444 return ret; 445 } 446 447 static int spinand_reset_op(struct spinand_device *spinand) 448 { 449 struct spi_mem_op op = SPINAND_RESET_OP; 450 int ret; 451 452 ret = spi_mem_exec_op(spinand->spimem, &op); 453 if (ret) 454 return ret; 455 456 return spinand_wait(spinand, NULL); 457 } 458 459 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 460 { 461 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 462 } 463 464 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 465 { 466 struct nand_device *nand = spinand_to_nand(spinand); 467 468 if (spinand->eccinfo.get_status) 469 return spinand->eccinfo.get_status(spinand, status); 470 471 switch (status & STATUS_ECC_MASK) { 472 case STATUS_ECC_NO_BITFLIPS: 473 return 0; 474 475 case STATUS_ECC_HAS_BITFLIPS: 476 /* 477 * We have no way to know exactly how many bitflips have been 478 * fixed, so let's return the maximum possible value so that 479 * wear-leveling layers move the data immediately. 480 */ 481 return nand->eccreq.strength; 482 483 case STATUS_ECC_UNCOR_ERROR: 484 return -EBADMSG; 485 486 default: 487 break; 488 } 489 490 return -EINVAL; 491 } 492 493 static int spinand_read_page(struct spinand_device *spinand, 494 const struct nand_page_io_req *req, 495 bool ecc_enabled) 496 { 497 u8 status; 498 int ret; 499 500 ret = spinand_load_page_op(spinand, req); 501 if (ret) 502 return ret; 503 504 ret = spinand_wait(spinand, &status); 505 if (ret < 0) 506 return ret; 507 508 ret = spinand_read_from_cache_op(spinand, req); 509 if (ret) 510 return ret; 511 512 if (!ecc_enabled) 513 return 0; 514 515 return spinand_check_ecc_status(spinand, status); 516 } 517 518 static int spinand_write_page(struct spinand_device *spinand, 519 const struct nand_page_io_req *req) 520 { 521 u8 status; 522 int ret; 523 524 ret = spinand_write_enable_op(spinand); 525 if (ret) 526 return ret; 527 528 ret = spinand_write_to_cache_op(spinand, req); 529 if (ret) 530 return ret; 531 532 ret = spinand_program_op(spinand, req); 533 if (ret) 534 return ret; 535 536 ret = spinand_wait(spinand, &status); 537 if (!ret && (status & STATUS_PROG_FAILED)) 538 ret = -EIO; 539 540 return ret; 541 } 542 543 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 544 struct mtd_oob_ops *ops) 545 { 546 struct spinand_device *spinand = mtd_to_spinand(mtd); 547 struct nand_device *nand = mtd_to_nanddev(mtd); 548 unsigned int max_bitflips = 0; 549 struct nand_io_iter iter; 550 bool enable_ecc = false; 551 bool ecc_failed = false; 552 int ret = 0; 553 554 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) 555 enable_ecc = true; 556 557 mutex_lock(&spinand->lock); 558 559 nanddev_io_for_each_page(nand, from, ops, &iter) { 560 ret = spinand_select_target(spinand, iter.req.pos.target); 561 if (ret) 562 break; 563 564 ret = spinand_ecc_enable(spinand, enable_ecc); 565 if (ret) 566 break; 567 568 ret = spinand_read_page(spinand, &iter.req, enable_ecc); 569 if (ret < 0 && ret != -EBADMSG) 570 break; 571 572 if (ret == -EBADMSG) { 573 ecc_failed = true; 574 mtd->ecc_stats.failed++; 575 ret = 0; 576 } else { 577 mtd->ecc_stats.corrected += ret; 578 max_bitflips = max_t(unsigned int, max_bitflips, ret); 579 } 580 581 ops->retlen += iter.req.datalen; 582 ops->oobretlen += iter.req.ooblen; 583 } 584 585 mutex_unlock(&spinand->lock); 586 587 if (ecc_failed && !ret) 588 ret = -EBADMSG; 589 590 return ret ? ret : max_bitflips; 591 } 592 593 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 594 struct mtd_oob_ops *ops) 595 { 596 struct spinand_device *spinand = mtd_to_spinand(mtd); 597 struct nand_device *nand = mtd_to_nanddev(mtd); 598 struct nand_io_iter iter; 599 bool enable_ecc = false; 600 int ret = 0; 601 602 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) 603 enable_ecc = true; 604 605 mutex_lock(&spinand->lock); 606 607 nanddev_io_for_each_page(nand, to, ops, &iter) { 608 ret = spinand_select_target(spinand, iter.req.pos.target); 609 if (ret) 610 break; 611 612 ret = spinand_ecc_enable(spinand, enable_ecc); 613 if (ret) 614 break; 615 616 ret = spinand_write_page(spinand, &iter.req); 617 if (ret) 618 break; 619 620 ops->retlen += iter.req.datalen; 621 ops->oobretlen += iter.req.ooblen; 622 } 623 624 mutex_unlock(&spinand->lock); 625 626 return ret; 627 } 628 629 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 630 { 631 struct spinand_device *spinand = nand_to_spinand(nand); 632 struct nand_page_io_req req = { 633 .pos = *pos, 634 .ooblen = 2, 635 .ooboffs = 0, 636 .oobbuf.in = spinand->oobbuf, 637 .mode = MTD_OPS_RAW, 638 }; 639 640 memset(spinand->oobbuf, 0, 2); 641 spinand_select_target(spinand, pos->target); 642 spinand_read_page(spinand, &req, false); 643 if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff) 644 return true; 645 646 return false; 647 } 648 649 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 650 { 651 struct nand_device *nand = mtd_to_nanddev(mtd); 652 struct spinand_device *spinand = nand_to_spinand(nand); 653 struct nand_pos pos; 654 int ret; 655 656 nanddev_offs_to_pos(nand, offs, &pos); 657 mutex_lock(&spinand->lock); 658 ret = nanddev_isbad(nand, &pos); 659 mutex_unlock(&spinand->lock); 660 661 return ret; 662 } 663 664 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 665 { 666 struct spinand_device *spinand = nand_to_spinand(nand); 667 struct nand_page_io_req req = { 668 .pos = *pos, 669 .ooboffs = 0, 670 .ooblen = 2, 671 .oobbuf.out = spinand->oobbuf, 672 }; 673 int ret; 674 675 /* Erase block before marking it bad. */ 676 ret = spinand_select_target(spinand, pos->target); 677 if (ret) 678 return ret; 679 680 ret = spinand_write_enable_op(spinand); 681 if (ret) 682 return ret; 683 684 spinand_erase_op(spinand, pos); 685 686 memset(spinand->oobbuf, 0, 2); 687 return spinand_write_page(spinand, &req); 688 } 689 690 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 691 { 692 struct nand_device *nand = mtd_to_nanddev(mtd); 693 struct spinand_device *spinand = nand_to_spinand(nand); 694 struct nand_pos pos; 695 int ret; 696 697 nanddev_offs_to_pos(nand, offs, &pos); 698 mutex_lock(&spinand->lock); 699 ret = nanddev_markbad(nand, &pos); 700 mutex_unlock(&spinand->lock); 701 702 return ret; 703 } 704 705 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 706 { 707 struct spinand_device *spinand = nand_to_spinand(nand); 708 u8 status; 709 int ret; 710 711 ret = spinand_select_target(spinand, pos->target); 712 if (ret) 713 return ret; 714 715 ret = spinand_write_enable_op(spinand); 716 if (ret) 717 return ret; 718 719 ret = spinand_erase_op(spinand, pos); 720 if (ret) 721 return ret; 722 723 ret = spinand_wait(spinand, &status); 724 if (!ret && (status & STATUS_ERASE_FAILED)) 725 ret = -EIO; 726 727 return ret; 728 } 729 730 static int spinand_mtd_erase(struct mtd_info *mtd, 731 struct erase_info *einfo) 732 { 733 struct spinand_device *spinand = mtd_to_spinand(mtd); 734 int ret; 735 736 mutex_lock(&spinand->lock); 737 ret = nanddev_mtd_erase(mtd, einfo); 738 mutex_unlock(&spinand->lock); 739 740 return ret; 741 } 742 743 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 744 { 745 struct spinand_device *spinand = mtd_to_spinand(mtd); 746 struct nand_device *nand = mtd_to_nanddev(mtd); 747 struct nand_pos pos; 748 int ret; 749 750 nanddev_offs_to_pos(nand, offs, &pos); 751 mutex_lock(&spinand->lock); 752 ret = nanddev_isreserved(nand, &pos); 753 mutex_unlock(&spinand->lock); 754 755 return ret; 756 } 757 758 static const struct nand_ops spinand_ops = { 759 .erase = spinand_erase, 760 .markbad = spinand_markbad, 761 .isbad = spinand_isbad, 762 }; 763 764 static const struct spinand_manufacturer *spinand_manufacturers[] = { 765 &gigadevice_spinand_manufacturer, 766 ¯onix_spinand_manufacturer, 767 µn_spinand_manufacturer, 768 &toshiba_spinand_manufacturer, 769 &winbond_spinand_manufacturer, 770 }; 771 772 static int spinand_manufacturer_detect(struct spinand_device *spinand) 773 { 774 unsigned int i; 775 int ret; 776 777 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 778 ret = spinand_manufacturers[i]->ops->detect(spinand); 779 if (ret > 0) { 780 spinand->manufacturer = spinand_manufacturers[i]; 781 return 0; 782 } else if (ret < 0) { 783 return ret; 784 } 785 } 786 787 return -ENOTSUPP; 788 } 789 790 static int spinand_manufacturer_init(struct spinand_device *spinand) 791 { 792 if (spinand->manufacturer->ops->init) 793 return spinand->manufacturer->ops->init(spinand); 794 795 return 0; 796 } 797 798 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 799 { 800 /* Release manufacturer private data */ 801 if (spinand->manufacturer->ops->cleanup) 802 return spinand->manufacturer->ops->cleanup(spinand); 803 } 804 805 static const struct spi_mem_op * 806 spinand_select_op_variant(struct spinand_device *spinand, 807 const struct spinand_op_variants *variants) 808 { 809 struct nand_device *nand = spinand_to_nand(spinand); 810 unsigned int i; 811 812 for (i = 0; i < variants->nops; i++) { 813 struct spi_mem_op op = variants->ops[i]; 814 unsigned int nbytes; 815 int ret; 816 817 nbytes = nanddev_per_page_oobsize(nand) + 818 nanddev_page_size(nand); 819 820 while (nbytes) { 821 op.data.nbytes = nbytes; 822 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 823 if (ret) 824 break; 825 826 if (!spi_mem_supports_op(spinand->spimem, &op)) 827 break; 828 829 nbytes -= op.data.nbytes; 830 } 831 832 if (!nbytes) 833 return &variants->ops[i]; 834 } 835 836 return NULL; 837 } 838 839 /** 840 * spinand_match_and_init() - Try to find a match between a device ID and an 841 * entry in a spinand_info table 842 * @spinand: SPI NAND object 843 * @table: SPI NAND device description table 844 * @table_size: size of the device description table 845 * 846 * Should be used by SPI NAND manufacturer drivers when they want to find a 847 * match between a device ID retrieved through the READ_ID command and an 848 * entry in the SPI NAND description table. If a match is found, the spinand 849 * object will be initialized with information provided by the matching 850 * spinand_info entry. 851 * 852 * Return: 0 on success, a negative error code otherwise. 853 */ 854 int spinand_match_and_init(struct spinand_device *spinand, 855 const struct spinand_info *table, 856 unsigned int table_size, u8 devid) 857 { 858 struct nand_device *nand = spinand_to_nand(spinand); 859 unsigned int i; 860 861 for (i = 0; i < table_size; i++) { 862 const struct spinand_info *info = &table[i]; 863 const struct spi_mem_op *op; 864 865 if (devid != info->devid) 866 continue; 867 868 nand->memorg = table[i].memorg; 869 nand->eccreq = table[i].eccreq; 870 spinand->eccinfo = table[i].eccinfo; 871 spinand->flags = table[i].flags; 872 spinand->select_target = table[i].select_target; 873 874 op = spinand_select_op_variant(spinand, 