1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2018 4 * Author: Christophe Kerello <christophe.kerello@st.com> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/clk.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/errno.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/interrupt.h> 14 #include <linux/iopoll.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/module.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_address.h> 19 #include <linux/pinctrl/consumer.h> 20 #include <linux/platform_device.h> 21 #include <linux/regmap.h> 22 #include <linux/reset.h> 23 24 /* Bad block marker length */ 25 #define FMC2_BBM_LEN 2 26 27 /* ECC step size */ 28 #define FMC2_ECC_STEP_SIZE 512 29 30 /* BCHDSRx registers length */ 31 #define FMC2_BCHDSRS_LEN 20 32 33 /* HECCR length */ 34 #define FMC2_HECCR_LEN 4 35 36 /* Max requests done for a 8k nand page size */ 37 #define FMC2_MAX_SG 16 38 39 /* Max chip enable */ 40 #define FMC2_MAX_CE 2 41 42 /* Max ECC buffer length */ 43 #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) 44 45 #define FMC2_TIMEOUT_MS 5000 46 47 /* Timings */ 48 #define FMC2_THIZ 1 49 #define FMC2_TIO 8000 50 #define FMC2_TSYNC 3000 51 #define FMC2_PCR_TIMING_MASK 0xf 52 #define FMC2_PMEM_PATT_TIMING_MASK 0xff 53 54 /* FMC2 Controller Registers */ 55 #define FMC2_BCR1 0x0 56 #define FMC2_PCR 0x80 57 #define FMC2_SR 0x84 58 #define FMC2_PMEM 0x88 59 #define FMC2_PATT 0x8c 60 #define FMC2_HECCR 0x94 61 #define FMC2_ISR 0x184 62 #define FMC2_ICR 0x188 63 #define FMC2_CSQCR 0x200 64 #define FMC2_CSQCFGR1 0x204 65 #define FMC2_CSQCFGR2 0x208 66 #define FMC2_CSQCFGR3 0x20c 67 #define FMC2_CSQAR1 0x210 68 #define FMC2_CSQAR2 0x214 69 #define FMC2_CSQIER 0x220 70 #define FMC2_CSQISR 0x224 71 #define FMC2_CSQICR 0x228 72 #define FMC2_CSQEMSR 0x230 73 #define FMC2_BCHIER 0x250 74 #define FMC2_BCHISR 0x254 75 #define FMC2_BCHICR 0x258 76 #define FMC2_BCHPBR1 0x260 77 #define FMC2_BCHPBR2 0x264 78 #define FMC2_BCHPBR3 0x268 79 #define FMC2_BCHPBR4 0x26c 80 #define FMC2_BCHDSR0 0x27c 81 #define FMC2_BCHDSR1 0x280 82 #define FMC2_BCHDSR2 0x284 83 #define FMC2_BCHDSR3 0x288 84 #define FMC2_BCHDSR4 0x28c 85 86 /* Register: FMC2_BCR1 */ 87 #define FMC2_BCR1_FMC2EN BIT(31) 88 89 /* Register: FMC2_PCR */ 90 #define FMC2_PCR_PWAITEN BIT(1) 91 #define FMC2_PCR_PBKEN BIT(2) 92 #define FMC2_PCR_PWID GENMASK(5, 4) 93 #define FMC2_PCR_PWID_BUSWIDTH_8 0 94 #define FMC2_PCR_PWID_BUSWIDTH_16 1 95 #define FMC2_PCR_ECCEN BIT(6) 96 #define FMC2_PCR_ECCALG BIT(8) 97 #define FMC2_PCR_TCLR GENMASK(12, 9) 98 #define FMC2_PCR_TCLR_DEFAULT 0xf 99 #define FMC2_PCR_TAR GENMASK(16, 13) 100 #define FMC2_PCR_TAR_DEFAULT 0xf 101 #define FMC2_PCR_ECCSS GENMASK(19, 17) 102 #define FMC2_PCR_ECCSS_512 1 103 #define FMC2_PCR_ECCSS_2048 3 104 #define FMC2_PCR_BCHECC BIT(24) 105 #define FMC2_PCR_WEN BIT(25) 106 107 /* Register: FMC2_SR */ 108 #define FMC2_SR_NWRF BIT(6) 109 110 /* Register: FMC2_PMEM */ 111 #define FMC2_PMEM_MEMSET GENMASK(7, 0) 112 #define FMC2_PMEM_MEMWAIT GENMASK(15, 8) 113 #define FMC2_PMEM_MEMHOLD GENMASK(23, 16) 114 #define FMC2_PMEM_MEMHIZ GENMASK(31, 24) 115 #define FMC2_PMEM_DEFAULT 0x0a0a0a0a 116 117 /* Register: FMC2_PATT */ 118 #define FMC2_PATT_ATTSET GENMASK(7, 0) 119 #define FMC2_PATT_ATTWAIT GENMASK(15, 8) 120 #define FMC2_PATT_ATTHOLD GENMASK(23, 16) 121 #define FMC2_PATT_ATTHIZ GENMASK(31, 24) 122 #define FMC2_PATT_DEFAULT 0x0a0a0a0a 123 124 /* Register: FMC2_ISR */ 125 #define FMC2_ISR_IHLF BIT(1) 126 127 /* Register: FMC2_ICR */ 128 #define FMC2_ICR_CIHLF BIT(1) 129 130 /* Register: FMC2_CSQCR */ 131 #define FMC2_CSQCR_CSQSTART BIT(0) 132 133 /* Register: FMC2_CSQCFGR1 */ 134 #define FMC2_CSQCFGR1_CMD2EN BIT(1) 135 #define FMC2_CSQCFGR1_DMADEN BIT(2) 136 #define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4) 137 #define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8) 138 #define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16) 139 #define FMC2_CSQCFGR1_CMD1T BIT(24) 140 #define FMC2_CSQCFGR1_CMD2T BIT(25) 141 142 /* Register: FMC2_CSQCFGR2 */ 143 #define FMC2_CSQCFGR2_SQSDTEN BIT(0) 144 #define FMC2_CSQCFGR2_RCMD2EN BIT(1) 145 #define FMC2_CSQCFGR2_DMASEN BIT(2) 146 #define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8) 147 #define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16) 148 #define FMC2_CSQCFGR2_RCMD1T BIT(24) 149 #define FMC2_CSQCFGR2_RCMD2T BIT(25) 150 151 /* Register: FMC2_CSQCFGR3 */ 152 #define FMC2_CSQCFGR3_SNBR GENMASK(13, 8) 153 #define FMC2_CSQCFGR3_AC1T BIT(16) 154 #define FMC2_CSQCFGR3_AC2T BIT(17) 155 #define FMC2_CSQCFGR3_AC3T BIT(18) 156 #define FMC2_CSQCFGR3_AC4T BIT(19) 157 #define FMC2_CSQCFGR3_AC5T BIT(20) 158 #define FMC2_CSQCFGR3_SDT BIT(21) 159 #define FMC2_CSQCFGR3_RAC1T BIT(22) 160 #define FMC2_CSQCFGR3_RAC2T BIT(23) 161 162 /* Register: FMC2_CSQCAR1 */ 163 #define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0) 164 #define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8) 165 #define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16) 166 #define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24) 167 168 /* Register: FMC2_CSQCAR2 */ 169 #define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0) 170 #define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10) 171 #define FMC2_CSQCAR2_SAO GENMASK(31, 16) 172 173 /* Register: FMC2_CSQIER */ 174 #define FMC2_CSQIER_TCIE BIT(0) 175 176 /* Register: FMC2_CSQICR */ 177 #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) 178 179 /* Register: FMC2_CSQEMSR */ 180 #define FMC2_CSQEMSR_SEM GENMASK(15, 0) 181 182 /* Register: FMC2_BCHIER */ 183 #define FMC2_BCHIER_DERIE BIT(1) 184 #define FMC2_BCHIER_EPBRIE BIT(4) 185 186 /* Register: FMC2_BCHICR */ 187 #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) 188 189 /* Register: FMC2_BCHDSR0 */ 190 #define FMC2_BCHDSR0_DUE BIT(0) 191 #define FMC2_BCHDSR0_DEF BIT(1) 192 #define FMC2_BCHDSR0_DEN GENMASK(7, 4) 193 194 /* Register: FMC2_BCHDSR1 */ 195 #define FMC2_BCHDSR1_EBP1 GENMASK(12, 0) 196 #define FMC2_BCHDSR1_EBP2 GENMASK(28, 16) 197 198 /* Register: FMC2_BCHDSR2 */ 199 #define FMC2_BCHDSR2_EBP3 GENMASK(12, 0) 200 #define FMC2_BCHDSR2_EBP4 GENMASK(28, 16) 201 202 /* Register: FMC2_BCHDSR3 */ 203 #define FMC2_BCHDSR3_EBP5 GENMASK(12, 0) 204 #define FMC2_BCHDSR3_EBP6 GENMASK(28, 16) 205 206 /* Register: FMC2_BCHDSR4 */ 207 #define FMC2_BCHDSR4_EBP7 GENMASK(12, 0) 208 #define FMC2_BCHDSR4_EBP8 GENMASK(28, 16) 209 210 enum stm32_fmc2_ecc { 211 FMC2_ECC_HAM = 1, 212 FMC2_ECC_BCH4 = 4, 213 FMC2_ECC_BCH8 = 8 214 }; 215 216 enum stm32_fmc2_irq_state { 217 FMC2_IRQ_UNKNOWN = 0, 218 FMC2_IRQ_BCH, 219 FMC2_IRQ_SEQ 220 }; 221 222 struct stm32_fmc2_timings { 223 u8 tclr; 224 u8 tar; 225 u8 thiz; 226 u8 twait; 227 u8 thold_mem; 228 u8 tset_mem; 229 u8 thold_att; 230 u8 tset_att; 231 }; 232 233 struct stm32_fmc2_nand { 234 struct nand_chip chip; 235 struct gpio_desc *wp_gpio; 236 struct stm32_fmc2_timings timings; 237 int ncs; 238 int cs_used[FMC2_MAX_CE]; 239 }; 240 241 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) 242 { 243 return container_of(chip, struct stm32_fmc2_nand, chip); 244 } 245 246 struct stm32_fmc2_nfc { 247 struct nand_controller base; 248 struct stm32_fmc2_nand nand; 249 struct device *dev; 250 struct device *cdev; 251 struct regmap *regmap; 252 void __iomem *data_base[FMC2_MAX_CE]; 253 void __iomem *cmd_base[FMC2_MAX_CE]; 254 void __iomem *addr_base[FMC2_MAX_CE]; 255 phys_addr_t io_phys_addr; 256 phys_addr_t data_phys_addr[FMC2_MAX_CE]; 257 struct clk *clk; 258 u8 irq_state; 259 260 struct dma_chan *dma_tx_ch; 261 struct dma_chan *dma_rx_ch; 262 struct dma_chan *dma_ecc_ch; 263 struct sg_table dma_data_sg; 264 struct