1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others 4 * 5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. 6 * Jason ported to M54418TWR and MVFA5 (VF610). 7 * Authors: Stefan Agner <stefan.agner@toradex.com> 8 * Bill Pringlemeir <bpringlemeir@nbsps.com> 9 * Shaohui Xie <b21989@freescale.com> 10 * Jason Jin <Jason.jin@freescale.com> 11 * 12 * Based on original driver mpc5121_nfc.c. 13 * 14 * Limitations: 15 * - Untested on MPC5125 and M54418. 16 * - DMA and pipelining not used. 17 * - 2K pages or less. 18 * - HW ECC: Only 2K page with 64+ OOB. 19 * - HW ECC: Only 24 and 32-bit error correction implemented. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/bitops.h> 24 #include <linux/clk.h> 25 #include <linux/delay.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/mtd/mtd.h> 30 #include <linux/mtd/rawnand.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/of_device.h> 33 #include <linux/platform_device.h> 34 #include <linux/slab.h> 35 #include <linux/swab.h> 36 37 #define DRV_NAME "vf610_nfc" 38 39 /* Register Offsets */ 40 #define NFC_FLASH_CMD1 0x3F00 41 #define NFC_FLASH_CMD2 0x3F04 42 #define NFC_COL_ADDR 0x3F08 43 #define NFC_ROW_ADDR 0x3F0c 44 #define NFC_ROW_ADDR_INC 0x3F14 45 #define NFC_FLASH_STATUS1 0x3F18 46 #define NFC_FLASH_STATUS2 0x3F1c 47 #define NFC_CACHE_SWAP 0x3F28 48 #define NFC_SECTOR_SIZE 0x3F2c 49 #define NFC_FLASH_CONFIG 0x3F30 50 #define NFC_IRQ_STATUS 0x3F38 51 52 /* Addresses for NFC MAIN RAM BUFFER areas */ 53 #define NFC_MAIN_AREA(n) ((n) * 0x1000) 54 55 #define PAGE_2K 0x0800 56 #define OOB_64 0x0040 57 #define OOB_MAX 0x0100 58 59 /* NFC_CMD2[CODE] controller cycle bit masks */ 60 #define COMMAND_CMD_BYTE1 BIT(14) 61 #define COMMAND_CAR_BYTE1 BIT(13) 62 #define COMMAND_CAR_BYTE2 BIT(12) 63 #define COMMAND_RAR_BYTE1 BIT(11) 64 #define COMMAND_RAR_BYTE2 BIT(10) 65 #define COMMAND_RAR_BYTE3 BIT(9) 66 #define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) 67 #define COMMAND_WRITE_DATA BIT(8) 68 #define COMMAND_CMD_BYTE2 BIT(7) 69 #define COMMAND_RB_HANDSHAKE BIT(6) 70 #define COMMAND_READ_DATA BIT(5) 71 #define COMMAND_CMD_BYTE3 BIT(4) 72 #define COMMAND_READ_STATUS BIT(3) 73 #define COMMAND_READ_ID BIT(2) 74 75 /* NFC ECC mode define */ 76 #define ECC_BYPASS 0 77 #define ECC_45_BYTE 6 78 #define ECC_60_BYTE 7 79 80 /*** Register Mask and bit definitions */ 81 82 /* NFC_FLASH_CMD1 Field */ 83 #define CMD_BYTE2_MASK 0xFF000000 84 #define CMD_BYTE2_SHIFT 24 85 86 /* NFC_FLASH_CM2 Field */ 87 #define CMD_BYTE1_MASK 0xFF000000 88 #define CMD_BYTE1_SHIFT 24 89 #define CMD_CODE_MASK 0x00FFFF00 90 #define CMD_CODE_SHIFT 8 91 #define BUFNO_MASK 0x00000006 92 #define BUFNO_SHIFT 1 93 #define START_BIT BIT(0) 94 95 /* NFC_COL_ADDR Field */ 96 #define COL_ADDR_MASK 0x0000FFFF 97 #define COL_ADDR_SHIFT 0 98 #define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) 99 100 /* NFC_ROW_ADDR Field */ 101 #define ROW_ADDR_MASK 0x00FFFFFF 102 #define ROW_ADDR_SHIFT 0 103 #define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) 104 105 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 106 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 107 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 108 #define ROW_ADDR_CHIP_SEL_SHIFT 24 109 110 /* NFC_FLASH_STATUS2 Field */ 111 #define STATUS_BYTE1_MASK 0x000000FF 112 113 /* NFC_FLASH_CONFIG Field */ 114 #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 115 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22 116 #define CONFIG_ECC_SRAM_REQ_BIT BIT(21) 117 #define CONFIG_DMA_REQ_BIT BIT(20) 118 #define CONFIG_ECC_MODE_MASK 0x000E0000 119 #define CONFIG_ECC_MODE_SHIFT 17 120 #define CONFIG_FAST_FLASH_BIT BIT(16) 121 #define CONFIG_16BIT BIT(7) 122 #define CONFIG_BOOT_MODE_BIT BIT(6) 123 #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) 124 #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) 125 #define CONFIG_PAGE_CNT_MASK 0xF 126 #define CONFIG_PAGE_CNT_SHIFT 0 127 128 /* NFC_IRQ_STATUS Field */ 129 #define IDLE_IRQ_BIT BIT(29) 130 #define IDLE_EN_BIT BIT(20) 131 #define CMD_DONE_CLEAR_BIT BIT(18) 132 #define IDLE_CLEAR_BIT BIT(17) 133 134 /* 135 * ECC status - seems to consume 8 bytes (double word). The documented 136 * status byte is located in the lowest byte of the second word (which is 137 * the 4th or 7th byte depending on endianness). 