xref: /openbmc/linux/drivers/mtd/nand/raw/stm32_fmc2_nand.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/rawnand.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 
20 /* Bad block marker length */
21 #define FMC2_BBM_LEN			2
22 
23 /* ECC step size */
24 #define FMC2_ECC_STEP_SIZE		512
25 
26 /* BCHDSRx registers length */
27 #define FMC2_BCHDSRS_LEN		20
28 
29 /* HECCR length */
30 #define FMC2_HECCR_LEN			4
31 
32 /* Max requests done for a 8k nand page size */
33 #define FMC2_MAX_SG			16
34 
35 /* Max chip enable */
36 #define FMC2_MAX_CE			2
37 
38 /* Max ECC buffer length */
39 #define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
40 
41 #define FMC2_TIMEOUT_MS			5000
42 
43 /* Timings */
44 #define FMC2_THIZ			1
45 #define FMC2_TIO			8000
46 #define FMC2_TSYNC			3000
47 #define FMC2_PCR_TIMING_MASK		0xf
48 #define FMC2_PMEM_PATT_TIMING_MASK	0xff
49 
50 /* FMC2 Controller Registers */
51 #define FMC2_BCR1			0x0
52 #define FMC2_PCR			0x80
53 #define FMC2_SR				0x84
54 #define FMC2_PMEM			0x88
55 #define FMC2_PATT			0x8c
56 #define FMC2_HECCR			0x94
57 #define FMC2_ISR			0x184
58 #define FMC2_ICR			0x188
59 #define FMC2_CSQCR			0x200
60 #define FMC2_CSQCFGR1			0x204
61 #define FMC2_CSQCFGR2			0x208
62 #define FMC2_CSQCFGR3			0x20c
63 #define FMC2_CSQAR1			0x210
64 #define FMC2_CSQAR2			0x214
65 #define FMC2_CSQIER			0x220
66 #define FMC2_CSQISR			0x224
67 #define FMC2_CSQICR			0x228
68 #define FMC2_CSQEMSR			0x230
69 #define FMC2_BCHIER			0x250
70 #define FMC2_BCHISR			0x254
71 #define FMC2_BCHICR			0x258
72 #define FMC2_BCHPBR1			0x260
73 #define FMC2_BCHPBR2			0x264
74 #define FMC2_BCHPBR3			0x268
75 #define FMC2_BCHPBR4			0x26c
76 #define FMC2_BCHDSR0			0x27c
77 #define FMC2_BCHDSR1			0x280
78 #define FMC2_BCHDSR2			0x284
79 #define FMC2_BCHDSR3			0x288
80 #define FMC2_BCHDSR4			0x28c
81 
82 /* Register: FMC2_BCR1 */
83 #define FMC2_BCR1_FMC2EN		BIT(31)
84 
85 /* Register: FMC2_PCR */
86 #define FMC2_PCR_PWAITEN		BIT(1)
87 #define FMC2_PCR_PBKEN			BIT(2)
88 #define FMC2_PCR_PWID			GENMASK(5, 4)
89 #define FMC2_PCR_PWID_BUSWIDTH_8	0
90 #define FMC2_PCR_PWID_BUSWIDTH_16	1
91 #define FMC2_PCR_ECCEN			BIT(6)
92 #define FMC2_PCR_ECCALG			BIT(8)
93 #define FMC2_PCR_TCLR			GENMASK(12, 9)
94 #define FMC2_PCR_TCLR_DEFAULT		0xf
95 #define FMC2_PCR_TAR			GENMASK(16, 13)
96 #define FMC2_PCR_TAR_DEFAULT		0xf
97 #define FMC2_PCR_ECCSS			GENMASK(19, 17)
98 #define FMC2_PCR_ECCSS_512		1
99 #define FMC2_PCR_ECCSS_2048		3
100 #define FMC2_PCR_BCHECC			BIT(24)
101 #define FMC2_PCR_WEN			BIT(25)
102 
103 /* Register: FMC2_SR */
104 #define FMC2_SR_NWRF			BIT(6)
105 
106 /* Register: FMC2_PMEM */
107 #define FMC2_PMEM_MEMSET		GENMASK(7, 0)
108 #define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
109 #define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
110 #define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
111 #define FMC2_PMEM_DEFAULT		0x0a0a0a0a
112 
113 /* Register: FMC2_PATT */
114 #define FMC2_PATT_ATTSET		GENMASK(7, 0)
115 #define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
116 #define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
117 #define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
118 #define FMC2_PATT_DEFAULT		0x0a0a0a0a
119 
120 /* Register: FMC2_ISR */
121 #define FMC2_ISR_IHLF			BIT(1)
122 
123 /* Register: FMC2_ICR */
124 #define FMC2_ICR_CIHLF			BIT(1)
125 
126 /* Register: FMC2_CSQCR */
127 #define FMC2_CSQCR_CSQSTART		BIT(0)
128 
129 /* Register: FMC2_CSQCFGR1 */
130 #define FMC2_CSQCFGR1_CMD2EN		BIT(1)
131 #define FMC2_CSQCFGR1_DMADEN		BIT(2)
132 #define FMC2_CSQCFGR1_ACYNBR		GENMASK(6, 4)
133 #define FMC2_CSQCFGR1_CMD1		GENMASK(15, 8)
134 #define FMC2_CSQCFGR1_CMD2		GENMASK(23, 16)
135 #define FMC2_CSQCFGR1_CMD1T		BIT(24)
136 #define FMC2_CSQCFGR1_CMD2T		BIT(25)
137 
138 /* Register: FMC2_CSQCFGR2 */
139 #define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
140 #define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
141 #define FMC2_CSQCFGR2_DMASEN		BIT(2)
142 #define FMC2_CSQCFGR2_RCMD1		GENMASK(15, 8)
143 #define FMC2_CSQCFGR2_RCMD2		GENMASK(23, 16)
144 #define FMC2_CSQCFGR2_RCMD1T		BIT(24)
145 #define FMC2_CSQCFGR2_RCMD2T		BIT(25)
146 
147 /* Register: FMC2_CSQCFGR3 */
148 #define FMC2_CSQCFGR3_SNBR		GENMASK(13, 8)
149 #define FMC2_CSQCFGR3_AC1T		BIT(16)
150 #define FMC2_CSQCFGR3_AC2T		BIT(17)
151 #define FMC2_CSQCFGR3_AC3T		BIT(18)
152 #define FMC2_CSQCFGR3_AC4T		BIT(19)
153 #define FMC2_CSQCFGR3_AC5T		BIT(20)
154 #define FMC2_CSQCFGR3_SDT		BIT(21)
155 #define FMC2_CSQCFGR3_RAC1T		BIT(22)
156 #define FMC2_CSQCFGR3_RAC2T		BIT(23)
157 
158 /* Register: FMC2_CSQCAR1 */
159 #define FMC2_CSQCAR1_ADDC1		GENMASK(7, 0)
160 #define FMC2_CSQCAR1_ADDC2		GENMASK(15, 8)
161 #define FMC2_CSQCAR1_ADDC3		GENMASK(23, 16)
162 #define FMC2_CSQCAR1_ADDC4		GENMASK(31, 24)
163 
164 /* Register: FMC2_CSQCAR2 */
165 #define FMC2_CSQCAR2_ADDC5		GENMASK(7, 0)
166 #define FMC2_CSQCAR2_NANDCEN		GENMASK(11, 10)
167 #define FMC2_CSQCAR2_SAO		GENMASK(31, 16)
168 
169 /* Register: FMC2_CSQIER */
170 #define FMC2_CSQIER_TCIE		BIT(0)
171 
172 /* Register: FMC2_CSQICR */
173 #define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
174 
175 /* Register: FMC2_CSQEMSR */
176 #define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
177 
178 /* Register: FMC2_BCHIER */
179 #define FMC2_BCHIER_DERIE		BIT(1)
180 #define FMC2_BCHIER_EPBRIE		BIT(4)
181 
182 /* Register: FMC2_BCHICR */
183 #define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
184 
185 /* Register: FMC2_BCHDSR0 */
186 #define FMC2_BCHDSR0_DUE		BIT(0)
187 #define FMC2_BCHDSR0_DEF		BIT(1)
188 #define FMC2_BCHDSR0_DEN		GENMASK(7, 4)
189 
190 /* Register: FMC2_BCHDSR1 */
191 #define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
192 #define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)
193 
194 /* Register: FMC2_BCHDSR2 */
195 #define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
196 #define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)
197 
198 /* Register: FMC2_BCHDSR3 */
199 #define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
200 #define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)
201 
202 /* Register: FMC2_BCHDSR4 */
203 #define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
204 #define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)
205 
206 enum stm32_fmc2_ecc {
207 	FMC2_ECC_HAM = 1,
208 	FMC2_ECC_BCH4 = 4,
209 	FMC2_ECC_BCH8 = 8
210 };
211 
212 enum stm32_fmc2_irq_state {
213 	FMC2_IRQ_UNKNOWN = 0,
214 	FMC2_IRQ_BCH,
215 	FMC2_IRQ_SEQ
216 };
217 
218 struct stm32_fmc2_timings {
219 	u8 tclr;
220 	u8 tar;
221 	u8 thiz;
222 	u8 twait;
223 	u8 thold_mem;
224 	u8 tset_mem;
225 	u8 thold_att;
226 	u8 tset_att;
227 };
228 
229 struct stm32_fmc2_nand {
230 	struct nand_chip chip;
231 	struct stm32_fmc2_timings timings;
232 	int ncs;
233 	int cs_used[FMC2_MAX_CE];
234 };
235 
236 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
237 {
238 	return container_of(chip, struct stm32_fmc2_nand, chip);
239 }
240 
241 struct stm32_fmc2_nfc {
242 	struct nand_controller base;
243 	struct stm32_fmc2_nand nand;
244 	struct device *dev;
245 	void __iomem *io_base;
246 	void __iomem *data_base[FMC2_MAX_CE];
247 	void __iomem *cmd_base[FMC2_MAX_CE];
248 	void __iomem *addr_base[FMC2_MAX_CE];
249 	phys_addr_t io_phys_addr;
250 	phys_addr_t data_phys_addr[FMC2_MAX_CE];
251 	struct clk *clk;
252 	u8 irq_state;
253 
254 	struct dma_chan *dma_tx_ch;
255 	struct dma_chan *dma_rx_ch;
256 	struct dma_chan *dma_ecc_ch;
257 	struct sg_table dma_data_sg;
258 	struct sg_table dma_ecc_sg;
259 	u8 *ecc_buf;
260 	int dma_ecc_len;
261 
262 	struct completion complete;
263 	struct completion dma_data_complete;
264 	struct completion dma_ecc_complete;
265 
266 	u8 cs_assigned;
267 	int cs_sel;
268 };
269 
270 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
271 {
272 	return container_of(base, struct stm32_fmc2_nfc, base);
