xref: /openbmc/linux/drivers/mtd/nand/raw/vf610_nfc.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
4  *
5  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
6  * Jason ported to M54418TWR and MVFA5 (VF610).
7  * Authors: Stefan Agner <stefan.agner@toradex.com>
8  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
9  *          Shaohui Xie <b21989@freescale.com>
10  *          Jason Jin <Jason.jin@freescale.com>
11  *
12  * Based on original driver mpc5121_nfc.c.
13  *
14  * Limitations:
15  * - Untested on MPC5125 and M54418.
16  * - DMA and pipelining not used.
17  * - 2K pages or less.
18  * - HW ECC: Only 2K page with 64+ OOB.
19  * - HW ECC: Only 24 and 32-bit error correction implemented.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/of_device.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 #include <linux/swab.h>
36 
37 #define	DRV_NAME		"vf610_nfc"
38 
39 /* Register Offsets */
40 #define NFC_FLASH_CMD1			0x3F00
41 #define NFC_FLASH_CMD2			0x3F04
42 #define NFC_COL_ADDR			0x3F08
43 #define NFC_ROW_ADDR			0x3F0c
44 #define NFC_ROW_ADDR_INC		0x3F14
45 #define NFC_FLASH_STATUS1		0x3F18
46 #define NFC_FLASH_STATUS2		0x3F1c
47 #define NFC_CACHE_SWAP			0x3F28
48 #define NFC_SECTOR_SIZE			0x3F2c
49 #define NFC_FLASH_CONFIG		0x3F30
50 #define NFC_IRQ_STATUS			0x3F38
51 
52 /* Addresses for NFC MAIN RAM BUFFER areas */
53 #define NFC_MAIN_AREA(n)		((n) *  0x1000)
54 
55 #define PAGE_2K				0x0800
56 #define OOB_64				0x0040
57 #define OOB_MAX				0x0100
58 
59 /* NFC_CMD2[CODE] controller cycle bit masks */
60 #define COMMAND_CMD_BYTE1		BIT(14)
61 #define COMMAND_CAR_BYTE1		BIT(13)
62 #define COMMAND_CAR_BYTE2		BIT(12)
63 #define COMMAND_RAR_BYTE1		BIT(11)
64 #define COMMAND_RAR_BYTE2		BIT(10)
65 #define COMMAND_RAR_BYTE3		BIT(9)
66 #define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
67 #define COMMAND_WRITE_DATA		BIT(8)
68 #define COMMAND_CMD_BYTE2		BIT(7)
69 #define COMMAND_RB_HANDSHAKE		BIT(6)
70 #define COMMAND_READ_DATA		BIT(5)
71 #define COMMAND_CMD_BYTE3		BIT(4)
72 #define COMMAND_READ_STATUS		BIT(3)
73 #define COMMAND_READ_ID			BIT(2)
74 
75 /* NFC ECC mode define */
76 #define ECC_BYPASS			0
77 #define ECC_45_BYTE			6
78 #define ECC_60_BYTE			7
79 
80 /*** Register Mask and bit definitions */
81 
82 /* NFC_FLASH_CMD1 Field */
83 #define CMD_BYTE2_MASK				0xFF000000
84 #define CMD_BYTE2_SHIFT				24
85 
86 /* NFC_FLASH_CM2 Field */
87 #define CMD_BYTE1_MASK				0xFF000000
88 #define CMD_BYTE1_SHIFT				24
89 #define CMD_CODE_MASK				0x00FFFF00
90 #define CMD_CODE_SHIFT				8
91 #define BUFNO_MASK				0x00000006
92 #define BUFNO_SHIFT				1
93 #define START_BIT				BIT(0)
94 
95 /* NFC_COL_ADDR Field */
96 #define COL_ADDR_MASK				0x0000FFFF
97 #define COL_ADDR_SHIFT				0
98 #define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
99 
100 /* NFC_ROW_ADDR Field */
101 #define ROW_ADDR_MASK				0x00FFFFFF
102 #define ROW_ADDR_SHIFT				0
103 #define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
104 
105 #define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
106 #define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
107 #define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
108 #define ROW_ADDR_CHIP_SEL_SHIFT			24
109 
110 /* NFC_FLASH_STATUS2 Field */
111 #define STATUS_BYTE1_MASK			0x000000FF
112 
113 /* NFC_FLASH_CONFIG Field */
114 #define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
115 #define CONFIG_ECC_SRAM_ADDR_SHIFT		22
116 #define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
117 #define CONFIG_DMA_REQ_BIT			BIT(20)
