1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 4 * Author: Christophe Kerello <christophe.kerello@st.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/errno.h> 11 #include <linux/interrupt.h> 12 #include <linux/iopoll.h> 13 #include <linux/module.h> 14 #include <linux/mtd/rawnand.h> 15 #include <linux/pinctrl/consumer.h> 16 #include <linux/platform_device.h> 17 #include <linux/reset.h> 18 19 /* Bad block marker length */ 20 #define FMC2_BBM_LEN 2 21 22 /* ECC step size */ 23 #define FMC2_ECC_STEP_SIZE 512 24 25 /* BCHDSRx registers length */ 26 #define FMC2_BCHDSRS_LEN 20 27 28 /* HECCR length */ 29 #define FMC2_HECCR_LEN 4 30 31 /* Max requests done for a 8k nand page size */ 32 #define FMC2_MAX_SG 16 33 34 /* Max chip enable */ 35 #define FMC2_MAX_CE 2 36 37 /* Max ECC buffer length */ 38 #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) 39 40 #define FMC2_TIMEOUT_MS 1000 41 42 /* Timings */ 43 #define FMC2_THIZ 1 44 #define FMC2_TIO 8000 45 #define FMC2_TSYNC 3000 46 #define FMC2_PCR_TIMING_MASK 0xf 47 #define FMC2_PMEM_PATT_TIMING_MASK 0xff 48 49 /* FMC2 Controller Registers */ 50 #define FMC2_BCR1 0x0 51 #define FMC2_PCR 0x80 52 #define FMC2_SR 0x84 53 #define FMC2_PMEM 0x88 54 #define FMC2_PATT 0x8c 55 #define FMC2_HECCR 0x94 56 #define FMC2_CSQCR 0x200 57 #define FMC2_CSQCFGR1 0x204 58 #define FMC2_CSQCFGR2 0x208 59 #define FMC2_CSQCFGR3 0x20c 60 #define FMC2_CSQAR1 0x210 61 #define FMC2_CSQAR2 0x214 62 #define FMC2_CSQIER 0x220 63 #define FMC2_CSQISR 0x224 64 #define FMC2_CSQICR 0x228 65 #define FMC2_CSQEMSR 0x230 66 #define FMC2_BCHIER 0x250 67 #define FMC2_BCHISR 0x254 68 #define FMC2_BCHICR 0x258 69 #define FMC2_BCHPBR1 0x260 70 #define FMC2_BCHPBR2 0x264 71 #define FMC2_BCHPBR3 0x268 72 #define FMC2_BCHPBR4 0x26c 73 #define FMC2_BCHDSR0 0x27c 74 #define FMC2_BCHDSR1 0x280 75 #define FMC2_BCHDSR2 0x284 76 #define FMC2_BCHDSR3 0x288 77 #define FMC2_BCHDSR4 0x28c 78 79 /* Register: FMC2_BCR1 */ 80 #define FMC2_BCR1_FMC2EN BIT(31) 81 82 /* Register: FMC2_PCR */ 83 #define FMC2_PCR_PWAITEN BIT(1) 84 #define FMC2_PCR_PBKEN BIT(2) 85 #define FMC2_PCR_PWID_MASK GENMASK(5, 4) 86 #define FMC2_PCR_PWID(x) (((x) & 0x3) << 4) 87 #define FMC2_PCR_PWID_BUSWIDTH_8 0 88 #define FMC2_PCR_PWID_BUSWIDTH_16 1 89 #define FMC2_PCR_ECCEN BIT(6) 90 #define FMC2_PCR_ECCALG BIT(8) 91 #define FMC2_PCR_TCLR_MASK GENMASK(12, 9) 92 #define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9) 93 #define FMC2_PCR_TCLR_DEFAULT 0xf 94 #define FMC2_PCR_TAR_MASK GENMASK(16, 13) 95 #define FMC2_PCR_TAR(x) (((x) & 0xf) << 13) 96 #define FMC2_PCR_TAR_DEFAULT 0xf 97 #define FMC2_PCR_ECCSS_MASK GENMASK(19, 17) 98 #define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17) 99 #define FMC2_PCR_ECCSS_512 1 100 #define FMC2_PCR_ECCSS_2048 3 101 #define FMC2_PCR_BCHECC BIT(24) 102 #define FMC2_PCR_WEN BIT(25) 103 104 /* Register: FMC2_SR */ 105 #define FMC2_SR_NWRF BIT(6) 106 107 /* Register: FMC2_PMEM */ 108 #define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0) 109 #define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8) 110 #define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16) 111 #define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24) 112 #define FMC2_PMEM_DEFAULT 0x0a0a0a0a 113 114 /* Register: FMC2_PATT */ 115 #define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0) 116 #define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8) 117 #define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16) 118 #define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24) 119 #define FMC2_PATT_DEFAULT 0x0a0a0a0a 120 121 /* Register: FMC2_CSQCR */ 122 #define FMC2_CSQCR_CSQSTART BIT(0) 123 124 /* Register: FMC2_CSQCFGR1 */ 125 #define FMC2_CSQCFGR1_CMD2EN BIT(1) 126 #define FMC2_CSQCFGR1_DMADEN BIT(2) 127 #define FMC2_CSQCFGR1_ACYNBR(x) (((x) & 0x7) << 4) 128 #define FMC2_CSQCFGR1_CMD1(x) (((x) & 0xff) << 8) 129 #define FMC2_CSQCFGR1_CMD2(x) (((x) & 0xff) << 16) 130 #define FMC2_CSQCFGR1_CMD1T BIT(24) 131 #define FMC2_CSQCFGR1_CMD2T BIT(25) 132 133 /* Register: FMC2_CSQCFGR2 */ 134 #define FMC2_CSQCFGR2_SQSDTEN BIT(0) 135 #define FMC2_CSQCFGR2_RCMD2EN BIT(1) 136 #define FMC2_CSQCFGR2_DMASEN BIT(2) 137 #define FMC2_CSQCFGR2_RCMD1(x) (((x) & 0xff) << 8) 138 #define FMC2_CSQCFGR2_RCMD2(x) (((x) & 0xff) << 16) 139 #define FMC2_CSQCFGR2_RCMD1T BIT(24) 140 #define FMC2_CSQCFGR2_RCMD2T BIT(25) 141 142 /* Register: FMC2_CSQCFGR3 */ 143 #define FMC2_CSQCFGR3_SNBR(x) (((x) & 0x1f) << 8) 144 #define FMC2_CSQCFGR3_AC1T BIT(16) 145 #define FMC2_CSQCFGR3_AC2T BIT(17) 146 #define FMC2_CSQCFGR3_AC3T BIT(18) 147 #define FMC2_CSQCFGR3_AC4T BIT(19) 148 #define FMC2_CSQCFGR3_AC5T BIT(20) 149 #define FMC2_CSQCFGR3_SDT BIT(21) 150 #define FMC2_CSQCFGR3_RAC1T BIT(22) 151 #define FMC2_CSQCFGR3_RAC2T BIT(23) 152 153 /* Register: FMC2_CSQCAR1 */ 154 #define FMC2_CSQCAR1_ADDC1(x) (((x) & 0xff) << 0) 155 #define FMC2_CSQCAR1_ADDC2(x) (((x) & 0xff) << 8) 156 #define FMC2_CSQCAR1_ADDC3(x) (((x) & 0xff) << 16) 157 #define FMC2_CSQCAR1_ADDC4(x) (((x) & 0xff) << 24) 158 159 /* Register: FMC2_CSQCAR2 */ 160 #define FMC2_CSQCAR2_ADDC5(x) (((x) & 0xff) << 0) 161 #define FMC2_CSQCAR2_NANDCEN(x) (((x) & 0x3) << 10) 162 #define FMC2_CSQCAR2_SAO(x) (((x) & 0xffff) << 16) 163 164 /* Register: FMC2_CSQIER */ 165 #define FMC2_CSQIER_TCIE BIT(0) 166 167 /* Register: FMC2_CSQICR */ 168 #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) 169 170 /* Register: FMC2_CSQEMSR */ 171 #define FMC2_CSQEMSR_SEM GENMASK(15, 0) 172 173 /* Register: FMC2_BCHIER */ 174 #define FMC2_BCHIER_DERIE BIT(1) 175 #define FMC2_BCHIER_EPBRIE BIT(4) 176 177 /* Register: FMC2_BCHICR */ 178 #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) 179 180 /* Register: FMC2_BCHDSR0 */ 181 #define FMC2_BCHDSR0_DUE BIT(0) 182 #define FMC2_BCHDSR0_DEF BIT(1) 183 #define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4) 184 #define FMC2_BCHDSR0_DEN_SHIFT 4 185 186 /* Register: FMC2_BCHDSR1 */ 187 #define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0) 188 #define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16) 189 #define FMC2_BCHDSR1_EBP2_SHIFT 16 190 191 /* Register: FMC2_BCHDSR2 */ 192 #define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0) 193 #define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16) 194 #define FMC2_BCHDSR2_EBP4_SHIFT 16 195 196 /* Register: FMC2_BCHDSR3 */ 197 #define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0) 198 #define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16) 199 #define FMC2_BCHDSR3_EBP6_SHIFT 16 200 201 /* Register: FMC2_BCHDSR4 */ 202 #define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0) 203 #define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16) 204 #define FMC2_BCHDSR4_EBP8_SHIFT 16 205 206 enum stm32_fmc2_ecc { 207 FMC2_ECC_HAM = 1, 208 FMC2_ECC_BCH4 = 4, 209 FMC2_ECC_BCH8 = 8 210 }; 211 212 enum stm32_fmc2_irq_state { 213 FMC2_IRQ_UNKNOWN = 0, 214 FMC2_IRQ_BCH, 215 FMC2_IRQ_SEQ 216 }; 217 218 struct stm32_fmc2_timings { 219 u8 tclr; 220 u8 tar; 221 u8 thiz; 222 u8 twait; 223 u8 thold_mem; 224 u8 tset_mem; 225 u8 thold_att; 226 u8 tset_att; 227 }; 228 229 struct stm32_fmc2_nand { 230 struct nand_chip chip; 231 struct stm32_fmc2_timings timings; 232 int ncs; 233 int cs_used[FMC2_MAX_CE]; 234 }; 235 236 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) 237 { 238 return container_of(chip, struct stm32_fmc2_nand, chip); 239 } 240 241 struct stm32_fmc2_nfc { 242 struct nand_controller base; 243 struct stm32_fmc2_nand nand; 244 struct device *dev; 245 void __iomem *io_base; 246 void __iomem *data_base[FMC2_MAX_CE]; 247 void __iomem *cmd_base[FMC2_MAX_CE]; 248 void __iomem *addr_base[FMC2_MAX_CE]; 249 phys_addr_t io_phys_addr; 250 phys_addr_t data_phys_addr[FMC2_MAX_CE]; 251 struct clk *clk; 252 u8 irq_state; 253 254 struct dma_chan *dma_tx_ch; 255 struct dma_chan *dma_rx_ch; 256 struct dma_chan *dma_ecc_ch; 257 struct sg_table dma_data_sg; 258 struct sg_table dma_ecc_sg; 259 u8 *ecc_buf; 260 int dma_ecc_len; 261 262 struct completion complete; 263 struct completion dma_data_complete; 264 struct completion dma_ecc_complete; 265 266 u8 cs_assigned; 267 int cs_sel; 268 }; 269 270 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) 271 { 272 return container_of(base, struct stm32_fmc2_nfc, base); 273 } 274 275 /* Timings configuration */ 276 static void stm32_fmc2_timings_init(struct nand_chip *chip) 277 { 278 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 279 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 280 struct stm32_fmc2_timings *timings = &nand->timings; 281 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); 282 u32 pmem, patt; 283 284 /* Set tclr/tar timings */ 285 pcr &= ~FMC2_PCR_TCLR_MASK; 286 pcr |= FMC2_PCR_TCLR(timings->tclr); 287 pcr &= ~FMC2_PCR_TAR_MASK; 288 pcr |= FMC2_PCR_TAR(timings->tar); 289 290 /* Set tset/twait/thold/thiz timings in common bank */ 291 pmem = FMC2_PMEM_MEMSET(timings->tset_mem); 292 pmem |= FMC2_PMEM_MEMWAIT(timings->twait); 293 pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem); 294 pmem |= FMC2_PMEM_MEMHIZ(timings->thiz); 295 296 /* Set tset/twait/thold/thiz timings in attribut bank */ 297 patt = FMC2_PATT_ATTSET(timings->tset_att); 298 patt |= FMC2_PATT_ATTWAIT(timings->twait); 299 patt |= FMC2_PATT_ATTHOLD(timings->thold_att); 300 patt |= FMC2_PATT_ATTHIZ(timings->thiz); 301 302 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); 303 writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM); 304 writel_relaxed(patt, fmc2->io_base + FMC2_PATT); 305 } 306 307 /* Controller configuration */ 308 static void stm32_fmc2_setup(struct nand_chip *chip) 309 { 310 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 311 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); 312 313 /* Configure ECC algorithm (default configuration is Hamming) */ 314 pcr &= ~FMC2_PCR_ECCALG; 315 pcr &= ~FMC2_PCR_BCHECC; 316 if (chip->ecc.strength == FMC2_ECC_BCH8) { 317 pcr |= FMC2_PCR_ECCALG; 318 pcr |= FMC2_PCR_BCHECC; 319 } else if (chip->ecc.strength == FMC2_ECC_BCH4) { 320 pcr |= FMC2_PCR_ECCALG; 321 } 322 323 /* Set buswidth */ 324 pcr &= ~FMC2_PCR_PWID_MASK; 325 if (chip->options & NAND_BUSWIDTH_16) 326 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); 327 328 /* Set ECC sector size */ 329 pcr &= ~FMC2_PCR_ECCSS_MASK; 330 pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512); 331 332 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); 333 } 334 335 /* Select target */ 336 static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr) 337 { 338 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 339 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 340 struct dma_slave_config dma_cfg; 341 int ret; 342 343 if (nand->cs_used[chipnr] == fmc2->cs_sel) 344 return 0; 345 346 fmc2->cs_sel = nand->cs_used[chipnr]; 347 348 /* FMC2 setup routine */ 349 stm32_fmc2_setup(chip); 350 351 /* Apply timings */ 352 stm32_fmc2_timings_init(chip); 353 354 if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) { 355 memset(&dma_cfg, 0, sizeof(dma_cfg)); 356 dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel]; 357 dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel]; 358 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 359 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 360 dma_cfg.src_maxburst = 32; 361 dma_cfg.dst_maxburst = 32; 362 363 ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg); 364 if (ret) { 365 dev_err(fmc2->dev, "tx DMA engine slave config failed\n"); 366 return ret; 367 } 368 369 ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg); 370 if (ret) { 371 dev_err(fmc2->dev, "rx DMA engine slave config failed\n"); 372 return ret; 373 } 374 } 375 376 if (fmc2->dma_ecc_ch) { 377 /* 378 * Hamming: we read HECCR register 379 * BCH4/BCH8: we read BCHDSRSx registers 380 */ 381 memset(&dma_cfg, 0, sizeof(dma_cfg)); 382 dma_cfg.src_addr = fmc2->io_phys_addr; 383 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? 384 FMC2_HECCR : FMC2_BCHDSR0; 385 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 386 387 ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg); 388 if (ret) { 389 dev_err(fmc2->dev, "ECC DMA engine slave config failed\n"); 390 return ret; 391 } 392 393 /* Calculate ECC length needed for one sector */ 394 fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? 395 FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; 396 } 397 398 return 0; 399 } 400 401 /* Set bus width to 16-bit or 8-bit */ 402 static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set) 403 { 404 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); 405 406 pcr &= ~FMC2_PCR_PWID_MASK; 407 if (set) 408 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); 409 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); 410 } 411 412 /* Enable/disable ECC */ 413 static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable) 414 { 415 u32 pcr = readl(fmc2->io_base + FMC2_PCR); 416 417 pcr &= ~FMC2_PCR_ECCEN; 418 if (enable) 419 pcr |= FMC2_PCR_ECCEN; 420 writel(pcr, fmc2->io_base + FMC2_PCR); 421 } 422 423 /* Enable irq sources in case of the sequencer is used */ 424 static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2) 425 { 426 u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); 427 428 csqier |= FMC2_CSQIER_TCIE; 429 430 fmc2->irq_state = FMC2_IRQ_SEQ; 431 432 writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); 433 } 434 435 /* Disable irq sources in case of the sequencer is used */ 436 static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2) 437 { 438 u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); 439 440 csqier &= ~FMC2_CSQIER_TCIE; 441 442 writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); 443 444 fmc2->irq_state = FMC2_IRQ_UNKNOWN; 445 } 446 447 /* Clear irq sources in case of the sequencer is used */ 448 static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2) 449 { 450 writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR); 451 } 452 453 /* Enable irq sources in case of bch is used */ 454 static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2, 455 int mode) 456 { 457 u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER); 458 459 if (mode == NAND_ECC_WRITE) 460 bchier |= FMC2_BCHIER_EPBRIE; 461 else 462 bchier |= FMC2_BCHIER_DERIE; 463 464 fmc2->irq_state = FMC2_IRQ_BCH; 465 466 writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER); 467 } 468 469 /* Disable irq sources in case of bch is used */ 470 static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2) 471 { 472 u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER); 473 474 bchier &= ~FMC2_BCHIER_DERIE; 475 bchier &= ~FMC2_BCHIER_EPBRIE; 476 477 writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER); 478 479 fmc2->irq_state = FMC2_IRQ_UNKNOWN; 480 } 481 482 /* Clear irq sources in case of bch is used */ 483 static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2) 484 { 485 writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR); 486 } 487 488 /* 489 * Enable ECC logic and reset syndrome/parity bits previously calculated 490 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 491 */ 492 static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode) 493 { 494 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 495 496 stm32_fmc2_set_ecc(fmc2, false); 497 498 if (chip->ecc.strength != FMC2_ECC_HAM) { 499 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); 500 501 if (mode == NAND_ECC_WRITE) 502 pcr |= FMC2_PCR_WEN; 503 else 504 pcr &= ~FMC2_PCR_WEN; 505 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); 506 507 reinit_completion(&fmc2->complete); 508 stm32_fmc2_clear_bch_irq(fmc2); 509 stm32_fmc2_enable_bch_irq(fmc2, mode); 510 } 511 512 stm32_fmc2_set_ecc(fmc2, true); 513 } 514 515 /* 516 * ECC Hamming calculation 517 * ECC is 3 bytes for 512 bytes of data (supports error correction up to 518 * max of 1-bit) 519 */ 520 static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc) 521 { 522 ecc[0] = ecc_sta; 523 ecc[1] = ecc_sta >> 8; 524 ecc[2] = ecc_sta >> 16; 525 } 526 527 static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data, 528 u8 *ecc) 529 { 530 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 531 u32 sr, heccr; 532 int ret; 533 534 ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR, 535 sr, sr & FMC2_SR_NWRF, 10, 536 FMC2_TIMEOUT_MS); 537 if (ret) { 538 dev_err(fmc2->dev, "ham timeout\n"); 539 return ret; 540 } 541 542 heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR); 543 544 stm32_fmc2_ham_set_ecc(heccr, ecc); 545 546 /* Disable ECC */ 547 stm32_fmc2_set_ecc(fmc2, false); 548 549 return 0; 550 } 551 552 static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat, 553 u8 *read_ecc, u8 *calc_ecc) 554 { 555 u8 bit_position = 0, b0, b1, b2; 556 u32 byte_addr = 0, b; 557 u32 i, shifting = 1; 558 559 /* Indicate which bit and byte is faulty (if any) */ 560 b0 = read_ecc[0] ^ calc_ecc[0]; 561 b1 = read_ecc[1] ^ calc_ecc[1]; 562 b2 = read_ecc[2] ^ calc_ecc[2]; 563 b = b0 | (b1 << 8) | (b2 << 16); 564 565 /* No errors */ 566 if (likely(!b)) 567 return 0; 568 569 /* Calculate bit position */ 570 for (i = 0; i < 3; i++) { 571 switch (b % 4) { 572 case 2: 573 bit_position += shifting; 574 case 1: 575 break; 576 default: 577 return -EBADMSG; 578 } 579 shifting <<= 1; 580 b >>= 2; 581 } 582 583 /* Calculate byte position */ 584 shifting = 1; 585 for (i = 0; i < 9; i++) { 586 switch (b % 4) { 587 case 2: 588 byte_addr += shifting; 589 case 1: 590 break; 591 default: 592 return -EBADMSG; 593 } 594 shifting <<= 1; 595 b >>= 2; 596 } 597 598 /* Flip the bit */ 599 dat[byte_addr] ^= (1 << bit_position); 600 601 return 1; 602 } 603 604 /* 605 * ECC BCH calculation and correction 606 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to 607 * max of 4-bit/8-bit) 608 */ 609 static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data, 610 u8 *ecc) 611 { 612 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 613 u32 bchpbr; 614 615 /* Wait until the BCH code is ready */ 616 if (!wait_for_completion_timeout(&fmc2->complete, 617 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 618 dev_err(fmc2->dev, "bch timeout\n"); 619 stm32_fmc2_disable_bch_irq(fmc2); 620 return -ETIMEDOUT; 621 } 622 623 /* Read parity bits */ 624 bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1); 625 ecc[0] = bchpbr; 626 ecc[1] = bchpbr >> 8; 627 ecc[2] = bchpbr >> 16; 628 ecc[3] = bchpbr >> 24; 629 630 bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2); 631 ecc[4] = bchpbr; 632 ecc[5] = bchpbr >> 8; 633 ecc[6] = bchpbr >> 16; 634 635 if (chip->ecc.strength == FMC2_ECC_BCH8) { 636 ecc[7] = bchpbr >> 24; 637 638 bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3); 639 ecc[8] = bchpbr; 640 ecc[9] = bchpbr >> 8; 641 ecc[10] = bchpbr >> 16; 642 ecc[11] = bchpbr >> 24; 643 644 bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4); 645 ecc[12] = bchpbr; 646 } 647 648 /* Disable ECC */ 649 stm32_fmc2_set_ecc(fmc2, false); 650 651 return 0; 652 } 653 654 /* BCH algorithm correction */ 655 static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) 656 { 657 u32 bchdsr0 = ecc_sta[0]; 658 u32 bchdsr1 = ecc_sta[1]; 659 u32 bchdsr2 = ecc_sta[2]; 660 u32 bchdsr3 = ecc_sta[3]; 661 u32 bchdsr4 = ecc_sta[4]; 662 u16 pos[8]; 663 int i, den; 664 unsigned int nb_errs = 0; 665 666 /* No errors found */ 667 if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) 668 return 0; 669 670 /* Too many errors detected */ 671 if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) 672 return -EBADMSG; 673 674 pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK; 675 pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT; 676 pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK; 677 pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT; 678 pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK; 679 pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT; 680 pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK; 681 pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT; 682 683 den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT; 684 for (i = 0; i < den; i++) { 685 if (pos[i] < eccsize * 8) { 686 change_bit(pos[i], (unsigned long *)dat); 687 nb_errs++; 688 } 689 } 690 691 return nb_errs; 692 } 693 694 static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat, 695 u8 *read_ecc, u8 *calc_ecc) 696 { 697 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 698 u32 ecc_sta[5]; 699 700 /* Wait until the decoding error is ready */ 701 if (!wait_for_completion_timeout(&fmc2->complete, 702 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 703 dev_err(fmc2->dev, "bch timeout\n"); 704 stm32_fmc2_disable_bch_irq(fmc2); 705 return -ETIMEDOUT; 706 } 707 708 ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0); 709 ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1); 710 ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2); 711 ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3); 712 ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4); 713 714 /* Disable ECC */ 715 stm32_fmc2_set_ecc(fmc2, false); 716 717 return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta); 718 } 719 720 static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf, 721 int oob_required, int page) 722 { 723 struct mtd_info *mtd = nand_to_mtd(chip); 724 int ret, i, s, stat, eccsize = chip->ecc.size; 725 int eccbytes = chip->ecc.bytes; 726 int eccsteps = chip->ecc.steps; 727 int eccstrength = chip->ecc.strength; 728 u8 *p = buf; 729 u8 *ecc_calc = chip->ecc.calc_buf; 730 u8 *ecc_code = chip->ecc.code_buf; 731 unsigned int max_bitflips = 0; 732 733 ret = nand_read_page_op(chip, page, 0, NULL, 0); 734 if (ret) 735 return ret; 736 737 for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; 738 s++, i += eccbytes, p += eccsize) { 739 chip->ecc.hwctl(chip, NAND_ECC_READ); 740 741 /* Read the nand page sector (512 bytes) */ 742 ret = nand_change_read_column_op(chip, s * eccsize, p, 743 eccsize, false); 744 if (ret) 745 return ret; 746 747 /* Read the corresponding ECC bytes */ 748 ret = nand_change_read_column_op(chip, i, ecc_code, 749 eccbytes, false); 750 if (ret) 751 return ret; 752 753 /* Correct the data */ 754 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); 755 if (stat == -EBADMSG) 756 /* Check for empty pages with bitflips */ 757 stat = nand_check_erased_ecc_chunk(p, eccsize, 758 ecc_code, eccbytes, 759 NULL, 0, 760 eccstrength); 761 762 if (stat < 0) { 763 mtd->ecc_stats.failed++; 764 } else { 765 mtd->ecc_stats.corrected += stat; 766 max_bitflips = max_t(unsigned int, max_bitflips, stat); 767 } 768 } 769 770 /* Read oob */ 771 if (oob_required) { 772 ret = nand_change_read_column_op(chip, mtd->writesize, 