sg_table dma_ecc_sg; 265 u8 *ecc_buf; 266 int dma_ecc_len; 267 268 struct completion complete; 269 struct completion dma_data_complete; 270 struct completion dma_ecc_complete; 271 272 u8 cs_assigned; 273 int cs_sel; 274 }; 275 276 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) 277 { 278 return container_of(base, struct stm32_fmc2_nfc, base); 279 } 280 281 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip) 282 { 283 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 284 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 285 struct stm32_fmc2_timings *timings = &nand->timings; 286 u32 pmem, patt; 287 288 /* Set tclr/tar timings */ 289 regmap_update_bits(nfc->regmap, FMC2_PCR, 290 FMC2_PCR_TCLR | FMC2_PCR_TAR, 291 FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) | 292 FIELD_PREP(FMC2_PCR_TAR, timings->tar)); 293 294 /* Set tset/twait/thold/thiz timings in common bank */ 295 pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem); 296 pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait); 297 pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem); 298 pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz); 299 regmap_write(nfc->regmap, FMC2_PMEM, pmem); 300 301 /* Set tset/twait/thold/thiz timings in attribut bank */ 302 patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att); 303 patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait); 304 patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att); 305 patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz); 306 regmap_write(nfc->regmap, FMC2_PATT, patt); 307 } 308 309 static void stm32_fmc2_nfc_setup(struct nand_chip *chip) 310 { 311 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 312 u32 pcr = 0, pcr_mask; 313 314 /* Configure ECC algorithm (default configuration is Hamming) */ 315 pcr_mask = FMC2_PCR_ECCALG; 316 pcr_mask |= FMC2_PCR_BCHECC; 317 if (chip->ecc.strength == FMC2_ECC_BCH8) { 318 pcr |= FMC2_PCR_ECCALG; 319 pcr |= FMC2_PCR_BCHECC; 320 } else if (chip->ecc.strength == FMC2_ECC_BCH4) { 321 pcr |= FMC2_PCR_ECCALG; 322 } 323 324 /* Set buswidth */ 325 pcr_mask |= FMC2_PCR_PWID; 326 if (chip->options & NAND_BUSWIDTH_16) 327 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16); 328 329 /* Set ECC sector size */ 330 pcr_mask |= FMC2_PCR_ECCSS; 331 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512); 332 333 regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr); 334 } 335 336 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr) 337 { 338 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 339 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 340 struct dma_slave_config dma_cfg; 341 int ret; 342 343 if (nand->cs_used[chipnr] == nfc->cs_sel) 344 return 0; 345 346 nfc->cs_sel = nand->cs_used[chipnr]; 347 stm32_fmc2_nfc_setup(chip); 348 stm32_fmc2_nfc_timings_init(chip); 349 350 if (nfc->dma_tx_ch && nfc->dma_rx_ch) { 351 memset(&dma_cfg, 0, sizeof(dma_cfg)); 352 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel]; 353 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel]; 354 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 355 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 356 dma_cfg.src_maxburst = 32; 357 dma_cfg.dst_maxburst = 32; 358 359 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg); 360 if (ret) { 361 dev_err(nfc->dev, "tx DMA engine slave config failed\n"); 362 return ret; 363 } 364 365 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg); 366 if (ret) { 367 dev_err(nfc->dev, "rx DMA engine slave config failed\n"); 368 return ret; 369 } 370 } 371 372 if (nfc->dma_ecc_ch) { 373 /* 374 * Hamming: we read HECCR register 375 * BCH4/BCH8: we read BCHDSRSx registers 376 */ 377 memset(&dma_cfg, 0, sizeof(dma_cfg)); 378 dma_cfg.src_addr = nfc->io_phys_addr; 379 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? 380 FMC2_HECCR : FMC2_BCHDSR0; 381 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 382 383 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg); 384 if (ret) { 385 dev_err(nfc->dev, "ECC DMA engine slave config failed\n"); 386 return ret; 387 } 388 389 /* Calculate ECC length needed for one sector */ 390 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? 391 FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; 392 } 393 394 return 0; 395 } 396 397 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set) 398 { 399 u32 pcr; 400 401 pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) : 402 FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8); 403 404 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr); 405 } 406 407 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable) 408 { 409 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN, 410 enable ? FMC2_PCR_ECCEN : 0); 411 } 412 413 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc) 414 { 415 nfc->irq_state = FMC2_IRQ_SEQ; 416 417 regmap_update_bits(nfc->regmap, FMC2_CSQIER, 418 FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE); 419 } 420 421 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc) 422 { 423 regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0); 424 425 nfc->irq_state = FMC2_IRQ_UNKNOWN; 426 } 427 428 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc) 429 { 430 regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ); 431 } 432 433 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode) 434 { 435 nfc->irq_state = FMC2_IRQ_BCH; 436 437 if (mode == NAND_ECC_WRITE) 438 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 439 FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE); 440 else 441 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 442 FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE); 443 } 444 445 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc) 446 { 447 regmap_update_bits(nfc->regmap, FMC2_BCHIER, 448 FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0); 449 450 nfc->irq_state = FMC2_IRQ_UNKNOWN; 451 } 452 453 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc) 454 { 455 regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ); 456 } 457 458 /* 459 * Enable ECC logic and reset syndrome/parity bits previously calculated 460 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 461 */ 462 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode) 463 { 464 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 465 466 stm32_fmc2_nfc_set_ecc(nfc, false); 467 468 if (chip->ecc.strength != FMC2_ECC_HAM) { 469 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, 470 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0); 471 472 reinit_completion(&nfc->complete); 473 stm32_fmc2_nfc_clear_bch_irq(nfc); 474 stm32_fmc2_nfc_enable_bch_irq(nfc, mode); 475 } 476 477 stm32_fmc2_nfc_set_ecc(nfc, true); 478 } 479 480 /* 481 * ECC Hamming calculation 482 * ECC is 3 bytes for 512 bytes of data (supports error correction up to 483 * max of 1-bit) 484 */ 485 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc) 486 { 487 ecc[0] = ecc_sta; 488 ecc[1] = ecc_sta >> 8; 489 ecc[2] = ecc_sta >> 16; 490 } 491 492 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data, 493 u8 *ecc) 494 { 495 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 496 u32 sr, heccr; 497 int ret; 498 499 ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, 500 sr & FMC2_SR_NWRF, 1, 501 1000 * FMC2_TIMEOUT_MS); 502 if (ret) { 503 dev_err(nfc->dev, "ham timeout\n"); 504 return ret; 505 } 506 507 regmap_read(nfc->regmap, FMC2_HECCR, &heccr); 508 stm32_fmc2_nfc_ham_set_ecc(heccr, ecc); 509 stm32_fmc2_nfc_set_ecc(nfc, false); 510 511 return 0; 512 } 513 514 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat, 515 u8 *read_ecc, u8 *calc_ecc) 516 { 517 u8 