xref: /openbmc/linux/drivers/mtd/nand/raw/xway_nand.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  *  This program is free software; you can redistribute it and/or modify it
3  *  under the terms of the GNU General Public License version 2 as published
4  *  by the Free Software Foundation.
5  *
6  *  Copyright © 2012 John Crispin <john@phrozen.org>
7  *  Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
8  */
9 
10 #include <linux/mtd/rawnand.h>
11 #include <linux/of_gpio.h>
12 #include <linux/of_platform.h>
13 
14 #include <lantiq_soc.h>
15 
16 /* nand registers */
17 #define EBU_ADDSEL1		0x24
18 #define EBU_NAND_CON		0xB0
19 #define EBU_NAND_WAIT		0xB4
20 #define  NAND_WAIT_RD		BIT(0) /* NAND flash status output */
21 #define  NAND_WAIT_WR_C		BIT(3) /* NAND Write/Read complete */
22 #define EBU_NAND_ECC0		0xB8
23 #define EBU_NAND_ECC_AC		0xBC
24 
25 /*
26  * nand commands
27  * The pins of the NAND chip are selected based on the address bits of the
28  * "register" read and write. There are no special registers, but an
29  * address range and the lower address bits are used to activate the
30  * correct line. For example when the bit (1 << 2) is set in the address
31  * the ALE pin will be activated.
32  */
33 #define NAND_CMD_ALE		BIT(2) /* address latch enable */
34 #define NAND_CMD_CLE		BIT(3) /* command latch enable */
35 #define NAND_CMD_CS		BIT(4) /* chip select */
36 #define NAND_CMD_SE		BIT(5) /* spare area access latch */
37 #define NAND_CMD_WP		BIT(6) /* write protect */
38 #define NAND_WRITE_CMD		(NAND_CMD_CS | NAND_CMD_CLE)
39 #define NAND_WRITE_ADDR		(NAND_CMD_CS | NAND_CMD_ALE)
40 #define NAND_WRITE_DATA		(NAND_CMD_CS)
41 #define NAND_READ_DATA		(NAND_CMD_CS)
42 
43 /* we need to tel the ebu which addr we mapped the nand to */
44 #define ADDSEL1_MASK(x)		(x << 4)
45 #define ADDSEL1_REGEN		1
46 
47 /* we need to tell the EBU that we have nand attached and set it up properly */
48 #define BUSCON1_SETUP		(1 << 22)
49 #define BUSCON1_BCGEN_RES	(0x3 << 12)
50 #define BUSCON1_WAITWRC2	(2 << 8)
51 #define BUSCON1_WAITRDC2	(2 << 6)
52 #define BUSCON1_HOLDC1		(1 << 4)
53 #define BUSCON1_RECOVC1		(1 << 2)
54 #define BUSCON1_CMULT4		1
55 
56 #define NAND_CON_CE		(1 << 20)
57 #define NAND_CON_OUT_CS1	(1 << 10)
58 #define NAND_CON_IN_CS1		(1 << 8)
59 #define NAND_CON_PRE_P		(1 << 7)
60 #define NAND_CON_WP_P		(1 << 6)
61 #define NAND_CON_SE_P		(1 << 5)
62 #define NAND_CON_CS_P		(1 << 4)
63 #define NAND_CON_CSMUX		(1 << 1)
64 #define NAND_CON_NANDM		1
65 
66 struct xway_nand_data {
67 	struct nand_chip	chip;
68 	unsigned long		csflags;
69 	void __iomem		*nandaddr;
70 };
71 
72 static u8 xway_readb(struct mtd_info *mtd, int op)
73 {
74 	struct nand_chip *chip = mtd_to_nand(mtd);
75 	struct xway_nand_data *data = nand_get_controller_data(chip);
76 
77 	return readb(data->nandaddr + op);
78 }
79 
80 static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
81 {
82 	struct nand_chip *chip = mtd_to_nand(mtd);
83 	struct xway_nand_data *data = nand_get_controller_data(chip);
84 
85 	writeb(value, data->nandaddr + op);
86 }
87 
88 static void xway_select_chip(struct mtd_info *mtd, int select)
89 {
90 	struct nand_chip *chip = mtd_to_nand(mtd);
91 	struct xway_nand_data *data = nand_get_controller_data(chip);
92 
93 	switch (select) {
94 	case -1:
95 		ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
96 		ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
97 		spin_unlock_irqrestore(&ebu_lock, data->csflags);
98 		break;
99 	case 0:
100 		spin_lock_irqsave(&ebu_lock, data->csflags);
101 		ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
102 		ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
103 		break;
104 	default:
105 		BUG();
106 	}
107 }
108 
109 static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
110 {
111 	if (cmd == NAND_CMD_NONE)
112 		return;
113 
114 	if (ctrl & NAND_CLE)
115 		xway_writeb(mtd, NAND_WRITE_CMD, cmd);
116 	else if (ctrl & NAND_ALE)
117 		xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
118 
119 	while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
120 		;
121 }
122 
123 static int xway_dev_ready(struct mtd_info *mtd)
124 {
125 	return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
126 }
127 
128 static unsigned char xway_read_byte(struct mtd_info *mtd)
129 {
130 	return xway_readb(mtd, NAND_READ_DATA);
131 }
132 
133 static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len)
134 {
135 	int i;
136 
137 	for (i = 0; i < len; i++)
138 		buf[i] = xway_readb(mtd, NAND_WRITE_DATA);
139 }
140 
141 static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
142 {
143 	int i;
144 
145 	for (i = 0; i < len; i++)
146 		xway_writeb(mtd, NAND_WRITE_DATA, buf[i]);
147 }
148 
149 /*
150  * Probe for the NAND device.
