xref: /openbmc/linux/drivers/mtd/nand/raw/vf610_nfc.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Jason ported to M54418TWR and MVFA5 (VF610).
6  * Authors: Stefan Agner <stefan.agner@toradex.com>
7  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
8  *          Shaohui Xie <b21989@freescale.com>
9  *          Jason Jin <Jason.jin@freescale.com>
10  *
11  * Based on original driver mpc5121_nfc.c.
12  *
13  * This is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * Limitations:
19  * - Untested on MPC5125 and M54418.
20  * - DMA and pipelining not used.
21  * - 2K pages or less.
22  * - HW ECC: Only 2K page with 64+ OOB.
23  * - HW ECC: Only 24 and 32-bit error correction implemented.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/bitops.h>
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/rawnand.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38 #include <linux/slab.h>
39 #include <linux/swab.h>
40 
41 #define	DRV_NAME		"vf610_nfc"
42 
43 /* Register Offsets */
44 #define NFC_FLASH_CMD1			0x3F00
45 #define NFC_FLASH_CMD2			0x3F04
46 #define NFC_COL_ADDR			0x3F08
47 #define NFC_ROW_ADDR			0x3F0c
48 #define NFC_ROW_ADDR_INC		0x3F14
49 #define NFC_FLASH_STATUS1		0x3F18
50 #define NFC_FLASH_STATUS2		0x3F1c
51 #define NFC_CACHE_SWAP			0x3F28
52 #define NFC_SECTOR_SIZE			0x3F2c
53 #define NFC_FLASH_CONFIG		0x3F30
54 #define NFC_IRQ_STATUS			0x3F38
55 
56 /* Addresses for NFC MAIN RAM BUFFER areas */
57 #define NFC_MAIN_AREA(n)		((n) *  0x1000)
58 
59 #define PAGE_2K				0x0800
60 #define OOB_64				0x0040
61 #define OOB_MAX				0x0100
62 
63 /* NFC_CMD2[CODE] controller cycle bit masks */
64 #define COMMAND_CMD_BYTE1		BIT(14)
65 #define COMMAND_CAR_BYTE1		BIT(13)
66 #define COMMAND_CAR_BYTE2		BIT(12)
67 #define COMMAND_RAR_BYTE1		BIT(11)
68 #define COMMAND_RAR_BYTE2		BIT(10)
69 #define COMMAND_RAR_BYTE3		BIT(9)
70 #define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
71 #define COMMAND_WRITE_DATA		BIT(8)
72 #define COMMAND_CMD_BYTE2		BIT(7)
73 #define COMMAND_RB_HANDSHAKE		BIT(6)
74 #define COMMAND_READ_DATA		BIT(5)
75 #define COMMAND_CMD_BYTE3		BIT(4)
76 #define COMMAND_READ_STATUS		BIT(3)
77 #define COMMAND_READ_ID			BIT(2)
78 
79 /* NFC ECC mode define */
80 #define ECC_BYPASS			0
81 #define ECC_45_BYTE			6
82 #define ECC_60_BYTE			7
83 
84 /*** Register Mask and bit definitions */
85 
86 /* NFC_FLASH_CMD1 Field */
87 #define CMD_BYTE2_MASK				0xFF000000
88 #define CMD_BYTE2_SHIFT				24
89 
90 /* NFC_FLASH_CM2 Field */
91 #define CMD_BYTE1_MASK				0xFF000000
92 #define CMD_BYTE1_SHIFT				24
93 #define CMD_CODE_MASK				0x00FFFF00
94 #define CMD_CODE_SHIFT				8
95 #define BUFNO_MASK				0x00000006
96 #define BUFNO_SHIFT				1
97 #define START_BIT				BIT(0)
98 
99 /* NFC_COL_ADDR Field */
100 #define COL_ADDR_MASK				0x0000FFFF
101 #define COL_ADDR_SHIFT				0
102 #define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
103 
104 /* NFC_ROW_ADDR Field */
105 #define ROW_ADDR_MASK				0x00FFFFFF
106 #define ROW_ADDR_SHIFT				0
107 #define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
108 
109 #define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
110 #define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
111 #define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
112 #define ROW_ADDR_CHIP_SEL_SHIFT			24
113 
114 /* NFC_FLASH_STATUS2 Field */
115 #define STATUS_BYTE1_MASK			0x000000FF
116 
117 /* NFC_FLASH_CONFIG Field */
118 #define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
119 #define CONFIG_ECC_SRAM_ADDR_SHIFT		22
120 #define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
121 #define CONFIG_DMA_REQ_BIT			BIT(20)