bit_position = 0, b0, b1, b2; 518 u32 byte_addr = 0, b; 519 u32 i, shifting = 1; 520 521 /* Indicate which bit and byte is faulty (if any) */ 522 b0 = read_ecc[0] ^ calc_ecc[0]; 523 b1 = read_ecc[1] ^ calc_ecc[1]; 524 b2 = read_ecc[2] ^ calc_ecc[2]; 525 b = b0 | (b1 << 8) | (b2 << 16); 526 527 /* No errors */ 528 if (likely(!b)) 529 return 0; 530 531 /* Calculate bit position */ 532 for (i = 0; i < 3; i++) { 533 switch (b % 4) { 534 case 2: 535 bit_position += shifting; 536 break; 537 case 1: 538 break; 539 default: 540 return -EBADMSG; 541 } 542 shifting <<= 1; 543 b >>= 2; 544 } 545 546 /* Calculate byte position */ 547 shifting = 1; 548 for (i = 0; i < 9; i++) { 549 switch (b % 4) { 550 case 2: 551 byte_addr += shifting; 552 break; 553 case 1: 554 break; 555 default: 556 return -EBADMSG; 557 } 558 shifting <<= 1; 559 b >>= 2; 560 } 561 562 /* Flip the bit */ 563 dat[byte_addr] ^= (1 << bit_position); 564 565 return 1; 566 } 567 568 /* 569 * ECC BCH calculation and correction 570 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to 571 * max of 4-bit/8-bit) 572 */ 573 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data, 574 u8 *ecc) 575 { 576 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 577 u32 bchpbr; 578 579 /* Wait until the BCH code is ready */ 580 if (!wait_for_completion_timeout(&nfc->complete, 581 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 582 dev_err(nfc->dev, "bch timeout\n"); 583 stm32_fmc2_nfc_disable_bch_irq(nfc); 584 return -ETIMEDOUT; 585 } 586 587 /* Read parity bits */ 588 regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr); 589 ecc[0] = bchpbr; 590 ecc[1] = bchpbr >> 8; 591 ecc[2] = bchpbr >> 16; 592 ecc[3] = bchpbr >> 24; 593 594 regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr); 595 ecc[4] = bchpbr; 596 ecc[5] = bchpbr >> 8; 597 ecc[6] = bchpbr >> 16; 598 599 if (chip->ecc.strength == FMC2_ECC_BCH8) { 600 ecc[7] = bchpbr >> 24; 601 602 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr); 603 ecc[8] = bchpbr; 604 ecc[9] = bchpbr >> 8; 605 ecc[10] = bchpbr >> 16; 606 ecc[11] = bchpbr >> 24; 607 608 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr); 609 ecc[12] = bchpbr; 610 } 611 612 stm32_fmc2_nfc_set_ecc(nfc, false); 613 614 return 0; 615 } 616 617 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) 618 { 619 u32 bchdsr0 = ecc_sta[0]; 620 u32 bchdsr1 = ecc_sta[1]; 621 u32 bchdsr2 = ecc_sta[2]; 622 u32 bchdsr3 = ecc_sta[3]; 623 u32 bchdsr4 = ecc_sta[4]; 624 u16 pos[8]; 625 int i, den; 626 unsigned int nb_errs = 0; 627 628 /* No errors found */ 629 if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) 630 return 0; 631 632 /* Too many errors detected */ 633 if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) 634 return -EBADMSG; 635 636 pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1); 637 pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1); 638 pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2); 639 pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2); 640 pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3); 641 pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3); 642 pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4); 643 pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4); 644 645 den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0); 646 for (i = 0; i < den; i++) { 647 if (pos[i] < eccsize * 8) { 648 change_bit(pos[i], (unsigned long *)dat); 649 nb_errs++; 650 } 651 } 652 653 return nb_errs; 654 } 655 656 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat, 657 u8 *read_ecc, u8 *calc_ecc) 658 { 659 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 660 u32 ecc_sta[5]; 661 662 /* Wait until the decoding error is ready */ 663 if (!wait_for_completion_timeout(&nfc->complete, 664 msecs_to_jiffies(FMC2_TIMEOUT_MS))) { 665 dev_err(nfc->dev, "bch timeout\n"); 666 stm32_fmc2_nfc_disable_bch_irq(nfc); 667 return -ETIMEDOUT; 668 } 669 670 regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5); 671 672 stm32_fmc2_nfc_set_ecc(nfc, false); 673 674 return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta); 675 } 676 677 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf, 678 int oob_required, int page) 679 { 680 struct mtd_info *mtd = nand_to_mtd(chip); 681 int ret, i, s, stat, eccsize = chip->ecc.size; 682 int eccbytes = chip->ecc.bytes; 683 int eccsteps = chip->ecc.steps; 684 int eccstrength = chip->ecc.strength; 685 u8 *p = buf; 686 u8 *ecc_calc = chip->ecc.calc_buf; 687 u8 *ecc_code = chip->ecc.code_buf; 688 unsigned int max_bitflips = 0; 689 690 ret = nand_read_page_op(chip, page, 0, NULL, 0); 691 if (ret) 692 return ret; 693 694 for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; 695 s++, i += eccbytes, p += eccsize) { 696 chip->ecc.hwctl(chip, NAND_ECC_READ); 697 698 /* Read the nand page sector (512 bytes) */ 699 ret = nand_change_read_column_op(chip, s * eccsize, p, 700 eccsize, false); 701 if (ret) 702 return ret; 703 704 /* Read the corresponding ECC bytes */ 705 ret = nand_change_read_column_op(chip, i, ecc_code, 706 eccbytes, false); 707 if (ret) 708 return ret; 709 710 /* Correct the data */ 711 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); 712 if (stat == -EBADMSG) 713 /* Check for empty pages with bitflips */ 714 stat = nand_check_erased_ecc_chunk(p, eccsize, 715 ecc_code, eccbytes, 716 NULL, 0, 717 eccstrength); 718 719 if (stat < 0) { 720 mtd->ecc_stats.failed++; 721 } else { 722 mtd->ecc_stats.corrected += stat; 723 max_bitflips = max_t(unsigned int, max_bitflips, stat); 724 } 725 } 726 727 /* Read oob */ 728 if (oob_required) { 729 ret = nand_change_read_column_op(chip, mtd->writesize, 730 chip->oob_poi, mtd->oobsize, 731 false); 732 if (ret) 733 return ret; 734 } 735 736 return max_bitflips; 737 } 738 739 /* Sequencer read/write configuration */ 740 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page, 741 int raw, bool write_data) 742 { 743 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 744 struct mtd_info *mtd = nand_to_mtd(chip); 745 u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; 746 /* 747 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3 748 * cfg[3] => csqar1, cfg[4] => csqar2 749 */ 750 u32 cfg[5]; 751 752 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN, 753 write_data ? FMC2_PCR_WEN : 0); 754 755 /* 756 * - Set Program Page/Page Read command 757 * - Enable DMA request data 758 * - Set timings 759 */ 760 cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; 761 if (write_data) 762 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN); 763 else 764 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) | 765 FMC2_CSQCFGR1_CMD2EN | 766 FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) | 767 FMC2_CSQCFGR1_CMD2T; 768 769 /* 770 * - Set Random Data Input/Random Data Read command 771 * - Enable the sequencer to access the Spare data area 772 * - Enable DMA request status decoding for read 773 * - Set timings 774 */ 775 if (write_data) 776 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN); 777 else 778 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) | 779 FMC2_CSQCFGR2_RCMD2EN | 780 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) | 781 FMC2_CSQCFGR2_RCMD1T | 782 FMC2_CSQCFGR2_RCMD2T; 783 if (!raw) { 784 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; 785 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN; 786 } 787 788 /* 789 * - Set the number of sectors to be written 790 * - Set timings 791 */ 792 cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1); 793 if (write_data) { 794 cfg[2] |= FMC2_CSQCFGR3_RAC2T; 795 if (chip->options & NAND_ROW_ADDR_3) 796 cfg[2] |= FMC2_CSQCFGR3_AC5T; 797 else 