875 info->op_variants.read_cache); 876 if (!op) 877 return -ENOTSUPP; 878 879 spinand->op_templates.read_cache = op; 880 881 op = spinand_select_op_variant(spinand, 882 info->op_variants.write_cache); 883 if (!op) 884 return -ENOTSUPP; 885 886 spinand->op_templates.write_cache = op; 887 888 op = spinand_select_op_variant(spinand, 889 info->op_variants.update_cache); 890 spinand->op_templates.update_cache = op; 891 892 return 0; 893 } 894 895 return -ENOTSUPP; 896 } 897 898 static int spinand_detect(struct spinand_device *spinand) 899 { 900 struct device *dev = &spinand->spimem->spi->dev; 901 struct nand_device *nand = spinand_to_nand(spinand); 902 int ret; 903 904 ret = spinand_reset_op(spinand); 905 if (ret) 906 return ret; 907 908 ret = spinand_read_id_op(spinand, spinand->id.data); 909 if (ret) 910 return ret; 911 912 spinand->id.len = SPINAND_MAX_ID_LEN; 913 914 ret = spinand_manufacturer_detect(spinand); 915 if (ret) { 916 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, 917 spinand->id.data); 918 return ret; 919 } 920 921 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 922 dev_err(dev, 923 "SPI NANDs with more than one die must implement ->select_target()\n"); 924 return -EINVAL; 925 } 926 927 dev_info(&spinand->spimem->spi->dev, 928 "%s SPI NAND was found.\n", spinand->manufacturer->name); 929 dev_info(&spinand->spimem->spi->dev, 930 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 931 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 932 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 933 934 return 0; 935 } 936 937 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 938 struct mtd_oob_region *region) 939 { 940 return -ERANGE; 941 } 942 943 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 944 struct mtd_oob_region *region) 945 { 946 if (section) 947 return -ERANGE; 948 949 /* Reserve 2 bytes for the BBM. */ 950 region->offset = 2; 951 region->length = 62; 952 953 return 0; 954 } 955 956 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 957 .ecc = spinand_noecc_ooblayout_ecc, 958 .free = spinand_noecc_ooblayout_free, 959 }; 960 961 static int spinand_init(struct spinand_device *spinand) 962 { 963 struct device *dev = &spinand->spimem->spi->dev; 964 struct mtd_info *mtd = spinand_to_mtd(spinand); 965 struct nand_device *nand = mtd_to_nanddev(mtd); 966 int ret, i; 967 968 /* 969 * We need a scratch buffer because the spi_mem interface requires that 970 * buf passed in spi_mem_op->data.buf be DMA-able. 971 */ 972 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 973 if (!spinand->scratchbuf) 974 return -ENOMEM; 975 976 ret = spinand_detect(spinand); 977 if (ret) 978 goto err_free_bufs; 979 980 /* 981 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 982 * may use this buffer for DMA access. 983 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 984 */ 985 spinand->databuf = kzalloc(nanddev_page_size(nand) + 986 nanddev_per_page_oobsize(nand), 987 GFP_KERNEL); 988 if (!spinand->databuf) { 989 ret = -ENOMEM; 990 goto err_free_bufs; 991 } 992 993 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 994 995 ret = spinand_init_cfg_cache(spinand); 996 if (ret) 997 goto err_free_bufs; 998 999 ret = spinand_init_quad_enable(spinand); 1000 if (ret) 1001 goto err_free_bufs; 1002 1003 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1004 if (ret) 1005 goto err_free_bufs; 1006 1007 ret = spinand_manufacturer_init(spinand); 1008 if (ret) { 1009 dev_err(dev, 1010 "Failed to initialize the SPI NAND chip (err = %d)\n", 1011 ret); 1012 goto err_free_bufs; 1013 } 