138 * Calculate an offset to store the ECC status at the end of the buffer. 139 */ 140 #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) 141 142 #define ECC_STATUS 0x4 143 #define ECC_STATUS_MASK 0x80 144 #define ECC_STATUS_ERR_COUNT 0x3F 145 146 enum vf610_nfc_variant { 147 NFC_VFC610 = 1, 148 }; 149 150 struct vf610_nfc { 151 struct nand_controller base; 152 struct nand_chip chip; 153 struct device *dev; 154 void __iomem *regs; 155 struct completion cmd_done; 156 /* Status and ID are in alternate locations. */ 157 enum vf610_nfc_variant variant; 158 struct clk *clk; 159 /* 160 * Indicate that user data is accessed (full page/oob). This is 161 * useful to indicate the driver whether to swap byte endianness. 162 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. 163 */ 164 bool data_access; 165 u32 ecc_mode; 166 }; 167 168 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) 169 { 170 return container_of(chip, struct vf610_nfc, chip); 171 } 172 173 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) 174 { 175 return readl(nfc->regs + reg); 176 } 177 178 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) 179 { 180 writel(val, nfc->regs + reg); 181 } 182 183 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) 184 { 185 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); 186 } 187 188 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) 189 { 190 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); 191 } 192 193 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, 194 u32 mask, u32 shift, u32 val) 195 { 196 vf610_nfc_write(nfc, reg, 197 (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); 198 } 199 200 static inline bool vf610_nfc_kernel_is_little_endian(void) 201 { 202 #ifdef __LITTLE_ENDIAN 203 return true; 204 #else 205 return false; 206 #endif 207 } 208 209 /** 210 * Read accessor for internal SRAM buffer 211 * @dst: destination address in regular memory 212 * @src: source address in SRAM buffer 213 * @len: bytes to copy 214 * @fix_endian: Fix endianness if required 215 * 216 * Use this accessor for the internal SRAM buffers. On the ARM 217 * Freescale Vybrid SoC it's known that the driver can treat 218 * the SRAM buffer as if it's memory. Other platform might need 219 * to treat the buffers differently. 220 * 221 * The controller stores bytes from the NAND chip internally in big 222 * endianness. On little endian platforms such as Vybrid this leads 223 * to reversed byte order. 224 * For performance reason (and earlier probably due to unawareness) 225 * the driver avoids correcting endianness where it has control over 226 * write and read side (e.g. page wise data access). 227 */ 228 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, 229 size_t len, bool fix_endian) 230 { 231 if (vf610_nfc_kernel_is_little_endian() && fix_endian) { 232 unsigned int i; 233 234 for (i = 0; i < len; i += 4) { 235 u32 val = swab32(__raw_readl(src + i)); 236 237 memcpy(dst + i, &val, min(sizeof(val), len - i)); 238 } 239 } else { 240 memcpy_fromio(dst, src, len); 241 } 242 } 243 244 /** 245 * Write accessor for internal SRAM buffer 246 * @dst: destination address in SRAM buffer 247 * @src: source address in regular memory 248 * @len: bytes to copy 249 * @fix_endian: Fix endianness if required 250 * 251 * Use this accessor for the internal SRAM buffers. On the ARM 252 * Freescale Vybrid SoC it's known that the driver can treat 253 * the SRAM buffer as if it's memory. Other platform might need 254 * to treat the buffers differently. 255 * 256 * The controller stores bytes from the NAND chip internally in big 257 * endianness. On little endian platforms such as Vybrid this leads 258 * to reversed byte order. 