798 cfg[2] |= FMC2_CSQCFGR3_AC4T; 799 } 800 801 /* 802 * Set the fourth first address cycles 803 * Byte 1 and byte 2 => column, we start at 0x0 804 * Byte 3 and byte 4 => page 805 */ 806 cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page); 807 cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8); 808 809 /* 810 * - Set chip enable number 811 * - Set ECC byte offset in the spare area 812 * - Calculate the number of address cycles to be issued 813 * - Set byte 5 of address cycle if needed 814 */ 815 cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel); 816 if (chip->options & NAND_BUSWIDTH_16) 817 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1); 818 else 819 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset); 820 if (chip->options & NAND_ROW_ADDR_3) { 821 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5); 822 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16); 823 } else { 824 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4); 825 } 826 827 regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5); 828 } 829 830 static void stm32_fmc2_nfc_dma_callback(void *arg) 831 { 832 complete((struct completion *)arg); 833 } 834 835 /* Read/write data from/to a page */ 836 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf, 837 int raw, bool write_data) 838 { 839 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 840 struct dma_async_tx_descriptor *desc_data, *desc_ecc; 841 struct scatterlist *sg; 842 struct dma_chan *dma_ch = nfc->dma_rx_ch; 843 enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; 844 enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; 845 int eccsteps = chip->ecc.steps; 846 int eccsize = chip->ecc.size; 847 unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS); 848 const u8 *p = buf; 849 int s, ret; 850 851 /* Configure DMA data */ 852 if (write_data) { 853 dma_data_dir = DMA_TO_DEVICE; 854 dma_transfer_dir = DMA_MEM_TO_DEV; 855 dma_ch = nfc->dma_tx_ch; 856 } 857 858 for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) { 859 sg_set_buf(sg, p, eccsize); 860 p += eccsize; 861 } 862 863 ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl, 864 eccsteps, dma_data_dir); 865 if (!ret) 866 return -EIO; 867 868 desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl, 869 eccsteps, dma_transfer_dir, 870 DMA_PREP_INTERRUPT); 871 if (!desc_data) { 872 ret = -ENOMEM; 873 goto err_unmap_data; 874 } 875 876 reinit_completion(&nfc->dma_data_complete); 877 reinit_completion(&nfc->complete); 878 desc_data->callback = stm32_fmc2_nfc_dma_callback; 879 desc_data->callback_param = &nfc->dma_data_complete; 880 ret = dma_submit_error(dmaengine_submit(desc_data)); 881 if (ret) 882 goto err_unmap_data; 883 884 dma_async_issue_pending(dma_ch); 885 886 if (!write_data && !raw) { 887 /* Configure DMA ECC status */ 888 p = nfc->ecc_buf; 889 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) { 890 sg_set_buf(sg, p, nfc->dma_ecc_len); 891 p += nfc->dma_ecc_len; 892 } 893 894 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl, 895 eccsteps, dma_data_dir); 896 if (!ret) { 897 ret = -EIO; 898 goto err_unmap_data; 899 } 900 901 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch, 902 nfc->dma_ecc_sg.sgl, 903 eccsteps, dma_transfer_dir, 904 DMA_PREP_INTERRUPT); 905 if (!desc_ecc) { 906 ret = -ENOMEM; 907 goto err_unmap_ecc; 908 } 909 910 reinit_completion(&nfc->dma_ecc_complete); 911 desc_ecc->callback = stm32_fmc2_nfc_dma_callback; 912 desc_ecc->callback_param = &nfc->dma_ecc_complete; 913 ret = dma_submit_error(dmaengine_submit(desc_ecc)); 914 if (ret) 915 goto err_unmap_ecc; 916 917 dma_async_issue_pending(nfc->dma_ecc_ch); 918 } 919 920 stm32_fmc2_nfc_clear_seq_irq(nfc); 921 stm32_fmc2_nfc_enable_seq_irq(nfc); 922 923 /* Start the transfer */ 924 regmap_update_bits(nfc->regmap, FMC2_CSQCR, 925 FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART); 926 927 /* Wait end of sequencer transfer */ 928 if (!wait_for_completion_timeout(&nfc->complete, timeout)) { 929 dev_err(nfc->dev, "seq timeout\n"); 930 stm32_fmc2_nfc_disable_seq_irq(nfc); 931 dmaengine_terminate_all(dma_ch); 932 if (!write_data && !raw) 933 dmaengine_terminate_all(nfc->dma_ecc_ch); 934 ret = -ETIMEDOUT; 935 goto err_unmap_ecc; 936 } 937 938 /* Wait DMA data transfer completion */ 939 if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) { 940 dev_err(nfc->dev, "data DMA timeout\n"); 941 dmaengine_terminate_all(dma_ch); 942 ret = -ETIMEDOUT; 943 } 944 945 /* Wait DMA ECC transfer completion */ 946 if (!write_data && !raw) { 947 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete, 948 timeout)) { 949 dev_err(nfc->dev, "ECC DMA timeout\n"); 950 dmaengine_terminate_all(nfc->dma_ecc_ch); 951 ret = -ETIMEDOUT; 952 } 953 } 954 955 err_unmap_ecc: 956 if (!write_data && !raw) 957 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl, 958 eccsteps, dma_data_dir); 959 960 err_unmap_data: 961 dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir); 962 963 return ret; 964 } 965 966 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf, 967 int oob_required, int page, int raw) 968 { 969 struct mtd_info *mtd = nand_to_mtd(chip); 970 int ret; 971 972 /* Configure the sequencer */ 973 stm32_fmc2_nfc_rw_page_init(chip, page, raw, true); 974 975 /* Write the page */ 976 ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true); 977 if (ret) 978 return ret; 979 980 /* Write oob */ 981 if (oob_required) { 982 ret = nand_change_write_column_op(chip, mtd->writesize, 983 chip->oob_poi, mtd->oobsize, 984 false); 985 if (ret) 986 return ret; 987 } 988 989 return nand_prog_page_end_op(chip); 990 } 991 992 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf, 993 int oob_required, int page) 994 { 995 int ret; 996 997 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 998 if (ret) 999 return ret; 1000 1001 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false); 1002 } 1003 1004 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip, 1005 const u8 *buf, int oob_required, 1006 int page) 1007 { 1008 int ret; 1009 1010 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1011 if (ret) 1012 return ret; 1013 1014 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true); 1015 } 1016 1017 /* Get a status indicating which sectors have errors */ 1018 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc) 1019 { 1020 u32 csqemsr; 1021 1022 regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr); 1023 1024 return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr); 1025 } 1026 1027 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat, 1028 u8 *read_ecc, u8 *calc_ecc) 1029 { 1030 struct mtd_info *mtd = nand_to_mtd(chip); 1031 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1032 int eccbytes = chip->ecc.bytes; 1033 int eccsteps = chip->ecc.steps; 1034 int eccstrength = chip->ecc.strength; 1035 int i, s, eccsize = chip->ecc.size; 1036 u32 *ecc_sta = (u32 *)nfc->ecc_buf; 1037 u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); 1038 unsigned int max_bitflips = 0; 1039 1040 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { 1041 int stat = 0; 1042 1043 if (eccstrength == FMC2_ECC_HAM) { 1044 /* Ecc_sta = FMC2_HECCR */ 1045 if (sta_map & BIT(s)) { 1046 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta, 1047 &calc_ecc[i]); 1048 stat = stm32_fmc2_nfc_ham_correct(chip, dat, 1049 &read_ecc[i], 1050 &calc_ecc[i]); 1051 } 1052 ecc_sta++; 1053 } else { 1054 /* 1055 * Ecc_sta[0] = FMC2_BCHDSR0 1056 * Ecc_sta[1] = FMC2_BCHDSR1 1057 * Ecc_sta[2] = FMC2_BCHDSR2 1058 * Ecc_sta[3] = FMC2_BCHDSR3 1059 * Ecc_sta[4] = FMC2_BCHDSR4 1060 */ 1061 if (sta_map & BIT(s)) 1062 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat, 