273 }
274 
275 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
276 {
277 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
278 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
279 	struct stm32_fmc2_timings *timings = &nand->timings;
280 	u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
281 	u32 pmem, patt;
282 
283 	/* Set tclr/tar timings */
284 	pcr &= ~FMC2_PCR_TCLR;
285 	pcr |= FIELD_PREP(FMC2_PCR_TCLR, timings->tclr);
286 	pcr &= ~FMC2_PCR_TAR;
287 	pcr |= FIELD_PREP(FMC2_PCR_TAR, timings->tar);
288 
289 	/* Set tset/twait/thold/thiz timings in common bank */
290 	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
291 	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
292 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
293 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
294 
295 	/* Set tset/twait/thold/thiz timings in attribut bank */
296 	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
297 	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
298 	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
299 	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
300 
301 	writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
302 	writel_relaxed(pmem, nfc->io_base + FMC2_PMEM);
303 	writel_relaxed(patt, nfc->io_base + FMC2_PATT);
304 }
305 
306 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
307 {
308 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
309 	u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
310 
311 	/* Configure ECC algorithm (default configuration is Hamming) */
312 	pcr &= ~FMC2_PCR_ECCALG;
313 	pcr &= ~FMC2_PCR_BCHECC;
314 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
315 		pcr |= FMC2_PCR_ECCALG;
316 		pcr |= FMC2_PCR_BCHECC;
317 	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
318 		pcr |= FMC2_PCR_ECCALG;
319 	}
320 
321 	/* Set buswidth */
322 	pcr &= ~FMC2_PCR_PWID;
323 	if (chip->options & NAND_BUSWIDTH_16)
324 		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
325 
326 	/* Set ECC sector size */
327 	pcr &= ~FMC2_PCR_ECCSS;
328 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
329 
330 	writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
331 }
332 
333 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
334 {
335 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
336 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
337 	struct dma_slave_config dma_cfg;
338 	int ret;
339 
340 	if (nand->cs_used[chipnr] == nfc->cs_sel)
341 		return 0;
342 
343 	nfc->cs_sel = nand->cs_used[chipnr];
344 	stm32_fmc2_nfc_setup(chip);
345 	stm32_fmc2_nfc_timings_init(chip);
346 
347 	if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
348 		memset(&dma_cfg, 0, sizeof(dma_cfg));
349 		dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
350 		dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
351 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
352 		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
353 		dma_cfg.src_maxburst = 32;
354 		dma_cfg.dst_maxburst = 32;
355 
356 		ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
357 		if (ret) {
358 			dev_err(nfc->dev, "tx DMA engine slave config failed\n");
359 			return ret;
360 		}
361 
362 		ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
363 		if (ret) {
364 			dev_err(nfc->dev, "rx DMA engine slave config failed\n");
365 			return ret;
366 		}
367 	}
368 
369 	if (nfc->dma_ecc_ch) {
370 		/*
371 		 * Hamming: we read HECCR register
372 		 * BCH4/BCH8: we read BCHDSRSx registers
373 		 */
374 		memset(&dma_cfg, 0, sizeof(dma_cfg));
375 		dma_cfg.src_addr = nfc->io_phys_addr;
376 		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
377 				    FMC2_HECCR : FMC2_BCHDSR0;
378 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
379 
380 		ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
381 		if (ret) {
382 			dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
383 			return ret;
384 		}
385 
386 		/* Calculate ECC length needed for one sector */
387 		nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
388 				   FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
389 	}
390 
391 	return 0;
392 }
393 
394 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
395 {
396 	u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
397 
398 	pcr &= ~FMC2_PCR_PWID;
399 	if (set)
400 		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
401 	writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
402 }
403 
404 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
405 {
406 	u32 pcr = readl(nfc->io_base + FMC2_PCR);
407 
408 	pcr &= ~FMC2_PCR_ECCEN;
409 	if (enable)
410 		pcr |= FMC2_PCR_ECCEN;
411 	writel(pcr, nfc->io_base + FMC2_PCR);
412 }
413 
414 static inline void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
415 {
416 	u32 csqier = readl_relaxed(nfc->io_base + FMC2_CSQIER);
417 
418 	csqier |= FMC2_CSQIER_TCIE;
419 
420 	nfc->irq_state = FMC2_IRQ_SEQ;
421 
422 	writel_relaxed(csqier, nfc->io_base + FMC2_CSQIER);
423 }
424 
425 static inline void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
426 {
427 	u32 csqier = readl_relaxed(nfc->io_base + FMC2_CSQIER);
428 
429 	csqier &= ~FMC2_CSQIER_TCIE;
430 
431 	writel_relaxed(csqier, nfc->io_base + FMC2_CSQIER);
432 
433 	nfc->irq_state = FMC2_IRQ_UNKNOWN;
434 }
435 
436 static inline void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
437 {
438 	writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, nfc->io_base + FMC2_CSQICR);
439 }
440 
441 static inline void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc,
442 						 int mode)
443 {
444 	u32 bchier = readl_relaxed(nfc->io_base + FMC2_BCHIER);
445 
446 	if (mode == NAND_ECC_WRITE)
447 		bchier |= FMC2_BCHIER_EPBRIE;
448 	else
449 		bchier |= FMC2_BCHIER_DERIE;
450 
451 	nfc->irq_state = FMC2_IRQ_BCH;
452 
453 	writel_relaxed(bchier, nfc->io_base + FMC2_BCHIER);
454 }
455 
456 static inline void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
457 {
458 	u32 bchier = readl_relaxed(nfc->io_base + FMC2_BCHIER);
459 
460 	bchier &= ~FMC2_BCHIER_DERIE;
461 	bchier &= ~FMC2_BCHIER_EPBRIE;
462 
463 	writel_relaxed(bchier, nfc->io_base + FMC2_BCHIER);
464 
465 	nfc->irq_state = FMC2_IRQ_UNKNOWN;
466 }
467 
468 static inline void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
469 {
470 	writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
471 }
472 
473 /*
474  * Enable ECC logic and reset syndrome/parity bits previously calculated
475  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
476  */
477 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
478 {
479 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
480 
481 	stm32_fmc2_nfc_set_ecc(nfc, false);
482 
483 	if (chip->ecc.strength != FMC2_ECC_HAM) {
484 		u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
485 
486 		if (mode == NAND_ECC_WRITE)
487 			pcr |= FMC2_PCR_WEN;
488 		else
489 			pcr &= ~FMC2_PCR_WEN;
490 		writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
491 
492 		reinit_completion(&nfc->complete);
493 		stm32_fmc2_nfc_clear_bch_irq(nfc);
494 		stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
495 	}
496 
497 	stm32_fmc2_nfc_set_ecc(nfc, true);
498 }
499 
500 /*
501  * ECC Hamming calculation
502  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
503  * max of 1-bit)
504  */
505 static inline void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
506 {
507 	ecc[0] = ecc_sta;
508 	ecc[1] = ecc_sta >> 8;
509 	ecc[2] = ecc_sta >> 16;
510 }
511 
512 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
513 					u8 *ecc)
514 {
515 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
516 	u32 sr, heccr;
517 	int ret;
518 
519 	ret = readl_relaxed_poll_timeout(nfc->io_base + FMC2_SR,
520 					 sr, sr & FMC2_SR_NWRF, 1,
521 					 1000 * FMC2_TIMEOUT_MS);
522 	if (ret) {
523 		dev_err(nfc->dev, "ham timeout\n");
524 		return ret;
525 	}