122 #define CONFIG_ECC_MODE_MASK			0x000E0000
123 #define CONFIG_ECC_MODE_SHIFT			17
124 #define CONFIG_FAST_FLASH_BIT			BIT(16)
125 #define CONFIG_16BIT				BIT(7)
126 #define CONFIG_BOOT_MODE_BIT			BIT(6)
127 #define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
128 #define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
129 #define CONFIG_PAGE_CNT_MASK			0xF
130 #define CONFIG_PAGE_CNT_SHIFT			0
131 
132 /* NFC_IRQ_STATUS Field */
133 #define IDLE_IRQ_BIT				BIT(29)
134 #define IDLE_EN_BIT				BIT(20)
135 #define CMD_DONE_CLEAR_BIT			BIT(18)
136 #define IDLE_CLEAR_BIT				BIT(17)
137 
138 /*
139  * ECC status - seems to consume 8 bytes (double word). The documented
140  * status byte is located in the lowest byte of the second word (which is
141  * the 4th or 7th byte depending on endianness).
142  * Calculate an offset to store the ECC status at the end of the buffer.
143  */
144 #define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
145 
146 #define ECC_STATUS		0x4
147 #define ECC_STATUS_MASK		0x80
148 #define ECC_STATUS_ERR_COUNT	0x3F
149 
150 enum vf610_nfc_variant {
151 	NFC_VFC610 = 1,
152 };
153 
154 struct vf610_nfc {
155 	struct nand_chip chip;
156 	struct device *dev;
157 	void __iomem *regs;
158 	struct completion cmd_done;
159 	/* Status and ID are in alternate locations. */
160 	enum vf610_nfc_variant variant;
161 	struct clk *clk;
162 	/*
163 	 * Indicate that user data is accessed (full page/oob). This is
164 	 * useful to indicate the driver whether to swap byte endianness.
165 	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
166 	 */
167 	bool data_access;
168 	u32 ecc_mode;
169 };
170 
171 static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
172 {
173 	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
174 }
175 
176 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
177 {
178 	return container_of(chip, struct vf610_nfc, chip);
179 }
180 
181 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
182 {
183 	return readl(nfc->regs + reg);
184 }
185 
186 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
187 {
188 	writel(val, nfc->regs + reg);
189 }
190 
191 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
192 {
193 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
194 }
195 
196 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
197 {
198 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
199 }
200 
201 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
202 				       u32 mask, u32 shift, u32 val)
203 {
204 	vf610_nfc_write(nfc, reg,
205 			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
206 }
207 
208 static inline bool vf610_nfc_kernel_is_little_endian(void)
209 {
210 #ifdef __LITTLE_ENDIAN
211 	return true;
212 #else
213 	return false;
214 #endif
215 }
216 
217 /**
218  * Read accessor for internal SRAM buffer
219  * @dst: destination address in regular memory
220  * @src: source address in SRAM buffer
221  * @len: bytes to copy
222  * @fix_endian: Fix endianness if required
223  *
224  * Use this accessor for the internal SRAM buffers. On the ARM
225  * Freescale Vybrid SoC it's known that the driver can treat
226  * the SRAM buffer as if it's memory. Other platform might need
227  * to treat the buffers differently.
228  *
229  * The controller stores bytes from the NAND chip internally in big
230  * endianness. On little endian platforms such as Vybrid this leads
231  * to reversed byte order.
232  * For performance reason (and earlier probably due to unawareness)
233  * the driver avoids correcting endianness where it has control over
234  * write and read side (e.g. page wise data access).