1063 ecc_sta); 1064 ecc_sta += 5; 1065 } 1066 1067 if (stat == -EBADMSG) 1068 /* Check for empty pages with bitflips */ 1069 stat = nand_check_erased_ecc_chunk(dat, eccsize, 1070 &read_ecc[i], 1071 eccbytes, 1072 NULL, 0, 1073 eccstrength); 1074 1075 if (stat < 0) { 1076 mtd->ecc_stats.failed++; 1077 } else { 1078 mtd->ecc_stats.corrected += stat; 1079 max_bitflips = max_t(unsigned int, max_bitflips, stat); 1080 } 1081 } 1082 1083 return max_bitflips; 1084 } 1085 1086 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf, 1087 int oob_required, int page) 1088 { 1089 struct mtd_info *mtd = nand_to_mtd(chip); 1090 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1091 u8 *ecc_calc = chip->ecc.calc_buf; 1092 u8 *ecc_code = chip->ecc.code_buf; 1093 u16 sta_map; 1094 int ret; 1095 1096 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1097 if (ret) 1098 return ret; 1099 1100 /* Configure the sequencer */ 1101 stm32_fmc2_nfc_rw_page_init(chip, page, 0, false); 1102 1103 /* Read the page */ 1104 ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false); 1105 if (ret) 1106 return ret; 1107 1108 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc); 1109 1110 /* Check if errors happen */ 1111 if (likely(!sta_map)) { 1112 if (oob_required) 1113 return nand_change_read_column_op(chip, mtd->writesize, 1114 chip->oob_poi, 1115 mtd->oobsize, false); 1116 1117 return 0; 1118 } 1119 1120 /* Read oob */ 1121 ret = nand_change_read_column_op(chip, mtd->writesize, 1122 chip->oob_poi, mtd->oobsize, false); 1123 if (ret) 1124 return ret; 1125 1126 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 1127 chip->ecc.total); 1128 if (ret) 1129 return ret; 1130 1131 /* Correct data */ 1132 return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); 1133 } 1134 1135 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf, 1136 int oob_required, int page) 1137 { 1138 struct mtd_info *mtd = nand_to_mtd(chip); 1139 int ret; 1140 1141 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs); 1142 if (ret) 1143 return ret; 1144 1145 /* Configure the sequencer */ 1146 stm32_fmc2_nfc_rw_page_init(chip, page, 1, false); 1147 1148 /* Read the page */ 1149 ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false); 1150 if (ret) 1151 return ret; 1152 1153 /* Read oob */ 1154 if (oob_required) 1155 return nand_change_read_column_op(chip, mtd->writesize, 1156 chip->oob_poi, mtd->oobsize, 1157 false); 1158 1159 return 0; 1160 } 1161 1162 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id) 1163 { 1164 struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id; 1165 1166 if (nfc->irq_state == FMC2_IRQ_SEQ) 1167 /* Sequencer is used */ 1168 stm32_fmc2_nfc_disable_seq_irq(nfc); 1169 else if (nfc->irq_state == FMC2_IRQ_BCH) 1170 /* BCH is used */ 1171 stm32_fmc2_nfc_disable_bch_irq(nfc); 1172 1173 complete(&nfc->complete); 1174 1175 return IRQ_HANDLED; 1176 } 1177 1178 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf, 1179 unsigned int len, bool force_8bit) 1180 { 1181 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1182 void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel]; 1183 1184 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1185 /* Reconfigure bus width to 8-bit */ 1186 stm32_fmc2_nfc_set_buswidth_16(nfc, false); 1187 1188 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1189 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1190 *(u8 *)buf = readb_relaxed(io_addr_r); 1191 buf += sizeof(u8); 1192 len -= sizeof(u8); 1193 } 1194 1195 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1196 len >= sizeof(u16)) { 1197 *(u16 *)buf = readw_relaxed(io_addr_r); 1198 buf += sizeof(u16); 1199 len -= sizeof(u16); 1200 } 1201 } 1202 1203 /* Buf is aligned */ 1204 while (len >= sizeof(u32)) { 1205 *(u32 *)buf = readl_relaxed(io_addr_r); 1206 buf += sizeof(u32); 1207 len -= sizeof(u32); 1208 } 1209 1210 /* Read remaining bytes */ 1211 if (len >= sizeof(u16)) { 1212 *(u16 *)buf = readw_relaxed(io_addr_r); 1213 buf += sizeof(u16); 1214 len -= sizeof(u16); 1215 } 1216 1217 if (len) 1218 *(u8 *)buf = readb_relaxed(io_addr_r); 1219 1220 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1221 /* Reconfigure bus width to 16-bit */ 1222 stm32_fmc2_nfc_set_buswidth_16(nfc, true); 1223 } 1224 1225 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf, 1226 unsigned int len, bool force_8bit) 1227 { 1228 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1229 void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel]; 1230 1231 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1232 /* Reconfigure bus width to 8-bit */ 1233 stm32_fmc2_nfc_set_buswidth_16(nfc, false); 1234 1235 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { 1236 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { 1237 writeb_relaxed(*(u8 *)buf, io_addr_w); 1238 buf += sizeof(u8); 1239 len -= sizeof(u8); 1240 } 1241 1242 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 1243 len >= sizeof(u16)) { 1244 writew_relaxed(*(u16 *)buf, io_addr_w); 1245 buf += sizeof(u16); 1246 len -= sizeof(u16); 1247 } 1248 } 1249 1250 /* Buf is aligned */ 1251 while (len >= sizeof(u32)) { 1252 writel_relaxed(*(u32 *)buf, io_addr_w); 1253 buf += sizeof(u32); 1254 len -= sizeof(u32); 1255 } 1256 1257 /* Write remaining bytes */ 1258 if (len >= sizeof(u16)) { 1259 writew_relaxed(*(u16 *)buf, io_addr_w); 1260 buf += sizeof(u16); 1261 len -= sizeof(u16); 1262 } 1263 1264 if (len) 1265 writeb_relaxed(*(u8 *)buf, io_addr_w); 1266 1267 if (force_8bit && chip->options & NAND_BUSWIDTH_16) 1268 /* Reconfigure bus width to 16-bit */ 1269 stm32_fmc2_nfc_set_buswidth_16(nfc, true); 1270 } 1271 1272 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip, 1273 unsigned long timeout_ms) 1274 { 1275 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1276 const struct nand_sdr_timings *timings; 1277 u32 isr, sr; 1278 1279 /* Check if there is no pending requests to the NAND flash */ 1280 if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr, 1281 sr & FMC2_SR_NWRF, 1, 1282 1000 * FMC2_TIMEOUT_MS)) 1283 dev_warn(nfc->dev, "Waitrdy timeout\n"); 1284 1285 /* Wait tWB before R/B# signal is low */ 1286 timings = nand_get_sdr_timings(nand_get_interface_config(chip)); 1287 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 1288 1289 /* R/B# signal is low, clear high level flag */ 1290 regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF); 1291 1292 /* Wait R/B# signal is high */ 1293 return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr, 1294 isr & FMC2_ISR_IHLF, 5, 1295 1000 * FMC2_TIMEOUT_MS); 1296 } 1297 1298 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip, 1299 const struct nand_operation *op, 1300 bool check_only) 1301 { 1302 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1303 const struct nand_op_instr *instr = NULL; 1304 unsigned int op_id, i, timeout; 1305 int ret; 1306 1307 if (check_only) 1308 return 0; 1309 1310 ret = stm32_fmc2_nfc_select_chip(chip, op->cs); 1311 if (ret) 1312 return ret; 1313 1314 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1315 instr = &op->instrs[op_id]; 1316 1317 switch (instr->type) { 1318 case NAND_OP_CMD_INSTR: 1319 writeb_relaxed(instr->ctx.cmd.opcode, 1320 nfc->cmd_base[nfc->cs_sel]); 1321 break; 1322 1323 case NAND_OP_ADDR_INSTR: 1324 for (i = 0; i < instr->ctx.addr.naddrs; i++) 1325 writeb_relaxed(instr->ctx.addr.addrs[i], 1326 nfc->addr_base[nfc->cs_sel]); 1327 break; 1328 1329 case NAND_OP_DATA_IN_INSTR: 1330 stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in, 1331 instr->ctx.data.len, 1332 instr->ctx.data.force_8bit); 1333 break; 1334 1335 case NAND_OP_DATA_OUT_INSTR: 1336 stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out, 