118 #define CONFIG_ECC_MODE_MASK			0x000E0000
119 #define CONFIG_ECC_MODE_SHIFT			17
120 #define CONFIG_FAST_FLASH_BIT			BIT(16)
121 #define CONFIG_16BIT				BIT(7)
122 #define CONFIG_BOOT_MODE_BIT			BIT(6)
123 #define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
124 #define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
125 #define CONFIG_PAGE_CNT_MASK			0xF
126 #define CONFIG_PAGE_CNT_SHIFT			0
127 
128 /* NFC_IRQ_STATUS Field */
129 #define IDLE_IRQ_BIT				BIT(29)
130 #define IDLE_EN_BIT				BIT(20)
131 #define CMD_DONE_CLEAR_BIT			BIT(18)
132 #define IDLE_CLEAR_BIT				BIT(17)
133 
134 /*
135  * ECC status - seems to consume 8 bytes (double word). The documented
136  * status byte is located in the lowest byte of the second word (which is
137  * the 4th or 7th byte depending on endianness).
138  * Calculate an offset to store the ECC status at the end of the buffer.
139  */
140 #define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
141 
142 #define ECC_STATUS		0x4
143 #define ECC_STATUS_MASK		0x80
144 #define ECC_STATUS_ERR_COUNT	0x3F
145 
146 enum vf610_nfc_variant {
147 	NFC_VFC610 = 1,
148 };
149 
150 struct vf610_nfc {
151 	struct nand_controller base;
152 	struct nand_chip chip;
153 	struct device *dev;
154 	void __iomem *regs;
155 	struct completion cmd_done;
156 	/* Status and ID are in alternate locations. */
157 	enum vf610_nfc_variant variant;
158 	struct clk *clk;
159 	/*
160 	 * Indicate that user data is accessed (full page/oob). This is
161 	 * useful to indicate the driver whether to swap byte endianness.
162 	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
163 	 */
164 	bool data_access;
165 	u32 ecc_mode;
166 };
167 
168 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
169 {
170 	return container_of(chip, struct vf610_nfc, chip);
171 }
172 
173 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
174 {
175 	return readl(nfc->regs + reg);
176 }
177 
178 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
179 {
180 	writel(val, nfc->regs + reg);
181 }
182 
183 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
184 {
185 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
186 }
187 
188 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
189 {
190 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
191 }
192 
193 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
194 				       u32 mask, u32 shift, u32 val)
195 {
196 	vf610_nfc_write(nfc, reg,
197 			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
198 }
199 
200 static inline bool vf610_nfc_kernel_is_little_endian(void)
201 {
202 #ifdef __LITTLE_ENDIAN
203 	return true;
204 #else
205 	return false;
206 #endif
207 }
208 
209 /**
210  * Read accessor for internal SRAM buffer
211  * @dst: destination address in regular memory
212  * @src: source address in SRAM buffer
213  * @len: bytes to copy
214  * @fix_endian: Fix endianness if required
215  *
216  * Use this accessor for the internal SRAM buffers. On the ARM
217  * Freescale Vybrid SoC it's known that the driver can treat
218  * the SRAM buffer as if it's memory. Other platform might need
219  * to treat the buffers differently.
220  *
221  * The controller stores bytes from the NAND chip internally in big
222  * endianness. On little endian platforms such as Vybrid this leads
223  * to reversed byte order.
224  * For performance reason (and earlier probably due to unawareness)
225  * the driver avoids correcting endianness where it has control over
226  * write and read side (e.g. page wise data access).