1014 1015 /* After power up, all blocks are locked, so unlock them here. */ 1016 for (i = 0; i < nand->memorg.ntargets; i++) { 1017 ret = spinand_select_target(spinand, i); 1018 if (ret) 1019 goto err_manuf_cleanup; 1020 1021 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1022 if (ret) 1023 goto err_manuf_cleanup; 1024 } 1025 1026 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1027 if (ret) 1028 goto err_manuf_cleanup; 1029 1030 /* 1031 * Right now, we don't support ECC, so let the whole oob 1032 * area is available for user. 1033 */ 1034 mtd->_read_oob = spinand_mtd_read; 1035 mtd->_write_oob = spinand_mtd_write; 1036 mtd->_block_isbad = spinand_mtd_block_isbad; 1037 mtd->_block_markbad = spinand_mtd_block_markbad; 1038 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1039 mtd->_erase = spinand_mtd_erase; 1040 1041 if (spinand->eccinfo.ooblayout) 1042 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 1043 else 1044 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 1045 1046 ret = mtd_ooblayout_count_freebytes(mtd); 1047 if (ret < 0) 1048 goto err_cleanup_nanddev; 1049 1050 mtd->oobavail = ret; 1051 1052 return 0; 1053 1054 err_cleanup_nanddev: 1055 nanddev_cleanup(nand); 1056 1057 err_manuf_cleanup: 1058 spinand_manufacturer_cleanup(spinand); 1059 1060 err_free_bufs: 1061 kfree(spinand->databuf); 1062 kfree(spinand->scratchbuf); 1063 return ret; 1064 } 1065 1066 static void spinand_cleanup(struct spinand_device *spinand) 1067 { 1068 struct nand_device *nand = spinand_to_nand(spinand); 1069 1070 nanddev_cleanup(nand); 1071 spinand_manufacturer_cleanup(spinand); 1072 kfree(spinand->databuf); 1073 kfree(spinand->scratchbuf); 1074 } 1075 1076 static int spinand_probe(struct spi_mem *mem) 1077 { 1078 struct spinand_device *spinand; 1079 struct mtd_info *mtd; 1080 int ret; 1081 1082 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1083 GFP_KERNEL); 1084 if (!spinand) 1085 return -ENOMEM; 1086 1087 spinand->spimem = mem; 1088 spi_mem_set_drvdata(mem, spinand); 1089 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1090 mutex_init(&spinand->lock); 1091 mtd = spinand_to_mtd(spinand); 1092 mtd->dev.parent = &mem->spi->dev; 1093 1094 ret = spinand_init(spinand); 1095 if (ret) 1096 return ret; 1097 1098 ret = mtd_device_register(mtd, NULL, 0); 1099 if (ret) 1100 goto err_spinand_cleanup; 1101 1102 return 0; 1103 1104 err_spinand_cleanup: 1105 spinand_cleanup(spinand); 1106 1107 return ret; 1108 } 1109 1110 static int spinand_remove(struct spi_mem *mem) 1111 { 1112 struct spinand_device *spinand; 1113 struct mtd_info *mtd; 1114 int ret; 1115 1116 spinand = spi_mem_get_drvdata(mem); 1117 mtd = spinand_to_mtd(spinand); 1118 1119 ret = mtd_device_unregister(mtd); 1120 if (ret) 1121 return ret; 1122 1123 spinand_cleanup(spinand); 1124 1125 return 0; 1126 } 1127 1128 static const struct spi_device_id spinand_ids[] = { 1129 { .name = "spi-nand" }, 1130 { /* sentinel */ }, 1131 }; 1132 1133 #ifdef CONFIG_OF 1134 static const struct of_device_id spinand_of_ids[] = { 1135 { .compatible = "spi-nand" }, 1136 { /* sentinel */ }, 1137 }; 1138 #endif 1139 1140 static struct spi_mem_driver spinand_drv = { 1141 .spidrv = { 1142 .id_table = spinand_ids, 1143 .driver = { 1144 .name = "spi-nand", 1145 .of_match_table = of_match_ptr(spinand_of_ids), 1146 }, 1147 }, 1148 .probe = spinand_probe, 1149 .remove = spinand_remove, 1150 }; 1151 module_spi_mem_driver(spinand_drv); 1152 1153 MODULE_DESCRIPTION("SPI NAND framework"); 1154 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1155 MODULE_LICENSE("GPL v2"); 1156