1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 4 * Author: Christophe Kerello <christophe.kerello@st.com> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/clk.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/errno.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/mfd/syscon.h> 15 #include <linux/module.h> 16 #include <linux/mtd/rawnand.h> 17 #include <linux/of_address.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/platform_device.h> 20 #include <linux/regmap.h> 21 #include <linux/reset.h> 22 23 /* Bad block marker length */ 24 #define FMC2_BBM_LEN 2 25 26 /* ECC step size */ 27 #define FMC2_ECC_STEP_SIZE 512 28 29 /* BCHDSRx registers length */ 30 #define FMC2_BCHDSRS_LEN 20 31 32 /* HECCR length */ 33 #define FMC2_HECCR_LEN 4 34 35 /* Max requests done for a 8k nand page size */ 36 #define FMC2_MAX_SG 16 37 38 /* Max chip enable */ 39 #define FMC2_MAX_CE 2 40 41 /* Max ECC buffer length */ 42 #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) 43 44 #define FMC2_TIMEOUT_MS 5000 45 46 /* Timings */ 47 #define FMC2_THIZ 1 48 #define FMC2_TIO 8000 49 #define FMC2_TSYNC 3000 50 #define FMC2_PCR_TIMING_MASK 0xf 51 #define FMC2_PMEM_PATT_TIMING_MASK 0xff 52 53 /* FMC2 Controller Registers */ 54 #define FMC2_BCR1 0x0 55 #define FMC2_PCR 0x80 56 #define FMC2_SR 0x84 57 #define FMC2_PMEM 0x88 58 #define FMC2_PATT 0x8c 59 #define FMC2_HECCR 0x94 60 #define FMC2_ISR 0x184 61 #define FMC2_ICR 0x188 62 #define FMC2_CSQCR 0x200 63 #define FMC2_CSQCFGR1 0x204 64 #define FMC2_CSQCFGR2 0x208 65 #define FMC2_CSQCFGR3 0x20c 66 #define FMC2_CSQAR1 0x210 67 #define FMC2_CSQAR2 0x214 68 #define FMC2_CSQIER 0x220 69 #define FMC2_CSQISR 0x224 70 #define FMC2_CSQICR 0x228 71 #define FMC2_CSQEMSR 0x230 72 #define FMC2_BCHIER 0x250 73 #define FMC2_BCHISR 0x254 74 #define FMC2_BCHICR 0x258 75 #define FMC2_BCHPBR1 0x260 76 #define FMC2_BCHPBR2 0x264 77 #define FMC2_BCHPBR3 0x268 78 #define FMC2_BCHPBR4 0x26c 79 #define FMC2_BCHDSR0 0x27c 80 #define FMC2_BCHDSR1 0x280 81 #define FMC2_BCHDSR2 0x284 82 #define FMC2_BCHDSR3 0x288 83 #define FMC2_BCHDSR4 0x28c 84 85 /* Register: FMC2_BCR1 */ 86 #define FMC2_BCR1_FMC2EN BIT(31) 87 88 /* Register: FMC2_PCR */ 89 #define FMC2_PCR_PWAITEN BIT(1) 90 #define FMC2_PCR_PBKEN BIT(2) 91 #define FMC2_PCR_PWID GENMASK(5, 4) 92 #define FMC2_PCR_PWID_BUSWIDTH_8 0 93 #define FMC2_PCR_PWID_BUSWIDTH_16 1 94 #define FMC2_PCR_ECCEN BIT(6) 95 #define FMC2_PCR_ECCALG BIT(8) 96 #define FMC2_PCR_TCLR GENMASK(12, 9) 97 #define FMC2_PCR_TCLR_DEFAULT 0xf 98 #define FMC2_PCR_TAR GENMASK(16, 13) 99 #define FMC2_PCR_TAR_DEFAULT 0xf 100 #define FMC2_PCR_ECCSS GENMASK(19, 17) 101 #define FMC2_PCR_ECCSS_512 1 102 #define FMC2_PCR_ECCSS_2048 3 103 #define FMC2_PCR_BCHECC BIT(24) 104 #define FMC2_PCR_WEN BIT(25) 105 106 /* Register: FMC2_SR */ 107 #define FMC2_SR_NWRF BIT(6) 108 109 /* Register: FMC2_PMEM */ 110 #define FMC2_PMEM_MEMSET GENMASK(7, 0) 111 #define FMC2_PMEM_MEMWAIT GENMASK(15, 8) 112 #define FMC2_PMEM_MEMHOLD GENMASK(23, 16) 113 #define FMC2_PMEM_MEMHIZ GENMASK(31, 24) 114 #define FMC2_PMEM_DEFAULT 0x0a0a0a0a 115 116 /* Register: FMC2_PATT */ 117 #define FMC2_PATT_ATTSET GENMASK(7, 0) 118 #define FMC2_PATT_ATTWAIT GENMASK(15, 8) 119 #define FMC2_PATT_ATTHOLD GENMASK(23, 16) 120 #define FMC2_PATT_ATTHIZ GENMASK(31, 24) 121 #define FMC2_PATT_DEFAULT 0x0a0a0a0a 122 123 /* Register: FMC2_ISR */ 124 #define FMC2_ISR_IHLF BIT(1) 125 126 /* Register: FMC2_ICR */ 127 #define FMC2_ICR_CIHLF BIT(1) 128 129 /* Register: FMC2_CSQCR */ 130 #define FMC2_CSQCR_CSQSTART BIT(0) 131 132 /* Register: FMC2_CSQCFGR1 */ 133 #define FMC2_CSQCFGR1_CMD2EN BIT(1) 134 #define FMC2_CSQCFGR1_DMADEN BIT(2) 135 #define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4) 136 #define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8) 137 #define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16) 138 #define FMC2_CSQCFGR1_CMD1T BIT(24) 139 #define FMC2_CSQCFGR1_CMD2T BIT(25) 140 141 /* Register: FMC2_CSQCFGR2 */ 142 #define FMC2_CSQCFGR2_SQSDTEN BIT(0) 143 #define FMC2_CSQCFGR2_RCMD2EN BIT(1) 144 #define FMC2_CSQCFGR2_DMASEN BIT(2) 145 #define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8) 146 #define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16) 147 #define FMC2_CSQCFGR2_RCMD1T BIT(24) 148 #define FMC2_CSQCFGR2_RCMD2T BIT(25) 149 150 /* Register: FMC2_CSQCFGR3 */ 151 #define FMC2_CSQCFGR3_SNBR GENMASK(13, 8) 152 #define FMC2_CSQCFGR3_AC1T BIT(16) 153 #define FMC2_CSQCFGR3_AC2T BIT(17) 154 #define FMC2_CSQCFGR3_AC3T BIT(18) 155 #define FMC2_CSQCFGR3_AC4T BIT(19) 156 #define FMC2_CSQCFGR3_AC5T BIT(20) 157 #define FMC2_CSQCFGR3_SDT BIT(21) 158 #define FMC2_CSQCFGR3_RAC1T BIT(22) 159 #define FMC2_CSQCFGR3_RAC2T BIT(23) 160 161 /* Register: FMC2_CSQCAR1 */ 162 #define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0) 163 #define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8) 164 #define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16) 165 #define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24) 166 167 /* Register: FMC2_CSQCAR2 */ 168 #define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0) 169 #define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10) 170 #define FMC2_CSQCAR2_SAO GENMASK(31, 16) 171 172 /* Register: FMC2_CSQIER */ 173 #define FMC2_CSQIER_TCIE BIT(0) 174 175 /* Register: FMC2_CSQICR */ 176 #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) 177 178 /* Register: FMC2_CSQEMSR */ 179 #define FMC2_CSQEMSR_SEM GENMASK(15, 0) 180 181 /* Register: FMC2_BCHIER */ 182 #define FMC2_BCHIER_DERIE BIT(1) 183 #define FMC2_BCHIER_EPBRIE BIT(4) 184 185 /* Register: FMC2_BCHICR */ 186 #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) 187 188 /* Register: FMC2_BCHDSR0 */ 189 #define FMC2_BCHDSR0_DUE BIT(0) 190 #define FMC2_BCHDSR0_DEF BIT(1) 191 #define FMC2_BCHDSR0_DEN GENMASK(7, 4) 192 193 /* Register: FMC2_BCHDSR1 */ 194 #define FMC2_BCHDSR1_EBP1 GENMASK(12, 0) 195 #define FMC2_BCHDSR1_EBP2 GENMASK(28, 16) 196 197 /* Register: FMC2_BCHDSR2 */ 198 #define FMC2_BCHDSR2_EBP3 GENMASK(12, 0) 199 #define FMC2_BCHDSR2_EBP4 GENMASK(28, 16) 200 201 /* Register: FMC2_BCHDSR3 */ 202 #define FMC2_BCHDSR3_EBP5 GENMASK(12, 0) 203 #define FMC2_BCHDSR3_EBP6 GENMASK(28, 16) 204 205 /* Register: FMC2_BCHDSR4 */ 206 #define FMC2_BCHDSR4_EBP7 GENMASK(12, 0) 207 #define FMC2_BCHDSR4_EBP8 GENMASK(28, 16) 208 209 enum stm32_fmc2_ecc { 210 FMC2_ECC_HAM = 1, 211 FMC2_ECC_BCH4 = 4, 212 FMC2_ECC_BCH8 = 8 213 }; 214 215 enum stm32_fmc2_irq_state { 216 FMC2_IRQ_UNKNOWN = 0, 217 FMC2_IRQ_BCH, 218 FMC2_IRQ_SEQ 219 }; 220 221 struct stm32_fmc2_timings { 222 u8 tclr; 223 u8 tar; 224 u8 thiz; 225 u8 twait; 226 u8 thold_mem; 227 u8 tset_mem; 228 u8 thold_att; 229 u8 tset_att; 230 }; 231 232 struct stm32_fmc2_nand { 233 struct nand_chip chip; 234 struct stm32_fmc2_timings timings; 235 int ncs; 236 int cs_used[FMC2_MAX_CE]; 237 }; 238 239 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) 240 { 241 return container_of(chip, struct stm32_fmc2_nand, chip); 242 } 243 244 struct stm32_fmc2_nfc { 245 struct nand_controller base; 246 struct stm32_fmc2_nand nand; 247 struct device *dev; 248 struct device *cdev; 249 struct regmap *regmap; 250 void __iomem *data_base[FMC2_MAX_CE]; 251 void __iomem *cmd_base[FMC2_MAX_CE]; 252 void __iomem *addr_base[FMC2_MAX_CE]; 253 phys_addr_t io_phys_addr; 254 phys_addr_t data_phys_addr[FMC2_MAX_CE]; 255 struct clk *clk; 256 u8 irq_state; 257 258 struct dma_chan *dma_tx_ch; 259 struct dma_chan *dma_rx_ch; 260 struct dma_chan *dma_ecc_ch; 261 struct sg_table dma_data_sg; 