227  */
228 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
229 					  size_t len, bool fix_endian)
230 {
231 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
232 		unsigned int i;
233 
234 		for (i = 0; i < len; i += 4) {
235 			u32 val = swab32(__raw_readl(src + i));
236 
237 			memcpy(dst + i, &val, min(sizeof(val), len - i));
238 		}
239 	} else {
240 		memcpy_fromio(dst, src, len);
241 	}
242 }
243 
244 /**
245  * Write accessor for internal SRAM buffer
246  * @dst: destination address in SRAM buffer
247  * @src: source address in regular memory
248  * @len: bytes to copy
249  * @fix_endian: Fix endianness if required
250  *
251  * Use this accessor for the internal SRAM buffers. On the ARM
252  * Freescale Vybrid SoC it's known that the driver can treat
253  * the SRAM buffer as if it's memory. Other platform might need
254  * to treat the buffers differently.
255  *
256  * The controller stores bytes from the NAND chip internally in big
257  * endianness. On little endian platforms such as Vybrid this leads
258  * to reversed byte order.
259  * For performance reason (and earlier probably due to unawareness)
260  * the driver avoids correcting endianness where it has control over
261  * write and read side (e.g. page wise data access).
262  */
263 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
264 					size_t len, bool fix_endian)
265 {
266 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
267 		unsigned int i;
268 
269 		for (i = 0; i < len; i += 4) {
270 			u32 val;
271 
272 			memcpy(&val, src + i, min(sizeof(val), len - i));
273 			__raw_writel(swab32(val), dst + i);
274 		}
275 	} else {
276 		memcpy_toio(dst, src, len);
277 	}
278 }
279 
280 /* Clear flags for upcoming command */
281 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
282 {
283 	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
284 
285 	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
286 	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
287 }
288 
289 static void vf610_nfc_done(struct vf610_nfc *nfc)
290 {
291 	unsigned long timeout = msecs_to_jiffies(100);
292 
293 	/*
294 	 * Barrier is needed after this write. This write need
295 	 * to be done before reading the next register the first
296 	 * time.
297 	 * vf610_nfc_set implicates such a barrier by using writel
298 	 * to write to the register.
299 	 */
300 	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
301 	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
302 
303 	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
304 		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
305 
306 	vf610_nfc_clear_status(nfc);
307 }
308 
309 static irqreturn_t vf610_nfc_irq(int irq, void *data)
310 {
311 	struct vf610_nfc *nfc = data;
312 
313 	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
314 	complete(&nfc->cmd_done);
315 
316 	return IRQ_HANDLED;
317 }
318 
319 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
320 {
321 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
322 			    CONFIG_ECC_MODE_MASK,
323 			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
324 }
325 
326 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
327 {
328 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
329 }
330 
331 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
332 				 u32 cmd1, u32 cmd2, u32 trfr_sz)
333 {
334 	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
335 			    COL_ADDR_SHIFT, col);
336 
337 	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
338 			    ROW_ADDR_SHIFT, row);
339 
340 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
341 	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
342 	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
343 
344 	dev_dbg(nfc->dev,
345 		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
346 		col, row, cmd1, cmd2, trfr_sz);
347 
348 	vf610_nfc_done(nfc);
349 }
350 
351 static inline const struct nand_op_instr *
352 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
353 {
354 	if (*op_id + 1 >= subop->ninstrs)
355 		return NULL;
356 
357 	(*op_id)++;
358 
359 	return &subop->instrs[*op_id];
360 }
361 
362 static int vf610_nfc_cmd(struct nand_chip *chip,
363 			 const struct nand_subop *subop)
364 {
365 	const struct nand_op_instr *instr;
366 	struct vf610_nfc *nfc = chip_to_nfc(chip);
367 	int op_id = -1, trfr_sz = 0, offset = 0;
368 	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
369 	bool force8bit = false;
370 
371 	/*
372 	 * Some ops are optional, but the hardware requires the operations
373 	 * to be in this exact order.
374 	 * The op parser enforces the order and makes sure that there isn't
375 	 * a read and write element in a single operation.