773 chip->oob_poi, mtd->oobsize, 774 false); 775 if (ret) 776 return ret; 777 } 778 779 return max_bitflips; 780 } 781 782 /* Sequencer read/write configuration */ 783 static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page, 784 int raw, bool write_data) 785 { 786 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 787 struct mtd_info *mtd = nand_to_mtd(chip); 788 u32 csqcfgr1, csqcfgr2, csqcfgr3; 789 u32 csqar1, csqar2; 790 u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; 791 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); 792 793 if (write_data) 794 pcr |= FMC2_PCR_WEN; 795 else 796 pcr &= ~FMC2_PCR_WEN; 797 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); 798 799 /* 800 * - Set Program Page/Page Read command 801 * - Enable DMA request data 802 * - Set timings 803 */ 804 csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; 805 if (write_data) 806 csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN); 807 else 808 csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) | 809 FMC2_CSQCFGR1_CMD2EN | 810 FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) | 811 FMC2_CSQCFGR1_CMD2T; 812 813 /* 814 * - Set Random Data Input/Random Data Read command 815 * - Enable the sequencer to access the Spare data area 816 * - Enable DMA request status decoding for read 817 * - Set timings 818 */ 819 if (write_data) 820 csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN); 821 else 822 csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) | 823 FMC2_CSQCFGR2_RCMD2EN | 824 FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) | 825 FMC2_CSQCFGR2_RCMD1T | 826 FMC2_CSQCFGR2_RCMD2T; 827 if (!raw) { 828 csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; 829 csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN; 830 } 831 832 /* 833 * - Set the number of sectors to be written 834 * - Set timings 835 */ 836 csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1); 837 if (write_data) { 838 csqcfgr3 |= FMC2_CSQCFGR3_RAC2T; 839 if (chip->options & NAND_ROW_ADDR_3) 840 csqcfgr3 |= FMC2_CSQCFGR3_AC5T; 841 else 842 csqcfgr3 |= FMC2_CSQCFGR3_AC4T; 843 } 844 845 /* 846 * Set the fourth first address cycles 847 * Byte 1 and byte 2 => column, we start at 0x0 848 * Byte 3 and byte 4 => page 849 */ 850 csqar1 = FMC2_CSQCAR1_ADDC3(page); 851 csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8); 852 853 /* 854 * - Set chip enable number 855 * - Set ECC byte offset in the spare area 856 * - Calculate the number of address cycles to be issued 857 * - Set byte 5 of address cycle if needed 858 */ 859 csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel); 860 if (chip->options & NAND_BUSWIDTH_16) 861 csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1); 862 else 863 csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset); 864 if (chip->options & NAND_ROW_ADDR_3) { 865 csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5); 866 csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16); 867 } else { 868 csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4); 869 } 870 871 writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1); 872 writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2); 873 writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3); 874 writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1); 875 writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2); 876 } 877 878 static void stm32_fmc2_dma_callback(void *arg) 879 { 880 complete((struct completion *)arg); 881 } 882 883 /* Read/write data from/to a page */ 884 static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf, 885 int raw, bool write_data) 886 { 887 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 888 struct dma_async_tx_descriptor *desc_data, *desc_ecc; 889 struct scatterlist *sg; 890 struct dma_chan *dma_ch = fmc2->dma_rx_ch; 891 enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; 892 enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; 893 u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR); 894 int eccsteps = chip->ecc.steps; 895 int eccsize = chip->ecc.size; 896 const u8 *p = buf; 897 int s, ret; 898 899 /* Configure DMA data */ 900 if (write_data) { 901 dma_data_dir = DMA_TO_DEVICE; 902 dma_transfer_dir = DMA_MEM_TO_DEV; 903 dma_ch = fmc2->dma_tx_ch; 904 } 905 906 for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) { 907 sg_set_buf(sg, p, eccsize); 908 p += eccsize; 909 } 910 911 ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl, 912 eccsteps, dma_data_dir); 913 if (ret < 0) 914 return ret; 915 916 desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl, 917 eccsteps, dma_transfer_dir, 918 DMA_PREP_INTERRUPT); 919 if (!desc_data) { 920 ret = -ENOMEM; 921 goto err_unmap_data; 922 } 923 924 reinit_completion(&fmc2->dma_data_complete); 925 reinit_completion(&fmc2->complete); 926 desc_data->callback = stm32_fmc2_dma_callback; 927 desc_data->callback_param = &fmc2->dma_data_complete; 928 ret = dma_submit_error(dmaengine_submit(desc_data)); 929 if (ret) 930 goto err_unmap_data; 931 932 dma_async_issue_pending(dma_ch); 933 934 if (!write_data && !raw) { 935 /* Configure DMA ECC status */ 936 p = fmc2->ecc_buf; 937 for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) { 938 sg_set_buf(sg, p, fmc2->dma_ecc_len); 939 p += fmc2->dma_ecc_len; 940 } 941 942 ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, 943 eccsteps, dma_data_dir); 944 if (ret < 0) 945 goto err_unmap_data; 946 947 desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch, 948 fmc2->dma_ecc_sg.sgl, 949 eccsteps, dma_transfer_dir, 950 DMA_PREP_INTERRUPT); 951 if (!desc_ecc) { 952 ret = -ENOMEM; 953 goto err_unmap_ecc; 954 } 955 956 reinit_completion(&fmc2->dma_ecc_complete); 957 desc_ecc->callback = stm32_fmc2_dma_callback; 958 desc_ecc->callback_param = &fmc2->dma_ecc_complete; 959 ret = dma_submit_error(dmaengine_submit(desc_ecc)); 960 if (ret) 961 goto err_unmap_ecc; 962 963 dma_async_issue_pending(fmc2->dma_ecc_ch); 964 } 965 966 stm32_fmc2_clear_seq_irq(fmc2); 967 stm32_fmc2_enable_seq_irq(fmc2); 968 969 /* Start the transfer */ 970 csqcr |= FMC2_CSQCR_CSQSTART; 971 writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR); 972 973 /* Wait end of sequencer transfer */ 974 if (!wait_for_completion_timeout(&fmc2->complete, 975 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 976 dev_err(fmc2->dev, "seq timeout\n"); 977 stm32_fmc2_disable_seq_irq(fmc2); 978 dmaengine_terminate_all(dma_ch); 979 if (!write_data && !raw) 980 dmaengine_terminate_all(fmc2->dma_ecc_ch); 981 ret = -ETIMEDOUT; 982 goto err_unmap_ecc; 983 } 984 985 /* Wait DMA data transfer completion */ 986 if (!wait_for_completion_timeout(&fmc2->dma_data_complete, 987 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 988 dev_err(fmc2->dev, "data DMA timeout\n"); 989 dmaengine_terminate_all(dma_ch); 990 ret = -ETIMEDOUT; 991 } 992 993 /* Wait DMA ECC transfer completion */ 994 if (!write_data && !raw) { 995 if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete, 996 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 997 dev_err(fmc2->dev, "ECC DMA timeout\n"); 998 dmaengine_terminate_all(fmc2->dma_ecc_ch); 999 ret = -ETIMEDOUT; 1000 } 1001 } 1002 1003 err_unmap_ecc: 1004 if (!write_data && !raw) 1005 dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, 1006 eccsteps, dma_data_dir); 1007 1008 err_unmap_data: 1009 dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir); 1010 1011 return ret; 1012 } 1013 1014 static int stm32_fmc2_sequencer_write(struct nand_chip *chip, 1015 const u8 *buf, int