262 struct sg_table dma_ecc_sg; 263 u8 *ecc_buf; 264 int dma_ecc_len; 265 266 struct completion complete; 267 struct completion dma_data_complete; 268 struct completion dma_ecc_complete; 269 270 u8 cs_assigned; 271 int cs_sel; 272 }; 273 274 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) 275 { 276 return container_of(base, struct stm32_fmc2_nfc, base); 277 } 278 279 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip) 280 { 281 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 282 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 283 struct stm32_fmc2_timings *timings = &nand->timings; 284 u32 pmem, patt; 285 286 /* Set tclr/tar timings */ 287 regmap_update_bits(nfc->regmap, FMC2_PCR, 288 FMC2_PCR_TCLR | FMC2_PCR_TAR, 289 FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) | 290 FIELD_PREP(FMC2_PCR_TAR, timings->tar)); 291 292 /* Set tset/twait/thold/thiz timings in common bank */ 293 pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem); 294 pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait); 295 pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem); 296 pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz); 297 regmap_write(nfc->regmap, FMC2_PMEM, pmem); 298 299 /* Set tset/twait/thold/thiz timings in attribut bank */ 300 patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att); 301 patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait); 302 patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att); 303 patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz); 304 regmap_write(nfc->regmap, FMC2_PATT, patt); 305 } 306 307 static void stm32_fmc2_nfc_setup(struct nand_chip *chip) 308 { 309 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 310 u32 pcr = 0, pcr_mask; 311 312 /* Configure ECC algorithm (default configuration is Hamming) */ 313 pcr_mask = FMC2_PCR_ECCALG; 314 pcr_mask |= FMC2_PCR_BCHECC; 315 if (chip->ecc.strength == FMC2_ECC_BCH8) { 316 pcr |= FMC2_PCR_ECCALG; 317 pcr |= FMC2_PCR_BCHECC; 318 } else if (chip->ecc.strength == FMC2_ECC_BCH4) { 319 pcr |= FMC2_PCR_ECCALG; 320 } 321 322 /* Set buswidth */ 323 pcr_mask |= FMC2_PCR_PWID; 324 if (chip->options & NAND_BUSWIDTH_16) 325 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16); 326 327 /* Set ECC sector size */ 328 pcr_mask |= FMC2_PCR_ECCSS; 329 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512); 330 331 regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr); 332 } 333 334 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr) 335 { 336 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 337 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 338 struct dma_slave_config dma_cfg; 339 int ret; 340 341 if (nand->cs_used[chipnr] == nfc->cs_sel) 342 return 0; 343 344 nfc->cs_sel = nand->cs_used[chipnr]; 345 stm32_fmc2_nfc_setup(chip); 346 stm32_fmc2_nfc_timings_init(chip); 347 348 if (nfc->dma_tx_ch && nfc->dma_rx_ch) { 349 memset(&dma_cfg, 0, sizeof(dma_cfg)); 350 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel]; 351 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel]; 352 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 353 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 354 dma_cfg.src_maxburst = 32; 355 dma_cfg.dst_maxburst = 32; 356 357 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg); 358 if (ret) { 359 dev_err(nfc->dev, "tx DMA engine slave config failed\n"); 360 return ret; 361 } 362 363 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg); 364 if (ret) { 365 dev_err(nfc->dev, "rx DMA engine slave config failed\n"); 366 return ret; 367 } 368 } 369 370 if (nfc->dma_ecc_ch) { 371 /* 372 * Hamming: we read HECCR register 373 * BCH4/BCH8: we read BCHDSRSx registers 374 */ 375 memset(&dma_cfg, 0, sizeof(dma_cfg)); 376 dma_cfg.src_addr = nfc->io_phys_addr; 377 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? 378 FMC2_HECCR : FMC2_BCHDSR0; 379 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 380 381 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg); 382 if (ret) { 383 dev_err(nfc->dev, "ECC DMA engine slave config failed\n"); 384 return ret; 385 } 386 387 /* Calculate ECC length needed for one sector */ 388 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? 389 FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; 390 } 391 392 return 0; 393 } 394 395 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set) 396 { 397 u32 pcr; 398 399 pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) : 400 FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8); 401 402 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr); 403 } 404 405 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable) 406 { 407 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN, 408 enable ? FMC2_PCR_ECCEN : 0); 409 } 410 411 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc) 412 { 413 nfc->irq_state = FMC2_IRQ_SEQ; 414 415 regmap_update_bits(nfc->regmap, FMC2_CSQIER, 416 FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE); 417 } 418 419 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc) 420 { 421 regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0); 422 423 nfc->irq_state = FMC2_IRQ_UNKNOWN; 424 } 425 426 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc) 427 { 428 regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ); 429 } 430 431 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode) 432 { 433 nfc->irq_state = FMC2_IRQ_BCH; 434 435 if (mode == NAND_ECC_WRITE) 436 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 437 FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE); 438 else 439 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 440 FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE); 441 } 442 443 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc) 444 { 445 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 446 FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0); 447 448 nfc->irq_state = FMC2_IRQ_UNKNOWN; 449 } 450 451 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc) 452 { 453 regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ); 454 } 455 456 /* 457 * Enable ECC logic and reset syndrome/parity bits previously calculated 458 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 459 */ 460 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode) 461 { 462 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 463 464 stm32_fmc2_nfc_set_ecc(nfc, false); 465 466 if (chip->ecc.strength != FMC2_ECC_HAM) { 467 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, 468 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0); 469 470 reinit_completion(&nfc->complete); 471 stm32_fmc2_nfc_clear_bch_irq(nfc); 472 stm32_fmc2_nfc_enable_bch_irq(nfc, mode); 473 } 474 475 stm32_fmc2_nfc_set_ecc(nfc, true); 476 } 477 478 /* 479 * ECC Hamming calculation 480 * ECC is 3 bytes for 512 bytes of data (supports error correction up to 481 * max of 1-bit) 482 */ 483 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc) 484 { 485 ecc[0] = ecc_sta; 486 ecc[1] = ecc_sta >> 8; 487 ecc[2] = ecc_sta >> 16; 488 } 489 490 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data, 491 u8 *ecc) 492 { 493 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 494 u32 sr, heccr; 495 int ret; 496 497 ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, 498 sr & FMC2_SR_NWRF, 1, 499 1000 * FMC2_TIMEOUT_MS); 500 if (ret) { 501 dev_err(nfc->dev, "ham timeout\n"); 502 return ret; 503 } 504 505 regmap_read(nfc->regmap, FMC2_HECCR, &heccr); 506 stm32_fmc2_nfc_ham_set_ecc(heccr, ecc); 507 stm32_fmc2_nfc_set_ecc(nfc, false); 508 