526 
527 	heccr = readl_relaxed(nfc->io_base + FMC2_HECCR);
528 	stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
529 	stm32_fmc2_nfc_set_ecc(nfc, false);
530 
531 	return 0;
532 }
533 
534 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
535 				      u8 *read_ecc, u8 *calc_ecc)
536 {
537 	u8 bit_position = 0, b0, b1, b2;
538 	u32 byte_addr = 0, b;
539 	u32 i, shifting = 1;
540 
541 	/* Indicate which bit and byte is faulty (if any) */
542 	b0 = read_ecc[0] ^ calc_ecc[0];
543 	b1 = read_ecc[1] ^ calc_ecc[1];
544 	b2 = read_ecc[2] ^ calc_ecc[2];
545 	b = b0 | (b1 << 8) | (b2 << 16);
546 
547 	/* No errors */
548 	if (likely(!b))
549 		return 0;
550 
551 	/* Calculate bit position */
552 	for (i = 0; i < 3; i++) {
553 		switch (b % 4) {
554 		case 2:
555 			bit_position += shifting;
556 		case 1:
557 			break;
558 		default:
559 			return -EBADMSG;
560 		}
561 		shifting <<= 1;
562 		b >>= 2;
563 	}
564 
565 	/* Calculate byte position */
566 	shifting = 1;
567 	for (i = 0; i < 9; i++) {
568 		switch (b % 4) {
569 		case 2:
570 			byte_addr += shifting;
571 		case 1:
572 			break;
573 		default:
574 			return -EBADMSG;
575 		}
576 		shifting <<= 1;
577 		b >>= 2;
578 	}
579 
580 	/* Flip the bit */
581 	dat[byte_addr] ^= (1 << bit_position);
582 
583 	return 1;
584 }
585 
586 /*
587  * ECC BCH calculation and correction
588  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
589  * max of 4-bit/8-bit)
590  */
591 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
592 					u8 *ecc)
593 {
594 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
595 	u32 bchpbr;
596 
597 	/* Wait until the BCH code is ready */
598 	if (!wait_for_completion_timeout(&nfc->complete,
599 					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
600 		dev_err(nfc->dev, "bch timeout\n");
601 		stm32_fmc2_nfc_disable_bch_irq(nfc);
602 		return -ETIMEDOUT;
603 	}
604 
605 	/* Read parity bits */
606 	bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR1);
607 	ecc[0] = bchpbr;
608 	ecc[1] = bchpbr >> 8;
609 	ecc[2] = bchpbr >> 16;
610 	ecc[3] = bchpbr >> 24;
611 
612 	bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR2);
613 	ecc[4] = bchpbr;
614 	ecc[5] = bchpbr >> 8;
615 	ecc[6] = bchpbr >> 16;
616 
617 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
618 		ecc[7] = bchpbr >> 24;
619 
620 		bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR3);
621 		ecc[8] = bchpbr;
622 		ecc[9] = bchpbr >> 8;
623 		ecc[10] = bchpbr >> 16;
624 		ecc[11] = bchpbr >> 24;
625 
626 		bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR4);
627 		ecc[12] = bchpbr;
628 	}
629 
630 	stm32_fmc2_nfc_set_ecc(nfc, false);
631 
632 	return 0;
633 }
634 
635 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
636 {
637 	u32 bchdsr0 = ecc_sta[0];
638 	u32 bchdsr1 = ecc_sta[1];
639 	u32 bchdsr2 = ecc_sta[2];
640 	u32 bchdsr3 = ecc_sta[3];
641 	u32 bchdsr4 = ecc_sta[4];
642 	u16 pos[8];
643 	int i, den;
644 	unsigned int nb_errs = 0;
645 
646 	/* No errors found */
647 	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
648 		return 0;
649 
650 	/* Too many errors detected */
651 	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
652 		return -EBADMSG;
653 
654 	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
655 	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
656 	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
657 	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
658 	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
659 	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
660 	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
661 	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
662 
663 	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
664 	for (i = 0; i < den; i++) {
665 		if (pos[i] < eccsize * 8) {
666 			change_bit(pos[i], (unsigned long *)dat);
667 			nb_errs++;
668 		}
669 	}
670 
671 	return nb_errs;
672 }
673 
674 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
675 				      u8 *read_ecc, u8 *calc_ecc)
676 {
677 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
678 	u32 ecc_sta[5];
679 
680 	/* Wait until the decoding error is ready */
681 	if (!wait_for_completion_timeout(&nfc->complete,
682 					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
683 		dev_err(nfc->dev, "bch timeout\n");
684 		stm32_fmc2_nfc_disable_bch_irq(nfc);
685 		return -ETIMEDOUT;
686 	}
687 
688 	ecc_sta[0] = readl_relaxed(nfc->io_base + FMC2_BCHDSR0);
689 	ecc_sta[1] = readl_relaxed(nfc->io_base + FMC2_BCHDSR1);
690 	ecc_sta[2] = readl_relaxed(nfc->io_base + FMC2_BCHDSR2);
691 	ecc_sta[3] = readl_relaxed(nfc->io_base + FMC2_BCHDSR3);
692 	ecc_sta[4] = readl_relaxed(nfc->io_base + FMC2_BCHDSR4);
693 
694 	stm32_fmc2_nfc_set_ecc(nfc, false);
695 
696 	return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
697 }
698 
699 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
700 				    int oob_required, int page)
701 {
702 	struct mtd_info *mtd = nand_to_mtd(chip);
703 	int ret, i, s, stat, eccsize = chip->ecc.size;
704 	int eccbytes = chip->ecc.bytes;
705 	int eccsteps = chip->ecc.steps;
706 	int eccstrength = chip->ecc.strength;
707 	u8 *p = buf;
708 	u8 *ecc_calc = chip->ecc.calc_buf;
709 	u8 *ecc_code = chip->ecc.code_buf;
710 	unsigned int max_bitflips = 0;
711 
712 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
713 	if (ret)
714 		return ret;
715 
716 	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
717 	     s++, i += eccbytes, p += eccsize) {
718 		chip->ecc.hwctl(chip, NAND_ECC_READ);
719 
720 		/* Read the nand page sector (512 bytes) */
721 		ret = nand_change_read_column_op(chip, s * eccsize, p,
722 						 eccsize, false);
723 		if (ret)
724 			return ret;
725 
726 		/* Read the corresponding ECC bytes */
727 		ret = nand_change_read_column_op(chip, i, ecc_code,
728 						 eccbytes, false);
729 		if (ret)
730 			return ret;
731 
732 		/* Correct the data */
733 		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
734 		if (stat == -EBADMSG)
735 			/* Check for empty pages with bitflips */
736 			stat = nand_check_erased_ecc_chunk(p, eccsize,
737 							   ecc_code, eccbytes,
738 							   NULL, 0,
739 							   eccstrength);
740 
741 		if (stat < 0) {
742 			mtd->ecc_stats.failed++;
743 		} else {
744 			mtd->ecc_stats.corrected += stat;
745 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
746 		}
747 	}
748 
749 	/* Read oob */
750 	if (oob_required) {
751 		ret = nand_change_read_column_op(chip, mtd->writesize,
752 						 chip->oob_poi, mtd->oobsize,
753 						 false);
754 		if (ret)
755 			return ret;
756 	}
757 
758 	return max_bitflips;
759 }
760 
761 /* Sequencer read/write configuration */
762 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
763 					int raw, bool write_data)
764 {
765 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
766 	struct mtd_info *mtd = nand_to_mtd(chip);
767 	u32 csqcfgr1, csqcfgr2, csqcfgr3;
768 	u32 csqar1, csqar2;
769 	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
770 	u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
771 
772 	if (write_data)
773 		pcr |= FMC2_PCR_WEN;
774 	else
775 		pcr &= ~FMC2_PCR_WEN;
776 	writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
777 
778 	/*
779 	 * - Set Program Page/Page Read command
780 	 * - Enable DMA request data
781 	 * - Set timings
782 	 */
783 	csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
784 	if (write_data)
785 		csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
786 	else
787 		csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
788 			    FMC2_CSQCFGR1_CMD2EN |
789 			    FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
790 			    FMC2_CSQCFGR1_CMD2T;
791 
792 	/*
793 	 * - Set Random Data Input/Random Data Read command
794 	 * - Enable the sequencer to access the Spare data area
795 	 * - Enable  DMA request status decoding for read
796 	 * - Set timings
797 	 */