151  */
152 static int xway_nand_probe(struct platform_device *pdev)
153 {
154 	struct xway_nand_data *data;
155 	struct mtd_info *mtd;
156 	struct resource *res;
157 	int err;
158 	u32 cs;
159 	u32 cs_flag = 0;
160 
161 	/* Allocate memory for the device structure (and zero it) */
162 	data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
163 			    GFP_KERNEL);
164 	if (!data)
165 		return -ENOMEM;
166 
167 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
168 	data->nandaddr = devm_ioremap_resource(&pdev->dev, res);
169 	if (IS_ERR(data->nandaddr))
170 		return PTR_ERR(data->nandaddr);
171 
172 	nand_set_flash_node(&data->chip, pdev->dev.of_node);
173 	mtd = nand_to_mtd(&data->chip);
174 	mtd->dev.parent = &pdev->dev;
175 
176 	data->chip.cmd_ctrl = xway_cmd_ctrl;
177 	data->chip.dev_ready = xway_dev_ready;
178 	data->chip.select_chip = xway_select_chip;
179 	data->chip.write_buf = xway_write_buf;
180 	data->chip.read_buf = xway_read_buf;
181 	data->chip.read_byte = xway_read_byte;
182 	data->chip.chip_delay = 30;
183 
184 	data->chip.ecc.mode = NAND_ECC_SOFT;
185 	data->chip.ecc.algo = NAND_ECC_HAMMING;
186 
187 	platform_set_drvdata(pdev, data);
188 	nand_set_controller_data(&data->chip, data);
189 
190 	/* load our CS from the DT. Either we find a valid 1 or default to 0 */
191 	err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
192 	if (!err && cs == 1)
193 		cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
194 
195 	/* setup the EBU to run in NAND mode on our base addr */
196 	ltq_ebu_w32(CPHYSADDR(data->nandaddr)
197 		    | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
198 
199 	ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
200 		    | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
201 		    | BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
202 
203 	ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
204 		    | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
205 		    | cs_flag, EBU_NAND_CON);
206 
207 	/* Scan to find existence of the device */
208 	err = nand_scan(mtd, 1);
209 	if (err)
210 		return err;
211 
212 	err = mtd_device_register(mtd, NULL, 0);
213 	if (err)
214 		nand_release(mtd);
215 
216 	return err;
217 }
218 
219 /*
220  * Remove a NAND device.
221  */
222 static int xway_nand_remove(struct platform_device *pdev)
223 {
224 	struct xway_nand_data *data = platform_get_drvdata(pdev);
225 
226 	nand_release(nand_to_mtd(&data->chip));
227 
228 	return 0;
229 }
230 
231 static const struct of_device_id xway_nand_match[] = {
232 	{ .compatible = "lantiq,nand-xway" },
233 	{},
234 };
235 
236 static struct platform_driver xway_nand_driver = {
237 	.probe	= xway_nand_probe,
238 	.remove	= xway_nand_remove,
239 	.driver	= {
240 		.name		= "lantiq,nand-xway",
241 		.of_match_table = xway_nand_match,
242 	},
243 };
244 
245 builtin_platform_driver(xway_nand_driver);
246