1337 instr->ctx.data.len, 1338 instr->ctx.data.force_8bit); 1339 break; 1340 1341 case NAND_OP_WAITRDY_INSTR: 1342 timeout = instr->ctx.waitrdy.timeout_ms; 1343 ret = stm32_fmc2_nfc_waitrdy(chip, timeout); 1344 break; 1345 } 1346 } 1347 1348 return ret; 1349 } 1350 1351 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc) 1352 { 1353 u32 pcr; 1354 1355 regmap_read(nfc->regmap, FMC2_PCR, &pcr); 1356 1357 /* Set CS used to undefined */ 1358 nfc->cs_sel = -1; 1359 1360 /* Enable wait feature and nand flash memory bank */ 1361 pcr |= FMC2_PCR_PWAITEN; 1362 pcr |= FMC2_PCR_PBKEN; 1363 1364 /* Set buswidth to 8 bits mode for identification */ 1365 pcr &= ~FMC2_PCR_PWID; 1366 1367 /* ECC logic is disabled */ 1368 pcr &= ~FMC2_PCR_ECCEN; 1369 1370 /* Default mode */ 1371 pcr &= ~FMC2_PCR_ECCALG; 1372 pcr &= ~FMC2_PCR_BCHECC; 1373 pcr &= ~FMC2_PCR_WEN; 1374 1375 /* Set default ECC sector size */ 1376 pcr &= ~FMC2_PCR_ECCSS; 1377 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048); 1378 1379 /* Set default tclr/tar timings */ 1380 pcr &= ~FMC2_PCR_TCLR; 1381 pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT); 1382 pcr &= ~FMC2_PCR_TAR; 1383 pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT); 1384 1385 /* Enable FMC2 controller */ 1386 if (nfc->dev == nfc->cdev) 1387 regmap_update_bits(nfc->regmap, FMC2_BCR1, 1388 FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN); 1389 1390 regmap_write(nfc->regmap, FMC2_PCR, pcr); 1391 regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT); 1392 regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT); 1393 } 1394 1395 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip, 1396 const struct nand_sdr_timings *sdrt) 1397 { 1398 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1399 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); 1400 struct stm32_fmc2_timings *tims = &nand->timings; 1401 unsigned long hclk = clk_get_rate(nfc->clk); 1402 unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); 1403 unsigned long timing, tar, tclr, thiz, twait; 1404 unsigned long tset_mem, tset_att, thold_mem, thold_att; 1405 1406 tar = max_t(unsigned long, hclkp, sdrt->tAR_min); 1407 timing = DIV_ROUND_UP(tar, hclkp) - 1; 1408 tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1409 1410 tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); 1411 timing = DIV_ROUND_UP(tclr, hclkp) - 1; 1412 tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); 1413 1414 tims->thiz = FMC2_THIZ; 1415 thiz = (tims->thiz + 1) * hclkp; 1416 1417 /* 1418 * tWAIT > tRP 1419 * tWAIT > tWP 1420 * tWAIT > tREA + tIO 1421 */ 1422 twait = max_t(unsigned long, hclkp, sdrt->tRP_min); 1423 twait = max_t(unsigned long, twait, sdrt->tWP_min); 1424 twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); 1425 timing = DIV_ROUND_UP(twait, hclkp); 1426 tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1427 1428 /* 1429 * tSETUP_MEM > tCS - tWAIT 1430 * tSETUP_MEM > tALS - tWAIT 1431 * tSETUP_MEM > tDS - (tWAIT - tHIZ) 1432 */ 1433 tset_mem = hclkp; 1434 if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) 1435 tset_mem = sdrt->tCS_min - twait; 1436 if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) 1437 tset_mem = sdrt->tALS_min - twait; 1438 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1439 (tset_mem < sdrt->tDS_min - (twait - thiz))) 1440 tset_mem = sdrt->tDS_min - (twait - thiz); 1441 timing = DIV_ROUND_UP(tset_mem, hclkp); 1442 tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1443 1444 /* 1445 * tHOLD_MEM > tCH 1446 * tHOLD_MEM > tREH - tSETUP_MEM 1447 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) 1448 */ 1449 thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); 1450 if (sdrt->tREH_min > tset_mem && 1451 (thold_mem < sdrt->tREH_min - tset_mem)) 1452 thold_mem = sdrt->tREH_min - tset_mem; 1453 if ((sdrt->tRC_min > tset_mem + twait) && 1454 (thold_mem < sdrt->tRC_min - (tset_mem + twait))) 1455 thold_mem = sdrt->tRC_min - (tset_mem + twait); 1456 if ((sdrt->tWC_min > tset_mem + twait) && 1457 (thold_mem < sdrt->tWC_min - (tset_mem + twait))) 1458 thold_mem = sdrt->tWC_min - (tset_mem + twait); 1459 timing = DIV_ROUND_UP(thold_mem, hclkp); 1460 tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1461 1462 /* 1463 * tSETUP_ATT > tCS - tWAIT 1464 * tSETUP_ATT > tCLS - tWAIT 1465 * tSETUP_ATT > tALS - tWAIT 1466 * tSETUP_ATT > tRHW - tHOLD_MEM 1467 * tSETUP_ATT > tDS - (tWAIT - tHIZ) 1468 */ 1469 tset_att = hclkp; 1470 if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) 1471 tset_att = sdrt->tCS_min - twait; 1472 if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) 1473 tset_att = sdrt->tCLS_min - twait; 1474 if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) 1475 tset_att = sdrt->tALS_min - twait; 1476 if (sdrt->tRHW_min > thold_mem && 1477 (tset_att < sdrt->tRHW_min - thold_mem)) 1478 tset_att = sdrt->tRHW_min - thold_mem; 1479 if (twait > thiz && (sdrt->tDS_min > twait - thiz) && 1480 (tset_att < sdrt->tDS_min - (twait - thiz))) 1481 tset_att = sdrt->tDS_min - (twait - thiz); 1482 timing = DIV_ROUND_UP(tset_att, hclkp); 1483 tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1484 1485 /* 1486 * tHOLD_ATT > tALH 1487 * tHOLD_ATT > tCH 1488 * tHOLD_ATT > tCLH 1489 * tHOLD_ATT > tCOH 1490 * tHOLD_ATT > tDH 1491 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM 1492 * tHOLD_ATT > tADL - tSETUP_MEM 1493 * tHOLD_ATT > tWH - tSETUP_MEM 1494 * tHOLD_ATT > tWHR - tSETUP_MEM 1495 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) 1496 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) 1497 */ 1498 thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); 1499 thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); 1500 thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); 1501 thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); 1502 thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); 1503 if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && 1504 (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) 1505 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; 1506 if (sdrt->tADL_min > tset_mem && 1507 (thold_att < sdrt->tADL_min - tset_mem)) 1508 thold_att = sdrt->tADL_min - tset_mem; 1509 if (sdrt->tWH_min > tset_mem && 1510 (thold_att < sdrt->tWH_min - tset_mem)) 1511 thold_att = sdrt->tWH_min - tset_mem; 1512 if (sdrt->tWHR_min > tset_mem && 1513 (thold_att < sdrt->tWHR_min - tset_mem)) 1514 thold_att = sdrt->tWHR_min - tset_mem; 1515 if ((sdrt->tRC_min > tset_att + twait) && 1516 (thold_att < sdrt->tRC_min - (tset_att + twait))) 1517 thold_att = sdrt->tRC_min - (tset_att + twait); 1518 if ((sdrt->tWC_min > tset_att + twait) && 1519 (thold_att < sdrt->tWC_min - (tset_att + twait))) 1520 thold_att = sdrt->tWC_min - (tset_att + twait); 1521 timing = DIV_ROUND_UP(thold_att, hclkp); 1522 tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); 1523 } 1524 1525 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr, 1526 const struct nand_interface_config *conf) 1527 { 1528 const struct nand_sdr_timings *sdrt; 1529 1530 sdrt = nand_get_sdr_timings(conf); 1531 if (IS_ERR(sdrt)) 1532 return PTR_ERR(sdrt); 1533 1534 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) 1535 return 0; 1536 1537 stm32_fmc2_nfc_calc_timings(chip, sdrt); 1538 stm32_fmc2_nfc_timings_init(chip); 1539 1540 return 0; 1541 } 1542 1543 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc) 1544 { 1545 int ret = 0; 1546 1547 nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx"); 1548 if (IS_ERR(nfc->dma_tx_ch)) { 1549 ret = PTR_ERR(nfc->dma_tx_ch); 1550 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1551 dev_err(nfc->dev, 1552 "failed to