509 return 0; 510 } 511 512 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat, 513 u8 *read_ecc, u8 *calc_ecc) 514 { 515 u8 bit_position = 0, b0, b1, b2; 516 u32 byte_addr = 0, b; 517 u32 i, shifting = 1; 518 519 /* Indicate which bit and byte is faulty (if any) */ 520 b0 = read_ecc[0] ^ calc_ecc[0]; 521 b1 = read_ecc[1] ^ calc_ecc[1]; 522 b2 = read_ecc[2] ^ calc_ecc[2]; 523 b = b0 | (b1 << 8) | (b2 << 16); 524 525 /* No errors */ 526 if (likely(!b)) 527 return 0; 528 529 /* Calculate bit position */ 530 for (i = 0; i < 3; i++) { 531 switch (b % 4) { 532 case 2: 533 bit_position += shifting; 534 case 1: 535 break; 536 default: 537 return -EBADMSG; 538 } 539 shifting <<= 1; 540 b >>= 2; 541 } 542 543 /* Calculate byte position */ 544 shifting = 1; 545 for (i = 0; i < 9; i++) { 546 switch (b % 4) { 547 case 2: 548 byte_addr += shifting; 549 case 1: 550 break; 551 default: 552 return -EBADMSG; 553 } 554 shifting <<= 1; 555 b >>= 2; 556 } 557 558 /* Flip the bit */ 559 dat[byte_addr] ^= (1 << bit_position); 560 561 return 1; 562 } 563 564 /* 565 * ECC BCH calculation and correction 566 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to 567 * max of 4-bit/8-bit) 568 */ 569 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data, 570 u8 *ecc) 571 { 572 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 573 u32 bchpbr; 574 575 /* Wait until the BCH code is ready */ 576 if (!wait_for_completion_timeout(&nfc->complete, 577 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 578 dev_err(nfc->dev, "bch timeout\n"); 579 stm32_fmc2_nfc_disable_bch_irq(nfc); 580 return -ETIMEDOUT; 581 } 582 583 /* Read parity bits */ 584 regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr); 585 ecc[0] = bchpbr; 586 ecc[1] = bchpbr >> 8; 587 ecc[2] = bchpbr >> 16; 588 ecc[3] = bchpbr >> 24; 589 590 regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr); 591 ecc[4] = bchpbr; 592 ecc[5] = bchpbr >> 8; 593 ecc[6] = bchpbr >> 16; 594 595 if (chip->ecc.strength == FMC2_ECC_BCH8) { 596 ecc[7] = bchpbr >> 24; 597 598 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr); 599 ecc[8] = bchpbr; 600 ecc[9] = bchpbr >> 8; 601 ecc[10] = bchpbr >> 16; 602 ecc[11] = bchpbr >> 24; 603 604 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr); 605 ecc[12] = bchpbr; 606 } 607 608 stm32_fmc2_nfc_set_ecc(nfc, false); 609 610 return 0; 611 } 612 613 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) 614 { 615 u32 bchdsr0 = ecc_sta[0]; 616 u32 bchdsr1 = ecc_sta[1]; 617 u32 bchdsr2 = ecc_sta[2]; 618 u32 bchdsr3 = ecc_sta[3]; 619 u32 bchdsr4 = ecc_sta[4]; 620 u16 pos[8]; 621 int i, den; 622 unsigned int nb_errs = 0; 623 624 /* No errors found */ 625 if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) 626 return 0; 627 628 /* Too many errors detected */ 629 if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) 630 return -EBADMSG; 631 632 pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1); 633 pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1); 634 pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2); 635 pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2); 636 pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3); 637 pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3); 638 pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4); 639 pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4); 640 641 den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0); 642 for (i = 0; i < den; i++) { 643 if (pos[i] < eccsize * 8) { 644 change_bit(pos[i], (unsigned long *)dat); 645 nb_errs++; 646 } 647 } 648 649 return nb_errs; 650 } 651 652 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat, 653 u8 *read_ecc, u8 *calc_ecc) 654 { 655 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 656 u32 ecc_sta[5]; 657 658 /* Wait until the decoding error is ready */ 659 if (!wait_for_completion_timeout(&nfc->complete, 660 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 661 dev_err(nfc->dev, "bch timeout\n"); 662 stm32_fmc2_nfc_disable_bch_irq(nfc); 663 return -ETIMEDOUT; 664 } 665 666 regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5); 667 668 stm32_fmc2_nfc_set_ecc(nfc, false); 669 670 return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta); 671 } 672 673 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf, 674 int oob_required, int page) 675 { 676 struct mtd_info *mtd = nand_to_mtd(chip); 677 int ret, i, s, stat, eccsize = chip->ecc.size; 678 int eccbytes = chip->ecc.bytes; 679 int eccsteps = chip->ecc.steps; 680 int eccstrength = chip->ecc.strength; 681 u8 *p = buf; 682 u8 *ecc_calc = chip->ecc.calc_buf; 683 u8 *ecc_code = chip->ecc.code_buf; 684 unsigned int max_bitflips = 0; 685 686 ret = nand_read_page_op(chip, page, 0, NULL, 0); 687 if (ret) 688 return ret; 689 690 for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; 691 s++, i += eccbytes, p += eccsize) { 692 chip->ecc.hwctl(chip, NAND_ECC_READ); 693 694 /* Read the nand page sector (512 bytes) */ 695 ret = nand_change_read_column_op(chip, s * eccsize, p, 696 eccsize, false); 697 if (ret) 698 return ret; 699 700 /* Read the corresponding ECC bytes */ 701 ret = nand_change_read_column_op(chip, i, ecc_code, 702 eccbytes, false); 703 if (ret) 704 return ret; 705 706 /* Correct the data */ 707 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); 708 if (stat == -EBADMSG) 709 /* Check for empty pages with bitflips */ 710 stat = nand_check_erased_ecc_chunk(p, eccsize, 711 ecc_code, eccbytes, 712 NULL, 0, 713 eccstrength); 714 715 if (stat < 0) { 716 mtd->ecc_stats.failed++; 717 } else { 718 mtd->ecc_stats.corrected += stat; 719 max_bitflips = max_t(unsigned int, max_bitflips, stat); 720 } 721 } 722 723 /* Read oob */ 724 if (oob_required) { 725 ret = nand_change_read_column_op(chip, mtd->writesize, 726 chip->oob_poi, mtd->oobsize, 727 false); 728 if (ret) 729 return ret; 730 } 731 732 return max_bitflips; 733 } 734 735 /* Sequencer read/write configuration */ 736 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page, 737 int raw, bool write_data) 738 { 739 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 740 struct mtd_info *mtd = nand_to_mtd(chip); 741 u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; 742 /* 743 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3 744 * cfg[3] => csqar1, cfg[4] => csqar2 745 */ 746 u32 cfg[5]; 747 748 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, 749 write_data ? FMC2_PCR_WEN : 0); 750 751 /* 752 * - Set Program Page/Page Read command 753 * - Enable DMA request data 754 * - Set timings 755 */ 756 cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; 757 if (write_data) 758 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN); 759 else 760 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) | 761 FMC2_CSQCFGR1_CMD2EN | 762 FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) | 763 FMC2_CSQCFGR1_CMD2T; 764 765 /* 766 * - Set Random Data Input/Random Data Read command 767 * - Enable the sequencer to access the Spare data area 768 * - Enable DMA request status decoding for read 769 * - Set timings 770 */ 771 if (write_data) 772 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN); 773 else 774 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) | 775 FMC2_CSQCFGR2_RCMD2EN | 776 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) | 777 FMC2_CSQCFGR2_RCMD1T | 778 FMC2_CSQCFGR2_RCMD2T; 779 if (!raw) { 780 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; 781 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN; 782 } 783 784 /* 785 * - Set the number of sectors to be written 