xref: /openbmc/linux/drivers/mtd/nand/raw/sh_flctl.c (revision c4f7ac64)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH FLCTL nand controller
4  *
5  * Copyright (c) 2008 Renesas Solutions Corp.
6  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7  *
8  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_dma.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/sh_flctl.h>
31 
32 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
33 					struct mtd_oob_region *oobregion)
34 {
35 	struct nand_chip *chip = mtd_to_nand(mtd);
36 
37 	if (section)
38 		return -ERANGE;
39 
40 	oobregion->offset = 0;
41 	oobregion->length = chip->ecc.bytes;
42 
43 	return 0;
44 }
45 
46 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
47 					 struct mtd_oob_region *oobregion)
48 {
49 	if (section)
50 		return -ERANGE;
51 
52 	oobregion->offset = 12;
53 	oobregion->length = 4;
54 
55 	return 0;
56 }
57 
58 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
59 	.ecc = flctl_4secc_ooblayout_sp_ecc,
60 	.free = flctl_4secc_ooblayout_sp_free,
61 };
62 
63 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
64 					struct mtd_oob_region *oobregion)
65 {
66 	struct nand_chip *chip = mtd_to_nand(mtd);
67 
68 	if (section >= chip->ecc.steps)
69 		return -ERANGE;
70 
71 	oobregion->offset = (section * 16) + 6;
72 	oobregion->length = chip->ecc.bytes;
73 
74 	return 0;
75 }
76 
77 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
78 					 struct mtd_oob_region *oobregion)
79 {
80 	struct nand_chip *chip = mtd_to_nand(mtd);
81 
82 	if (section >= chip->ecc.steps)
83 		return -ERANGE;
84 
85 	oobregion->offset = section * 16;
86 	oobregion->length = 6;
87 
88 	if (!section) {
89 		oobregion->offset += 2;
90 		oobregion->length -= 2;
91 	}
92 
93 	return 0;
94 }
95 
96 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
97 	.ecc = flctl_4secc_ooblayout_lp_ecc,
98 	.free = flctl_4secc_ooblayout_lp_free,
99 };
100 
101 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
102 
103 static struct nand_bbt_descr flctl_4secc_smallpage = {
104 	.offs = 11,
105 	.len = 1,
106 	.pattern = scan_ff_pattern,
107 };
108 
109 static struct nand_bbt_descr flctl_4secc_largepage = {
110 	.offs = 0,
111 	.len = 2,
112 	.pattern = scan_ff_pattern,
113 };
114 
115 static void empty_fifo(struct sh_flctl *flctl)
116 {
117 	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
118 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
119 }
120 
121 static void start_translation(struct sh_flctl *flctl)
122 {
123 	writeb(TRSTRT, FLTRCR(flctl));
124 }
125 
126 static void timeout_error(struct sh_flctl *flctl, const char *str)
127 {
128 	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
129 }
130 
131 static void wait_completion(struct sh_flctl *flctl)
132 {
133 	uint32_t timeout = LOOP_TIMEOUT_MAX;
134 
135 	while (timeout--) {
136 		if (readb(FLTRCR(flctl)) & TREND) {
137 			writeb(0x0, FLTRCR(flctl));
138 			return;
139 		}
140 		udelay(1);
141 	}
142 
143 	timeout_error(flctl, __func__);
144 	writeb(0x0, FLTRCR(flctl));
145 }
146 
147 static void flctl_dma_complete(void *param)
148 {
149 	struct sh_flctl *flctl = param;
150 
151 	complete(&flctl->dma_complete);
152 }
153 
154 static void flctl_release_dma(struct sh_flctl *flctl)
155 {
156 	if (flctl->chan_fifo0_rx) {
157 		dma_release_channel(flctl->chan_fifo0_rx);
158 		flctl->chan_fifo0_rx = NULL;
159 	}
160 	if (flctl->chan_fifo0_tx) {
161 		dma_release_channel(flctl->chan_fifo0_tx);
162 		flctl->chan_fifo0_tx = NULL;
163 	}
164 }
165 
166 static void flctl_setup_dma(struct sh_flctl *flctl)
167 {
168 	dma_cap_mask_t mask;
169 	struct dma_slave_config cfg;