376 	 */
377 	instr = vf610_get_next_instr(subop, &op_id);
378 	if (!instr)
379 		return -EINVAL;
380 
381 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
382 		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
383 		code |= COMMAND_CMD_BYTE1;
384 
385 		instr = vf610_get_next_instr(subop, &op_id);
386 	}
387 
388 	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
389 		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
390 		int i = nand_subop_get_addr_start_off(subop, op_id);
391 
392 		for (; i < naddrs; i++) {
393 			u8 val = instr->ctx.addr.addrs[i];
394 
395 			if (i < 2)
396 				col |= COL_ADDR(i, val);
397 			else
398 				row |= ROW_ADDR(i - 2, val);
399 		}
400 		code |= COMMAND_NADDR_BYTES(naddrs);
401 
402 		instr = vf610_get_next_instr(subop, &op_id);
403 	}
404 
405 	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
406 		trfr_sz = nand_subop_get_data_len(subop, op_id);
407 		offset = nand_subop_get_data_start_off(subop, op_id);
408 		force8bit = instr->ctx.data.force_8bit;
409 
410 		/*
411 		 * Don't fix endianness on page access for historical reasons.
412 		 * See comment in vf610_nfc_wr_to_sram
413 		 */
414 		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
415 				     instr->ctx.data.buf.out + offset,
416 				     trfr_sz, !nfc->data_access);
417 		code |= COMMAND_WRITE_DATA;
418 
419 		instr = vf610_get_next_instr(subop, &op_id);
420 	}
421 
422 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
423 		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
424 		code |= COMMAND_CMD_BYTE2;
425 
426 		instr = vf610_get_next_instr(subop, &op_id);
427 	}
428 
429 	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
430 		code |= COMMAND_RB_HANDSHAKE;
431 
432 		instr = vf610_get_next_instr(subop, &op_id);
433 	}
434 
435 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
436 		trfr_sz = nand_subop_get_data_len(subop, op_id);
437 		offset = nand_subop_get_data_start_off(subop, op_id);
438 		force8bit = instr->ctx.data.force_8bit;
439 
440 		code |= COMMAND_READ_DATA;
441 	}
442 
443 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
444 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
445 
446 	cmd2 |= code << CMD_CODE_SHIFT;
447 
448 	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
449 
450 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
451 		/*
452 		 * Don't fix endianness on page access for historical reasons.
453 		 * See comment in vf610_nfc_rd_from_sram
454 		 */
455 		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
456 				       nfc->regs + NFC_MAIN_AREA(0) + offset,
457 				       trfr_sz, !nfc->data_access);
458 	}
459 
460 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
461 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
462 
463 	return 0;
464 }
465 
466 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
467 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
468 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
469 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
470 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
471 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
472 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
473 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
474 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
475 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
476 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
477 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
478 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
479 	);
480 
481 /*
482  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
483  */
484 static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
485 {
486 	struct vf610_nfc *nfc = chip_to_nfc(chip);
487 	u32 tmp;
488 
489 	/* Vybrid only (MPC5125 would have full RB and four CS) */
490 	if (nfc->variant != NFC_VFC610)
491 		return;
492 
493 	tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
494 	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
495 	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
496 	tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
497 
498 	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
499 }
500 
501 static int vf610_nfc_exec_op(struct nand_chip *chip,
502 			     const struct nand_operation *op,
503 			     bool check_only)
504 {
505 	if (!check_only)
506 		vf610_nfc_select_target(chip, op->cs);
507 
508 	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
509 				      check_only);
510 }
511 
512 static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
513 					 uint8_t *oob, int page)
514 {
515 	struct vf610_nfc *nfc = chip_to_nfc(chip);
516 	struct mtd_info *mtd = nand_to_mtd(chip);
517 	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
518 	u8 ecc_status;
519 	u8 ecc_count;
520 	int flips_threshold = nfc->chip.ecc.strength / 2;
521 
522 	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
523 	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
524 
525 	if (!(ecc_status & ECC_STATUS_MASK))
526 		return ecc_count;
527 
528 	nfc->data_access = true;
529 	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
530 	nfc->data_access = false;
531 
532 	/*
533 	 * On an erased page, bit count (including OOB) should be zero or
534 	 * at least less then half of the ECC strength.