259 * For performance reason (and earlier probably due to unawareness) 260 * the driver avoids correcting endianness where it has control over 261 * write and read side (e.g. page wise data access). 262 */ 263 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, 264 size_t len, bool fix_endian) 265 { 266 if (vf610_nfc_kernel_is_little_endian() && fix_endian) { 267 unsigned int i; 268 269 for (i = 0; i < len; i += 4) { 270 u32 val; 271 272 memcpy(&val, src + i, min(sizeof(val), len - i)); 273 __raw_writel(swab32(val), dst + i); 274 } 275 } else { 276 memcpy_toio(dst, src, len); 277 } 278 } 279 280 /* Clear flags for upcoming command */ 281 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) 282 { 283 u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); 284 285 tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; 286 vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); 287 } 288 289 static void vf610_nfc_done(struct vf610_nfc *nfc) 290 { 291 unsigned long timeout = msecs_to_jiffies(100); 292 293 /* 294 * Barrier is needed after this write. This write need 295 * to be done before reading the next register the first 296 * time. 297 * vf610_nfc_set implicates such a barrier by using writel 298 * to write to the register. 299 */ 300 vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); 301 vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); 302 303 if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) 304 dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); 305 306 vf610_nfc_clear_status(nfc); 307 } 308 309 static irqreturn_t vf610_nfc_irq(int irq, void *data) 310 { 311 struct vf610_nfc *nfc = data; 312 313 vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); 314 complete(&nfc->cmd_done); 315 316 return IRQ_HANDLED; 317 } 318 319 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) 320 { 321 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, 322 CONFIG_ECC_MODE_MASK, 323 CONFIG_ECC_MODE_SHIFT, ecc_mode); 324 } 325 326 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size) 327 { 328 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size); 329 } 330 331 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, 332 u32 cmd1, u32 cmd2, u32 trfr_sz) 333 { 334 vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, 335 COL_ADDR_SHIFT, col); 336 337 vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, 338 ROW_ADDR_SHIFT, row); 339 340 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); 341 vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); 342 vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); 343 344 dev_dbg(nfc->dev, 345 "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", 346 col, row, cmd1, cmd2, trfr_sz); 347 348 vf610_nfc_done(nfc); 349 } 350 351 static inline const struct nand_op_instr * 352 vf610_get_next_instr(const struct nand_subop *subop, int *op_id) 353 { 354 if (*op_id + 1 >= subop->ninstrs) 355 return NULL; 356 357 (*op_id)++; 358 359 return &subop->instrs[*op_id]; 360 } 361 362 static int vf610_nfc_cmd(struct nand_chip *chip, 363 const struct nand_subop *subop) 364 { 365 const struct nand_op_instr *instr; 366 struct vf610_nfc *nfc = chip_to_nfc(chip); 367 int op_id = -1, trfr_sz = 0, offset = 0; 368 u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; 369 bool force8bit = false; 370 371 /* 372 * Some ops are optional, but the hardware requires the operations 373 * to be in this exact order. 374 * The op parser enforces the order and makes sure that there isn't 375 * a read and write element in a single operation. 376 */ 377 instr = vf610_get_next_instr(subop, &op_id); 378 if (!instr) 379 return -EINVAL; 380 381 if (instr && instr->type == NAND_OP_CMD_INSTR) { 382 cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; 383 code |= COMMAND_CMD_BYTE1; 384 385 instr = vf610_get_next_instr(subop, &op_id); 386 } 387 388 if (instr && instr->type == NAND_OP_ADDR_INSTR) { 389 int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 390 int i = nand_subop_get_addr_start_off(subop, op_id); 391 392 for (; i < naddrs; i++) { 393 u8 val = instr->ctx.addr.addrs[i]; 394 395 if (i < 2) 396 col |= COL_ADDR(i, val); 397 else 398 row |= ROW_ADDR(i - 2, val); 399 } 400 code |= COMMAND_NADDR_BYTES(naddrs); 401 402 instr = vf610_get_next_instr(subop, &op_id); 403 } 404 405 if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { 406 trfr_sz = nand_subop_get_data_len(subop, op_id); 407 offset = nand_subop_get_data_start_off(subop, op_id); 408 force8bit = instr->ctx.data.force_8bit; 409 410 /* 411 * Don't fix endianness on page access for historical reasons. 