798 	if (write_data)
799 		csqcfgr2 = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
800 	else
801 		csqcfgr2 = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
802 			   FMC2_CSQCFGR2_RCMD2EN |
803 			   FIELD_PREP(FMC2_CSQCFGR2_RCMD2,
804 				      NAND_CMD_RNDOUTSTART) |
805 			   FMC2_CSQCFGR2_RCMD1T |
806 			   FMC2_CSQCFGR2_RCMD2T;
807 	if (!raw) {
808 		csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
809 		csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
810 	}
811 
812 	/*
813 	 * - Set the number of sectors to be written
814 	 * - Set timings
815 	 */
816 	csqcfgr3 = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
817 	if (write_data) {
818 		csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
819 		if (chip->options & NAND_ROW_ADDR_3)
820 			csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
821 		else
822 			csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
823 	}
824 
825 	/*
826 	 * Set the fourth first address cycles
827 	 * Byte 1 and byte 2 => column, we start at 0x0
828 	 * Byte 3 and byte 4 => page
829 	 */
830 	csqar1 = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
831 	csqar1 |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
832 
833 	/*
834 	 * - Set chip enable number
835 	 * - Set ECC byte offset in the spare area
836 	 * - Calculate the number of address cycles to be issued
837 	 * - Set byte 5 of address cycle if needed
838 	 */
839 	csqar2 = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
840 	if (chip->options & NAND_BUSWIDTH_16)
841 		csqar2 |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
842 	else
843 		csqar2 |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
844 	if (chip->options & NAND_ROW_ADDR_3) {
845 		csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
846 		csqar2 |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
847 	} else {
848 		csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
849 	}
850 
851 	writel_relaxed(csqcfgr1, nfc->io_base + FMC2_CSQCFGR1);
852 	writel_relaxed(csqcfgr2, nfc->io_base + FMC2_CSQCFGR2);
853 	writel_relaxed(csqcfgr3, nfc->io_base + FMC2_CSQCFGR3);
854 	writel_relaxed(csqar1, nfc->io_base + FMC2_CSQAR1);
855 	writel_relaxed(csqar2, nfc->io_base + FMC2_CSQAR2);
856 }
857 
858 static void stm32_fmc2_nfc_dma_callback(void *arg)
859 {
860 	complete((struct completion *)arg);
861 }
862 
863 /* Read/write data from/to a page */
864 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
865 			       int raw, bool write_data)
866 {
867 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
868 	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
869 	struct scatterlist *sg;
870 	struct dma_chan *dma_ch = nfc->dma_rx_ch;
871 	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
872 	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
873 	u32 csqcr = readl_relaxed(nfc->io_base + FMC2_CSQCR);
874 	int eccsteps = chip->ecc.steps;
875 	int eccsize = chip->ecc.size;
876 	unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
877 	const u8 *p = buf;
878 	int s, ret;
879 
880 	/* Configure DMA data */
881 	if (write_data) {
882 		dma_data_dir = DMA_TO_DEVICE;
883 		dma_transfer_dir = DMA_MEM_TO_DEV;
884 		dma_ch = nfc->dma_tx_ch;
885 	}
886 
887 	for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
888 		sg_set_buf(sg, p, eccsize);
889 		p += eccsize;
890 	}
891 
892 	ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
893 			 eccsteps, dma_data_dir);
894 	if (ret < 0)
895 		return ret;
896 
897 	desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
898 					    eccsteps, dma_transfer_dir,
899 					    DMA_PREP_INTERRUPT);
900 	if (!desc_data) {
901 		ret = -ENOMEM;
902 		goto err_unmap_data;
903 	}
904 
905 	reinit_completion(&nfc->dma_data_complete);
906 	reinit_completion(&nfc->complete);
907 	desc_data->callback = stm32_fmc2_nfc_dma_callback;
908 	desc_data->callback_param = &nfc->dma_data_complete;
909 	ret = dma_submit_error(dmaengine_submit(desc_data));
910 	if (ret)
911 		goto err_unmap_data;
912 
913 	dma_async_issue_pending(dma_ch);
914 
915 	if (!write_data && !raw) {
916 		/* Configure DMA ECC status */
917 		p = nfc->ecc_buf;
918 		for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
919 			sg_set_buf(sg, p, nfc->dma_ecc_len);
920 			p += nfc->dma_ecc_len;
921 		}
922 
923 		ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
924 				 eccsteps, dma_data_dir);
925 		if (ret < 0)
926 			goto err_unmap_data;
927 
928 		desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
929 						   nfc->dma_ecc_sg.sgl,
930 						   eccsteps, dma_transfer_dir,
931 						   DMA_PREP_INTERRUPT);
932 		if (!desc_ecc) {
933 			ret = -ENOMEM;
934 			goto err_unmap_ecc;
935 		}
936 
937 		reinit_completion(&nfc->dma_ecc_complete);
938 		desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
939 		desc_ecc->callback_param = &nfc->dma_ecc_complete;
940 		ret = dma_submit_error(dmaengine_submit(desc_ecc));
941 		if (ret)
942 			goto err_unmap_ecc;
943 
944 		dma_async_issue_pending(nfc->dma_ecc_ch);
945 	}
946 
947 	stm32_fmc2_nfc_clear_seq_irq(nfc);
948 	stm32_fmc2_nfc_enable_seq_irq(nfc);
949 
950 	/* Start the transfer */
951 	csqcr |= FMC2_CSQCR_CSQSTART;
952 	writel_relaxed(csqcr, nfc->io_base + FMC2_CSQCR);
953 
954 	/* Wait end of sequencer transfer */
955 	if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
956 		dev_err(nfc->dev, "seq timeout\n");
957 		stm32_fmc2_nfc_disable_seq_irq(nfc);
958 		dmaengine_terminate_all(dma_ch);
959 		if (!write_data && !raw)
960 			dmaengine_terminate_all(nfc->dma_ecc_ch);
961 		ret = -ETIMEDOUT;
962 		goto err_unmap_ecc;
963 	}
964 
965 	/* Wait DMA data transfer completion */
966 	if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
967 		dev_err(nfc->dev, "data DMA timeout\n");
968 		dmaengine_terminate_all(dma_ch);
969 		ret = -ETIMEDOUT;
970 	}
971 
972 	/* Wait DMA ECC transfer completion */
973 	if (!write_data && !raw) {
974 		if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
975 						 timeout)) {
976 			dev_err(nfc->dev, "ECC DMA timeout\n");
977 			dmaengine_terminate_all(nfc->dma_ecc_ch);
978 			ret = -ETIMEDOUT;
979 		}
980 	}
981 
982 err_unmap_ecc:
983 	if (!write_data && !raw)
984 		dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
985 			     eccsteps, dma_data_dir);
986 
987 err_unmap_data:
988 	dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
989 
990 	return ret;
991 }
992 
993 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
994 				    int oob_required, int page, int raw)
995 {
996 	struct mtd_info *mtd = nand_to_mtd(chip);
997 	int ret;
998 
999 	/* Configure the sequencer */
1000 	stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
1001 
1002 	/* Write the page */
1003 	ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
1004 	if (ret)
1005 		return ret;
1006 
1007 	/* Write oob */
1008 	if (oob_required) {
1009 		ret = nand_change_write_column_op(chip, mtd->writesize,
1010 						  chip->oob_poi, mtd->oobsize,
1011 						  false);
1012 		if (ret)
1013 			return ret;
1014 	}
1015 
1016 	return nand_prog_page_end_op(chip);
1017 }
1018 
1019 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
1020 					 int oob_required, int page)
1021 {
1022 	int ret;
1023 
1024 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1025 	if (ret)
1026 		return ret;
1027 
1028 	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1029 }
1030 
1031 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1032 					     const u8 *buf, int oob_required,
1033 					     int page)
1034 {
1035 	int ret;
1036 
1037 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1038 	if (ret)
1039 		return ret;
1040 
1041 	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1042 }
1043 
1044 /* Get a status indicating which sectors have errors */
1045 static inline u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1046 {
1047 	u32 csqemsr = readl_relaxed(nfc->io_base + FMC2_CSQEMSR);