535 	 */
536 	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
537 					   mtd->oobsize, NULL, 0,
538 					   flips_threshold);
539 }
540 
541 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
542 			       u32 *row)
543 {
544 	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
545 	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
546 
547 	if (chip->options & NAND_ROW_ADDR_3) {
548 		*row |= ROW_ADDR(2, page >> 16);
549 		*code |= COMMAND_RAR_BYTE3;
550 	}
551 }
552 
553 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
554 			       int oob_required, int page)
555 {
556 	struct vf610_nfc *nfc = chip_to_nfc(chip);
557 	struct mtd_info *mtd = nand_to_mtd(chip);
558 	int trfr_sz = mtd->writesize + mtd->oobsize;
559 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
560 	int stat;
561 
562 	vf610_nfc_select_target(chip, chip->cur_cs);
563 
564 	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
565 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
566 
567 	vf610_nfc_fill_row(chip, page, &code, &row);
568 
569 	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
570 	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
571 
572 	cmd2 |= code << CMD_CODE_SHIFT;
573 
574 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
575 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
576 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
577 
578 	/*
579 	 * Don't fix endianness on page access for historical reasons.
580 	 * See comment in vf610_nfc_rd_from_sram
581 	 */
582 	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
583 			       mtd->writesize, false);
584 	if (oob_required)
585 		vf610_nfc_rd_from_sram(chip->oob_poi,
586 				       nfc->regs + NFC_MAIN_AREA(0) +
587 						   mtd->writesize,
588 				       mtd->oobsize, false);
589 
590 	stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
591 
592 	if (stat < 0) {
593 		mtd->ecc_stats.failed++;
594 		return 0;
595 	} else {
596 		mtd->ecc_stats.corrected += stat;
597 		return stat;
598 	}
599 }
600 
601 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
602 				int oob_required, int page)
603 {
604 	struct vf610_nfc *nfc = chip_to_nfc(chip);
605 	struct mtd_info *mtd = nand_to_mtd(chip);
606 	int trfr_sz = mtd->writesize + mtd->oobsize;
607 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
608 	u8 status;
609 	int ret;
610 
611 	vf610_nfc_select_target(chip, chip->cur_cs);
612 
613 	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
614 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
615 
616 	vf610_nfc_fill_row(chip, page, &code, &row);
617 
618 	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
619 	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
620 
621 	/*
622 	 * Don't fix endianness on page access for historical reasons.
623 	 * See comment in vf610_nfc_wr_to_sram
624 	 */
625 	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
626 			     mtd->writesize, false);
627 
628 	code |= COMMAND_RB_HANDSHAKE;
629 	cmd2 |= code << CMD_CODE_SHIFT;
630 
631 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
632 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
633 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
634 
635 	ret = nand_status_op(chip, &status);
636 	if (ret)
637 		return ret;
638 
639 	if (status & NAND_STATUS_FAIL)
640 		return -EIO;
641 
642 	return 0;
643 }
644 
645 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
646 				   int oob_required, int page)
647 {
648 	struct vf610_nfc *nfc = chip_to_nfc(chip);
649 	int ret;
650 
651 	nfc->data_access = true;
652 	ret = nand_read_page_raw(chip, buf, oob_required, page);
653 	nfc->data_access = false;
654 
655 	return ret;
656 }
657 
658 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
659 				    int oob_required, int page)
660 {
661 	struct vf610_nfc *nfc = chip_to_nfc(chip);
662 	struct mtd_info *mtd = nand_to_mtd(chip);
663 	int ret;
664 
665 	nfc->data_access = true;
666 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
667 	if (!ret && oob_required)
668 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
669 					 false);
670 	nfc->data_access = false;
671 
672 	if (ret)