request tx DMA channel: %d\n", ret); 1553 nfc->dma_tx_ch = NULL; 1554 goto err_dma; 1555 } 1556 1557 nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx"); 1558 if (IS_ERR(nfc->dma_rx_ch)) { 1559 ret = PTR_ERR(nfc->dma_rx_ch); 1560 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1561 dev_err(nfc->dev, 1562 "failed to request rx DMA channel: %d\n", ret); 1563 nfc->dma_rx_ch = NULL; 1564 goto err_dma; 1565 } 1566 1567 nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc"); 1568 if (IS_ERR(nfc->dma_ecc_ch)) { 1569 ret = PTR_ERR(nfc->dma_ecc_ch); 1570 if (ret != -ENODEV && ret != -EPROBE_DEFER) 1571 dev_err(nfc->dev, 1572 "failed to request ecc DMA channel: %d\n", ret); 1573 nfc->dma_ecc_ch = NULL; 1574 goto err_dma; 1575 } 1576 1577 ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); 1578 if (ret) 1579 return ret; 1580 1581 /* Allocate a buffer to store ECC status registers */ 1582 nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL); 1583 if (!nfc->ecc_buf) 1584 return -ENOMEM; 1585 1586 ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); 1587 if (ret) 1588 return ret; 1589 1590 init_completion(&nfc->dma_data_complete); 1591 init_completion(&nfc->dma_ecc_complete); 1592 1593 return 0; 1594 1595 err_dma: 1596 if (ret == -ENODEV) { 1597 dev_warn(nfc->dev, 1598 "DMAs not defined in the DT, polling mode is used\n"); 1599 ret = 0; 1600 } 1601 1602 return ret; 1603 } 1604 1605 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip) 1606 { 1607 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1608 1609 /* 1610 * Specific callbacks to read/write a page depending on 1611 * the mode (polling/sequencer) and the algo used (Hamming, BCH). 1612 */ 1613 if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) { 1614 /* DMA => use sequencer mode callbacks */ 1615 chip->ecc.correct = stm32_fmc2_nfc_seq_correct; 1616 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page; 1617 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page; 1618 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw; 1619 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw; 1620 } else { 1621 /* No DMA => use polling mode callbacks */ 1622 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl; 1623 if (chip->ecc.strength == FMC2_ECC_HAM) { 1624 /* Hamming is used */ 1625 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate; 1626 chip->ecc.correct = stm32_fmc2_nfc_ham_correct; 1627 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; 1628 } else { 1629 /* BCH is used */ 1630 chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate; 1631 chip->ecc.correct = stm32_fmc2_nfc_bch_correct; 1632 chip->ecc.read_page = stm32_fmc2_nfc_read_page; 1633 } 1634 } 1635 1636 /* Specific configurations depending on the algo used */ 1637 if (chip->ecc.strength == FMC2_ECC_HAM) 1638 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; 1639 else if (chip->ecc.strength == FMC2_ECC_BCH8) 1640 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; 1641 else 1642 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; 1643 } 1644 1645 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 1646 struct mtd_oob_region *oobregion) 1647 { 1648 struct nand_chip *chip = mtd_to_nand(mtd); 1649 struct nand_ecc_ctrl *ecc = &chip->ecc; 1650 1651 if (section) 1652 return -ERANGE; 1653 1654 oobregion->length = ecc->total; 1655 oobregion->offset = FMC2_BBM_LEN; 1656 1657 return 0; 1658 } 1659 1660 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section, 1661 struct mtd_oob_region *oobregion) 1662 { 1663 struct nand_chip *chip = mtd_to_nand(mtd); 1664 struct nand_ecc_ctrl *ecc = &chip->ecc; 1665 1666 if (section) 1667 return -ERANGE; 1668 1669 oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; 1670 oobregion->offset = ecc->total + FMC2_BBM_LEN; 1671 1672 return 0; 1673 } 1674 1675 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = { 1676 .ecc = stm32_fmc2_nfc_ooblayout_ecc, 1677 .free = stm32_fmc2_nfc_ooblayout_free, 1678 }; 1679 1680 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength) 1681 { 1682 /* Hamming */ 1683 if (strength == FMC2_ECC_HAM) 1684 return 4; 1685 1686 /* BCH8 */ 1687 if (strength == FMC2_ECC_BCH8) 1688 return 14; 1689 1690 /* BCH4 */ 1691 return 8; 1692 } 1693 1694 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes, 1695 FMC2_ECC_STEP_SIZE, 1696 FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); 1697 1698 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip) 1699 { 1700 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); 1701 struct mtd_info *mtd = nand_to_mtd(chip); 1702 int ret; 1703 1704 /* 1705 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported 1706 * Hamming => ecc.strength = 1 1707 * BCH4 => ecc.strength = 4 1708 * BCH8 => ecc.strength = 8 1709 * ECC sector size = 512 1710 */ 1711 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { 1712 dev_err(nfc->dev, 1713 "nand_ecc_engine_type is not well defined in the DT\n"); 1714 return -EINVAL; 1715 } 1716 1717 /* Default ECC settings in case they are not set in the device tree */ 1718 if (!chip->ecc.size) 1719 chip->ecc.size = FMC2_ECC_STEP_SIZE; 1720 1721 if (!chip->ecc.strength) 1722 chip->ecc.strength = FMC2_ECC_BCH8; 1723 1724 ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps, 1725 mtd->oobsize - FMC2_BBM_LEN); 1726 if (ret) { 1727 dev_err(nfc->dev, "no valid ECC settings set\n"); 1728 return ret; 1729 } 1730 1731 if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { 1732 dev_err(nfc->dev, "nand page size is not supported\n"); 1733 return -EINVAL; 1734 } 1735 1736 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1737 chip->bbt_options |= NAND_BBT_NO_OOB; 1738 1739 stm32_fmc2_nfc_nand_callbacks_setup(chip); 1740 1741 mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops); 1742 1743 stm32_fmc2_nfc_setup(chip); 1744 1745 return 0; 1746 } 1747 1748 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = { 1749 .attach_chip = stm32_fmc2_nfc_attach_chip, 1750 .exec_op = stm32_fmc2_nfc_exec_op, 1751 .setup_interface = stm32_fmc2_nfc_setup_interface, 1752 }; 1753 1754 static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand) 1755 { 1756 if (nand->wp_gpio) 1757 gpiod_set_value(nand->wp_gpio, 1); 1758 } 1759 1760 static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand) 1761 { 1762 if (nand->wp_gpio) 1763 gpiod_set_value(nand->wp_gpio, 0); 1764 } 1765 1766 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, 1767 struct device_node *dn) 1768 { 1769 struct stm32_fmc2_nand *nand = &nfc->nand; 1770 u32 cs; 1771 int ret, i; 1772 1773 if (!of_get_property(dn, "reg", &nand->ncs)) 1774 return -EINVAL; 1775 1776 nand->ncs /= sizeof(u32); 1777 if (!nand->ncs) { 1778 dev_err(nfc->dev, "invalid reg property size\n"); 1779 return -EINVAL; 1780 } 1781 1782 for (i = 0; i < nand->ncs; i++) { 1783 ret = of_property_read_u32_index(dn, "reg", i, &cs); 1784 if (ret) { 1785 dev_err(nfc->dev, "could not retrieve reg property: %d\n", 1786 ret); 1787 return ret; 1788 } 1789 1790 if (cs >= FMC2_MAX_CE) { 1791 dev_err(nfc->dev, "invalid reg value: %d\n", cs); 1792 return -EINVAL; 1793 } 1794 1795 if (nfc->cs_assigned & BIT(cs)) { 1796 dev_err(nfc->dev, "cs already assigned: %d\n", cs); 1797 return -EINVAL; 1798 } 1799 1800 nfc->cs_assigned |= BIT(cs); 1801 nand->cs_used[i] = cs; 1802 } 1803 1804 nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn), 1805 "wp", GPIOD_OUT_HIGH, "wp"); 1806 if (IS_ERR(nand->wp_gpio)) { 1807 ret = PTR_ERR(nand->wp_gpio); 1808 if (ret != -ENOENT) 1809 return dev_err_probe(nfc->dev, ret, 1810 "failed to request WP GPIO\n"); 1811 1812 nand->wp_gpio = NULL; 1813 } 1814 1815 nand_set_flash_node(&nand->chip, dn); 1816 1817 return 0; 1818 } 