1048 
1049 	return csqemsr & FMC2_CSQEMSR_SEM;
1050 }
1051 
1052 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1053 				      u8 *read_ecc, u8 *calc_ecc)
1054 {
1055 	struct mtd_info *mtd = nand_to_mtd(chip);
1056 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1057 	int eccbytes = chip->ecc.bytes;
1058 	int eccsteps = chip->ecc.steps;
1059 	int eccstrength = chip->ecc.strength;
1060 	int i, s, eccsize = chip->ecc.size;
1061 	u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1062 	u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1063 	unsigned int max_bitflips = 0;
1064 
1065 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1066 		int stat = 0;
1067 
1068 		if (eccstrength == FMC2_ECC_HAM) {
1069 			/* Ecc_sta = FMC2_HECCR */
1070 			if (sta_map & BIT(s)) {
1071 				stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1072 							   &calc_ecc[i]);
1073 				stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1074 								  &read_ecc[i],
1075 								  &calc_ecc[i]);
1076 			}
1077 			ecc_sta++;
1078 		} else {
1079 			/*
1080 			 * Ecc_sta[0] = FMC2_BCHDSR0
1081 			 * Ecc_sta[1] = FMC2_BCHDSR1
1082 			 * Ecc_sta[2] = FMC2_BCHDSR2
1083 			 * Ecc_sta[3] = FMC2_BCHDSR3
1084 			 * Ecc_sta[4] = FMC2_BCHDSR4
1085 			 */
1086 			if (sta_map & BIT(s))
1087 				stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1088 								 ecc_sta);
1089 			ecc_sta += 5;
1090 		}
1091 
1092 		if (stat == -EBADMSG)
1093 			/* Check for empty pages with bitflips */
1094 			stat = nand_check_erased_ecc_chunk(dat, eccsize,
1095 							   &read_ecc[i],
1096 							   eccbytes,
1097 							   NULL, 0,
1098 							   eccstrength);
1099 
1100 		if (stat < 0) {
1101 			mtd->ecc_stats.failed++;
1102 		} else {
1103 			mtd->ecc_stats.corrected += stat;
1104 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1105 		}
1106 	}
1107 
1108 	return max_bitflips;
1109 }
1110 
1111 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1112 					int oob_required, int page)
1113 {
1114 	struct mtd_info *mtd = nand_to_mtd(chip);
1115 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1116 	u8 *ecc_calc = chip->ecc.calc_buf;
1117 	u8 *ecc_code = chip->ecc.code_buf;
1118 	u16 sta_map;
1119 	int ret;
1120 
1121 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1122 	if (ret)
1123 		return ret;
1124 
1125 	/* Configure the sequencer */
1126 	stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1127 
1128 	/* Read the page */
1129 	ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1130 	if (ret)
1131 		return ret;
1132 
1133 	sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1134 
1135 	/* Check if errors happen */
1136 	if (likely(!sta_map)) {
1137 		if (oob_required)
1138 			return nand_change_read_column_op(chip, mtd->writesize,
1139 							  chip->oob_poi,
1140 							  mtd->oobsize, false);
1141 
1142 		return 0;
1143 	}
1144 
1145 	/* Read oob */
1146 	ret = nand_change_read_column_op(chip, mtd->writesize,
1147 					 chip->oob_poi, mtd->oobsize, false);
1148 	if (ret)
1149 		return ret;
1150 
1151 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1152 					 chip->ecc.total);
1153 	if (ret)
1154 		return ret;
1155 
1156 	/* Correct data */
1157 	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1158 }
1159 
1160 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1161 					    int oob_required, int page)
1162 {
1163 	struct mtd_info *mtd = nand_to_mtd(chip);
1164 	int ret;
1165 
1166 	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1167 	if (ret)
1168 		return ret;
1169 
1170 	/* Configure the sequencer */
1171 	stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1172 
1173 	/* Read the page */
1174 	ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1175 	if (ret)
1176 		return ret;
1177 
1178 	/* Read oob */
1179 	if (oob_required)
1180 		return nand_change_read_column_op(chip, mtd->writesize,
1181 						  chip->oob_poi, mtd->oobsize,
1182 						  false);
1183 
1184 	return 0;
1185 }
1186 
1187 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1188 {
1189 	struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1190 
1191 	if (nfc->irq_state == FMC2_IRQ_SEQ)
1192 		/* Sequencer is used */
1193 		stm32_fmc2_nfc_disable_seq_irq(nfc);
1194 	else if (nfc->irq_state == FMC2_IRQ_BCH)
1195 		/* BCH is used */
1196 		stm32_fmc2_nfc_disable_bch_irq(nfc);
1197 
1198 	complete(&nfc->complete);
1199 
1200 	return IRQ_HANDLED;
1201 }
1202 
1203 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1204 				     unsigned int len, bool force_8bit)
1205 {
1206 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1207 	void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1208 
1209 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1210 		/* Reconfigure bus width to 8-bit */
1211 		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1212 
1213 	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1214 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1215 			*(u8 *)buf = readb_relaxed(io_addr_r);
1216 			buf += sizeof(u8);
1217 			len -= sizeof(u8);
1218 		}
1219 
1220 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1221 		    len >= sizeof(u16)) {
1222 			*(u16 *)buf = readw_relaxed(io_addr_r);
1223 			buf += sizeof(u16);
1224 			len -= sizeof(u16);
1225 		}
1226 	}
1227 
1228 	/* Buf is aligned */
1229 	while (len >= sizeof(u32)) {
1230 		*(u32 *)buf = readl_relaxed(io_addr_r);
1231 		buf += sizeof(u32);
1232 		len -= sizeof(u32);
1233 	}
1234 
1235 	/* Read remaining bytes */
1236 	if (len >= sizeof(u16)) {
1237 		*(u16 *)buf = readw_relaxed(io_addr_r);
1238 		buf += sizeof(u16);
1239 		len -= sizeof(u16);
1240 	}
1241 
1242 	if (len)
1243 		*(u8 *)buf = readb_relaxed(io_addr_r);
1244 
1245 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1246 		/* Reconfigure bus width to 16-bit */
1247 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1248 }
1249 
1250 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1251 				      unsigned int len, bool force_8bit)
1252 {
1253 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1254 	void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1255 
1256 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1257 		/* Reconfigure bus width to 8-bit */
1258 		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1259 
1260 	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1261 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1262 			writeb_relaxed(*(u8 *)buf, io_addr_w);
1263 			buf += sizeof(u8);
1264 			len -= sizeof(u8);
1265 		}
1266 
1267 		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1268 		    len >= sizeof(u16)) {
1269 			writew_relaxed(*(u16 *)buf, io_addr_w);
1270 			buf += sizeof(u16);
1271 			len -= sizeof(u16);
1272 		}
1273 	}
1274 
1275 	/* Buf is aligned */
1276 	while (len >= sizeof(u32)) {
1277 		writel_relaxed(*(u32 *)buf, io_addr_w);
1278 		buf += sizeof(u32);
1279 		len -= sizeof(u32);
1280 	}
1281 
1282 	/* Write remaining bytes */
1283 	if (len >= sizeof(u16)) {
1284 		writew_relaxed(*(u16 *)buf, io_addr_w);
1285 		buf += sizeof(u16);
1286 		len -= sizeof(u16);
1287 	}
1288 
1289 	if (len)
1290 		writeb_relaxed(*(u8 *)buf, io_addr_w);
1291 
1292 	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1293 		/* Reconfigure bus width to 16-bit */
1294 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1295 }
1296 
1297 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1298 				  unsigned long timeout_ms)
1299 {
1300 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1301 	const struct nand_sdr_timings *timings;
1302 	u32 isr, sr;
1303 
1304 	/* Check if there is no pending requests to the NAND flash */
1305 	if (readl_relaxed_poll_timeout_atomic(nfc->io_base + FMC2_SR, sr,
1306 					      sr & FMC2_SR_NWRF, 1,
1307 					      1000 * FMC2_TIMEOUT_MS))
1308 		dev_warn(nfc->dev, "Waitrdy timeout\n");
1309 
1310 	/* Wait tWB before R/B# signal is low */