235  */
236 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
237 					  size_t len, bool fix_endian)
238 {
239 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
240 		unsigned int i;
241 
242 		for (i = 0; i < len; i += 4) {
243 			u32 val = swab32(__raw_readl(src + i));
244 
245 			memcpy(dst + i, &val, min(sizeof(val), len - i));
246 		}
247 	} else {
248 		memcpy_fromio(dst, src, len);
249 	}
250 }
251 
252 /**
253  * Write accessor for internal SRAM buffer
254  * @dst: destination address in SRAM buffer
255  * @src: source address in regular memory
256  * @len: bytes to copy
257  * @fix_endian: Fix endianness if required
258  *
259  * Use this accessor for the internal SRAM buffers. On the ARM
260  * Freescale Vybrid SoC it's known that the driver can treat
261  * the SRAM buffer as if it's memory. Other platform might need
262  * to treat the buffers differently.
263  *
264  * The controller stores bytes from the NAND chip internally in big
265  * endianness. On little endian platforms such as Vybrid this leads
266  * to reversed byte order.
267  * For performance reason (and earlier probably due to unawareness)
268  * the driver avoids correcting endianness where it has control over
269  * write and read side (e.g. page wise data access).
270  */
271 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
272 					size_t len, bool fix_endian)
273 {
274 	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
275 		unsigned int i;
276 
277 		for (i = 0; i < len; i += 4) {
278 			u32 val;
279 
280 			memcpy(&val, src + i, min(sizeof(val), len - i));
281 			__raw_writel(swab32(val), dst + i);
282 		}
283 	} else {
284 		memcpy_toio(dst, src, len);
285 	}
286 }
287 
288 /* Clear flags for upcoming command */
289 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
290 {
291 	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
292 
293 	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
294 	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
295 }
296 
297 static void vf610_nfc_done(struct vf610_nfc *nfc)
298 {
299 	unsigned long timeout = msecs_to_jiffies(100);
300 
301 	/*
302 	 * Barrier is needed after this write. This write need
303 	 * to be done before reading the next register the first
304 	 * time.
305 	 * vf610_nfc_set implicates such a barrier by using writel
306 	 * to write to the register.
307 	 */
308 	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
309 	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
310 
311 	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
312 		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
313 
314 	vf610_nfc_clear_status(nfc);
315 }
316 
317 static irqreturn_t vf610_nfc_irq(int irq, void *data)
318 {
319 	struct mtd_info *mtd = data;
320 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
321 
322 	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
323 	complete(&nfc->cmd_done);
324 
325 	return IRQ_HANDLED;
326 }
327 
328 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
329 {
330 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
331 			    CONFIG_ECC_MODE_MASK,
332 			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
333 }
334 
335 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
336 {
337 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
338 }
339 
340 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
341 				 u32 cmd1, u32 cmd2, u32 trfr_sz)
342 {
343 	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
344 			    COL_ADDR_SHIFT, col);
345 
346 	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
347 			    ROW_ADDR_SHIFT, row);
348 
349 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
350 	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
351 	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
352 
353 	dev_dbg(nfc->dev,
354 		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
355 		col, row, cmd1, cmd2, trfr_sz);
356 
357 	vf610_nfc_done(nfc);
358 }
359 
360 static inline const struct nand_op_instr *
361 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
362 {
363 	if (*op_id + 1 >= subop->ninstrs)
364 		return NULL;
365 
366 	(*op_id)++;
367 
368 	return &subop->instrs[*op_id];
369 }
370 
371 static int vf610_nfc_cmd(struct nand_chip *chip,
372 			 const struct nand_subop *subop)
373 {
374 	const struct nand_op_instr *instr;
375 	struct vf610_nfc *nfc = chip_to_nfc(chip);
376 	int op_id = -1, trfr_sz = 0, offset;
377 	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
378 	bool force8bit = false;
379 
380 	/*
381 	 * Some ops are optional, but the hardware requires the operations
382 	 * to be in this exact order.
383 	 * The op parser enforces the order and makes sure that there isn't
384 	 * a read and write element in a single operation.