170 	struct platform_device *pdev = flctl->pdev;
171 	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
172 	int ret;
173 
174 	if (!pdata)
175 		return;
176 
177 	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
178 		return;
179 
180 	/* We can only either use DMA for both Tx and Rx or not use it at all */
181 	dma_cap_zero(mask);
182 	dma_cap_set(DMA_SLAVE, mask);
183 
184 	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
185 				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
186 	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
187 		flctl->chan_fifo0_tx);
188 
189 	if (!flctl->chan_fifo0_tx)
190 		return;
191 
192 	memset(&cfg, 0, sizeof(cfg));
193 	cfg.direction = DMA_MEM_TO_DEV;
194 	cfg.dst_addr = flctl->fifo;
195 	cfg.src_addr = 0;
196 	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
197 	if (ret < 0)
198 		goto err;
199 
200 	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
201 				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
202 	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
203 		flctl->chan_fifo0_rx);
204 
205 	if (!flctl->chan_fifo0_rx)
206 		goto err;
207 
208 	cfg.direction = DMA_DEV_TO_MEM;
209 	cfg.dst_addr = 0;
210 	cfg.src_addr = flctl->fifo;
211 	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
212 	if (ret < 0)
213 		goto err;
214 
215 	init_completion(&flctl->dma_complete);
216 
217 	return;
218 
219 err:
220 	flctl_release_dma(flctl);
221 }
222 
223 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
224 {
225 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
226 	uint32_t addr = 0;
227 
228 	if (column == -1) {
229 		addr = page_addr;	/* ERASE1 */
230 	} else if (page_addr != -1) {
231 		/* SEQIN, READ0, etc.. */
232 		if (flctl->chip.options & NAND_BUSWIDTH_16)
233 			column >>= 1;
234 		if (flctl->page_size) {
235 			addr = column & 0x0FFF;
236 			addr |= (page_addr & 0xff) << 16;
237 			addr |= ((page_addr >> 8) & 0xff) << 24;
238 			/* big than 128MB */
239 			if (flctl->rw_ADRCNT == ADRCNT2_E) {
240 				uint32_t 	addr2;
241 				addr2 = (page_addr >> 16) & 0xff;
242 				writel(addr2, FLADR2(flctl));
243 			}
244 		} else {
245 			addr = column;
246 			addr |= (page_addr & 0xff) << 8;
247 			addr |= ((page_addr >> 8) & 0xff) << 16;
248 			addr |= ((page_addr >> 16) & 0xff) << 24;
249 		}
250 	}
251 	writel(addr, FLADR(flctl));
252 }
253 
254 static void wait_rfifo_ready(struct sh_flctl *flctl)
255 {
256 	uint32_t timeout = LOOP_TIMEOUT_MAX;
257 
258 	while (timeout--) {
259 		uint32_t val;
260 		/* check FIFO */
261 		val = readl(FLDTCNTR(flctl)) >> 16;
262 		if (val & 0xFF)
263 			return;
264 		udelay(1);
265 	}
266 	timeout_error(flctl, __func__);
267 }
268 
269 static void wait_wfifo_ready(struct sh_flctl *flctl)
270 {
271 	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
272 
273 	while (timeout--) {
274 		/* check FIFO */
275 		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
276 		if (len >= 4)
277 			return;
278 		udelay(1);
279 	}
280 	timeout_error(flctl, __func__);
281 }
282 
283 static enum flctl_ecc_res_t wait_recfifo_ready
284 		(struct sh_flctl *flctl, int sector_number)
285 {
286 	uint32_t timeout = LOOP_TIMEOUT_MAX;
287 	void __iomem *ecc_reg[4];
288 	int i;
289 	int state = FL_SUCCESS;
290 	uint32_t data, size;
291 
292 	/*
293 	 * First this loops checks in FLDTCNTR if we are ready to read out the
294 	 * oob data. This is the case if either all went fine without errors or
295 	 * if the bottom part of the loop corrected the errors or marked them as
296 	 * uncorrectable and the controller is given time to push the data into
297 	 * the FIFO.