412 * See comment in vf610_nfc_wr_to_sram 413 */ 414 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, 415 instr->ctx.data.buf.out + offset, 416 trfr_sz, !nfc->data_access); 417 code |= COMMAND_WRITE_DATA; 418 419 instr = vf610_get_next_instr(subop, &op_id); 420 } 421 422 if (instr && instr->type == NAND_OP_CMD_INSTR) { 423 cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; 424 code |= COMMAND_CMD_BYTE2; 425 426 instr = vf610_get_next_instr(subop, &op_id); 427 } 428 429 if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { 430 code |= COMMAND_RB_HANDSHAKE; 431 432 instr = vf610_get_next_instr(subop, &op_id); 433 } 434 435 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { 436 trfr_sz = nand_subop_get_data_len(subop, op_id); 437 offset = nand_subop_get_data_start_off(subop, op_id); 438 force8bit = instr->ctx.data.force_8bit; 439 440 code |= COMMAND_READ_DATA; 441 } 442 443 if (force8bit && (chip->options & NAND_BUSWIDTH_16)) 444 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 445 446 cmd2 |= code << CMD_CODE_SHIFT; 447 448 vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); 449 450 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { 451 /* 452 * Don't fix endianness on page access for historical reasons. 453 * See comment in vf610_nfc_rd_from_sram 454 */ 455 vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, 456 nfc->regs + NFC_MAIN_AREA(0) + offset, 457 trfr_sz, !nfc->data_access); 458 } 459 460 if (force8bit && (chip->options & NAND_BUSWIDTH_16)) 461 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 462 463 return 0; 464 } 465 466 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( 467 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, 468 NAND_OP_PARSER_PAT_CMD_ELEM(true), 469 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), 470 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), 471 NAND_OP_PARSER_PAT_CMD_ELEM(true), 472 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 473 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, 474 NAND_OP_PARSER_PAT_CMD_ELEM(true), 475 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), 476 NAND_OP_PARSER_PAT_CMD_ELEM(true), 477 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 478 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), 479 ); 480 481 /* 482 * This function supports Vybrid only (MPC5125 would have full RB and four CS) 483 */ 484 static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs) 485 { 486 struct vf610_nfc *nfc = chip_to_nfc(chip); 487 u32 tmp; 488 489 /* Vybrid only (MPC5125 would have full RB and four CS) */ 490 if (nfc->variant != NFC_VFC610) 491 return; 492 493 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); 494 tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); 495 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; 496 tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT; 497 498 vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); 499 } 500 501 static int vf610_nfc_exec_op(struct nand_chip *chip, 502 const struct nand_operation *op, 503 bool check_only) 504 { 505 vf610_nfc_select_target(chip, op->cs); 506 return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, 507 check_only); 508 } 509 510 static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat, 511 uint8_t *oob, int page) 512 { 513 struct vf610_nfc *nfc = chip_to_nfc(chip); 514 struct mtd_info *mtd = nand_to_mtd(chip); 515 u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; 516 u8 ecc_status; 517 u8 ecc_count; 518 int flips_threshold = nfc->chip.ecc.strength / 2; 519 520 ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; 521 ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; 522 523 if (!