1311 	timings = nand_get_sdr_timings(&chip->data_interface);
1312 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
1313 
1314 	/* R/B# signal is low, clear high level flag */
1315 	writel_relaxed(FMC2_ICR_CIHLF, nfc->io_base + FMC2_ICR);
1316 
1317 	/* Wait R/B# signal is high */
1318 	return readl_relaxed_poll_timeout_atomic(nfc->io_base + FMC2_ISR,
1319 						 isr, isr & FMC2_ISR_IHLF,
1320 						 5, 1000 * timeout_ms);
1321 }
1322 
1323 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1324 				  const struct nand_operation *op,
1325 				  bool check_only)
1326 {
1327 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1328 	const struct nand_op_instr *instr = NULL;
1329 	unsigned int op_id, i, timeout;
1330 	int ret;
1331 
1332 	if (check_only)
1333 		return 0;
1334 
1335 	ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1336 	if (ret)
1337 		return ret;
1338 
1339 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1340 		instr = &op->instrs[op_id];
1341 
1342 		switch (instr->type) {
1343 		case NAND_OP_CMD_INSTR:
1344 			writeb_relaxed(instr->ctx.cmd.opcode,
1345 				       nfc->cmd_base[nfc->cs_sel]);
1346 			break;
1347 
1348 		case NAND_OP_ADDR_INSTR:
1349 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
1350 				writeb_relaxed(instr->ctx.addr.addrs[i],
1351 					       nfc->addr_base[nfc->cs_sel]);
1352 			break;
1353 
1354 		case NAND_OP_DATA_IN_INSTR:
1355 			stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1356 						 instr->ctx.data.len,
1357 						 instr->ctx.data.force_8bit);
1358 			break;
1359 
1360 		case NAND_OP_DATA_OUT_INSTR:
1361 			stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1362 						  instr->ctx.data.len,
1363 						  instr->ctx.data.force_8bit);
1364 			break;
1365 
1366 		case NAND_OP_WAITRDY_INSTR:
1367 			timeout = instr->ctx.waitrdy.timeout_ms;
1368 			ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1369 			break;
1370 		}
1371 	}
1372 
1373 	return ret;
1374 }
1375 
1376 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1377 {
1378 	u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
1379 	u32 bcr1 = readl_relaxed(nfc->io_base + FMC2_BCR1);
1380 
1381 	/* Set CS used to undefined */
1382 	nfc->cs_sel = -1;
1383 
1384 	/* Enable wait feature and nand flash memory bank */
1385 	pcr |= FMC2_PCR_PWAITEN;
1386 	pcr |= FMC2_PCR_PBKEN;
1387 
1388 	/* Set buswidth to 8 bits mode for identification */
1389 	pcr &= ~FMC2_PCR_PWID;
1390 
1391 	/* ECC logic is disabled */
1392 	pcr &= ~FMC2_PCR_ECCEN;
1393 
1394 	/* Default mode */
1395 	pcr &= ~FMC2_PCR_ECCALG;
1396 	pcr &= ~FMC2_PCR_BCHECC;
1397 	pcr &= ~FMC2_PCR_WEN;
1398 
1399 	/* Set default ECC sector size */
1400 	pcr &= ~FMC2_PCR_ECCSS;
1401 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1402 
1403 	/* Set default tclr/tar timings */
1404 	pcr &= ~FMC2_PCR_TCLR;
1405 	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1406 	pcr &= ~FMC2_PCR_TAR;
1407 	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1408 
1409 	/* Enable FMC2 controller */
1410 	bcr1 |= FMC2_BCR1_FMC2EN;
1411 
1412 	writel_relaxed(bcr1, nfc->io_base + FMC2_BCR1);
1413 	writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
1414 	writel_relaxed(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
1415 	writel_relaxed(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
1416 }
1417 
1418 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1419 					const struct nand_sdr_timings *sdrt)
1420 {
1421 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1422 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1423 	struct stm32_fmc2_timings *tims = &nand->timings;
1424 	unsigned long hclk = clk_get_rate(nfc->clk);
1425 	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1426 	unsigned long timing, tar, tclr, thiz, twait;
1427 	unsigned long tset_mem, tset_att, thold_mem, thold_att;
1428 
1429 	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1430 	timing = DIV_ROUND_UP(tar, hclkp) - 1;
1431 	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1432 
1433 	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1434 	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1435 	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1436 
1437 	tims->thiz = FMC2_THIZ;
1438 	thiz = (tims->thiz + 1) * hclkp;
1439 
1440 	/*
1441 	 * tWAIT > tRP
1442 	 * tWAIT > tWP
1443 	 * tWAIT > tREA + tIO
1444 	 */
1445 	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1446 	twait = max_t(unsigned long, twait, sdrt->tWP_min);
1447 	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1448 	timing = DIV_ROUND_UP(twait, hclkp);
1449 	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1450 
1451 	/*
1452 	 * tSETUP_MEM > tCS - tWAIT
1453 	 * tSETUP_MEM > tALS - tWAIT
1454 	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1455 	 */
1456 	tset_mem = hclkp;
1457 	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1458 		tset_mem = sdrt->tCS_min - twait;
1459 	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1460 		tset_mem = sdrt->tALS_min - twait;
1461 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1462 	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
1463 		tset_mem = sdrt->tDS_min - (twait - thiz);
1464 	timing = DIV_ROUND_UP(tset_mem, hclkp);
1465 	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1466 
1467 	/*
1468 	 * tHOLD_MEM > tCH
1469 	 * tHOLD_MEM > tREH - tSETUP_MEM
1470 	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1471 	 */
1472 	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1473 	if (sdrt->tREH_min > tset_mem &&
1474 	    (thold_mem < sdrt->tREH_min - tset_mem))
1475 		thold_mem = sdrt->tREH_min - tset_mem;
1476 	if ((sdrt->tRC_min > tset_mem + twait) &&
1477 	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1478 		thold_mem = sdrt->tRC_min - (tset_mem + twait);
1479 	if ((sdrt->tWC_min > tset_mem + twait) &&
1480 	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1481 		thold_mem = sdrt->tWC_min - (tset_mem + twait);
1482 	timing = DIV_ROUND_UP(thold_mem, hclkp);
1483 	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1484 
1485 	/*
1486 	 * tSETUP_ATT > tCS - tWAIT
1487 	 * tSETUP_ATT > tCLS - tWAIT
1488 	 * tSETUP_ATT > tALS - tWAIT
1489 	 * tSETUP_ATT > tRHW - tHOLD_MEM
1490 	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1491 	 */
1492 	tset_att = hclkp;
1493 	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1494 		tset_att = sdrt->tCS_min - twait;
1495 	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1496 		tset_att = sdrt->tCLS_min - twait;
1497 	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1498 		tset_att = sdrt->tALS_min - twait;
1499 	if (sdrt->tRHW_min > thold_mem &&
1500 	    (tset_att < sdrt->tRHW_min - thold_mem))
1501 		tset_att = sdrt->tRHW_min - thold_mem;
1502 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1503 	    (tset_att < sdrt->tDS_min - (twait - thiz)))
1504 		tset_att = sdrt->tDS_min - (twait - thiz);
1505 	timing = DIV_ROUND_UP(tset_att, hclkp);
1506 	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1507 
1508 	/*
1509 	 * tHOLD_ATT > tALH
1510 	 * tHOLD_ATT > tCH
1511 	 * tHOLD_ATT > tCLH
1512 	 * tHOLD_ATT > tCOH
1513 	 * tHOLD_ATT > tDH
1514 	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1515 	 * tHOLD_ATT > tADL - tSETUP_MEM
1516 	 * tHOLD_ATT > tWH - tSETUP_MEM
1517 	 * tHOLD_ATT > tWHR - tSETUP_MEM
1518 	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1519 	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1520 	 */
1521 	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1522 	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1523 	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1524 	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1525 	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1526 	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1527 	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1528 		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1529 	if (sdrt->tADL_min > tset_mem &&