298 	 */
299 	while (timeout--) {
300 		/* check if all is ok and we can read out the OOB */
301 		size = readl(FLDTCNTR(flctl)) >> 24;
302 		if ((size & 0xFF) == 4)
303 			return state;
304 
305 		/* check if a correction code has been calculated */
306 		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
307 			/*
308 			 * either we wait for the fifo to be filled or a
309 			 * correction pattern is being generated
310 			 */
311 			udelay(1);
312 			continue;
313 		}
314 
315 		/* check for an uncorrectable error */
316 		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
317 			/* check if we face a non-empty page */
318 			for (i = 0; i < 512; i++) {
319 				if (flctl->done_buff[i] != 0xff) {
320 					state = FL_ERROR; /* can't correct */
321 					break;
322 				}
323 			}
324 
325 			if (state == FL_SUCCESS)
326 				dev_dbg(&flctl->pdev->dev,
327 				"reading empty sector %d, ecc error ignored\n",
328 				sector_number);
329 
330 			writel(0, FL4ECCCR(flctl));
331 			continue;
332 		}
333 
334 		/* start error correction */
335 		ecc_reg[0] = FL4ECCRESULT0(flctl);
336 		ecc_reg[1] = FL4ECCRESULT1(flctl);
337 		ecc_reg[2] = FL4ECCRESULT2(flctl);
338 		ecc_reg[3] = FL4ECCRESULT3(flctl);
339 
340 		for (i = 0; i < 3; i++) {
341 			uint8_t org;
342 			unsigned int index;
343 
344 			data = readl(ecc_reg[i]);
345 
346 			if (flctl->page_size)
347 				index = (512 * sector_number) +
348 					(data >> 16);
349 			else
350 				index = data >> 16;
351 
352 			org = flctl->done_buff[index];
353 			flctl->done_buff[index] = org ^ (data & 0xFF);
354 		}
355 		state = FL_REPAIRABLE;
356 		writel(0, FL4ECCCR(flctl));
357 	}
358 
359 	timeout_error(flctl, __func__);
360 	return FL_TIMEOUT;	/* timeout */
361 }
362 
363 static void wait_wecfifo_ready(struct sh_flctl *flctl)
364 {
365 	uint32_t timeout = LOOP_TIMEOUT_MAX;
366 	uint32_t len;
367 
368 	while (timeout--) {
369 		/* check FLECFIFO */
370 		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
371 		if (len >= 4)
372 			return;
373 		udelay(1);
374 	}
375 	timeout_error(flctl, __func__);
376 }
377 
378 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
379 					int len, enum dma_data_direction dir)
380 {
381 	struct dma_async_tx_descriptor *desc = NULL;
382 	struct dma_chan *chan;
383 	enum dma_transfer_direction tr_dir;
384 	dma_addr_t dma_addr;
385 	dma_cookie_t cookie;
386 	uint32_t reg;
387 	int ret;
388 
389 	if (dir == DMA_FROM_DEVICE) {
390 		chan = flctl->chan_fifo0_rx;
391 		tr_dir = DMA_DEV_TO_MEM;
392 	} else {
393 		chan = flctl->chan_fifo0_tx;
394 		tr_dir = DMA_MEM_TO_DEV;
395 	}
396 
397 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
398 
399 	if (!dma_mapping_error(chan->device->dev, dma_addr))
400 		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
401 			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
402 
403 	if (desc) {
404 		reg = readl(FLINTDMACR(flctl));
405 		reg |= DREQ0EN;
406 		writel(reg, FLINTDMACR(flctl));
407 
408 		desc->callback = flctl_dma_complete;
409 		desc->callback_param = flctl;
410 		cookie = dmaengine_submit(desc);
411 		if (dma_submit_error(cookie)) {
412 			ret = dma_submit_error(cookie);
413 			dev_warn(&flctl->pdev->dev,
414 				 "DMA submit failed, falling back to PIO\n");
415 			goto out;
416 		}
417 
418 		dma_async_issue_pending(chan);
419 	} else {
420 		/* DMA failed, fall back to PIO */
421 		flctl_release_dma(flctl);
422 		dev_warn(&flctl->pdev->dev,
423 			 "DMA failed, falling back to PIO\n");
424 		ret = -EIO;
425 		goto out;
426 	}
427 
428 	ret =
429 	wait_for_completion_timeout(&flctl->dma_complete,
430 				msecs_to_jiffies(3000));
431 
432 	if (ret <= 0) {
433 		dmaengine_terminate_all(chan);
434 		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
435 	}
436 
437 out:
438 	reg = readl(FLINTDMACR(flctl));
439 	reg &= ~DREQ0EN;
440 	writel(reg, FLINTDMACR(flctl));
441 
442 	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
443 
444 	/* ret > 0 is success */
445 	return ret;