oob_required, 1016 int page, int raw) 1017 { 1018 struct mtd_info *mtd = nand_to_mtd(chip); 1019 int ret; 1020 1021 /* Configure the sequencer */ 1022 stm32_fmc2_rw_page_init(chip, page, raw, true); 1023 1024 /* Write the page */ 1025 ret = stm32_fmc2_xfer(chip, buf, raw, true); 1026 if (ret) 1027 return ret; 1028 1029 /* Write oob */ 1030 if (oob_required) { 1031 ret = nand_change_write_column_op(chip, mtd->writesize, 1032 chip->oob_poi, mtd->oobsize, 1033 false); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 return nand_prog_page_end_op(chip); 1039 } 1040 1041 static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip, 1042 const u8 *buf, 1043 int oob_required, 1044 int page) 1045 { 1046 int ret; 1047 1048 /* Select the target */ 1049 ret = stm32_fmc2_select_chip(chip, chip->cur_cs); 1050 if (ret) 1051 return ret; 1052 1053 return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false); 1054 } 1055 1056 static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip, 1057 const u8 *buf, 1058 int oob_required, 1059 int page) 1060 { 1061 int ret; 1062 1063 /* Select the target */ 1064 ret = stm32_fmc2_select_chip(chip, chip->cur_cs); 1065 if (ret) 1066 return ret; 1067 1068 return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true); 1069 } 1070 1071 /* Get a status indicating which sectors have errors */ 1072 static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2) 1073 { 1074 u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR); 1075 1076 return csqemsr & FMC2_CSQEMSR_SEM; 1077 } 1078 1079 static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat, 1080 u8 *read_ecc, u8 *calc_ecc) 1081 { 1082 struct mtd_info *mtd = nand_to_mtd(chip); 1083 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1084 int eccbytes = chip->ecc.bytes; 1085 int eccsteps = chip->ecc.steps; 1086 int eccstrength = chip->ecc.strength; 1087 int i, s, eccsize = chip->ecc.size; 1088 u32 *ecc_sta = (u32 *)fmc2->ecc_buf; 1089 u16 sta_map = stm32_fmc2_get_mapping_status(fmc2); 1090 unsigned int max_bitflips = 0; 1091 1092 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { 1093 int stat = 0; 1094 1095 if (eccstrength == FMC2_ECC_HAM) { 1096 /* Ecc_sta = FMC2_HECCR */ 1097 if (sta_map & BIT(s)) { 1098 stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]); 1099 stat = stm32_fmc2_ham_correct(chip, dat, 1100 &read_ecc[i], 1101 &calc_ecc[i]); 1102 } 1103 ecc_sta++; 1104 } else { 1105 /* 1106 * Ecc_sta[0] = FMC2_BCHDSR0 1107 * Ecc_sta[1] = FMC2_BCHDSR1 1108 * Ecc_sta[2] = FMC2_BCHDSR2 1109 * Ecc_sta[3] = FMC2_BCHDSR3 1110 * Ecc_sta[4] = FMC2_BCHDSR4 1111 */ 1112 if (sta_map & BIT(s)) 1113 stat = stm32_fmc2_bch_decode(eccsize, dat, 1114 ecc_sta); 1115 ecc_sta += 5; 1116 } 1117 1118 if (stat == -EBADMSG) 1119 /* Check for empty pages with bitflips */ 1120 stat = nand_check_erased_ecc_chunk(dat, eccsize, 1121 &read_ecc[i], 1122 eccbytes, 1123 NULL, 0, 1124 eccstrength); 1125 1126 if (stat < 0) { 1127 mtd->ecc_stats.failed++; 1128 } else { 1129 mtd->ecc_stats.corrected += stat; 1130 max_bitflips = max_t(unsigned int, max_bitflips, stat); 1131 } 1132 } 1133 1134 return max_bitflips; 1135 } 1136 1137 static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf, 1138 int oob_required, int page) 1139 { 1140 struct mtd_info *mtd = nand_to_mtd(chip); 1141 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1142 u8 *ecc_calc = chip->ecc.calc_buf; 1143 u8 *ecc_code = chip->ecc.code_buf; 1144 u16 sta_map; 1145 int ret; 1146 1147 /* Select the target */ 1148 ret = stm32_fmc2_select_chip(chip, chip->cur_cs); 1149 if (ret) 1150 return ret; 1151 1152 /* Configure the sequencer */ 1153 stm32_fmc2_rw_page_init(chip, page, 0, false); 1154 1155 /* Read the page */ 1156 ret = stm32_fmc2_xfer(chip, buf, 0, false); 1157 if (ret) 1158 return ret; 1159 1160 sta_map = stm32_fmc2_get_mapping_status(fmc2); 1161 1162 /* Check if errors happen */ 1163 if (likely(!sta_map)) { 1164 if (oob_required) 1165 return nand_change_read_column_op(chip, mtd->writesize, 1166 chip->oob_poi, 1167 mtd->oobsize, false); 1168 1169 return 0; 1170 } 1171 1172 /* Read oob */ 1173 ret = nand_change_read_column_op(chip, mtd->writesize, 1174 chip->oob_poi, mtd->oobsize, false); 1175 if (ret) 1176 return ret; 1177 1178 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 1179 chip->ecc.total); 1180 if (ret) 1181 return ret; 1182 1183 /* Correct data */ 1184 return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); 1185 } 1186 1187 static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf, 1188 int oob_required, int page) 1189 { 1190 struct mtd_info *mtd = nand_to_mtd(chip); 1191 int ret; 1192 1193 /* Select the target */ 1194 ret = stm32_fmc2_select_chip(chip, chip->cur_cs); 1195 if (ret) 1196 return ret; 1197 1198 /* Configure the sequencer */ 1199 stm32_fmc2_rw_page_init(chip, page, 1, false); 1200 1201 /* Read the page */ 1202 ret = stm32_fmc2_xfer(chip, buf, 1, false); 1203 if (ret) 1204 return ret; 1205 1206 /* Read oob */ 1207 if (oob_required) 1208 return nand_change_read_column_op(chip, mtd->writesize, 1209 chip->oob_poi, mtd->oobsize, 1210 false); 1211 1212 return 0; 1213 } 1214 1215 static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id) 1216 { 1217 struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id; 1218 1219 if (fmc2->irq_state == FMC2_IRQ_SEQ) 1220 /* Sequencer is used */ 1221 stm32_fmc2_disable_seq_irq(fmc2); 1222 else if (fmc2->irq_state == FMC2_IRQ_BCH) 1223 /* BCH is used */ 1224 stm32_fmc2_disable_bch_irq(fmc2); 1225 1226 complete(&fmc2->complete); 1227 1228 return IRQ_HANDLED; 1229 } 1230 1231 static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf, 1232 unsigned int len, bool force_8bit) 1233 { 1234 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1235 void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel]; 1236 1237 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1238 /* Reconfigure bus width to 8-bit */ 1239 stm32_fmc2_set_buswidth_16(fmc2, false); 1240 1241 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1242 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1243 *(u8 *)buf = readb_relaxed(io_addr_r); 1244 buf += sizeof(u8); 1245 len -= sizeof(u8); 1246 } 1247 1248 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1249 len >= sizeof(u16)) { 1250 *(u16 *)buf = readw_relaxed(io_addr_r); 1251 buf += sizeof(u16); 1252 len -= sizeof(u16); 1253 } 1254 } 1255 1256 /* Buf is aligned */ 1257 while (len >= sizeof(u32)) { 1258 *(u32 *)buf = readl_relaxed(io_addr_r); 1259 buf += sizeof(u32); 1260 len -= sizeof(u32); 1261 } 1262 1263 /* Read remaining bytes */ 1264 if (len >= sizeof(u16)) { 1265 *(u16 *)buf = readw_relaxed(io_addr_r); 1266 buf += sizeof(u16); 1267 len -= sizeof(u16); 1268 } 1269 1270 if (len) 1271 *(u8 *)buf = readb_relaxed(io_addr_r); 1272 1273 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1274 /* Reconfigure bus width to 16-bit */ 1275 stm32_fmc2_set_buswidth_16(fmc2, true); 1276 } 1277 1278 static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf, 1279 unsigned int len, bool force_8bit) 1280 { 1281 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1282 void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel]; 1283 1284 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1285 /* Reconfigure bus width to 8-bit */ 1286 stm32_fmc2_set_buswidth_16(fmc2, false); 1287 1288 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1289 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1290 writeb_relaxed(*(u8 *)buf, io_addr_w); 1291 buf += sizeof(u8); 1292 len -= sizeof(u8); 1293 } 1294 1295 