1530 	    (thold_att < sdrt->tADL_min - tset_mem))
1531 		thold_att = sdrt->tADL_min - tset_mem;
1532 	if (sdrt->tWH_min > tset_mem &&
1533 	    (thold_att < sdrt->tWH_min - tset_mem))
1534 		thold_att = sdrt->tWH_min - tset_mem;
1535 	if (sdrt->tWHR_min > tset_mem &&
1536 	    (thold_att < sdrt->tWHR_min - tset_mem))
1537 		thold_att = sdrt->tWHR_min - tset_mem;
1538 	if ((sdrt->tRC_min > tset_att + twait) &&
1539 	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
1540 		thold_att = sdrt->tRC_min - (tset_att + twait);
1541 	if ((sdrt->tWC_min > tset_att + twait) &&
1542 	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
1543 		thold_att = sdrt->tWC_min - (tset_att + twait);
1544 	timing = DIV_ROUND_UP(thold_att, hclkp);
1545 	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1546 }
1547 
1548 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1549 					  const struct nand_data_interface *conf)
1550 {
1551 	const struct nand_sdr_timings *sdrt;
1552 
1553 	sdrt = nand_get_sdr_timings(conf);
1554 	if (IS_ERR(sdrt))
1555 		return PTR_ERR(sdrt);
1556 
1557 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1558 		return 0;
1559 
1560 	stm32_fmc2_nfc_calc_timings(chip, sdrt);
1561 	stm32_fmc2_nfc_timings_init(chip);
1562 
1563 	return 0;
1564 }
1565 
1566 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1567 {
1568 	int ret = 0;
1569 
1570 	nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1571 	if (IS_ERR(nfc->dma_tx_ch)) {
1572 		ret = PTR_ERR(nfc->dma_tx_ch);
1573 		if (ret != -ENODEV)
1574 			dev_err(nfc->dev,
1575 				"failed to request tx DMA channel: %d\n", ret);
1576 		nfc->dma_tx_ch = NULL;
1577 		goto err_dma;
1578 	}
1579 
1580 	nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1581 	if (IS_ERR(nfc->dma_rx_ch)) {
1582 		ret = PTR_ERR(nfc->dma_rx_ch);
1583 		if (ret != -ENODEV)
1584 			dev_err(nfc->dev,
1585 				"failed to request rx DMA channel: %d\n", ret);
1586 		nfc->dma_rx_ch = NULL;
1587 		goto err_dma;
1588 	}
1589 
1590 	nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1591 	if (IS_ERR(nfc->dma_ecc_ch)) {
1592 		ret = PTR_ERR(nfc->dma_ecc_ch);
1593 		if (ret != -ENODEV)
1594 			dev_err(nfc->dev,
1595 				"failed to request ecc DMA channel: %d\n", ret);
1596 		nfc->dma_ecc_ch = NULL;
1597 		goto err_dma;
1598 	}
1599 
1600 	ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1601 	if (ret)
1602 		return ret;
1603 
1604 	/* Allocate a buffer to store ECC status registers */
1605 	nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1606 	if (!nfc->ecc_buf)
1607 		return -ENOMEM;
1608 
1609 	ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1610 	if (ret)
1611 		return ret;
1612 
1613 	init_completion(&nfc->dma_data_complete);
1614 	init_completion(&nfc->dma_ecc_complete);
1615 
1616 	return 0;
1617 
1618 err_dma:
1619 	if (ret == -ENODEV) {
1620 		dev_warn(nfc->dev,
1621 			 "DMAs not defined in the DT, polling mode is used\n");
1622 		ret = 0;
1623 	}
1624 
1625 	return ret;
1626 }
1627 
1628 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1629 {
1630 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1631 
1632 	/*
1633 	 * Specific callbacks to read/write a page depending on
1634 	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1635 	 */
1636 	if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1637 		/* DMA => use sequencer mode callbacks */
1638 		chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1639 		chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1640 		chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1641 		chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1642 		chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1643 	} else {
1644 		/* No DMA => use polling mode callbacks */
1645 		chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1646 		if (chip->ecc.strength == FMC2_ECC_HAM) {
1647 			/* Hamming is used */
1648 			chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1649 			chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1650 			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1651 		} else {
1652 			/* BCH is used */
1653 			chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1654 			chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1655 			chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1656 		}
1657 	}
1658 
1659 	/* Specific configurations depending on the algo used */
1660 	if (chip->ecc.strength == FMC2_ECC_HAM)
1661 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1662 	else if (chip->ecc.strength == FMC2_ECC_BCH8)
1663 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1664 	else
1665 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1666 }
1667 
1668 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1669 					struct mtd_oob_region *oobregion)
1670 {
1671 	struct nand_chip *chip = mtd_to_nand(mtd);
1672 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1673 
1674 	if (section)
1675 		return -ERANGE;
1676 
1677 	oobregion->length = ecc->total;
1678 	oobregion->offset = FMC2_BBM_LEN;
1679 
1680 	return 0;
1681 }
1682 
1683 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1684 					 struct mtd_oob_region *oobregion)
1685 {
1686 	struct nand_chip *chip = mtd_to_nand(mtd);
1687 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1688 
1689 	if (section)
1690 		return -ERANGE;
1691 
1692 	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1693 	oobregion->offset = ecc->total + FMC2_BBM_LEN;
1694 
1695 	return 0;
1696 }
1697 
1698 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1699 	.ecc = stm32_fmc2_nfc_ooblayout_ecc,
1700 	.free = stm32_fmc2_nfc_ooblayout_free,
1701 };
1702 
1703 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1704 {
1705 	/* Hamming */
1706 	if (strength == FMC2_ECC_HAM)
1707 		return 4;
1708 
1709 	/* BCH8 */
1710 	if (strength == FMC2_ECC_BCH8)
1711 		return 14;
1712 
1713 	/* BCH4 */
1714 	return 8;
1715 }
1716 
1717 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1718 		     FMC2_ECC_STEP_SIZE,
1719 		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1720 
1721 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1722 {
1723 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1724 	struct mtd_info *mtd = nand_to_mtd(chip);
1725 	int ret;
1726 
1727 	/*
1728 	 * Only NAND_ECC_HW mode is actually supported
1729 	 * Hamming => ecc.strength = 1
1730 	 * BCH4 => ecc.strength = 4
1731 	 * BCH8 => ecc.strength = 8
1732 	 * ECC sector size = 512
1733 	 */
1734 	if (chip->ecc.mode != NAND_ECC_HW) {
1735 		dev_err(nfc->dev, "nand_ecc_mode is not well defined in the DT\n");
1736 		return -EINVAL;
1737 	}
1738 
1739 	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1740 				   mtd->oobsize - FMC2_BBM_LEN);
1741 	if (ret) {
1742 		dev_err(nfc->dev, "no valid ECC settings set\n");
1743 		return ret;
1744 	}
1745 
1746 	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1747 		dev_err(nfc->dev, "nand page size is not supported\n");
1748 		return -EINVAL;
1749 	}
1750 
1751 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1752 		chip->bbt_options |= NAND_BBT_NO_OOB;
1753 
1754 	stm32_fmc2_nfc_nand_callbacks_setup(chip);
1755 
1756 	mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1757 
1758 	if (chip->options & NAND_BUSWIDTH_16)
1759 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1760 
1761 	return 0;
1762 }
1763 
1764 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1765 	.attach_chip = stm32_fmc2_nfc_attach_chip,
1766 	.exec_op = stm32_fmc2_nfc_exec_op,
1767 	.setup_data_interface = stm32_fmc2_nfc_setup_interface,
1768 };
1769 
1770 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1771 				      struct device_node *dn)
1772 {
1773 	struct stm32_fmc2_nand *nand = &nfc->nand;
1774 	u32 cs;
1775 	int ret, i;
1776 
1777 	if (!of_get_property(dn, "reg", &nand->ncs))
1778 		return -EINVAL;