446 }
447 
448 static void read_datareg(struct sh_flctl *flctl, int offset)
449 {
450 	unsigned long data;
451 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
452 
453 	wait_completion(flctl);
454 
455 	data = readl(FLDATAR(flctl));
456 	*buf = le32_to_cpu(data);
457 }
458 
459 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
460 {
461 	int i, len_4align;
462 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
463 
464 	len_4align = (rlen + 3) / 4;
465 
466 	/* initiate DMA transfer */
467 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
468 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0)
469 			goto convert;	/* DMA success */
470 
471 	/* do polling transfer */
472 	for (i = 0; i < len_4align; i++) {
473 		wait_rfifo_ready(flctl);
474 		buf[i] = readl(FLDTFIFO(flctl));
475 	}
476 
477 convert:
478 	for (i = 0; i < len_4align; i++)
479 		buf[i] = be32_to_cpu(buf[i]);
480 }
481 
482 static enum flctl_ecc_res_t read_ecfiforeg
483 		(struct sh_flctl *flctl, uint8_t *buff, int sector)
484 {
485 	int i;
486 	enum flctl_ecc_res_t res;
487 	unsigned long *ecc_buf = (unsigned long *)buff;
488 
489 	res = wait_recfifo_ready(flctl , sector);
490 
491 	if (res != FL_ERROR) {
492 		for (i = 0; i < 4; i++) {
493 			ecc_buf[i] = readl(FLECFIFO(flctl));
494 			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
495 		}
496 	}
497 
498 	return res;
499 }
500 
501 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
502 						unsigned int offset)
503 {
504 	int i, len_4align;
505 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
506 
507 	len_4align = (rlen + 3) / 4;
508 	for (i = 0; i < len_4align; i++) {
509 		wait_wfifo_ready(flctl);
510 		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
511 	}
512 }
513 
514 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
515 						unsigned int offset)
516 {
517 	int i, len_4align;
518 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
519 
520 	len_4align = (rlen + 3) / 4;
521 
522 	for (i = 0; i < len_4align; i++)
523 		buf[i] = cpu_to_be32(buf[i]);
524 
525 	/* initiate DMA transfer */
526 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
527 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0)
528 			return;	/* DMA success */
529 
530 	/* do polling transfer */
531 	for (i = 0; i < len_4align; i++) {
532 		wait_wecfifo_ready(flctl);
533 		writel(buf[i], FLECFIFO(flctl));
534 	}
535 }
536 
537 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
538 {
539 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
540 	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
541 	uint32_t flcmdcr_val, addr_len_bytes = 0;
542 
543 	/* Set SNAND bit if page size is 2048byte */
544 	if (flctl->page_size)
545 		flcmncr_val |= SNAND_E;
546 	else
547 		flcmncr_val &= ~SNAND_E;
548 
549 	/* default FLCMDCR val */
550 	flcmdcr_val = DOCMD1_E | DOADR_E;
551 
552 	/* Set for FLCMDCR */
553 	switch (cmd) {
554 	case NAND_CMD_ERASE1:
555 		addr_len_bytes = flctl->erase_ADRCNT;
556 		flcmdcr_val |= DOCMD2_E;
557 		break;
558 	case NAND_CMD_READ0:
559 	case NAND_CMD_READOOB:
560 	case NAND_CMD_RNDOUT:
561 		addr_len_bytes = flctl->rw_ADRCNT;
562 		flcmdcr_val |= CDSRC_E;
563 		if (flctl->chip.options & NAND_BUSWIDTH_16)
564 			flcmncr_val |= SEL_16BIT;
565 		break;
566 	case NAND_CMD_SEQIN:
567 		/* This case is that cmd is READ0 or READ1 or READ00 */
568 		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
569 		break;
570 	case NAND_CMD_PAGEPROG:
571 		addr_len_bytes = flctl->rw_ADRCNT;
572 		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
573 		if (flctl->chip.options & NAND_BUSWIDTH_16)
574 			flcmncr_val |= SEL_16BIT;
575 		break;
576 	case NAND_CMD_READID:
577 		flcmncr_val &= ~SNAND_E;
578 		flcmdcr_val |= CDSRC_E;
579 		addr_len_bytes = ADRCNT_1;
580 		break;
581 	case NAND_CMD_STATUS:
582 	case NAND_CMD_RESET:
583 		flcmncr_val &= ~SNAND_E;
584 		flcmdcr_val &= ~(DOADR_E | DOSR_E);
585 		break;
586 	default:
587 		break;
588 	}
589 