(ecc_status & ECC_STATUS_MASK)) 524 return ecc_count; 525 526 nfc->data_access = true; 527 nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); 528 nfc->data_access = false; 529 530 /* 531 * On an erased page, bit count (including OOB) should be zero or 532 * at least less then half of the ECC strength. 533 */ 534 return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, 535 mtd->oobsize, NULL, 0, 536 flips_threshold); 537 } 538 539 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, 540 u32 *row) 541 { 542 *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); 543 *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; 544 545 if (chip->options & NAND_ROW_ADDR_3) { 546 *row |= ROW_ADDR(2, page >> 16); 547 *code |= COMMAND_RAR_BYTE3; 548 } 549 } 550 551 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf, 552 int oob_required, int page) 553 { 554 struct vf610_nfc *nfc = chip_to_nfc(chip); 555 struct mtd_info *mtd = nand_to_mtd(chip); 556 int trfr_sz = mtd->writesize + mtd->oobsize; 557 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; 558 int stat; 559 560 vf610_nfc_select_target(chip, chip->cur_cs); 561 562 cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; 563 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; 564 565 vf610_nfc_fill_row(chip, page, &code, &row); 566 567 cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; 568 code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; 569 570 cmd2 |= code << CMD_CODE_SHIFT; 571 572 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); 573 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); 574 vf610_nfc_ecc_mode(nfc, ECC_BYPASS); 575 576 /* 577 * Don't fix endianness on page access for historical reasons. 578 * See comment in vf610_nfc_rd_from_sram 579 */ 580 vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), 581 mtd->writesize, false); 582 if (oob_required) 583 vf610_nfc_rd_from_sram(chip->oob_poi, 584 nfc->regs + NFC_MAIN_AREA(0) + 585 mtd->writesize, 586 mtd->oobsize, false); 587 588 stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page); 589 590 if (stat < 0) { 591 mtd->ecc_stats.failed++; 592 return 0; 593 } else { 594 mtd->ecc_stats.corrected += stat; 595 return stat; 596 } 597 } 598 599 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf, 600 int oob_required, int page) 601 { 602 struct vf610_nfc *nfc = chip_to_nfc(chip); 603 struct mtd_info *mtd = nand_to_mtd(chip); 604 int trfr_sz = mtd->writesize + mtd->oobsize; 605 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; 606 u8 status; 607 int ret; 608 609 vf610_nfc_select_target(chip, chip->cur_cs); 610 611 cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; 612 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; 613 614 vf610_nfc_fill_row(chip, page, &code, &row); 615 616 cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; 617 code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; 618 619 /* 620 * Don't fix endianness on page access for historical reasons. 621 * See comment in vf610_nfc_wr_to_sram 622 */ 623 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, 624 mtd->writesize, false); 625 626 code |= COMMAND_RB_HANDSHAKE; 627 cmd2 |= code << CMD_CODE_SHIFT; 628 629 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); 630 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); 631 vf610_nfc_ecc_mode(nfc, ECC_BYPASS); 632 633 ret = nand_status_op(chip, &status); 634 if (ret) 635 return ret; 636 637 if (status & NAND_STATUS_FAIL) 638 return -EIO; 639 640 return 0; 641 } 642 643 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, 644 int oob_required, int page) 645 { 646 struct vf610_nfc *nfc = chip_to_nfc(chip); 647 int ret; 648 649 nfc->data_access = true; 650 ret = nand_read_page_raw(chip, buf, oob_required, page); 651 nfc->data_access = false; 652 653 return ret; 654 } 655 656 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, 657 int oob_required, int page) 658 { 659 struct vf610_nfc *nfc = chip_to_nfc(chip); 660 struct mtd_info *mtd = nand_to_mtd(chip); 661 int ret; 662 663 nfc->data_access = true; 664 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 665 if (!ret && oob_required) 666 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 667 false); 668 nfc->data_access = false; 669 670 if (ret) 671 return ret; 672 673 return nand_prog_page_end_op(chip); 674 } 675 676 static int vf610_nfc_read_oob(struct nand_chip *chip, int page) 677 { 678 struct vf610_nfc *nfc = chip_to_nfc(chip); 679 int ret; 680 681 nfc->data_access = true; 682 ret = nand_read_oob_std(chip, page); 683 nfc->data_access = false; 684 685 return ret; 686 } 687 688 static int vf610_nfc_write_oob(struct nand_chip *chip, int page) 689 { 690 struct mtd_info *mtd = nand_to_mtd(chip); 691 struct vf610_nfc *nfc = chip_to_nfc(chip); 692 int ret; 693 694 nfc->data_access = true; 695 ret = nand_prog_page_begin_op(chip, page, mtd->writesize, 696 chip->oob_poi, mtd->oobsize); 697 nfc->data_access = false; 698 699 if (ret) 700 return ret; 701 702 return nand_prog_page_end_op(chip); 703 } 704 705 static const struct of_device_id vf610_nfc_dt_ids[] = { 706 { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, 707 { /* sentinel */ } 708 }; 709 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); 710 711 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) 712 { 713 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 714 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); 715 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); 716 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); 717 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); 718 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); 719 vf610_nfc_ecc_mode(nfc, ECC_BYPASS); 720 721 /* Disable virtual pages, only one elementary transfer unit */ 722 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, 723 CONFIG_PAGE_CNT_SHIFT, 1); 724 } 725 726 static void vf610_nfc_init_controller(struct vf610_nfc *nfc) 727 { 728 if (nfc->chip.options & NAND_BUSWIDTH_16) 729 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 730 else 731 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); 732 733 if (nfc->chip.ecc.mode == NAND_ECC_HW) { 734 /* Set ECC status offset in SRAM */ 735 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, 736 CONFIG_ECC_SRAM_ADDR_MASK, 737 CONFIG_ECC_SRAM_ADDR_SHIFT, 738 ECC_SRAM_ADDR >> 3); 739 740 /* Enable ECC status in SRAM */ 741 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); 742 } 743 } 744 745 static int vf610_nfc_attach_chip(struct nand_chip *chip) 746 { 747 struct mtd_info *mtd = nand_to_mtd(chip); 748 struct vf610_nfc *nfc = chip_to_nfc(chip); 749 750 vf610_nfc_init_controller(nfc); 751 752 /* Bad block options. */ 753 if (chip->bbt_options & NAND_BBT_USE_FLASH) 754 chip->bbt_options |= NAND_BBT_NO_OOB; 755 756 /* Single buffer only, max 256 OOB minus ECC status */ 757 if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { 758 dev_err(nfc->dev, "Unsupported flash page size\n"); 759 return -ENXIO; 760 } 761 762 if (chip->ecc.mode != NAND_ECC_HW) 763 return 0; 764 765 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { 766 dev_err(nfc->dev, "Unsupported flash with hwecc\n"); 767 return -ENXIO; 768 } 769 770 if (chip->ecc.size != mtd->writesize) { 771 dev_err(nfc->dev, "Step size needs to be page size\n"); 772 return -ENXIO; 773 } 774 775 /* Only 64 byte ECC layouts known */ 776 if (mtd->oobsize > 64) 777 mtd->oobsize = 64; 778 779 /* Use default large page ECC layout defined in NAND core */ 780 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 781 if (chip->ecc.strength == 32) { 782 nfc->ecc_mode = ECC_60_BYTE; 783 chip->ecc.bytes = 60; 784 } else if (chip->ecc.strength == 24) { 785 nfc->ecc_mode = ECC_45_BYTE; 786 chip->ecc.bytes = 45; 787 } else { 788 dev_err(nfc->dev, "Unsupported ECC strength\n"); 789 return -ENXIO; 790 } 791 792 chip->ecc.read_page = vf610_nfc_read_page; 793 chip->ecc.write_page = vf610_nfc_write_page; 794 chip->ecc.read_page_raw = vf610_nfc_read_page_raw; 795 chip->ecc.write_page_raw = vf610_nfc_write_page_raw; 796 