1779 
1780 	nand->ncs /= sizeof(u32);
1781 	if (!nand->ncs) {
1782 		dev_err(nfc->dev, "invalid reg property size\n");
1783 		return -EINVAL;
1784 	}
1785 
1786 	for (i = 0; i < nand->ncs; i++) {
1787 		ret = of_property_read_u32_index(dn, "reg", i, &cs);
1788 		if (ret) {
1789 			dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1790 				ret);
1791 			return ret;
1792 		}
1793 
1794 		if (cs > FMC2_MAX_CE) {
1795 			dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1796 			return -EINVAL;
1797 		}
1798 
1799 		if (nfc->cs_assigned & BIT(cs)) {
1800 			dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1801 			return -EINVAL;
1802 		}
1803 
1804 		nfc->cs_assigned |= BIT(cs);
1805 		nand->cs_used[i] = cs;
1806 	}
1807 
1808 	nand_set_flash_node(&nand->chip, dn);
1809 
1810 	return 0;
1811 }
1812 
1813 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1814 {
1815 	struct device_node *dn = nfc->dev->of_node;
1816 	struct device_node *child;
1817 	int nchips = of_get_child_count(dn);
1818 	int ret = 0;
1819 
1820 	if (!nchips) {
1821 		dev_err(nfc->dev, "NAND chip not defined\n");
1822 		return -EINVAL;
1823 	}
1824 
1825 	if (nchips > 1) {
1826 		dev_err(nfc->dev, "too many NAND chips defined\n");
1827 		return -EINVAL;
1828 	}
1829 
1830 	for_each_child_of_node(dn, child) {
1831 		ret = stm32_fmc2_nfc_parse_child(nfc, child);
1832 		if (ret < 0) {
1833 			of_node_put(child);
1834 			return ret;
1835 		}
1836 	}
1837 
1838 	return ret;
1839 }
1840 
1841 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1842 {
1843 	struct device *dev = &pdev->dev;
1844 	struct reset_control *rstc;
1845 	struct stm32_fmc2_nfc *nfc;
1846 	struct stm32_fmc2_nand *nand;
1847 	struct resource *res;
1848 	struct mtd_info *mtd;
1849 	struct nand_chip *chip;
1850 	int chip_cs, mem_region, ret, irq;
1851 
1852 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1853 	if (!nfc)
1854 		return -ENOMEM;
1855 
1856 	nfc->dev = dev;
1857 	nand_controller_init(&nfc->base);
1858 	nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1859 
1860 	ret = stm32_fmc2_nfc_parse_dt(nfc);
1861 	if (ret)
1862 		return ret;
1863 
1864 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1865 	nfc->io_base = devm_ioremap_resource(dev, res);
1866 	if (IS_ERR(nfc->io_base))
1867 		return PTR_ERR(nfc->io_base);
1868 
1869 	nfc->io_phys_addr = res->start;
1870 
1871 	for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
1872 	     chip_cs++, mem_region += 3) {
1873 		if (!(nfc->cs_assigned & BIT(chip_cs)))
1874 			continue;
1875 
1876 		res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1877 		nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1878 		if (IS_ERR(nfc->data_base[chip_cs]))
1879 			return PTR_ERR(nfc->data_base[chip_cs]);
1880 
1881 		nfc->data_phys_addr[chip_cs] = res->start;
1882 
1883 		res = platform_get_resource(pdev, IORESOURCE_MEM,
1884 					    mem_region + 1);
1885 		nfc->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
1886 		if (IS_ERR(nfc->cmd_base[chip_cs]))
1887 			return PTR_ERR(nfc->cmd_base[chip_cs]);
1888 
1889 		res = platform_get_resource(pdev, IORESOURCE_MEM,
1890 					    mem_region + 2);
1891 		nfc->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
1892 		if (IS_ERR(nfc->addr_base[chip_cs]))
1893 			return PTR_ERR(nfc->addr_base[chip_cs]);
1894 	}
1895 
1896 	irq = platform_get_irq(pdev, 0);
1897 	if (irq < 0)
1898 		return irq;
1899 
1900 	ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1901 			       dev_name(dev), nfc);
1902 	if (ret) {
1903 		dev_err(dev, "failed to request irq\n");
1904 		return ret;
1905 	}
1906 
1907 	init_completion(&nfc->complete);
1908 
1909 	nfc->clk = devm_clk_get(dev, NULL);
1910 	if (IS_ERR(nfc->clk))
1911 		return PTR_ERR(nfc->clk);
1912 
1913 	ret = clk_prepare_enable(nfc->clk);
1914 	if (ret) {
1915 		dev_err(dev, "can not enable the clock\n");
1916 		return ret;
1917 	}
1918 
1919 	rstc = devm_reset_control_get(dev, NULL);
1920 	if (IS_ERR(rstc)) {
1921 		ret = PTR_ERR(rstc);
1922 		if (ret == -EPROBE_DEFER)
1923 			goto err_clk_disable;
1924 	} else {
1925 		reset_control_assert(rstc);
1926 		reset_control_deassert(rstc);
1927 	}
1928 
1929 	ret = stm32_fmc2_nfc_dma_setup(nfc);
1930 	if (ret)
1931 		goto err_release_dma;
1932 
1933 	stm32_fmc2_nfc_init(nfc);
1934 
1935 	nand = &nfc->nand;
1936 	chip = &nand->chip;
1937 	mtd = nand_to_mtd(chip);
1938 	mtd->dev.parent = dev;
1939 
1940 	chip->controller = &nfc->base;
1941 	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1942 			 NAND_USES_DMA;
1943 
1944 	/* Default ECC settings */
1945 	chip->ecc.mode = NAND_ECC_HW;
1946 	chip->ecc.size = FMC2_ECC_STEP_SIZE;
1947 	chip->ecc.strength = FMC2_ECC_BCH8;
1948 
1949 	/* Scan to find existence of the device */
1950 	ret = nand_scan(chip, nand->ncs);
1951 	if (ret)
1952 		goto err_release_dma;
1953 
1954 	ret = mtd_device_register(mtd, NULL, 0);
1955 	if (ret)
1956 		goto err_nand_cleanup;
1957 
1958 	platform_set_drvdata(pdev, nfc);
1959 
1960 	return 0;
1961 
1962 err_nand_cleanup:
1963 	nand_cleanup(chip);
1964 
1965 err_release_dma:
1966 	if (nfc->dma_ecc_ch)
1967 		dma_release_channel(nfc->dma_ecc_ch);
1968 	if (nfc->dma_tx_ch)
1969 		dma_release_channel(nfc->dma_tx_ch);
1970 	if (nfc->dma_rx_ch)
1971 		dma_release_channel(nfc->dma_rx_ch);
1972 
1973 	sg_free_table(&nfc->dma_data_sg);
1974 	sg_free_table(&nfc->dma_ecc_sg);
1975 
1976 err_clk_disable:
1977 	clk_disable_unprepare(nfc->clk);
1978 
1979 	return ret;
1980 }
1981 
1982 static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
1983 {
1984 	struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
1985 	struct stm32_fmc2_nand *nand = &nfc->nand;
1986 	struct nand_chip *chip = &nand->chip;
1987 	int ret;
1988 
1989 	ret = mtd_device_unregister(nand_to_mtd(chip));
1990 	WARN_ON(ret);
1991 	nand_cleanup(chip);
1992 
1993 	if (nfc->dma_ecc_ch)
1994 		dma_release_channel(nfc->dma_ecc_ch);
1995 	if (nfc->dma_tx_ch)
1996 		dma_release_channel(nfc->dma_tx_ch);
1997 	if (nfc->dma_rx_ch)
1998 		dma_release_channel(nfc->dma_rx_ch);
1999 
2000 	sg_free_table(&nfc->dma_data_sg);
2001 	sg_free_table(&nfc->dma_ecc_sg);
2002 
2003 	clk_disable_unprepare(nfc->clk);
2004 
2005 	return 0;
2006 }
2007 
2008 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2009 {
2010 	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2011 
2012 	clk_disable_unprepare(nfc->clk);
2013 
2014 	pinctrl_pm_select_sleep_state(dev);
2015 
2016 	return 0;
2017 }
2018 
2019 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2020 {
2021 	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2022 	struct stm32_fmc2_nand *nand = &nfc->nand;
2023 	int chip_cs, ret;
2024 
2025 	pinctrl_pm_select_default_state(dev);
2026 
2027 	ret = clk_prepare_enable(nfc->clk);
2028 	if (ret) {
2029 		dev_err(dev, "can not enable the clock\n");
2030 		return ret;
2031 	}
2032 
2033 	stm32_fmc2_nfc_init(nfc);
2034 
2035 	for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2036 		if (!(nfc->cs_assigned & BIT(chip_cs)))
2037 			continue;
2038 
2039 		nand_reset(&nand->chip, chip_cs);
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2046 			 stm32_fmc2_nfc_resume);
2047 
2048 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2049 	{.compatible = "st,stm32mp15-fmc2"},
2050 	{}
2051 };
2052 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2053 
2054 static struct platform_driver stm32_fmc2_nfc_driver = {
2055 	.probe	= stm32_fmc2_nfc_probe,
2056 	.remove	= stm32_fmc2_nfc_remove,
2057 	.driver	= {
2058 		.name = "stm32_fmc2_nfc",
2059 		.of_match_table = stm32_fmc2_nfc_match,
2060 		.pm = &stm32_fmc2_nfc_pm_ops,
2061 	},
2062 };
2063 module_platform_driver(stm32_fmc2_nfc_driver);
2064 
2065 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2066 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2067 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2068 MODULE_LICENSE("GPL v2");
2069