1819 1820 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc) 1821 { 1822 struct device_node *dn = nfc->dev->of_node; 1823 struct device_node *child; 1824 int nchips = of_get_child_count(dn); 1825 int ret = 0; 1826 1827 if (!nchips) { 1828 dev_err(nfc->dev, "NAND chip not defined\n"); 1829 return -EINVAL; 1830 } 1831 1832 if (nchips > 1) { 1833 dev_err(nfc->dev, "too many NAND chips defined\n"); 1834 return -EINVAL; 1835 } 1836 1837 for_each_child_of_node(dn, child) { 1838 ret = stm32_fmc2_nfc_parse_child(nfc, child); 1839 if (ret < 0) { 1840 of_node_put(child); 1841 return ret; 1842 } 1843 } 1844 1845 return ret; 1846 } 1847 1848 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc) 1849 { 1850 struct device *dev = nfc->dev; 1851 bool ebi_found = false; 1852 1853 if (dev->parent && of_device_is_compatible(dev->parent->of_node, 1854 "st,stm32mp1-fmc2-ebi")) 1855 ebi_found = true; 1856 1857 if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) { 1858 if (ebi_found) { 1859 nfc->cdev = dev->parent; 1860 1861 return 0; 1862 } 1863 1864 return -EINVAL; 1865 } 1866 1867 if (ebi_found) 1868 return -EINVAL; 1869 1870 nfc->cdev = dev; 1871 1872 return 0; 1873 } 1874 1875 static int stm32_fmc2_nfc_probe(struct platform_device *pdev) 1876 { 1877 struct device *dev = &pdev->dev; 1878 struct reset_control *rstc; 1879 struct stm32_fmc2_nfc *nfc; 1880 struct stm32_fmc2_nand *nand; 1881 struct resource *res; 1882 struct mtd_info *mtd; 1883 struct nand_chip *chip; 1884 struct resource cres; 1885 int chip_cs, mem_region, ret, irq; 1886 int start_region = 0; 1887 1888 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1889 if (!nfc) 1890 return -ENOMEM; 1891 1892 nfc->dev = dev; 1893 nand_controller_init(&nfc->base); 1894 nfc->base.ops = &stm32_fmc2_nfc_controller_ops; 1895 1896 ret = stm32_fmc2_nfc_set_cdev(nfc); 1897 if (ret) 1898 return ret; 1899 1900 ret = stm32_fmc2_nfc_parse_dt(nfc); 1901 if (ret) 1902 return ret; 1903 1904 ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres); 1905 if (ret) 1906 return ret; 1907 1908 nfc->io_phys_addr = cres.start; 1909 1910 nfc->regmap = device_node_to_regmap(nfc->cdev->of_node); 1911 if (IS_ERR(nfc->regmap)) 1912 return PTR_ERR(nfc->regmap); 1913 1914 if (nfc->dev == nfc->cdev) 1915 start_region = 1; 1916 1917 for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE; 1918 chip_cs++, mem_region += 3) { 1919 if (!(nfc->cs_assigned & BIT(chip_cs))) 1920 continue; 1921 1922 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); 1923 nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res); 1924 if (IS_ERR(nfc->data_base[chip_cs])) 1925 return PTR_ERR(nfc->data_base[chip_cs]); 1926 1927 nfc->data_phys_addr[chip_cs] = res->start; 1928 1929 nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1); 1930 if (IS_ERR(nfc->cmd_base[chip_cs])) 1931 return PTR_ERR(nfc->cmd_base[chip_cs]); 1932 1933 nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2); 1934 if (IS_ERR(nfc->addr_base[chip_cs])) 1935 return PTR_ERR(nfc->addr_base[chip_cs]); 1936 } 1937 1938 irq = platform_get_irq(pdev, 0); 1939 if (irq < 0) 1940 return irq; 1941 1942 ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0, 1943 dev_name(dev), nfc); 1944 if (ret) { 1945 dev_err(dev, "failed to request irq\n"); 1946 return ret; 1947 } 1948 1949 init_completion(&nfc->complete); 1950 1951 nfc->clk = devm_clk_get(nfc->cdev, NULL); 1952 if (IS_ERR(nfc->clk)) 1953 return PTR_ERR(nfc->clk); 1954 1955 ret = clk_prepare_enable(nfc->clk); 1956 if (ret) { 1957 dev_err(dev, "can not enable the clock\n"); 1958 return ret; 1959 } 1960 1961 rstc = devm_reset_control_get(dev, NULL); 1962 if (IS_ERR(rstc)) { 1963 ret = PTR_ERR(rstc); 1964 if (ret == -EPROBE_DEFER) 1965 goto err_clk_disable; 1966 } else { 1967 reset_control_assert(rstc); 1968 reset_control_deassert(rstc); 1969 } 1970 1971 ret = stm32_fmc2_nfc_dma_setup(nfc); 1972 if (ret) 1973 goto err_release_dma; 1974 1975 stm32_fmc2_nfc_init(nfc); 1976 1977 nand = &nfc->nand; 1978 chip = &nand->chip; 1979 mtd = nand_to_mtd(chip); 1980 mtd->dev.parent = dev; 1981 1982 chip->controller = &nfc->base; 1983 chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | 1984 NAND_USES_DMA; 1985 1986 stm32_fmc2_nfc_wp_disable(nand); 1987 1988 /* Scan to find existence of the device */ 1989 ret = nand_scan(chip, nand->ncs); 1990 if (ret) 1991 goto err_wp_enable; 1992 1993 ret = mtd_device_register(mtd, NULL, 0); 1994 if (ret) 1995 goto err_nand_cleanup; 1996 1997 platform_set_drvdata(pdev, nfc); 1998 1999 return 0; 2000 2001 err_nand_cleanup: 2002 nand_cleanup(chip); 2003 2004 err_wp_enable: 2005 stm32_fmc2_nfc_wp_enable(nand); 2006 2007 err_release_dma: 2008 if (nfc->dma_ecc_ch) 2009 dma_release_channel(nfc->dma_ecc_ch); 2010 if (nfc->dma_tx_ch) 2011 dma_release_channel(nfc->dma_tx_ch); 2012 if (nfc->dma_rx_ch) 2013 dma_release_channel(nfc->dma_rx_ch); 2014 2015 sg_free_table(&nfc->dma_data_sg); 2016 sg_free_table(&nfc->dma_ecc_sg); 2017 2018 err_clk_disable: 2019 clk_disable_unprepare(nfc->clk); 2020 2021 return ret; 2022 } 2023 2024 static int stm32_fmc2_nfc_remove(struct platform_device *pdev) 2025 { 2026 struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev); 2027 struct stm32_fmc2_nand *nand = &nfc->nand; 2028 struct nand_chip *chip = &nand->chip; 2029 int ret; 2030 2031 ret = mtd_device_unregister(nand_to_mtd(chip)); 2032 WARN_ON(ret); 2033 nand_cleanup(chip); 2034 2035 if (nfc->dma_ecc_ch) 2036 dma_release_channel(nfc->dma_ecc_ch); 2037 if (nfc->dma_tx_ch) 2038 dma_release_channel(nfc->dma_tx_ch); 2039 if (nfc->dma_rx_ch) 2040 dma_release_channel(nfc->dma_rx_ch); 2041 2042 sg_free_table(&nfc->dma_data_sg); 2043 sg_free_table(&nfc->dma_ecc_sg); 2044 2045 clk_disable_unprepare(nfc->clk); 2046 2047 stm32_fmc2_nfc_wp_enable(nand); 2048 2049 return 0; 2050 } 2051 2052 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev) 2053 { 2054 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); 2055 struct stm32_fmc2_nand *nand = &nfc->nand; 2056 2057 clk_disable_unprepare(nfc->clk); 2058 2059 stm32_fmc2_nfc_wp_enable(nand); 2060 2061 pinctrl_pm_select_sleep_state(dev); 2062 2063 return 0; 2064 } 2065 2066 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev) 2067 { 2068 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev); 2069 struct stm32_fmc2_nand *nand = &nfc->nand; 2070 int chip_cs, ret; 2071 2072 pinctrl_pm_select_default_state(dev); 2073 2074 ret = clk_prepare_enable(nfc->clk); 2075 if (ret) { 2076 dev_err(dev, "can not enable the clock\n"); 2077 return ret; 2078 } 2079 2080 stm32_fmc2_nfc_init(nfc); 2081 2082 stm32_fmc2_nfc_wp_disable(nand); 2083 2084 for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { 2085 if (!(nfc->cs_assigned & BIT(chip_cs))) 2086 continue; 2087 2088 nand_reset(&nand->chip, chip_cs); 2089 } 2090 2091 return 0; 2092 } 2093 2094 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend, 2095 stm32_fmc2_nfc_resume); 2096 2097 static const struct of_device_id stm32_fmc2_nfc_match[] = { 2098 {.compatible = "st,stm32mp15-fmc2"}, 2099 {.compatible = "st,stm32mp1-fmc2-nfc"}, 2100 {} 2101 }; 2102 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match); 2103 2104 static struct platform_driver stm32_fmc2_nfc_driver = { 2105 .probe = stm32_fmc2_nfc_probe, 2106 .remove = stm32_fmc2_nfc_remove, 2107 .driver = { 2108 .name = "stm32_fmc2_nfc", 2109 .of_match_table = stm32_fmc2_nfc_match, 2110 .pm = &stm32_fmc2_nfc_pm_ops, 2111 }, 2112 }; 2113 module_platform_driver(stm32_fmc2_nfc_driver); 2114 2115 MODULE_ALIAS("platform:stm32_fmc2_nfc"); 2116 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); 2117 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver"); 2118 MODULE_LICENSE("GPL v2"); 2119