590 	/* Set address bytes parameter */
591 	flcmdcr_val |= addr_len_bytes;
592 
593 	/* Now actually write */
594 	writel(flcmncr_val, FLCMNCR(flctl));
595 	writel(flcmdcr_val, FLCMDCR(flctl));
596 	writel(flcmcdr_val, FLCMCDR(flctl));
597 }
598 
599 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
600 				 int oob_required, int page)
601 {
602 	struct mtd_info *mtd = nand_to_mtd(chip);
603 
604 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
605 	if (oob_required)
606 		chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
607 	return 0;
608 }
609 
610 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
611 				  int oob_required, int page)
612 {
613 	struct mtd_info *mtd = nand_to_mtd(chip);
614 
615 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
616 	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
617 	return nand_prog_page_end_op(chip);
618 }
619 
620 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
621 {
622 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
623 	int sector, page_sectors;
624 	enum flctl_ecc_res_t ecc_result;
625 
626 	page_sectors = flctl->page_size ? 4 : 1;
627 
628 	set_cmd_regs(mtd, NAND_CMD_READ0,
629 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
630 
631 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
632 		 FLCMNCR(flctl));
633 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
634 	writel(page_addr << 2, FLADR(flctl));
635 
636 	empty_fifo(flctl);
637 	start_translation(flctl);
638 
639 	for (sector = 0; sector < page_sectors; sector++) {
640 		read_fiforeg(flctl, 512, 512 * sector);
641 
642 		ecc_result = read_ecfiforeg(flctl,
643 			&flctl->done_buff[mtd->writesize + 16 * sector],
644 			sector);
645 
646 		switch (ecc_result) {
647 		case FL_REPAIRABLE:
648 			dev_info(&flctl->pdev->dev,
649 				"applied ecc on page 0x%x", page_addr);
650 			mtd->ecc_stats.corrected++;
651 			break;
652 		case FL_ERROR:
653 			dev_warn(&flctl->pdev->dev,
654 				"page 0x%x contains corrupted data\n",
655 				page_addr);
656 			mtd->ecc_stats.failed++;
657 			break;
658 		default:
659 			;
660 		}
661 	}
662 
663 	wait_completion(flctl);
664 
665 	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
666 			FLCMNCR(flctl));
667 }
668 
669 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
670 {
671 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
672 	int page_sectors = flctl->page_size ? 4 : 1;
673 	int i;
674 
675 	set_cmd_regs(mtd, NAND_CMD_READ0,
676 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
677 
678 	empty_fifo(flctl);
679 
680 	for (i = 0; i < page_sectors; i++) {
681 		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
682 		writel(16, FLDTCNTR(flctl));
683 
684 		start_translation(flctl);
685 		read_fiforeg(flctl, 16, 16 * i);
686 		wait_completion(flctl);
687 	}
688 }
689 
690 static void execmd_write_page_sector(struct mtd_info *mtd)
691 {
692 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
693 	int page_addr = flctl->seqin_page_addr;
694 	int sector, page_sectors;
695 
696 	page_sectors = flctl->page_size ? 4 : 1;
697 
698 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
699 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
700 
701 	empty_fifo(flctl);
702 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
703 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
704 	writel(page_addr << 2, FLADR(flctl));
705 	start_translation(flctl);
706 
707 	for (sector = 0; sector < page_sectors; sector++) {
708 		write_fiforeg(flctl, 512, 512 * sector);
709 		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
710 	}
711 
712 	wait_completion(flctl);
713 	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
714 }
715 
716 static void execmd_write_oob(struct mtd_info *mtd)
717 {
718 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
719 	int page_addr = flctl->seqin_page_addr;
720 	int sector, page_sectors;
721 
722 	page_sectors = flctl->page_size ? 4 : 1;
723 
724 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