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1296 len >= sizeof(u16)) { 1297 writew_relaxed(*(u16 *)buf, io_addr_w); 1298 buf += sizeof(u16); 1299 len -= sizeof(u16); 1300 } 1301 } 1302 1303 /* Buf is aligned */ 1304 while (len >= sizeof(u32)) { 1305 writel_relaxed(*(u32 *)buf, io_addr_w); 1306 buf += sizeof(u32); 1307 len -= sizeof(u32); 1308 } 1309 1310 /* Write remaining bytes */ 1311 if (len >= sizeof(u16)) { 1312 writew_relaxed(*(u16 *)buf, io_addr_w); 1313 buf += sizeof(u16); 1314 len -= sizeof(u16); 1315 } 1316 1317 if (len) 1318 writeb_relaxed(*(u8 *)buf, io_addr_w); 1319 1320 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1321 /* Reconfigure bus width to 16-bit */ 1322 stm32_fmc2_set_buswidth_16(fmc2, true); 1323 } 1324 1325 static int stm32_fmc2_exec_op(struct nand_chip *chip, 1326 const struct nand_operation *op, 1327 bool check_only) 1328 { 1329 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1330 const struct nand_op_instr *instr = NULL; 1331 unsigned int op_id, i; 1332 int ret; 1333 1334 ret = stm32_fmc2_select_chip(chip, op->cs); 1335 if (ret) 1336 return ret; 1337 1338 if (check_only) 1339 return ret; 1340 1341 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1342 instr = &op->instrs[op_id]; 1343 1344 switch (instr->type) { 1345 case NAND_OP_CMD_INSTR: 1346 writeb_relaxed(instr->ctx.cmd.opcode, 1347 fmc2->cmd_base[fmc2->cs_sel]); 1348 break; 1349 1350 case NAND_OP_ADDR_INSTR: 1351 for (i = 0; i < instr->ctx.addr.naddrs; i++) 1352 writeb_relaxed(instr->ctx.addr.addrs[i], 1353 fmc2->addr_base[fmc2->cs_sel]); 1354 break; 1355 1356 case NAND_OP_DATA_IN_INSTR: 1357 stm32_fmc2_read_data(chip, instr->ctx.data.buf.in, 1358 instr->ctx.data.len, 1359 instr->ctx.data.force_8bit); 1360 break; 1361 1362 case NAND_OP_DATA_OUT_INSTR: 1363 stm32_fmc2_write_data(chip, instr->ctx.data.buf.out, 1364 instr->ctx.data.len, 1365 instr->ctx.data.force_8bit); 1366 break; 1367 1368 case NAND_OP_WAITRDY_INSTR: 1369 ret = nand_soft_waitrdy(chip, 1370 instr->ctx.waitrdy.timeout_ms); 1371 break; 1372 } 1373 } 1374 1375 return ret; 1376 } 1377 1378 /* Controller initialization */ 1379 static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2) 1380 { 1381 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); 1382 u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1); 1383 1384 /* Set CS used to undefined */ 1385 fmc2->cs_sel = -1; 1386 1387 /* Enable wait feature and nand flash memory bank */ 1388 pcr |= FMC2_PCR_PWAITEN; 1389 pcr |= FMC2_PCR_PBKEN; 1390 1391 /* Set buswidth to 8 bits mode for identification */ 1392 pcr &= ~FMC2_PCR_PWID_MASK; 1393 1394 /* ECC logic is disabled */ 1395 pcr &= ~FMC2_PCR_ECCEN; 1396 1397 /* Default mode */ 1398 pcr &= ~FMC2_PCR_ECCALG; 1399 pcr &= ~FMC2_PCR_BCHECC; 1400 pcr &= ~FMC2_PCR_WEN; 1401 1402 /* Set default ECC sector size */ 1403 pcr &= ~FMC2_PCR_ECCSS_MASK; 1404 pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048); 1405 1406 /* Set default tclr/tar timings */ 1407 pcr &= ~FMC2_PCR_TCLR_MASK; 1408 pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT); 1409 pcr &= ~FMC2_PCR_TAR_MASK; 1410 pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT); 1411 1412 /* Enable FMC2 controller */ 1413 bcr1 |= FMC2_BCR1_FMC2EN; 1414 1415 writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1); 1416 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); 1417 writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM); 1418 writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT); 1419 } 1420 1421 /* Controller timings */ 1422 static void stm32_fmc2_calc_timings(struct nand_chip *chip, 1423 const struct nand_sdr_timings *sdrt) 1424 { 1425 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1426 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 1427 struct stm32_fmc2_timings *tims = &nand->timings; 1428 unsigned long hclk = clk_get_rate(fmc2->clk); 1429 unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); 1430 unsigned long timing, tar, tclr, thiz, twait; 1431 unsigned long tset_mem, tset_att, thold_mem, thold_att; 1432 1433 tar = max_t(unsigned long, hclkp, sdrt->tAR_min); 1434 timing = DIV_ROUND_UP(tar, hclkp) - 1; 1435 tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1436 1437 tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); 1438 timing = DIV_ROUND_UP(tclr, hclkp) - 1; 1439 tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1440 1441 tims->thiz = FMC2_THIZ; 1442 thiz = (tims->thiz + 1) * hclkp; 1443 1444 /* 1445 * tWAIT > tRP 1446 * tWAIT > tWP 1447 * tWAIT > tREA + tIO 1448 */ 1449 twait = max_t(unsigned long, hclkp, sdrt->tRP_min); 1450 twait = max_t(unsigned long, twait, sdrt->tWP_min); 1451 twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); 1452 timing = DIV_ROUND_UP(twait, hclkp); 1453 tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1454 1455 /* 1456 * tSETUP_MEM > tCS - tWAIT 1457 * tSETUP_MEM > tALS - tWAIT 1458 * tSETUP_MEM > tDS - (tWAIT - tHIZ) 1459 */ 1460 tset_mem = hclkp; 1461 if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) 1462 tset_mem = sdrt->tCS_min - twait; 1463 if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) 1464 tset_mem = sdrt->tALS_min - twait; 1465 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1466 (tset_mem < sdrt->tDS_min - (twait - thiz))) 1467 tset_mem = sdrt->tDS_min - (twait - thiz); 1468 timing = DIV_ROUND_UP(tset_mem, hclkp); 1469 tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1470 1471 /* 1472 * tHOLD_MEM > tCH 1473 * tHOLD_MEM > tREH - tSETUP_MEM 1474 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) 1475 */ 1476 thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); 1477 if (sdrt->tREH_min > tset_mem && 1478 (thold_mem < sdrt->tREH_min - tset_mem)) 1479 thold_mem = sdrt->tREH_min - tset_mem; 1480 if ((sdrt->tRC_min > tset_mem + twait) && 1481 (thold_mem < sdrt->tRC_min - (tset_mem + twait))) 1482 thold_mem = sdrt->tRC_min - (tset_mem + twait); 1483 if ((sdrt->tWC_min > tset_mem + twait) && 1484 (thold_mem < sdrt->tWC_min - (tset_mem + twait))) 1485 thold_mem = sdrt->tWC_min - (tset_mem + twait); 1486 timing = DIV_ROUND_UP(thold_mem, hclkp); 1487 tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1488 1489 /* 1490 * tSETUP_ATT > tCS - tWAIT 1491 * tSETUP_ATT > tCLS - tWAIT 1492 * tSETUP_ATT > tALS - tWAIT 1493 * tSETUP_ATT > tRHW - tHOLD_MEM 1494 * tSETUP_ATT > tDS - (tWAIT - tHIZ) 1495 */ 1496 tset_att = hclkp; 1497 if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) 1498 tset_att = sdrt->tCS_min - twait; 1499 if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) 1500 tset_att = sdrt->tCLS_min - twait; 1501 if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) 1502 tset_att = sdrt->tALS_min - twait; 1503 if (sdrt->tRHW_min > thold_mem && 1504 (tset_att < sdrt->tRHW_min - thold_mem)) 1505 tset_att = sdrt->tRHW_min - thold_mem; 1506 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1507 (tset_att < sdrt->tDS_min - (twait - thiz))) 1508 tset_att = sdrt->tDS_min - (twait - thiz); 1509 timing = DIV_ROUND_UP(tset_att, hclkp); 1510 tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1511 1512 /* 1513 * tHOLD_ATT > tALH 1514 * tHOLD_ATT > tCH 1515 * tHOLD_ATT > tCLH 1516 * tHOLD_ATT > tCOH 1517 * tHOLD_ATT > tDH 1518 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM 1519 * tHOLD_ATT > tADL - tSETUP_MEM 1520 * tHOLD_ATT > tWH - tSETUP_MEM 1521 * tHOLD_ATT > tWHR - tSETUP_MEM 1522 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) 1523 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) 1524 */ 1525 thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); 1526 thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); 1527 thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); 1528 thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); 1529 thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); 1530 if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && 1531 (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) 1532 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; 1533 if (sdrt->tADL_min > tset_mem && 1534 (thold_att < sdrt->tADL_min - tset_mem)) 1535 thold_att = sdrt->tADL_min - tset_mem; 1536 if (sdrt->tWH_min > tset_mem && 1537 (thold_att < sdrt->tWH_min - tset_mem)) 1538 thold_att = sdrt->tWH_min - tset_mem; 1539 if (sdrt->tWHR_min > tset_mem && 1540 (thold_att < sdrt->tWHR_min - tset_mem)) 1541 thold_att = sdrt->tWHR_min - tset_mem; 1542 if ((sdrt->tRC_min > tset_att + twait) && 1543 (thold_att < sdrt->tRC_min - (tset_att + twait))) 1544 thold_att = sdrt->tRC_min - (tset_att + twait); 1545 if ((sdrt->tWC_min > tset_att + twait) && 1546 (thold_att < sdrt->tWC_min - (tset_att + twait))) 1547 thold_att = sdrt->tWC_min - (tset_att + twait); 1548 timing = DIV_ROUND_UP(thold_att, hclkp); 1549 tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1550 } 1551 1552 static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr, 1553 const struct nand_data_interface *conf) 1554 { 1555 const struct nand_sdr_timings *sdrt; 1556 1557 sdrt = nand_get_sdr_timings(conf); 1558 if (IS_ERR(sdrt)) 1559 return PTR_ERR(sdrt); 1560 1561 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) 1562 return 0; 1563 1564 stm32_fmc2_calc_timings(chip, sdrt); 1565 1566 /* Apply timings */ 1567 stm32_fmc2_timings_init(chip); 1568 1569 return 0; 1570 } 1571 1572 /* DMA configuration */ 1573 static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2) 1574 { 1575 int ret; 1576 1577 fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx"); 1578 fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx"); 1579 fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc"); 1580 1581 if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) { 1582 dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n"); 1583 return 0; 1584 } 1585 1586 ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); 1587 if (ret) 1588 return ret; 1589 1590 /* Allocate a buffer to store ECC status registers */ 1591 fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN, 1592 GFP_KERNEL); 1593 if (!fmc2->ecc_buf) 1594 return -ENOMEM; 1595 1596 ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); 1597 if (ret) 1598 return ret; 1599 1600 init_completion(&fmc2->dma_data_complete); 1601 init_completion(&fmc2->dma_ecc_complete); 1602 1603 return 0; 1604 } 1605 1606 /* NAND callbacks setup */ 1607 static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip) 1608 { 1609 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1610 1611 /* 1612 * Specific callbacks to read/write a page depending on 1613 * the mode (polling/sequencer) and the algo used (Hamming, BCH). 1614 */ 1615 if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) { 1616 /* DMA => use sequencer mode callbacks */ 1617 chip->ecc.correct = stm32_fmc2_sequencer_correct; 1618 chip->ecc.write_page = stm32_fmc2_sequencer_write_page; 1619 chip->ecc.read_page = stm32_fmc2_sequencer_read_page; 1620 chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw; 1621 chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw; 1622 } else { 1623 /* No DMA => use polling mode callbacks */ 1624 chip->ecc.hwctl = stm32_fmc2_hwctl; 1625 if (chip->ecc.strength == FMC2_ECC_HAM) { 1626 /* Hamming is used */ 1627 chip->ecc.calculate = stm32_fmc2_ham_calculate; 1628 chip->ecc.correct = stm32_fmc2_ham_correct; 1629 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; 1630 } else { 1631 /* BCH is used */ 1632 chip->ecc.calculate = stm32_fmc2_bch_calculate; 1633 chip->ecc.correct = stm32_fmc2_bch_correct; 1634 chip->ecc.read_page = stm32_fmc2_read_page; 1635 } 1636 } 1637 1638 /* Specific configurations depending on the algo used */ 1639 if (chip->ecc.strength == FMC2_ECC_HAM) 1640 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; 1641 else if (chip->ecc.strength == FMC2_ECC_BCH8) 1642 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; 1643 else 1644 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; 1645 } 1646 1647 /* FMC2 layout */ 1648 static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 1649 struct mtd_oob_region *oobregion) 1650 { 1651 struct nand_chip *chip = mtd_to_nand(mtd); 1652 struct nand_ecc_ctrl *ecc = &chip->ecc; 1653 1654 if (section) 1655 return -ERANGE; 1656 1657 oobregion->length = ecc->total; 1658 oobregion->offset = FMC2_BBM_LEN; 1659 1660 return 0; 1661 } 1662 1663 static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section, 1664 struct mtd_oob_region *oobregion) 1665 { 1666 struct nand_chip *chip = mtd_to_nand(mtd); 1667 struct nand_ecc_ctrl *ecc = &chip->ecc; 1668 1669 if (section) 1670 return -ERANGE; 1671 1672 oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; 1673 oobregion->offset = ecc->total + FMC2_BBM_LEN; 1674 1675 return 0; 1676 } 1677 1678 static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = { 1679 .ecc = stm32_fmc2_nand_ooblayout_ecc, 1680 .free = stm32_fmc2_nand_ooblayout_free, 1681 }; 1682 1683 /* FMC2 caps */ 1684 static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength) 1685 { 1686 /* Hamming */ 1687 if (strength == FMC2_ECC_HAM) 1688 return 4; 1689 1690 /* BCH8 */ 1691 if (strength == FMC2_ECC_BCH8) 1692 return 14; 1693 1694 /* BCH4 */ 1695 return 8; 1696 } 1697 1698 NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes, 1699 FMC2_ECC_STEP_SIZE, 1700 FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); 1701 1702 /* FMC2 controller ops */ 1703 static int stm32_fmc2_attach_chip(struct nand_chip *chip) 1704 { 1705 struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); 1706 struct mtd_info *mtd = nand_to_mtd(chip); 1707 int ret; 1708 1709 /* 1710 * Only NAND_ECC_HW mode is actually supported 1711 * Hamming => ecc.strength = 1 1712 * BCH4 => ecc.strength = 4 1713 * BCH8 => ecc.strength = 8 1714 * ECC sector size = 512 1715 */ 1716 if (chip->ecc.mode != NAND_ECC_HW) { 1717 dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n"); 1718 return -EINVAL; 1719 } 1720 1721 ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps, 1722 mtd->oobsize - FMC2_BBM_LEN); 1723 if (ret) { 1724 dev_err(fmc2->dev, "no valid ECC settings set\n"); 1725 return ret; 1726 } 1727 1728 if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { 1729 dev_err(fmc2->dev, "nand page size is not supported\n"); 1730 return -EINVAL; 1731 } 1732 1733 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1734 chip->bbt_options |= NAND_BBT_NO_OOB; 1735 1736 /* NAND callbacks setup */ 1737 stm32_fmc2_nand_callbacks_setup(chip); 1738 1739 /* Define ECC layout */ 1740 mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops); 1741 1742 /* Configure bus width to 16-bit */ 1743 if (chip->options & NAND_BUSWIDTH_16) 1744 stm32_fmc2_set_buswidth_16(fmc2, true); 1745 1746 return 0; 1747 } 1748 1749 static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = { 1750 .attach_chip = stm32_fmc2_attach_chip, 1751 .exec_op = stm32_fmc2_exec_op, 1752 .setup_data_interface = stm32_fmc2_setup_interface, 1753 }; 1754 1755 /* FMC2 probe */ 1756 static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2, 1757 struct device_node *dn) 1758 { 1759 struct stm32_fmc2_nand *nand = &fmc2->nand; 1760 u32 cs; 1761 int ret, i; 1762 1763 if (!of_get_property(dn, "reg", &nand->ncs)) 