786 * - Set timings 787 */ 788 cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1); 789 if (write_data) { 790 cfg[2] |= FMC2_CSQCFGR3_RAC2T; 791 if (chip->options & NAND_ROW_ADDR_3) 792 cfg[2] |= FMC2_CSQCFGR3_AC5T; 793 else 794 cfg[2] |= FMC2_CSQCFGR3_AC4T; 795 } 796 797 /* 798 * Set the fourth first address cycles 799 * Byte 1 and byte 2 => column, we start at 0x0 800 * Byte 3 and byte 4 => page 801 */ 802 cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page); 803 cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8); 804 805 /* 806 * - Set chip enable number 807 * - Set ECC byte offset in the spare area 808 * - Calculate the number of address cycles to be issued 809 * - Set byte 5 of address cycle if needed 810 */ 811 cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel); 812 if (chip->options & NAND_BUSWIDTH_16) 813 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1); 814 else 815 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset); 816 if (chip->options & NAND_ROW_ADDR_3) { 817 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5); 818 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16); 819 } else { 820 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4); 821 } 822 823 regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5); 824 } 825 826 static void stm32_fmc2_nfc_dma_callback(void *arg) 827 { 828 complete((struct completion *)arg); 829 } 830 831 /* Read/write data from/to a page */ 832 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf, 833 int raw, bool write_data) 834 { 835 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 836 struct dma_async_tx_descriptor *desc_data, *desc_ecc; 837 struct scatterlist *sg; 838 struct dma_chan *dma_ch = nfc->dma_rx_ch; 839 enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; 840 enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; 841 int eccsteps = chip->ecc.steps; 842 int eccsize = chip->ecc.size; 843 unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS); 844 const u8 *p = buf; 845 int s, ret; 846 847 /* Configure DMA data */ 848 if (write_data) { 849 dma_data_dir = DMA_TO_DEVICE; 850 dma_transfer_dir = DMA_MEM_TO_DEV; 851 dma_ch = nfc->dma_tx_ch; 852 } 853 854 for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) { 855 sg_set_buf(sg, p, eccsize); 856 p += eccsize; 857 } 858 859 ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl, 860 eccsteps, dma_data_dir); 861 if (ret < 0) 862 return ret; 863 864 desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl, 865 eccsteps, dma_transfer_dir, 866 DMA_PREP_INTERRUPT); 867 if (!desc_data) { 868 ret = -ENOMEM; 869 goto err_unmap_data; 870 } 871 872 reinit_completion(&nfc->dma_data_complete); 873 reinit_completion(&nfc->complete); 874 desc_data->callback = stm32_fmc2_nfc_dma_callback; 875 desc_data->callback_param = &nfc->dma_data_complete; 876 ret = dma_submit_error(dmaengine_submit(desc_data)); 877 if (ret) 878 goto err_unmap_data; 879 880 dma_async_issue_pending(dma_ch); 881 882 if (!write_data && !raw) { 883 /* Configure DMA ECC status */ 884 p = nfc->ecc_buf; 885 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) { 886 sg_set_buf(sg, p, nfc->dma_ecc_len); 887 p += nfc->dma_ecc_len; 888 } 889 890 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl, 891 eccsteps, dma_data_dir); 892 if (ret < 0) 893 goto err_unmap_data; 894 895 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch, 896 nfc->dma_ecc_sg.sgl, 897 eccsteps, dma_transfer_dir, 898 DMA_PREP_INTERRUPT); 899 if (!desc_ecc) { 900 ret = -ENOMEM; 901 goto err_unmap_ecc; 902 } 903 904 reinit_completion(&nfc->dma_ecc_complete); 905 desc_ecc->callback = stm32_fmc2_nfc_dma_callback; 906 desc_ecc->callback_param = &nfc->dma_ecc_complete; 907 ret = dma_submit_error(dmaengine_submit(desc_ecc)); 908 if (ret) 909 goto err_unmap_ecc; 910 911 dma_async_issue_pending(nfc->dma_ecc_ch); 912 } 913 914 stm32_fmc2_nfc_clear_seq_irq(nfc); 915 stm32_fmc2_nfc_enable_seq_irq(nfc); 916 917 /* Start the transfer */ 918 regmap_update_bits(nfc->regmap, FMC2_CSQCR, 919 FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART); 920 921 /* Wait end of sequencer transfer */ 922 if (!wait_for_completion_timeout(&nfc->complete, timeout)) { 923 dev_err(nfc->dev, "seq timeout\n"); 924 stm32_fmc2_nfc_disable_seq_irq(nfc); 925 dmaengine_terminate_all(dma_ch); 926 if (!write_data && !raw) 927 dmaengine_terminate_all(nfc->dma_ecc_ch); 928 ret = -ETIMEDOUT; 929 goto err_unmap_ecc; 930 } 931 932 /* Wait DMA data transfer completion */ 933 if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) { 934 dev_err(nfc->dev, "data DMA timeout\n"); 935 dmaengine_terminate_all(dma_ch); 936 ret = -ETIMEDOUT; 937 } 938 939 /* Wait DMA ECC transfer completion */ 940 if (!write_data && !raw) { 941 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete, 942 timeout)) { 943 dev_err(nfc->dev, "ECC DMA timeout\n"); 944 dmaengine_terminate_all(nfc->dma_ecc_ch); 945 ret = -ETIMEDOUT; 946 } 947 } 948 949 err_unmap_ecc: 950 if (!write_data && !raw) 951 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl, 952 eccsteps, dma_data_dir); 953 954 err_unmap_data: 955 dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir); 956 957 return ret; 958 } 959 960 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf, 961 int oob_required, int page, int raw) 962 { 963 struct mtd_info *mtd = nand_to_mtd(chip); 964 int ret; 965 966 /* Configure the sequencer */ 967 stm32_fmc2_nfc_rw_page_init(chip, page, raw, true); 968 969 /* Write the page */ 970 ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true); 971 if (ret) 972 return ret; 973 974 /* Write oob */ 975 if (oob_required) { 976 ret = nand_change_write_column_op(chip, mtd->writesize, 977 chip->oob_poi, mtd->oobsize, 978 false); 979 if (ret) 980 return ret; 981 } 982 983 return nand_prog_page_end_op(chip); 984 } 985 986 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf, 987 int oob_required, int page) 988 { 989 int ret; 990 991 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 992 if (ret) 993 return ret; 994 995 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false); 996 } 997 998 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip, 999 const u8 *buf, int oob_required, 1000 int page) 1001 { 1002 int ret; 1003 1004 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1005 if (ret) 1006 return ret; 1007 1008 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true); 1009 } 1010 1011 /* Get a status indicating which sectors have errors */ 1012 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc) 1013 { 1014 u32 csqemsr; 1015 1016 regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr); 1017 1018 return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr); 1019 } 1020 1021 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat, 1022 u8 *read_ecc, u8 *calc_ecc) 1023 { 1024 struct mtd_info *mtd = nand_to_mtd(chip); 1025 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1026 int eccbytes = chip->ecc.bytes; 1027 int eccsteps = chip->ecc.steps; 1028 int eccstrength = chip->ecc.strength; 1029 int i, s, eccsize = chip->ecc.size; 1030 u32 *ecc_sta = (u32 *)nfc->ecc_buf; 1031 u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); 1032 unsigned int max_bitflips = 0; 1033 1034 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { 1035 int stat = 0; 1036 1037 if (eccstrength == FMC2_ECC_HAM) { 1038 /* Ecc_sta = FMC2_HECCR */ 1039 if (sta_map & BIT(s)) { 1040 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta, 1041 &calc_ecc[i]); 1042 stat = stm32_fmc2_nfc_ham_correct(chip, dat, 1043 &read_ecc[i], 1044 &calc_ecc[i]); 1045 } 1046 ecc_sta++; 1047 } else { 1048 /* 1049 * Ecc_sta[0] = FMC2_BCHDSR0 1050 * Ecc_sta[1] = FMC2_BCHDSR1 1051 * Ecc_sta[2] = FMC2_BCHDSR2 1052 * Ecc_sta[3] = FMC2_BCHDSR3 1053 * Ecc_sta[4] = FMC2_BCHDSR4 1054 */ 1055 if (sta_map & BIT(s)) 1056 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat, 1057 ecc_sta); 1058 ecc_sta += 5; 1059 } 1060 1061 if (stat == -EBADMSG) 1062 /* Check for empty pages with bitflips */ 1063 stat = nand_check_erased_ecc_chunk(dat, eccsize, 1064 &read_ecc[i], 1065 eccbytes, 1066 NULL, 0, 1067 eccstrength); 1068 1069 if (stat < 0) { 1070 mtd->ecc_stats.failed++; 1071 } else { 1072 mtd->ecc_stats.corrected += stat; 1073 max_bitflips = max_t(unsigned int, max_bitflips, stat); 1074 } 1075 } 1076 1077 return max_bitflips; 1078 } 1079 1080 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf, 1081 int oob_required, int page) 1082 { 1083 struct mtd_info *mtd = nand_to_mtd(chip); 1084 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1085 u8 *ecc_calc = chip->ecc.calc_buf; 1086 u8 *ecc_code = chip->ecc.code_buf; 1087 u16 sta_map; 1088 int ret; 1089 1090 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1091 if (ret) 1092 return ret; 1093 1094 /* Configure the sequencer */ 1095 stm32_fmc2_nfc_rw_page_init(chip, page, 0, false); 1096 1097 /* Read the page */ 1098 ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false); 1099 if (ret) 1100 return ret; 1101 1102 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); 1103 1104 /* Check if errors happen */ 1105 if (likely(!sta_map)) { 1106 if (oob_required) 1107 return nand_change_read_column_op(chip, mtd->writesize, 1108 chip->oob_poi, 1109 mtd->oobsize, false); 1110 1111 return 0; 1112 } 1113 1114 /* Read oob */ 1115 ret = nand_change_read_column_op(chip, mtd->writesize, 1116 chip->oob_poi, mtd->oobsize, false); 1117 if (ret) 1118 return ret; 1119 1120 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 1121 chip->ecc.total); 1122 if (ret) 1123 return ret; 1124 1125 /* Correct data */ 1126 return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); 1127 } 1128 1129 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf, 1130 int oob_required, int page) 1131 { 1132 struct mtd_info *mtd = nand_to_mtd(chip); 1133 int ret; 1134 1135 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1136 if (ret) 1137 return ret; 1138 1139 /* Configure the sequencer */ 1140 stm32_fmc2_nfc_rw_page_init(chip, page, 1, false); 1141 1142 /* Read the page */ 1143 ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false); 1144 if (ret) 1145 return ret; 1146 1147 /* Read oob */ 1148 if (oob_required) 1149 return nand_change_read_column_op(chip, mtd->writesize, 1150 chip->oob_poi, mtd->oobsize, 1151 false); 1152 1153 return 0; 1154 } 1155 1156 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id) 1157 { 1158 struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id; 1159 1160 if (nfc->irq_state == FMC2_IRQ_SEQ) 1161 /* Sequencer is used */ 1162 stm32_fmc2_nfc_disable_seq_irq(nfc); 1163 else if (nfc->irq_state == FMC2_IRQ_BCH) 1164 /* BCH is used */ 1165 stm32_fmc2_nfc_disable_bch_irq(nfc); 1166 1167 complete(&nfc->complete); 1168 1169 return IRQ_HANDLED; 1170 } 1171 1172 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf, 1173 unsigned int len, bool force_8bit) 1174 { 1175 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1176 void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel]; 1177 1178 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1179 /* Reconfigure bus width to 8-bit */ 1180 stm32_fmc2_nfc_set_buswidth_16(nfc, false); 1181 1182 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1183 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1184 *(u8 *)buf = readb_relaxed(io_addr_r); 1185 buf += sizeof(u8); 1186 len -= sizeof(u8); 1187 } 1188 1189 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1190 len >= sizeof(u16)) { 1191 *(u16 *)buf = readw_relaxed(io_addr_r); 1192 buf += sizeof(u16); 1193 len -= sizeof(u16); 1194 } 1195 } 1196 1197 /* Buf is aligned */ 1198 while (len >= sizeof(u32)) { 1199 *(u32 *)buf = readl_relaxed(io_addr_r); 1200 buf += sizeof(u32); 1201 len -= sizeof(u32); 1202 } 1203 1204 /* Read remaining bytes */ 1205 if (len >= sizeof(u16)) { 1206 *(u16 *)buf = readw_relaxed(io_addr_r); 1207 buf += sizeof(u16); 1208 len -= sizeof(u16); 1209 } 1210 1211 if (len) 1212 *(u8 *)buf = readb_relaxed(io_addr_r); 1213 1214 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1215 /* Reconfigure bus width to 16-bit */ 1216 stm32_fmc2_nfc_set_buswidth_16(nfc, true); 1217 } 1218 1219 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf, 1220 unsigned int len, bool force_8bit) 1221 { 1222 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1223 void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel]; 1224 1225 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1226 /* Reconfigure bus width to 8-bit */ 1227 stm32_fmc2_nfc_set_buswidth_16(nfc, false); 1228 1229 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1230 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1231 writeb_relaxed(*(u8 *)buf, io_addr_w); 1232 buf += sizeof(u8); 1233 len -= sizeof(u8); 1234 } 1235 1236 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1237 len >= sizeof(u16)) { 1238 writew_relaxed(*(u16 *)buf, io_addr_w); 1239 buf += sizeof(u16); 1240 len -= sizeof(u16); 1241 } 1242 } 1243 1244 /* Buf is aligned */ 1245 while (len >= sizeof(u32)) { 1246 writel_relaxed(*(u32 *)buf, io_addr_w); 1247 buf += sizeof(u32); 1248 len -= sizeof(u32); 1249 } 1250 1251 /* Write remaining bytes */ 1252 if (len >= sizeof(u16)) { 1253 writew_relaxed(*(u16 *)buf, io_addr_w); 1254 buf += sizeof(u16); 1255 len -= sizeof(u16); 1256 } 1257 1258 if (len) 1259 writeb_relaxed(*(u8 *)buf, io_addr_w); 1260 1261 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1262 /* Reconfigure bus width to 16-bit */ 1263 stm32_fmc2_nfc_set_buswidth_16(nfc, true); 1264 } 1265 1266 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip, 1267 unsigned long timeout_ms) 1268 { 1269 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1270 const struct nand_sdr_timings *timings; 1271 u32 isr, sr; 1272 1273 /* Check if there is no pending requests to the NAND flash */ 1274 if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, 1275 sr & FMC2_SR_NWRF, 1, 1276 1000 * FMC2_TIMEOUT_MS)) 1277 dev_warn(nfc->dev, "Waitrdy timeout\n"); 1278 1279 /* Wait tWB before R/B# signal is low */ 1280 timings = nand_get_sdr_timings(nand_get_interface_config(chip)); 1281 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 1282 1283 /* R/B# signal is low, clear high level flag */ 1284 regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF); 1285 1286 /* Wait R/B# signal is high */ 1287 return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr, 1288 isr & FMC2_ISR_IHLF, 5, 1289 1000 * FMC2_TIMEOUT_MS); 1290 } 1291 1292 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip, 1293 const struct nand_operation *op, 1294 bool check_only) 1295 { 1296 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1297 const struct nand_op_instr *instr = NULL; 1298 unsigned int op_id, i, timeout; 1299 int ret; 1300 1301 if (check_only) 1302 return 0; 1303 1304 ret = stm32_fmc2_nfc_select_chip(chip, op->cs); 1305 if (ret) 1306 return ret; 1307 1308 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1309 instr = &op->instrs[op_id]; 1310 1311 switch (instr->type) { 1312 case NAND_OP_CMD_INSTR: 1313 writeb_relaxed(instr->ctx.cmd.opcode, 1314 nfc->cmd_base[nfc->cs_sel]); 1315 break; 1316 1317 case