725 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
726 
727 	for (sector = 0; sector < page_sectors; sector++) {
728 		empty_fifo(flctl);
729 		set_addr(mtd, sector * 528 + 512, page_addr);
730 		writel(16, FLDTCNTR(flctl));	/* set read size */
731 
732 		start_translation(flctl);
733 		write_fiforeg(flctl, 16, 16 * sector);
734 		wait_completion(flctl);
735 	}
736 }
737 
738 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
739 			int column, int page_addr)
740 {
741 	struct mtd_info *mtd = nand_to_mtd(chip);
742 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
743 	uint32_t read_cmd = 0;
744 
745 	pm_runtime_get_sync(&flctl->pdev->dev);
746 
747 	flctl->read_bytes = 0;
748 	if (command != NAND_CMD_PAGEPROG)
749 		flctl->index = 0;
750 
751 	switch (command) {
752 	case NAND_CMD_READ1:
753 	case NAND_CMD_READ0:
754 		if (flctl->hwecc) {
755 			/* read page with hwecc */
756 			execmd_read_page_sector(mtd, page_addr);
757 			break;
758 		}
759 		if (flctl->page_size)
760 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
761 				| command);
762 		else
763 			set_cmd_regs(mtd, command, command);
764 
765 		set_addr(mtd, 0, page_addr);
766 
767 		flctl->read_bytes = mtd->writesize + mtd->oobsize;
768 		if (flctl->chip.options & NAND_BUSWIDTH_16)
769 			column >>= 1;
770 		flctl->index += column;
771 		goto read_normal_exit;
772 
773 	case NAND_CMD_READOOB:
774 		if (flctl->hwecc) {
775 			/* read page with hwecc */
776 			execmd_read_oob(mtd, page_addr);
777 			break;
778 		}
779 
780 		if (flctl->page_size) {
781 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
782 				| NAND_CMD_READ0);
783 			set_addr(mtd, mtd->writesize, page_addr);
784 		} else {
785 			set_cmd_regs(mtd, command, command);
786 			set_addr(mtd, 0, page_addr);
787 		}
788 		flctl->read_bytes = mtd->oobsize;
789 		goto read_normal_exit;
790 
791 	case NAND_CMD_RNDOUT:
792 		if (flctl->hwecc)
793 			break;
794 
795 		if (flctl->page_size)
796 			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
797 				| command);
798 		else
799 			set_cmd_regs(mtd, command, command);
800 
801 		set_addr(mtd, column, 0);
802 
803 		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
804 		goto read_normal_exit;
805 
806 	case NAND_CMD_READID:
807 		set_cmd_regs(mtd, command, command);
808 
809 		/* READID is always performed using an 8-bit bus */
810 		if (flctl->chip.options & NAND_BUSWIDTH_16)
811 			column <<= 1;
812 		set_addr(mtd, column, 0);
813 
814 		flctl->read_bytes = 8;
815 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
816 		empty_fifo(flctl);
817 		start_translation(flctl);
818 		read_fiforeg(flctl, flctl->read_bytes, 0);
819 		wait_completion(flctl);
820 		break;
821 
822 	case NAND_CMD_ERASE1:
823 		flctl->erase1_page_addr = page_addr;
824 		break;
825 
826 	case NAND_CMD_ERASE2:
827 		set_cmd_regs(mtd, NAND_CMD_ERASE1,
828 			(command << 8) | NAND_CMD_ERASE1);
829 		set_addr(mtd, -1, flctl->erase1_page_addr);
830 		start_translation(flctl);
831 		wait_completion(flctl);
832 		break;
833 
834 	case NAND_CMD_SEQIN:
835 		if (!flctl->page_size) {
836 			/* output read command */
837 			if (column >= mtd->writesize) {
838 				column -= mtd->writesize;
839 				read_cmd = NAND_CMD_READOOB;
840 			} else if (column < 256) {
841 				read_cmd = NAND_CMD_READ0;
842 			} else {
843 				column -= 256;
844 				read_cmd = NAND_CMD_READ1;
845 			}
846 		}
847 		flctl->seqin_column = column;
848 		flctl->seqin_page_addr = page_addr;
849 		flctl->seqin_read_cmd = read_cmd;
850 		break;
851 
852 	case NAND_CMD_PAGEPROG:
853 		empty_fifo(flctl);
854 		if (!flctl->page_size) {
855 			set_cmd_regs(mtd, NAND_CMD_SEQIN,
856 					flctl->seqin_read_cmd);
857 			set_addr(mtd, -1, -1);
858 			writel(0, FLDTCNTR(flctl));	/* set 0 size */
859 			start_translation(flctl);
860 			wait_completion(flctl);
861 		}
862 		if (flctl->hwecc) {
863 			/* write page with hwecc */
864 			if (flctl->seqin_column == mtd->writesize)