385 	 */
386 	instr = vf610_get_next_instr(subop, &op_id);
387 	if (!instr)
388 		return -EINVAL;
389 
390 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
391 		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
392 		code |= COMMAND_CMD_BYTE1;
393 
394 		instr = vf610_get_next_instr(subop, &op_id);
395 	}
396 
397 	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
398 		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
399 		int i = nand_subop_get_addr_start_off(subop, op_id);
400 
401 		for (; i < naddrs; i++) {
402 			u8 val = instr->ctx.addr.addrs[i];
403 
404 			if (i < 2)
405 				col |= COL_ADDR(i, val);
406 			else
407 				row |= ROW_ADDR(i - 2, val);
408 		}
409 		code |= COMMAND_NADDR_BYTES(naddrs);
410 
411 		instr = vf610_get_next_instr(subop, &op_id);
412 	}
413 
414 	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
415 		trfr_sz = nand_subop_get_data_len(subop, op_id);
416 		offset = nand_subop_get_data_start_off(subop, op_id);
417 		force8bit = instr->ctx.data.force_8bit;
418 
419 		/*
420 		 * Don't fix endianness on page access for historical reasons.
421 		 * See comment in vf610_nfc_wr_to_sram
422 		 */
423 		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
424 				     instr->ctx.data.buf.out + offset,
425 				     trfr_sz, !nfc->data_access);
426 		code |= COMMAND_WRITE_DATA;
427 
428 		instr = vf610_get_next_instr(subop, &op_id);
429 	}
430 
431 	if (instr && instr->type == NAND_OP_CMD_INSTR) {
432 		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
433 		code |= COMMAND_CMD_BYTE2;
434 
435 		instr = vf610_get_next_instr(subop, &op_id);
436 	}
437 
438 	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
439 		code |= COMMAND_RB_HANDSHAKE;
440 
441 		instr = vf610_get_next_instr(subop, &op_id);
442 	}
443 
444 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
445 		trfr_sz = nand_subop_get_data_len(subop, op_id);
446 		offset = nand_subop_get_data_start_off(subop, op_id);
447 		force8bit = instr->ctx.data.force_8bit;
448 
449 		code |= COMMAND_READ_DATA;
450 	}
451 
452 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
453 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
454 
455 	cmd2 |= code << CMD_CODE_SHIFT;
456 
457 	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
458 
459 	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
460 		/*
461 		 * Don't fix endianness on page access for historical reasons.
462 		 * See comment in vf610_nfc_rd_from_sram
463 		 */
464 		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
465 				       nfc->regs + NFC_MAIN_AREA(0) + offset,
466 				       trfr_sz, !nfc->data_access);
467 	}
468 
469 	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
470 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
471 
472 	return 0;
473 }
474 
475 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
476 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
477 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
478 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
479 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
480 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
481 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
482 	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
483 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
484 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
485 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
486 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
487 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
488 	);
489 
490 static int vf610_nfc_exec_op(struct nand_chip *chip,
491 			     const struct nand_operation *op,
492 			     bool check_only)
493 {
494 	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
495 				      check_only);
496 }
497 
498 /*
499  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
500  */
501 static void vf610_nfc_select_chip(struct nand_chip *chip, int cs)
502 {
503 	struct vf610_nfc *nfc = mtd_to_nfc(nand_to_mtd(chip));
504 	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
505 
506 	/* Vybrid only (MPC5125 would have full RB and four CS) */
507 	if (nfc->variant != NFC_VFC610)
508 		return;
509 
510 	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
511 
512 	if (cs >= 0) {
513 		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
514 		tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
515 	}
516 
517 	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
518 }
519 
520 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
521 					 uint8_t *oob, int page)
522 {
523 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
524 	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
525 	u8 ecc_status;
526 	u8 ecc_count;
527 	int flips_threshold = nfc->chip.ecc.strength / 2;
528 
529 	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
530 	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
531 
532 	if (!(ecc_status & ECC_STATUS_MASK))
533 		return ecc_count;
534 
535 	nfc->data_access = true;
536 	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
537 	nfc->data_access = false;
538 
539 	/*
540 	 * On an erased page, bit count (including OOB) should be zero or
541 	 * at least less then half of the ECC strength.