NAND_OP_ADDR_INSTR: 1318 for (i = 0; i < instr->ctx.addr.naddrs; i++) 1319 writeb_relaxed(instr->ctx.addr.addrs[i], 1320 nfc->addr_base[nfc->cs_sel]); 1321 break; 1322 1323 case NAND_OP_DATA_IN_INSTR: 1324 stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in, 1325 instr->ctx.data.len, 1326 instr->ctx.data.force_8bit); 1327 break; 1328 1329 case NAND_OP_DATA_OUT_INSTR: 1330 stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out, 1331 instr->ctx.data.len, 1332 instr->ctx.data.force_8bit); 1333 break; 1334 1335 case NAND_OP_WAITRDY_INSTR: 1336 timeout = instr->ctx.waitrdy.timeout_ms; 1337 ret = stm32_fmc2_nfc_waitrdy(chip, timeout); 1338 break; 1339 } 1340 } 1341 1342 return ret; 1343 } 1344 1345 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc) 1346 { 1347 u32 pcr; 1348 1349 regmap_read(nfc->regmap, FMC2_PCR, &pcr); 1350 1351 /* Set CS used to undefined */ 1352 nfc->cs_sel = -1; 1353 1354 /* Enable wait feature and nand flash memory bank */ 1355 pcr |= FMC2_PCR_PWAITEN; 1356 pcr |= FMC2_PCR_PBKEN; 1357 1358 /* Set buswidth to 8 bits mode for identification */ 1359 pcr &= ~FMC2_PCR_PWID; 1360 1361 /* ECC logic is disabled */ 1362 pcr &= ~FMC2_PCR_ECCEN; 1363 1364 /* Default mode */ 1365 pcr &= ~FMC2_PCR_ECCALG; 1366 pcr &= ~FMC2_PCR_BCHECC; 1367 pcr &= ~FMC2_PCR_WEN; 1368 1369 /* Set default ECC sector size */ 1370 pcr &= ~FMC2_PCR_ECCSS; 1371 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048); 1372 1373 /* Set default tclr/tar timings */ 1374 pcr &= ~FMC2_PCR_TCLR; 1375 pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT); 1376 pcr &= ~FMC2_PCR_TAR; 1377 pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT); 1378 1379 /* Enable FMC2 controller */ 1380 if (nfc->dev == nfc->cdev) 1381 regmap_update_bits(nfc->regmap, FMC2_BCR1, 1382 FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN); 1383 1384 regmap_write(nfc->regmap, FMC2_PCR, pcr); 1385 regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT); 1386 regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT); 1387 } 1388 1389 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip, 1390 const struct nand_sdr_timings *sdrt) 1391 { 1392 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1393 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 1394 struct stm32_fmc2_timings *tims = &nand->timings; 1395 unsigned long hclk = clk_get_rate(nfc->clk); 1396 unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); 1397 unsigned long timing, tar, tclr, thiz, twait; 1398 unsigned long tset_mem, tset_att, thold_mem, thold_att; 1399 1400 tar = max_t(unsigned long, hclkp, sdrt->tAR_min); 1401 timing = DIV_ROUND_UP(tar, hclkp) - 1; 1402 tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1403 1404 tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); 1405 timing = DIV_ROUND_UP(tclr, hclkp) - 1; 1406 tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1407 1408 tims->thiz = FMC2_THIZ; 1409 thiz = (tims->thiz + 1) * hclkp; 1410 1411 /* 1412 * tWAIT > tRP 1413 * tWAIT > tWP 1414 * tWAIT > tREA + tIO 1415 */ 1416 twait = max_t(unsigned long, hclkp, sdrt->tRP_min); 1417 twait = max_t(unsigned long, twait, sdrt->tWP_min); 1418 twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); 1419 timing = DIV_ROUND_UP(twait, hclkp); 1420 tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1421 1422 /* 1423 * tSETUP_MEM > tCS - tWAIT 1424 * tSETUP_MEM > tALS - tWAIT 1425 * tSETUP_MEM > tDS - (tWAIT - tHIZ) 1426 */ 1427 tset_mem = hclkp; 1428 if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) 1429 tset_mem = sdrt->tCS_min - twait; 1430 if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) 1431 tset_mem = sdrt->tALS_min - twait; 1432 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1433 (tset_mem < sdrt->tDS_min - (twait - thiz))) 1434 tset_mem = sdrt->tDS_min - (twait - thiz); 1435 timing = DIV_ROUND_UP(tset_mem, hclkp); 1436 tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1437 1438 /* 1439 * tHOLD_MEM > tCH 1440 * tHOLD_MEM > tREH - tSETUP_MEM 1441 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) 1442 */ 1443 thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); 1444 if (sdrt->tREH_min > tset_mem && 1445 (thold_mem < sdrt->tREH_min - tset_mem)) 1446 thold_mem = sdrt->tREH_min - tset_mem; 1447 if ((sdrt->tRC_min > tset_mem + twait) && 1448 (thold_mem < sdrt->tRC_min - (tset_mem + twait))) 1449 thold_mem = sdrt->tRC_min - (tset_mem + twait); 1450 if ((sdrt->tWC_min > tset_mem + twait) && 1451 (thold_mem < sdrt->tWC_min - (tset_mem + twait))) 1452 thold_mem = sdrt->tWC_min - (tset_mem + twait); 1453 timing = DIV_ROUND_UP(thold_mem, hclkp); 1454 tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1455 1456 /* 1457 * tSETUP_ATT > tCS - tWAIT 1458 * tSETUP_ATT > tCLS - tWAIT 1459 * tSETUP_ATT > tALS - tWAIT 1460 * tSETUP_ATT > tRHW - tHOLD_MEM 1461 * tSETUP_ATT > tDS - (tWAIT - tHIZ) 1462 */ 1463 tset_att = hclkp; 1464 if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) 1465 tset_att = sdrt->tCS_min - twait; 1466 if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) 1467 tset_att = sdrt->tCLS_min - twait; 1468 if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) 1469 tset_att = sdrt->tALS_min - twait; 1470 if (sdrt->tRHW_min > thold_mem && 1471 (tset_att < sdrt->tRHW_min - thold_mem)) 1472 tset_att = sdrt->tRHW_min - thold_mem; 1473 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1474 (tset_att < sdrt->tDS_min - (twait - thiz))) 1475 tset_att = sdrt->tDS_min - (twait - thiz); 1476 timing = DIV_ROUND_UP(tset_att, hclkp); 1477 tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1478 1479 /* 1480 * tHOLD_ATT > tALH 1481 * tHOLD_ATT > tCH 1482 * tHOLD_ATT > tCLH 1483 * tHOLD_ATT > tCOH 1484 * tHOLD_ATT > tDH 1485 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM 1486 * tHOLD_ATT > tADL - tSETUP_MEM 1487 * tHOLD_ATT > tWH - tSETUP_MEM 1488 * tHOLD_ATT > tWHR - tSETUP_MEM 1489 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) 1490 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) 1491 */ 1492 thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); 1493 thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); 1494 thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); 1495 thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); 1496 thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); 1497 if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && 1498 (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) 1499 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; 1500 if (sdrt->tADL_min > tset_mem && 1501 (thold_att < sdrt->tADL_min - tset_mem)) 1502 thold_att = sdrt->tADL_min - tset_mem; 1503 if (sdrt->tWH_min > tset_mem && 1504 (thold_att < sdrt->tWH_min - tset_mem)) 1505 thold_att = sdrt->tWH_min - tset_mem; 1506 if (sdrt->tWHR_min > tset_mem && 1507 (thold_att < sdrt->tWHR_min - tset_mem)) 1508 thold_att = sdrt->tWHR_min - tset_mem; 1509 if ((sdrt->tRC_min > tset_att + twait) && 1510 (thold_att < sdrt->tRC_min - (tset_att + twait))) 1511 thold_att = sdrt->tRC_min - (tset_att + twait); 1512 if ((sdrt->tWC_min > tset_att + twait) && 1513 (thold_att < sdrt->tWC_min - (tset_att + twait))) 1514 thold_att = sdrt->tWC_min - (tset_att + twait); 1515 timing = DIV_ROUND_UP(thold_att, hclkp); 1516 tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1517 } 1518 1519 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr, 1520 const struct nand_interface_config *conf) 1521 { 1522 const struct nand_sdr_timings *sdrt; 1523 1524 sdrt = nand_get_sdr_timings(conf); 1525 if (IS_ERR(sdrt)) 1526 return PTR_ERR(sdrt); 1527 1528 