1764 return -EINVAL; 1765 1766 nand->ncs /= sizeof(u32); 1767 if (!nand->ncs) { 1768 dev_err(fmc2->dev, "invalid reg property size\n"); 1769 return -EINVAL; 1770 } 1771 1772 for (i = 0; i < nand->ncs; i++) { 1773 ret = of_property_read_u32_index(dn, "reg", i, &cs); 1774 if (ret) { 1775 dev_err(fmc2->dev, "could not retrieve reg property: %d\n", 1776 ret); 1777 return ret; 1778 } 1779 1780 if (cs > FMC2_MAX_CE) { 1781 dev_err(fmc2->dev, "invalid reg value: %d\n", cs); 1782 return -EINVAL; 1783 } 1784 1785 if (fmc2->cs_assigned & BIT(cs)) { 1786 dev_err(fmc2->dev, "cs already assigned: %d\n", cs); 1787 return -EINVAL; 1788 } 1789 1790 fmc2->cs_assigned |= BIT(cs); 1791 nand->cs_used[i] = cs; 1792 } 1793 1794 nand_set_flash_node(&nand->chip, dn); 1795 1796 return 0; 1797 } 1798 1799 static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2) 1800 { 1801 struct device_node *dn = fmc2->dev->of_node; 1802 struct device_node *child; 1803 int nchips = of_get_child_count(dn); 1804 int ret = 0; 1805 1806 if (!nchips) { 1807 dev_err(fmc2->dev, "NAND chip not defined\n"); 1808 return -EINVAL; 1809 } 1810 1811 if (nchips > 1) { 1812 dev_err(fmc2->dev, "too many NAND chips defined\n"); 1813 return -EINVAL; 1814 } 1815 1816 for_each_child_of_node(dn, child) { 1817 ret = stm32_fmc2_parse_child(fmc2, child); 1818 if (ret < 0) { 1819 of_node_put(child); 1820 return ret; 1821 } 1822 } 1823 1824 return ret; 1825 } 1826 1827 static int stm32_fmc2_probe(struct platform_device *pdev) 1828 { 1829 struct device *dev = &pdev->dev; 1830 struct reset_control *rstc; 1831 struct stm32_fmc2_nfc *fmc2; 1832 struct stm32_fmc2_nand *nand; 1833 struct resource *res; 1834 struct mtd_info *mtd; 1835 struct nand_chip *chip; 1836 int chip_cs, mem_region, ret, irq; 1837 1838 fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL); 1839 if (!fmc2) 1840 return -ENOMEM; 1841 1842 fmc2->dev = dev; 1843 nand_controller_init(&fmc2->base); 1844 fmc2->base.ops = &stm32_fmc2_nand_controller_ops; 1845 1846 ret = stm32_fmc2_parse_dt(fmc2); 1847 if (ret) 1848 return ret; 1849 1850 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1851 fmc2->io_base = devm_ioremap_resource(dev, res); 1852 if (IS_ERR(fmc2->io_base)) 1853 return PTR_ERR(fmc2->io_base); 1854 1855 fmc2->io_phys_addr = res->start; 1856 1857 for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE; 1858 chip_cs++, mem_region += 3) { 1859 if (!(fmc2->cs_assigned & BIT(chip_cs))) 1860 continue; 1861 1862 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); 1863 fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res); 1864 if (IS_ERR(fmc2->data_base[chip_cs])) 1865 return PTR_ERR(fmc2->data_base[chip_cs]); 1866 1867 fmc2->data_phys_addr[chip_cs] = res->start; 1868 1869 res = platform_get_resource(pdev, IORESOURCE_MEM, 1870 mem_region + 1); 1871 fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res); 1872 if (IS_ERR(fmc2->cmd_base[chip_cs])) 1873 return PTR_ERR(fmc2->cmd_base[chip_cs]); 1874 1875 res = platform_get_resource(pdev, IORESOURCE_MEM, 1876 mem_region + 2); 1877 fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res); 1878 if (IS_ERR(fmc2->addr_base[chip_cs])) 1879 return PTR_ERR(fmc2->addr_base[chip_cs]); 1880 } 1881 1882 irq = platform_get_irq(pdev, 0); 1883 if (irq < 0) { 1884 if (irq != -EPROBE_DEFER) 1885 dev_err(dev, "IRQ error missing or invalid\n"); 1886 return irq; 1887 } 1888 1889 ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0, 1890 dev_name(dev), fmc2); 1891 if (ret) { 1892 dev_err(dev, "failed to request irq\n"); 1893 return ret; 1894 } 1895 1896 init_completion(&fmc2->complete); 1897 1898 fmc2->clk = devm_clk_get(dev, NULL); 1899 if (IS_ERR(fmc2->clk)) 1900 return PTR_ERR(fmc2->clk); 1901 1902 ret = clk_prepare_enable(fmc2->clk); 1903 if (ret) { 1904 dev_err(dev, "can not enable the clock\n"); 1905 return ret; 1906 } 1907 1908 rstc = devm_reset_control_get(dev, NULL); 1909 if (!IS_ERR(rstc)) { 1910 reset_control_assert(rstc); 1911 reset_control_deassert(rstc); 1912 } 1913 1914 /* DMA setup */ 1915 ret = stm32_fmc2_dma_setup(fmc2); 1916 if (ret) 1917 return ret; 1918 1919 /* FMC2 init routine */ 1920 stm32_fmc2_init(fmc2); 1921 1922 nand = &fmc2->nand; 1923 chip = &nand->chip; 1924 mtd = nand_to_mtd(chip); 1925 mtd->dev.parent = dev; 1926 1927 chip->controller = &fmc2->base; 1928 chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | 1929 NAND_USE_BOUNCE_BUFFER; 1930 1931 /* Default ECC settings */ 1932 chip->ecc.mode = NAND_ECC_HW; 1933 chip->ecc.size = FMC2_ECC_STEP_SIZE; 1934 chip->ecc.strength = FMC2_ECC_BCH8; 1935 1936 /* Scan to find existence of the device */ 1937 ret = nand_scan(chip, nand->ncs); 1938 if (ret) 1939 goto err_scan; 1940 1941 ret = mtd_device_register(mtd, NULL, 0); 1942 if (ret) 1943 goto err_device_register; 1944 1945 platform_set_drvdata(pdev, fmc2); 1946 1947 return 0; 1948 1949 err_device_register: 1950 nand_cleanup(chip); 1951 1952 err_scan: 1953 if (fmc2->dma_ecc_ch) 1954 dma_release_channel(fmc2->dma_ecc_ch); 1955 if (fmc2->dma_tx_ch) 1956 dma_release_channel(fmc2->dma_tx_ch); 1957 if (fmc2->dma_rx_ch) 1958 dma_release_channel(fmc2->dma_rx_ch); 1959 1960 sg_free_table(&fmc2->dma_data_sg); 1961 sg_free_table(&fmc2->dma_ecc_sg); 1962 1963 clk_disable_unprepare(fmc2->clk); 1964 1965 return ret; 1966 } 1967 1968 static int stm32_fmc2_remove(struct platform_device *pdev) 1969 { 1970 struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev); 1971 struct stm32_fmc2_nand *nand = &fmc2->nand; 1972 1973 nand_release(&nand->chip); 1974 1975 if (fmc2->dma_ecc_ch) 1976 dma_release_channel(fmc2->dma_ecc_ch); 1977 if (fmc2->dma_tx_ch) 1978 dma_release_channel(fmc2->dma_tx_ch); 1979 if (fmc2->dma_rx_ch) 1980 dma_release_channel(fmc2->dma_rx_ch); 1981 1982 sg_free_table(&fmc2->dma_data_sg); 1983 sg_free_table(&fmc2->dma_ecc_sg); 1984 1985 clk_disable_unprepare(fmc2->clk); 1986 1987 return 0; 1988 } 1989 1990 static int __maybe_unused stm32_fmc2_suspend(struct device *dev) 1991 { 1992 struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); 1993 1994 clk_disable_unprepare(fmc2->clk); 1995 1996 pinctrl_pm_select_sleep_state(dev); 1997 1998 return 0; 1999 } 2000 2001 static int __maybe_unused stm32_fmc2_resume(struct device *dev) 2002 { 2003 struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); 2004 struct stm32_fmc2_nand *nand = &fmc2->nand; 2005 int chip_cs, ret; 2006 2007 pinctrl_pm_select_default_state(dev); 2008 2009 ret = clk_prepare_enable(fmc2->clk); 2010 if (ret) { 2011 dev_err(dev, "can not enable the clock\n"); 2012 return ret; 2013 } 2014 2015 stm32_fmc2_init(fmc2); 2016 2017 for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { 2018 if (!(fmc2->cs_assigned & BIT(chip_cs))) 2019 continue; 2020 2021 nand_reset(&nand->chip, chip_cs); 2022 } 2023 2024 return 0; 2025 } 2026 2027 static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend, 2028 stm32_fmc2_resume); 2029 2030 static const struct of_device_id stm32_fmc2_match[] = { 2031 {.compatible = "st,stm32mp15-fmc2"}, 2032 {} 2033 }; 2034 MODULE_DEVICE_TABLE(of, stm32_fmc2_match); 2035 2036 static struct platform_driver stm32_fmc2_driver = { 2037 .probe = stm32_fmc2_probe, 2038 .remove = stm32_fmc2_remove, 2039 .driver = { 2040 .name = "stm32_fmc2_nand", 2041 .of_match_table = stm32_fmc2_match, 2042 .pm = &stm32_fmc2_pm_ops, 2043 }, 2044 }; 2045 module_platform_driver(stm32_fmc2_driver); 2046 2047 MODULE_ALIAS("platform:stm32_fmc2_nand"); 2048 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); 2049 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver"); 2050 MODULE_LICENSE("GPL v2"); 2051