542 	 */
543 	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
544 					   mtd->oobsize, NULL, 0,
545 					   flips_threshold);
546 }
547 
548 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
549 			       u32 *row)
550 {
551 	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
552 	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
553 
554 	if (chip->options & NAND_ROW_ADDR_3) {
555 		*row |= ROW_ADDR(2, page >> 16);
556 		*code |= COMMAND_RAR_BYTE3;
557 	}
558 }
559 
560 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
561 			       int oob_required, int page)
562 {
563 	struct mtd_info *mtd = nand_to_mtd(chip);
564 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
565 	int trfr_sz = mtd->writesize + mtd->oobsize;
566 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
567 	int stat;
568 
569 	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
570 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
571 
572 	vf610_nfc_fill_row(chip, page, &code, &row);
573 
574 	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
575 	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
576 
577 	cmd2 |= code << CMD_CODE_SHIFT;
578 
579 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
580 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
581 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
582 
583 	/*
584 	 * Don't fix endianness on page access for historical reasons.
585 	 * See comment in vf610_nfc_rd_from_sram
586 	 */
587 	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
588 			       mtd->writesize, false);
589 	if (oob_required)
590 		vf610_nfc_rd_from_sram(chip->oob_poi,
591 				       nfc->regs + NFC_MAIN_AREA(0) +
592 						   mtd->writesize,
593 				       mtd->oobsize, false);
594 
595 	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
596 
597 	if (stat < 0) {
598 		mtd->ecc_stats.failed++;
599 		return 0;
600 	} else {
601 		mtd->ecc_stats.corrected += stat;
602 		return stat;
603 	}
604 }
605 
606 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
607 				int oob_required, int page)
608 {
609 	struct mtd_info *mtd = nand_to_mtd(chip);
610 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
611 	int trfr_sz = mtd->writesize + mtd->oobsize;
612 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
613 	u8 status;
614 	int ret;
615 
616 	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
617 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
618 
619 	vf610_nfc_fill_row(chip, page, &code, &row);
620 
621 	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
622 	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
623 
624 	/*
625 	 * Don't fix endianness on page access for historical reasons.
626 	 * See comment in vf610_nfc_wr_to_sram
627 	 */
628 	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
629 			     mtd->writesize, false);
630 
631 	code |= COMMAND_RB_HANDSHAKE;
632 	cmd2 |= code << CMD_CODE_SHIFT;
633 
634 	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
635 	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
636 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
637 
638 	ret = nand_status_op(chip, &status);
639 	if (ret)
640 		return ret;
641 
642 	if (status & NAND_STATUS_FAIL)
643 		return -EIO;
644 
645 	return 0;
646 }
647 
648 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
649 				   int oob_required, int page)
650 {
651 	struct mtd_info *mtd = nand_to_mtd(chip);
652 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
653 	int ret;
654 
655 	nfc->data_access = true;
656 	ret = nand_read_page_raw(chip, buf, oob_required, page);
657 	nfc->data_access = false;
658 
659 	return ret;
660 }
661 
662 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
663 				    int oob_required, int page)
664 {
665 	struct mtd_info *mtd = nand_to_mtd(chip);
666 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
667 	int ret;
668 
669 	nfc->data_access = true;
670 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
671 	if (!ret && oob_required)
672 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
673 					 false);
674 	nfc->data_access = false;
675 
676 	if (ret)
677 		return ret;