865 				execmd_write_oob(mtd);
866 			else if (!flctl->seqin_column)
867 				execmd_write_page_sector(mtd);
868 			else
869 				pr_err("Invalid address !?\n");
870 			break;
871 		}
872 		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
873 		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
874 		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
875 		start_translation(flctl);
876 		write_fiforeg(flctl, flctl->index, 0);
877 		wait_completion(flctl);
878 		break;
879 
880 	case NAND_CMD_STATUS:
881 		set_cmd_regs(mtd, command, command);
882 		set_addr(mtd, -1, -1);
883 
884 		flctl->read_bytes = 1;
885 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
886 		start_translation(flctl);
887 		read_datareg(flctl, 0); /* read and end */
888 		break;
889 
890 	case NAND_CMD_RESET:
891 		set_cmd_regs(mtd, command, command);
892 		set_addr(mtd, -1, -1);
893 
894 		writel(0, FLDTCNTR(flctl));	/* set 0 size */
895 		start_translation(flctl);
896 		wait_completion(flctl);
897 		break;
898 
899 	default:
900 		break;
901 	}
902 	goto runtime_exit;
903 
904 read_normal_exit:
905 	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
906 	empty_fifo(flctl);
907 	start_translation(flctl);
908 	read_fiforeg(flctl, flctl->read_bytes, 0);
909 	wait_completion(flctl);
910 runtime_exit:
911 	pm_runtime_put_sync(&flctl->pdev->dev);
912 	return;
913 }
914 
915 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
916 {
917 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
918 	int ret;
919 
920 	switch (chipnr) {
921 	case -1:
922 		flctl->flcmncr_base &= ~CE0_ENABLE;
923 
924 		pm_runtime_get_sync(&flctl->pdev->dev);
925 		writel(flctl->flcmncr_base, FLCMNCR(flctl));
926 
927 		if (flctl->qos_request) {
928 			dev_pm_qos_remove_request(&flctl->pm_qos);
929 			flctl->qos_request = 0;
930 		}
931 
932 		pm_runtime_put_sync(&flctl->pdev->dev);
933 		break;
934 	case 0:
935 		flctl->flcmncr_base |= CE0_ENABLE;
936 
937 		if (!flctl->qos_request) {
938 			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
939 							&flctl->pm_qos,
940 							DEV_PM_QOS_RESUME_LATENCY,
941 							100);
942 			if (ret < 0)
943 				dev_err(&flctl->pdev->dev,
944 					"PM QoS request failed: %d\n", ret);
945 			flctl->qos_request = 1;
946 		}
947 
948 		if (flctl->holden) {
949 			pm_runtime_get_sync(&flctl->pdev->dev);
950 			writel(HOLDEN, FLHOLDCR(flctl));
951 			pm_runtime_put_sync(&flctl->pdev->dev);
952 		}
953 		break;
954 	default:
955 		BUG();
956 	}
957 }
958 
959 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
960 {
961 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
962 
963 	memcpy(&flctl->done_buff[flctl->index], buf, len);
964 	flctl->index += len;
965 }
966 
967 static uint8_t flctl_read_byte(struct nand_chip *chip)
968 {
969 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
970 	uint8_t data;
971 
972 	data = flctl->done_buff[flctl->index];
973 	flctl->index++;
974 	return data;
975 }
976 
977 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
978 {
979 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
980 
981 	memcpy(buf, &flctl->done_buff[flctl->index], len);
982 	flctl->index += len;
983 }
984 
985 static int flctl_chip_attach_chip(struct nand_chip *chip)
986 {
987 	u64 targetsize = nanddev_target_size(&chip->base);
988 	struct mtd_info *mtd = nand_to_mtd(chip);
989 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
990 
991 	/*
992 	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
993 	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
994 	 */
995 	if (chip->options & NAND_BUSWIDTH_16)
996 		flctl->flcmncr_base |= SEL_16BIT;
997 
998 	if (mtd->writesize == 512) {
999 		flctl->page_size = 0;
1000 		if (targetsize > (32 << 20)) {
1001 			/* big than 32MB */
1002 			flctl->rw_ADRCNT = ADRCNT_4;
1003 			flctl->erase_ADRCNT = ADRCNT_3;
1004 		} else if (targetsize > (2 << 16)) {
1005 			/* big than 128KB */
1006 			flctl->rw_ADRCNT = ADRCNT_3;
1007 			flctl->erase_ADRCNT = ADRCNT_2;
1008 		} else {