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) 1529 return 0; 1530 1531 stm32_fmc2_nfc_calc_timings(chip, sdrt); 1532 stm32_fmc2_nfc_timings_init(chip); 1533 1534 return 0; 1535 } 1536 1537 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc) 1538 { 1539 int ret = 0; 1540 1541 nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx"); 1542 if (IS_ERR(nfc->dma_tx_ch)) { 1543 ret = PTR_ERR(nfc->dma_tx_ch); 1544 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1545 dev_err(nfc->dev, 1546 "failed to request tx DMA channel: %d\n", ret); 1547 nfc->dma_tx_ch = NULL; 1548 goto err_dma; 1549 } 1550 1551 nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx"); 1552 if (IS_ERR(nfc->dma_rx_ch)) { 1553 ret = PTR_ERR(nfc->dma_rx_ch); 1554 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1555 dev_err(nfc->dev, 1556 "failed to request rx DMA channel: %d\n", ret); 1557 nfc->dma_rx_ch = NULL; 1558 goto err_dma; 1559 } 1560 1561 nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc"); 1562 if (IS_ERR(nfc->dma_ecc_ch)) { 1563 ret = PTR_ERR(nfc->dma_ecc_ch); 1564 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1565 dev_err(nfc->dev, 1566 "failed to request ecc DMA channel: %d\n", ret); 1567 nfc->dma_ecc_ch = NULL; 1568 goto err_dma; 1569 } 1570 1571 ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); 1572 if (ret) 1573 return ret; 1574 1575 /* Allocate a buffer to store ECC status registers */ 1576 nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL); 1577 if (!nfc->ecc_buf) 1578 return -ENOMEM; 1579 1580 ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); 1581 if (ret) 1582 return ret; 1583 1584 init_completion(&nfc->dma_data_complete); 1585 init_completion(&nfc->dma_ecc_complete); 1586 1587 return 0; 1588 1589 err_dma: 1590 if (ret == -ENODEV) { 1591 dev_warn(nfc->dev, 1592 "DMAs not defined in the DT, polling mode is used\n"); 1593 ret = 0; 1594 } 1595 1596 return ret; 1597 } 1598 1599 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip) 1600 { 1601 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1602 1603 /* 1604 * Specific callbacks to read/write a page depending on 1605 * the mode (polling/sequencer) and the algo used (Hamming, BCH). 1606 */ 1607 if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) { 1608 /* DMA => use sequencer mode callbacks */ 1609 chip->ecc.correct = stm32_fmc2_nfc_seq_correct; 1610 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page; 1611 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page; 1612 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw; 1613 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw; 1614 } else { 1615 /* No DMA => use polling mode callbacks */ 1616 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl; 1617 if (chip->ecc.strength == FMC2_ECC_HAM) { 1618 /* Hamming is used */ 1619 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate; 1620 chip->ecc.correct = stm32_fmc2_nfc_ham_correct; 1621 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; 1622 } else { 1623 /* BCH is used */ 1624 chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate; 1625 chip->ecc.correct = stm32_fmc2_nfc_bch_correct; 1626 chip->ecc.read_page = stm32_fmc2_nfc_read_page; 1627 } 1628 } 1629 1630 /* Specific configurations depending on the algo used */ 1631 if (chip->ecc.strength == FMC2_ECC_HAM) 1632 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; 1633 else if (chip->ecc.strength == FMC2_ECC_BCH8) 1634 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; 1635 else 1636 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; 1637 } 1638 1639 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 1640 struct mtd_oob_region *oobregion) 1641 { 1642 struct nand_chip *chip = mtd_to_nand(mtd); 1643 struct nand_ecc_ctrl *ecc = &chip->ecc; 1644 1645 if (section) 1646 return -ERANGE; 1647 1648 oobregion->length = ecc->total; 1649 oobregion->offset = FMC2_BBM_LEN; 1650 1651 return 0; 1652 } 1653 1654 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section, 1655 struct mtd_oob_region *oobregion) 1656 { 1657 struct nand_chip *chip = mtd_to_nand(mtd); 1658 struct nand_ecc_ctrl *ecc = &chip->ecc; 1659 1660 if (section) 1661 return -ERANGE; 1662 1663 oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; 1664 oobregion->offset = ecc->total + FMC2_BBM_LEN; 1665 1666 return 0; 1667 } 1668 1669 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = { 1670 .ecc = stm32_fmc2_nfc_ooblayout_ecc, 1671 .free = stm32_fmc2_nfc_ooblayout_free, 1672 }; 1673 1674 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength) 1675 { 1676 /* Hamming */ 1677 if (strength == FMC2_ECC_HAM) 1678 return 4; 1679 1680 /* BCH8 */ 1681 if (strength == FMC2_ECC_BCH8) 1682 return 14; 1683 1684 /* BCH4 */ 1685 return 8; 1686 } 1687 1688 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes, 1689 FMC2_ECC_STEP_SIZE, 1690 FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); 1691 1692 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip) 1693 { 1694 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1695 struct mtd_info *mtd = nand_to_mtd(chip); 1696 int ret; 1697 1698 /* 1699 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported 1700 * Hamming => ecc.strength = 1 1701 * BCH4 => ecc.strength = 4 1702 * BCH8 => ecc.strength = 8 1703 * ECC sector size = 512 1704 */ 1705 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { 1706 dev_err(nfc->dev, 1707 "nand_ecc_engine_type is not well defined in the DT\n"); 1708 return -EINVAL; 1709 } 1710 1711 /* Default ECC settings in case they are not set in the device tree */ 1712 if (!chip->ecc.size) 1713 chip->ecc.size = FMC2_ECC_STEP_SIZE; 1714 1715 if (!chip->ecc.strength) 1716 chip->ecc.strength = FMC2_ECC_BCH8; 1717 1718 ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps, 1719 mtd->oobsize - FMC2_BBM_LEN); 1720 if (ret) { 1721 dev_err(nfc->dev, "no valid ECC settings set\n"); 1722 return ret; 1723 } 1724 1725 if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { 1726 dev_err(nfc->dev, "nand page size is not supported\n"); 1727 return -EINVAL; 1728 } 1729 1730 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1731 chip->bbt_options |= NAND_BBT_NO_OOB; 1732 1733 stm32_fmc2_nfc_nand_callbacks_setup(chip); 1734 1735 mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops); 1736 1737 stm32_fmc2_nfc_setup(chip); 1738 1739 return 0; 1740 } 1741 1742 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = { 1743 .attach_chip = stm32_fmc2_nfc_attach_chip, 1744 .exec_op = stm32_fmc2_nfc_exec_op, 1745 .setup_interface = stm32_fmc2_nfc_setup_interface, 1746 }; 1747 1748 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, 1749 struct device_node *dn) 1750 { 1751 struct stm32_fmc2_nand *nand = &nfc->nand; 1752 u32 cs; 1753 int ret, i; 1754 1755 if (!of_get_property(dn, "reg", &nand->ncs)) 1756 return -EINVAL; 1757 1758 nand->ncs /= sizeof(u32); 1759 if (!nand->ncs) { 1760 dev_err(nfc->dev, "invalid reg property size\n"); 1761 return -EINVAL; 1762 } 1763 1764 for (i = 0; i < nand->ncs; i++) { 1765 ret = of_property_read_u32_index(dn, "reg", i, &cs); 1766 if (ret) { 1767 dev_err(nfc->dev, "could not retrieve reg property: %d\n", 1768 ret); 1769 return ret; 1770 } 1771 1772 if (cs >= FMC2_MAX_CE) { 1773 dev_err(nfc->dev, "invalid reg value: %d\n", cs); 1774 return -EINVAL; 1775 } 1776 1777 if (nfc->cs_assigned & BIT(cs)) { 1778 dev_err(nfc->dev, "cs already assigned: %d\n", cs); 1779 return -EINVAL; 1780 } 1781 1782 nfc->cs_assigned |= BIT(cs); 1783 nand->cs_used[i] = cs; 1784 } 1785 1786 nand_set_flash_node(&nand->chip, dn); 1787 1788 return 