678 
679 	return nand_prog_page_end_op(chip);
680 }
681 
682 static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
683 {
684 	struct vf610_nfc *nfc = mtd_to_nfc(nand_to_mtd(chip));
685 	int ret;
686 
687 	nfc->data_access = true;
688 	ret = nand_read_oob_std(chip, page);
689 	nfc->data_access = false;
690 
691 	return ret;
692 }
693 
694 static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
695 {
696 	struct mtd_info *mtd = nand_to_mtd(chip);
697 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
698 	int ret;
699 
700 	nfc->data_access = true;
701 	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
702 				      chip->oob_poi, mtd->oobsize);
703 	nfc->data_access = false;
704 
705 	if (ret)
706 		return ret;
707 
708 	return nand_prog_page_end_op(chip);
709 }
710 
711 static const struct of_device_id vf610_nfc_dt_ids[] = {
712 	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
713 	{ /* sentinel */ }
714 };
715 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
716 
717 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
718 {
719 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
720 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
721 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
722 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
723 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
724 	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
725 	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
726 
727 	/* Disable virtual pages, only one elementary transfer unit */
728 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
729 			    CONFIG_PAGE_CNT_SHIFT, 1);
730 }
731 
732 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
733 {
734 	if (nfc->chip.options & NAND_BUSWIDTH_16)
735 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
736 	else
737 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
738 
739 	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
740 		/* Set ECC status offset in SRAM */
741 		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
742 				    CONFIG_ECC_SRAM_ADDR_MASK,
743 				    CONFIG_ECC_SRAM_ADDR_SHIFT,
744 				    ECC_SRAM_ADDR >> 3);
745 
746 		/* Enable ECC status in SRAM */
747 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
748 	}
749 }
750 
751 static int vf610_nfc_attach_chip(struct nand_chip *chip)
752 {
753 	struct mtd_info *mtd = nand_to_mtd(chip);
754 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
755 
756 	vf610_nfc_init_controller(nfc);
757 
758 	/* Bad block options. */
759 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
760 		chip->bbt_options |= NAND_BBT_NO_OOB;
761 
762 	/* Single buffer only, max 256 OOB minus ECC status */
763 	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
764 		dev_err(nfc->dev, "Unsupported flash page size\n");
765 		return -ENXIO;
766 	}
767 
768 	if (chip->ecc.mode != NAND_ECC_HW)
769 		return 0;
770 
771 	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
772 		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
773 		return -ENXIO;
774 	}
775 
776 	if (chip->ecc.size != mtd->writesize) {
777 		dev_err(nfc->dev, "Step size needs to be page size\n");
778 		return -ENXIO;
779 	}
780 
781 	/* Only 64 byte ECC layouts known */
782 	if (mtd->oobsize > 64)
783 		mtd->oobsize = 64;
784 
785 	/* Use default large page ECC layout defined in NAND core */
786 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
787 	if (chip->ecc.strength == 32) {
788 		nfc->ecc_mode = ECC_60_BYTE;
789 		chip->ecc.bytes = 60;
790 	} else if (chip->ecc.strength == 24) {
791 		nfc->ecc_mode = ECC_45_BYTE;
792 		chip->ecc.bytes = 45;
793 	} else {
794 		dev_err(nfc->dev, "Unsupported ECC strength\n");
795 		return -ENXIO;
796 	}
797 
798 	chip->ecc.read_page = vf610_nfc_read_page;
799 	chip->ecc.write_page = vf610_nfc_write_page;
800 	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
801 	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
802 	chip->ecc.read_oob = vf610_nfc_read_oob;
803 	chip->ecc.write_oob = vf610_nfc_write_oob;
804 
805 	chip->ecc.size = PAGE_2K;
806 
807 	return 0;
808 }
809 
810 static const struct nand_controller_ops vf610_nfc_controller_ops = {