chip->ecc.read_oob = vf610_nfc_read_oob; 797 chip->ecc.write_oob = vf610_nfc_write_oob; 798 799 chip->ecc.size = PAGE_2K; 800 801 return 0; 802 } 803 804 static const struct nand_controller_ops vf610_nfc_controller_ops = { 805 .attach_chip = vf610_nfc_attach_chip, 806 .exec_op = vf610_nfc_exec_op, 807 808 }; 809 810 static int vf610_nfc_probe(struct platform_device *pdev) 811 { 812 struct vf610_nfc *nfc; 813 struct resource *res; 814 struct mtd_info *mtd; 815 struct nand_chip *chip; 816 struct device_node *child; 817 const struct of_device_id *of_id; 818 int err; 819 int irq; 820 821 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); 822 if (!nfc) 823 return -ENOMEM; 824 825 nfc->dev = &pdev->dev; 826 chip = &nfc->chip; 827 mtd = nand_to_mtd(chip); 828 829 mtd->owner = THIS_MODULE; 830 mtd->dev.parent = nfc->dev; 831 mtd->name = DRV_NAME; 832 833 irq = platform_get_irq(pdev, 0); 834 if (irq <= 0) 835 return -EINVAL; 836 837 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 838 nfc->regs = devm_ioremap_resource(nfc->dev, res); 839 if (IS_ERR(nfc->regs)) 840 return PTR_ERR(nfc->regs); 841 842 nfc->clk = devm_clk_get(&pdev->dev, NULL); 843 if (IS_ERR(nfc->clk)) 844 return PTR_ERR(nfc->clk); 845 846 err = clk_prepare_enable(nfc->clk); 847 if (err) { 848 dev_err(nfc->dev, "Unable to enable clock!\n"); 849 return err; 850 } 851 852 of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev); 853 if (!of_id) 854 return -ENODEV; 855 856 nfc->variant = (enum vf610_nfc_variant)of_id->data; 857 858 for_each_available_child_of_node(nfc->dev->of_node, child) { 859 if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { 860 861 if (nand_get_flash_node(chip)) { 862 dev_err(nfc->dev, 863 "Only one NAND chip supported!\n"); 864 err = -EINVAL; 865 goto err_disable_clk; 866 } 867 868 nand_set_flash_node(chip, child); 869 } 870 } 871 872 if (!nand_get_flash_node(chip)) { 873 dev_err(nfc->dev, "NAND chip sub-node missing!\n"); 874 err = -ENODEV; 875 goto err_disable_clk; 876 } 877 878 chip->options |= NAND_NO_SUBPAGE_WRITE; 879 880 init_completion(&nfc->cmd_done); 881 882 err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc); 883 if (err) { 884 dev_err(nfc->dev, "Error requesting IRQ!\n"); 885 goto err_disable_clk; 886 } 887 888 vf610_nfc_preinit_controller(nfc); 889 890 nand_controller_init(&nfc->base); 891 nfc->base.ops = &vf610_nfc_controller_ops; 892 chip->controller = &nfc->base; 893 894 /* Scan the NAND chip */ 895 err = nand_scan(chip, 1); 896 if (err) 897 goto err_disable_clk; 898 899 platform_set_drvdata(pdev, nfc); 900 901 /* Register device in MTD */ 902 err = mtd_device_register(mtd, NULL, 0); 903 if (err) 904 goto err_cleanup_nand; 905 return 0; 906 907 err_cleanup_nand: 908 nand_cleanup(chip); 909 err_disable_clk: 910 clk_disable_unprepare(nfc->clk); 911 return err; 912 } 913 914 static int vf610_nfc_remove(struct platform_device *pdev) 915 { 916 struct vf610_nfc *nfc = platform_get_drvdata(pdev); 917 918 nand_release(&nfc->chip); 919 clk_disable_unprepare(nfc->clk); 920 return 0; 921 } 922 923 #ifdef CONFIG_PM_SLEEP 924 static int vf610_nfc_suspend(struct device *dev) 925 { 926 struct vf610_nfc *nfc = dev_get_drvdata(dev); 927 928 clk_disable_unprepare(nfc->clk); 929 return 0; 930 } 931 932 static int vf610_nfc_resume(struct device *dev) 933 { 934 struct vf610_nfc *nfc = dev_get_drvdata(dev); 935 int err; 936 937 err = clk_prepare_enable(nfc->clk); 938 if (err) 939 return err; 940 941 vf610_nfc_preinit_controller(nfc); 942 vf610_nfc_init_controller(nfc); 943 return 0; 944 } 945 #endif 946 947 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); 948 949 static struct platform_driver vf610_nfc_driver = { 950 .driver = { 951 .name = DRV_NAME, 952 .of_match_table = vf610_nfc_dt_ids, 953 .pm = &vf610_nfc_pm_ops, 954 }, 955 .probe = vf610_nfc_probe, 956 .remove = vf610_nfc_remove, 957 }; 958 959 module_platform_driver(vf610_nfc_driver); 960 961 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>"); 962 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); 963 MODULE_LICENSE("GPL"); 964