0; 1789 } 1790 1791 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc) 1792 { 1793 struct device_node *dn = nfc->dev->of_node; 1794 struct device_node *child; 1795 int nchips = of_get_child_count(dn); 1796 int ret = 0; 1797 1798 if (!nchips) { 1799 dev_err(nfc->dev, "NAND chip not defined\n"); 1800 return -EINVAL; 1801 } 1802 1803 if (nchips > 1) { 1804 dev_err(nfc->dev, "too many NAND chips defined\n"); 1805 return -EINVAL; 1806 } 1807 1808 for_each_child_of_node(dn, child) { 1809 ret = stm32_fmc2_nfc_parse_child(nfc, child); 1810 if (ret < 0) { 1811 of_node_put(child); 1812 return ret; 1813 } 1814 } 1815 1816 return ret; 1817 } 1818 1819 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc) 1820 { 1821 struct device *dev = nfc->dev; 1822 bool ebi_found = false; 1823 1824 if (dev->parent && of_device_is_compatible(dev->parent->of_node, 1825 "st,stm32mp1-fmc2-ebi")) 1826 ebi_found = true; 1827 1828 if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) { 1829 if (ebi_found) { 1830 nfc->cdev = dev->parent; 1831 1832 return 0; 1833 } 1834 1835 return -EINVAL; 1836 } 1837 1838 if (ebi_found) 1839 return -EINVAL; 1840 1841 nfc->cdev = dev; 1842 1843 return 0; 1844 } 1845 1846 static int stm32_fmc2_nfc_probe(struct platform_device *pdev) 1847 { 1848 struct device *dev = &pdev->dev; 1849 struct reset_control *rstc; 1850 struct stm32_fmc2_nfc *nfc; 1851 struct stm32_fmc2_nand *nand; 1852 struct resource *res; 1853 struct mtd_info *mtd; 1854 struct nand_chip *chip; 1855 struct resource cres; 1856 int chip_cs, mem_region, ret, irq; 1857 int start_region = 0; 1858 1859 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1860 if (!nfc) 1861 return -ENOMEM; 1862 1863 nfc->dev = dev; 1864 nand_controller_init(&nfc->base); 1865 nfc->base.ops = &stm32_fmc2_nfc_controller_ops; 1866 1867 ret = stm32_fmc2_nfc_set_cdev(nfc); 1868 if (ret) 1869 return ret; 1870 1871 ret = stm32_fmc2_nfc_parse_dt(nfc); 1872 if (ret) 1873 return ret; 1874 1875 ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres); 1876 if (ret) 1877 return ret; 1878 1879 nfc->io_phys_addr = cres.start; 1880 1881 nfc->regmap = device_node_to_regmap(nfc->cdev->of_node); 1882 if (IS_ERR(nfc->regmap)) 1883 return PTR_ERR(nfc->regmap); 1884 1885 if (nfc->dev == nfc->cdev) 1886 start_region = 1; 1887 1888 for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE; 1889 chip_cs++, mem_region += 3) { 1890 if (!(nfc->cs_assigned & BIT(chip_cs))) 1891 continue; 1892 1893 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); 1894 nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res); 1895 if (IS_ERR(nfc->data_base[chip_cs])) 1896 return PTR_ERR(nfc->data_base[chip_cs]); 1897 1898 nfc->data_phys_addr[chip_cs] = res->start; 1899 1900 res = platform_get_resource(pdev, IORESOURCE_MEM, 1901 mem_region + 1); 1902 nfc->cmd_base[chip_cs] = devm_ioremap_resource(dev, res); 1903 if (IS_ERR(nfc->cmd_base[chip_cs])) 1904 return PTR_ERR(nfc->cmd_base[chip_cs]); 1905 1906 res = platform_get_resource(pdev, IORESOURCE_MEM, 1907 mem_region + 2); 1908 nfc->addr_base[chip_cs] = devm_ioremap_resource(dev, res); 1909 if (IS_ERR(nfc->addr_base[chip_cs])) 1910 return PTR_ERR(nfc->addr_base[chip_cs]); 1911 } 1912 1913 irq = platform_get_irq(pdev, 0); 1914 if (irq < 0) 1915 return irq; 1916 1917 ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0, 1918 dev_name(dev), nfc); 1919 if (ret) { 1920 dev_err(dev, "failed to request irq\n"); 1921 return ret; 1922 } 1923 1924 init_completion(&nfc->complete); 1925 1926 nfc->clk = devm_clk_get(nfc->cdev, NULL); 1927 if (IS_ERR(nfc->clk)) 1928 return PTR_ERR(nfc->clk); 1929 1930 ret = clk_prepare_enable(nfc->clk); 1931 if (ret) { 1932 dev_err(dev, "can not enable the clock\n"); 1933 return ret; 1934 } 1935 1936 rstc = devm_reset_control_get(dev, NULL); 1937 if (IS_ERR(rstc)) { 1938 ret = PTR_ERR(rstc); 1939 if (ret == -EPROBE_DEFER) 1940 goto err_clk_disable; 1941 } else { 1942 reset_control_assert(rstc); 1943 reset_control_deassert(rstc); 1944 } 1945 1946 ret = stm32_fmc2_nfc_dma_setup(nfc); 1947 if (ret) 1948 goto err_release_dma; 1949 1950 stm32_fmc2_nfc_init(nfc); 1951 1952 nand = &nfc->nand; 1953 chip = &nand->chip; 1954 mtd = nand_to_mtd(chip); 1955 mtd->dev.parent = dev; 1956 1957 chip->controller = &nfc->base; 1958 chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | 1959 NAND_USES_DMA; 1960 1961 /* Scan to find existence of the device */ 1962 ret = nand_scan(chip, nand->ncs); 1963 if (ret) 1964 goto err_release_dma; 1965 1966 ret = mtd_device_register(mtd, NULL, 0); 1967 if (ret) 1968 goto err_nand_cleanup; 1969 1970 platform_set_drvdata(pdev, nfc); 1971 1972 return 0; 1973 1974 err_nand_cleanup: 1975 nand_cleanup(chip); 1976 1977 err_release_dma: 1978 if (nfc->dma_ecc_ch) 1979 dma_release_channel(nfc->dma_ecc_ch); 1980 if (nfc->dma_tx_ch) 1981 dma_release_channel(nfc->dma_tx_ch); 1982 if (nfc->dma_rx_ch) 1983 dma_release_channel(nfc->dma_rx_ch); 1984 1985 sg_free_table(&nfc->dma_data_sg); 1986 sg_free_table(&nfc->dma_ecc_sg); 1987 1988 err_clk_disable: 1989 clk_disable_unprepare(nfc->clk); 1990 1991 return ret; 1992 } 1993 1994 static int stm32_fmc2_nfc_remove(struct platform_device *pdev) 1995 { 1996 struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev); 1997 struct stm32_fmc2_nand *nand = &nfc->nand; 1998 struct nand_chip *chip = &nand->chip; 1999 int ret; 2000 2001 ret = mtd_device_unregister(nand_to_mtd(chip)); 2002 WARN_ON(ret); 2003 nand_cleanup(chip); 2004 2005 if (nfc->dma_ecc_ch) 2006 dma_release_channel(nfc->dma_ecc_ch); 2007 if (nfc->dma_tx_ch) 2008 dma_release_channel(nfc->dma_tx_ch); 2009 if (nfc->dma_rx_ch) 2010 dma_release_channel(nfc->dma_rx_ch); 2011 2012 sg_free_table(&nfc->dma_data_sg); 2013 sg_free_table(&nfc->dma_ecc_sg); 2014 2015 clk_disable_unprepare(nfc->clk); 2016 2017 return 0; 2018 } 2019 2020 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev) 2021 { 2022 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); 2023 2024 clk_disable_unprepare(nfc->clk); 2025 2026 pinctrl_pm_select_sleep_state(dev); 2027 2028 return 0; 2029 } 2030 2031 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev) 2032 { 2033 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); 2034 struct stm32_fmc2_nand *nand = &nfc->nand; 2035 int chip_cs, ret; 2036 2037 pinctrl_pm_select_default_state(dev); 2038 2039 ret = clk_prepare_enable(nfc->clk); 2040 if (ret) { 2041 dev_err(dev, "can not enable the clock\n"); 2042 return ret; 2043 } 2044 2045 stm32_fmc2_nfc_init(nfc); 2046 2047 for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { 2048 if (!(nfc->cs_assigned & BIT(chip_cs))) 2049 continue; 2050 2051 nand_reset(&nand->chip, chip_cs); 2052 } 2053 2054 return 0; 2055 } 2056 2057 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend, 2058 stm32_fmc2_nfc_resume); 2059 2060 static const struct of_device_id stm32_fmc2_nfc_match[] = { 2061 {.compatible = "st,stm32mp15-fmc2"}, 2062 {.compatible = "st,stm32mp1-fmc2-nfc"}, 2063 {} 2064 }; 2065 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match); 2066 2067 static struct platform_driver stm32_fmc2_nfc_driver = { 2068 .probe = stm32_fmc2_nfc_probe, 2069 .remove = stm32_fmc2_nfc_remove, 2070 .driver = { 2071 .name = "stm32_fmc2_nfc", 2072 .of_match_table = stm32_fmc2_nfc_match, 2073 .pm = &stm32_fmc2_nfc_pm_ops, 2074 }, 2075 }; 2076 module_platform_driver(stm32_fmc2_nfc_driver); 2077 2078 MODULE_ALIAS("platform:stm32_fmc2_nfc"); 2079 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); 2080 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver"); 2081 MODULE_LICENSE("GPL v2"); 2082