811 	.attach_chip = vf610_nfc_attach_chip,
812 };
813 
814 static int vf610_nfc_probe(struct platform_device *pdev)
815 {
816 	struct vf610_nfc *nfc;
817 	struct resource *res;
818 	struct mtd_info *mtd;
819 	struct nand_chip *chip;
820 	struct device_node *child;
821 	const struct of_device_id *of_id;
822 	int err;
823 	int irq;
824 
825 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
826 	if (!nfc)
827 		return -ENOMEM;
828 
829 	nfc->dev = &pdev->dev;
830 	chip = &nfc->chip;
831 	mtd = nand_to_mtd(chip);
832 
833 	mtd->owner = THIS_MODULE;
834 	mtd->dev.parent = nfc->dev;
835 	mtd->name = DRV_NAME;
836 
837 	irq = platform_get_irq(pdev, 0);
838 	if (irq <= 0)
839 		return -EINVAL;
840 
841 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
842 	nfc->regs = devm_ioremap_resource(nfc->dev, res);
843 	if (IS_ERR(nfc->regs))
844 		return PTR_ERR(nfc->regs);
845 
846 	nfc->clk = devm_clk_get(&pdev->dev, NULL);
847 	if (IS_ERR(nfc->clk))
848 		return PTR_ERR(nfc->clk);
849 
850 	err = clk_prepare_enable(nfc->clk);
851 	if (err) {
852 		dev_err(nfc->dev, "Unable to enable clock!\n");
853 		return err;
854 	}
855 
856 	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
857 	nfc->variant = (enum vf610_nfc_variant)of_id->data;
858 
859 	for_each_available_child_of_node(nfc->dev->of_node, child) {
860 		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
861 
862 			if (nand_get_flash_node(chip)) {
863 				dev_err(nfc->dev,
864 					"Only one NAND chip supported!\n");
865 				err = -EINVAL;
866 				goto err_disable_clk;
867 			}
868 
869 			nand_set_flash_node(chip, child);
870 		}
871 	}
872 
873 	if (!nand_get_flash_node(chip)) {
874 		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
875 		err = -ENODEV;
876 		goto err_disable_clk;
877 	}
878 
879 	chip->exec_op = vf610_nfc_exec_op;
880 	chip->select_chip = vf610_nfc_select_chip;
881 
882 	chip->options |= NAND_NO_SUBPAGE_WRITE;
883 
884 	init_completion(&nfc->cmd_done);
885 
886 	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
887 	if (err) {
888 		dev_err(nfc->dev, "Error requesting IRQ!\n");
889 		goto err_disable_clk;
890 	}
891 
892 	vf610_nfc_preinit_controller(nfc);
893 
894 	/* Scan the NAND chip */
895 	chip->dummy_controller.ops = &vf610_nfc_controller_ops;
896 	err = nand_scan(chip, 1);
897 	if (err)
898 		goto err_disable_clk;
899 
900 	platform_set_drvdata(pdev, mtd);
901 
902 	/* Register device in MTD */
903 	err = mtd_device_register(mtd, NULL, 0);
904 	if (err)
905 		goto err_cleanup_nand;
906 	return 0;
907 
908 err_cleanup_nand:
909 	nand_cleanup(chip);
910 err_disable_clk:
911 	clk_disable_unprepare(nfc->clk);
912 	return err;
913 }
914 
915 static int vf610_nfc_remove(struct platform_device *pdev)
916 {
917 	struct mtd_info *mtd = platform_get_drvdata(pdev);
918 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
919 
920 	nand_release(mtd_to_nand(mtd));
921 	clk_disable_unprepare(nfc->clk);
922 	return 0;
923 }
924 
925 #ifdef CONFIG_PM_SLEEP
926 static int vf610_nfc_suspend(struct device *dev)
927 {
928 	struct mtd_info *mtd = dev_get_drvdata(dev);
929 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
930 
931 	clk_disable_unprepare(nfc->clk);
932 	return 0;
933 }
934 
935 static int vf610_nfc_resume(struct device *dev)
936 {
937 	int err;
938 
939 	struct mtd_info *mtd = dev_get_drvdata(dev);
940 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
941 
942 	err = clk_prepare_enable(nfc->clk);
943 	if (err)
944 		return err;
945 
946 	vf610_nfc_preinit_controller(nfc);
947 	vf610_nfc_init_controller(nfc);
948 	return 0;
949 }
950 #endif
951 
952 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
953 
954 static struct platform_driver vf610_nfc_driver = {
955 	.driver		= {
956 		.name	= DRV_NAME,
957 		.of_match_table = vf610_nfc_dt_ids,
958 		.pm	= &vf610_nfc_pm_ops,
959 	},
960 	.probe		= vf610_nfc_probe,
961 	.remove		= vf610_nfc_remove,
962 };
963 
964 module_platform_driver(vf610_nfc_driver);
965 
966 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
967 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
968 MODULE_LICENSE("GPL");
969