673 		return ret;
674 
675 	return nand_prog_page_end_op(chip);
676 }
677 
678 static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
679 {
680 	struct vf610_nfc *nfc = chip_to_nfc(chip);
681 	int ret;
682 
683 	nfc->data_access = true;
684 	ret = nand_read_oob_std(chip, page);
685 	nfc->data_access = false;
686 
687 	return ret;
688 }
689 
690 static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
691 {
692 	struct mtd_info *mtd = nand_to_mtd(chip);
693 	struct vf610_nfc *nfc = chip_to_nfc(chip);
694 	int ret;
695 
696 	nfc->data_access = true;
697 	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
698 				      chip->oob_poi, mtd->oobsize);
699 	nfc->data_access = false;
700 
701 	if (ret)
702 		return ret;
703 
704 	return nand_prog_page_end_op(chip);
705 }
706 
707 static const struct of_device_id vf610_nfc_dt_ids[] = {
708 	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
709 	{ /* sentinel */ }
710 };
711 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
712 
713 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
714 {
715 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
716 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
717 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
718 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
719 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
720 	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
721 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
722 
723 	/* Disable virtual pages, only one elementary transfer unit */
724 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
725 			    CONFIG_PAGE_CNT_SHIFT, 1);
726 }
727 
728 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
729 {
730 	if (nfc->chip.options & NAND_BUSWIDTH_16)
731 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
732 	else
733 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
734 
735 	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
736 		/* Set ECC status offset in SRAM */
737 		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
738 				    CONFIG_ECC_SRAM_ADDR_MASK,
739 				    CONFIG_ECC_SRAM_ADDR_SHIFT,
740 				    ECC_SRAM_ADDR >> 3);
741 
742 		/* Enable ECC status in SRAM */
743 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
744 	}
745 }
746 
747 static int vf610_nfc_attach_chip(struct nand_chip *chip)
748 {
749 	struct mtd_info *mtd = nand_to_mtd(chip);
750 	struct vf610_nfc *nfc = chip_to_nfc(chip);
751 
752 	vf610_nfc_init_controller(nfc);
753 
754 	/* Bad block options. */
755 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
756 		chip->bbt_options |= NAND_BBT_NO_OOB;
757 
758 	/* Single buffer only, max 256 OOB minus ECC status */
759 	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
760 		dev_err(nfc->dev, "Unsupported flash page size\n");
761 		return -ENXIO;
762 	}
763 
764 	if (chip->ecc.mode != NAND_ECC_HW)
765 		return 0;
766 
767 	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
768 		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
769 		return -ENXIO;
770 	}
771 
772 	if (chip->ecc.size != mtd->writesize) {
773 		dev_err(nfc->dev, "Step size needs to be page size\n");
774 		return -ENXIO;
775 	}
776 
777 	/* Only 64 byte ECC layouts known */
778 	if (mtd->oobsize > 64)
779 		mtd->oobsize = 64;
780 
781 	/* Use default large page ECC layout defined in NAND core */
782 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
783 	if (chip->ecc.strength == 32) {
784 		nfc->ecc_mode = ECC_60_BYTE;
785 		chip->ecc.bytes = 60;
786 	} else if (chip->ecc.strength == 24) {
787 		nfc->ecc_mode = ECC_45_BYTE;
788 		chip->ecc.bytes = 45;
789 	} else {
790 		dev_err(nfc->dev, "Unsupported ECC strength\n");
791 		return -ENXIO;
792 	}
793 
794 	chip->ecc.read_page = vf610_nfc_read_page;
795 	chip->ecc.write_page = vf610_nfc_write_page;
796 	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
797 	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
798 	chip->ecc.read_oob = vf610_nfc_read_oob;
799 	chip->ecc.write_oob = vf610_nfc_write_oob;
800 
801 	chip->ecc.size = PAGE_2K;
802 
803 	return 0;
804 }
805 
806 static const struct nand_controller_ops vf610_nfc_controller_ops = {
807 	.attach_chip = vf610_nfc_attach_chip,
808 	.exec_op = vf610_nfc_exec_op,
809 
810 };
811 
812 static int vf610_nfc_probe(struct platform_device *pdev)
813 {
814 	struct vf610_nfc *nfc;
815 	struct resource *res;
816 	struct mtd_info *mtd;
817 	struct nand_chip *chip;
818 	struct device_node *child;
819 	const struct of_device_id *of_id;
820 	int err;
821 	int irq;
822 
823 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
824 	if (!nfc)
825 		return -ENOMEM;
826 
827 	nfc->dev = &pdev->dev;
828 	chip = &nfc->chip;
829 	mtd = nand_to_mtd(chip);
830 
831 	mtd->owner = THIS_MODULE;
832 	mtd->dev.parent = nfc->dev;
833 	mtd->name = DRV_NAME;
834 
835 	irq = platform_get_irq(pdev, 0);
836 	if (irq <= 0)
837 		return -EINVAL;
838 
839 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
840 	nfc->regs = devm_ioremap_resource(nfc->dev, res);
841 	if (IS_ERR(nfc->regs))
842 		return PTR_ERR(nfc->regs);
843 
844 	nfc->clk = devm_clk_get(&pdev->dev, NULL);
845 	if (IS_ERR(nfc->clk))
846 		return PTR_ERR(nfc->clk);
847 
848 	err = clk_prepare_enable(nfc->clk);
849 	if (err) {
850 		dev_err(nfc->dev, "Unable to enable clock!\n");
851 		return err;
852 	}
853 
854 	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
855 	if (!of_id)
856 		return -ENODEV;
857 
858 	nfc->variant = (enum vf610_nfc_variant)of_id->data;
859 
860 	for_each_available_child_of_node(nfc->dev->of_node, child) {
861 		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
862 
863 			if (nand_get_flash_node(chip)) {
864 				dev_err(nfc->dev,
865 					"Only one NAND chip supported!\n");
866 				err = -EINVAL;
867 				of_node_put(child);
868 				goto err_disable_clk;
869 			}
870 
871 			nand_set_flash_node(chip, child);
872 		}
873 	}
874 
875 	if (!nand_get_flash_node(chip)) {
876 		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
877 		err = -ENODEV;
878 		goto err_disable_clk;
879 	}
880 
881 	chip->options |= NAND_NO_SUBPAGE_WRITE;
882 
883 	init_completion(&nfc->cmd_done);
884 
885 	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
886 	if (err) {
887 		dev_err(nfc->dev, "Error requesting IRQ!\n");
888 		goto err_disable_clk;
889 	}
890 
891 	vf610_nfc_preinit_controller(nfc);
892 
893 	nand_controller_init(&nfc->base);
894 	nfc->base.ops = &vf610_nfc_controller_ops;
895 	chip->controller = &nfc->base;
896 
897 	/* Scan the NAND chip */
898 	err = nand_scan(chip, 1);
899 	if (err)
900 		goto err_disable_clk;
901 
902 	platform_set_drvdata(pdev, nfc);
903 
904 	/* Register device in MTD */
905 	err = mtd_device_register(mtd, NULL, 0);
906 	if (err)
907 		goto err_cleanup_nand;
908 	return 0;
909 
910 err_cleanup_nand:
911 	nand_cleanup(chip);
912 err_disable_clk:
913 	clk_disable_unprepare(nfc->clk);
914 	return err;
915 }
916 
917 static int vf610_nfc_remove(struct platform_device *pdev)
918 {
919 	struct vf610_nfc *nfc = platform_get_drvdata(pdev);
920 	struct nand_chip *chip = &nfc->chip;
921 	int ret;
922 
923 	ret = mtd_device_unregister(nand_to_mtd(chip));
924 	WARN_ON(ret);
925 	nand_cleanup(chip);
926 	clk_disable_unprepare(nfc->clk);
927 	return 0;
928 }
929 
930 #ifdef CONFIG_PM_SLEEP
931 static int vf610_nfc_suspend(struct device *dev)
932 {
933 	struct vf610_nfc *nfc = dev_get_drvdata(dev);
934 
935 	clk_disable_unprepare(nfc->clk);
936 	return 0;
937 }
938 
939 static int vf610_nfc_resume(struct device *dev)
940 {
941 	struct vf610_nfc *nfc = dev_get_drvdata(dev);
942 	int err;
943 
944 	err = clk_prepare_enable(nfc->clk);
945 	if (err)
946 		return err;
947 
948 	vf610_nfc_preinit_controller(nfc);
949 	vf610_nfc_init_controller(nfc);
950 	return 0;
951 }
952 #endif
953 
954 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
955 
956 static struct platform_driver vf610_nfc_driver = {
957 	.driver		= {
958 		.name	= DRV_NAME,
959 		.of_match_table = vf610_nfc_dt_ids,
960 		.pm	= &vf610_nfc_pm_ops,
961 	},
962 	.probe		= vf610_nfc_probe,
963 	.remove		= vf610_nfc_remove,
964 };
965 
966 module_platform_driver(vf610_nfc_driver);
967 
968 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
969 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
970 MODULE_LICENSE("GPL");
971