1009 			flctl->rw_ADRCNT = ADRCNT_2;
1010 			flctl->erase_ADRCNT = ADRCNT_1;
1011 		}
1012 	} else {
1013 		flctl->page_size = 1;
1014 		if (targetsize > (128 << 20)) {
1015 			/* big than 128MB */
1016 			flctl->rw_ADRCNT = ADRCNT2_E;
1017 			flctl->erase_ADRCNT = ADRCNT_3;
1018 		} else if (targetsize > (8 << 16)) {
1019 			/* big than 512KB */
1020 			flctl->rw_ADRCNT = ADRCNT_4;
1021 			flctl->erase_ADRCNT = ADRCNT_2;
1022 		} else {
1023 			flctl->rw_ADRCNT = ADRCNT_3;
1024 			flctl->erase_ADRCNT = ADRCNT_1;
1025 		}
1026 	}
1027 
1028 	if (flctl->hwecc) {
1029 		if (mtd->writesize == 512) {
1030 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1031 			chip->badblock_pattern = &flctl_4secc_smallpage;
1032 		} else {
1033 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1034 			chip->badblock_pattern = &flctl_4secc_largepage;
1035 		}
1036 
1037 		chip->ecc.size = 512;
1038 		chip->ecc.bytes = 10;
1039 		chip->ecc.strength = 4;
1040 		chip->ecc.read_page = flctl_read_page_hwecc;
1041 		chip->ecc.write_page = flctl_write_page_hwecc;
1042 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1043 
1044 		/* 4 symbols ECC enabled */
1045 		flctl->flcmncr_base |= _4ECCEN;
1046 	} else {
1047 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1048 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 static const struct nand_controller_ops flctl_nand_controller_ops = {
1055 	.attach_chip = flctl_chip_attach_chip,
1056 };
1057 
1058 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1059 {
1060 	struct sh_flctl *flctl = dev_id;
1061 
1062 	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1063 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1064 
1065 	return IRQ_HANDLED;
1066 }
1067 
1068 struct flctl_soc_config {
1069 	unsigned long flcmncr_val;
1070 	unsigned has_hwecc:1;
1071 	unsigned use_holden:1;
1072 };
1073 
1074 static struct flctl_soc_config flctl_sh7372_config = {
1075 	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1076 	.has_hwecc = 1,
1077 	.use_holden = 1,
1078 };
1079 
1080 static const struct of_device_id of_flctl_match[] = {
1081 	{ .compatible = "renesas,shmobile-flctl-sh7372",
1082 				.data = &flctl_sh7372_config },
1083 	{},
1084 };
1085 MODULE_DEVICE_TABLE(of, of_flctl_match);
1086 
1087 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1088 {
1089 	const struct flctl_soc_config *config;
1090 	struct sh_flctl_platform_data *pdata;
1091 
1092 	config = of_device_get_match_data(dev);
1093 	if (!config) {
1094 		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1095 		return NULL;
1096 	}
1097 
1098 	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1099 								GFP_KERNEL);
1100 	if (!pdata)
1101 		return NULL;
1102 
1103 	/* set SoC specific options */
1104 	pdata->flcmncr_val = config->flcmncr_val;
1105 	pdata->has_hwecc = config->has_hwecc;
1106 	pdata->use_holden = config->use_holden;
1107 
1108 	return pdata;
1109 }
1110 
1111 static int flctl_probe(struct platform_device *pdev)
1112 {
1113 	struct resource *res;
1114 	struct sh_flctl *flctl;
1115 	struct mtd_info *flctl_mtd;
1116 	struct nand_chip *nand;
1117 	struct sh_flctl_platform_data *pdata;
1118 	int ret;
1119 	int irq;
1120 
1121 	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1122 	if (!flctl)
1123 		return -ENOMEM;
1124 
1125 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1126 	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1127 	if (IS_ERR(flctl->reg))
1128 		return PTR_ERR(flctl->reg);
1129 	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1130 
1131 	irq = platform_get_irq(pdev, 0);
1132 	if (irq < 0)
1133 		return irq;
1134 
1135 	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1136 			       "flste", flctl);
1137 	if (ret) {
1138 		dev_err(&pdev->dev, "request interrupt failed.\n");
1139 		return ret;
1140 	}
1141 
1142 	if (pdev->dev.of_node)
1143 		pdata = flctl_parse_dt(&pdev->dev);
1144 	else
1145 		pdata = dev_get_platdata(&pdev->dev);
1146 
1147 	if (!pdata) {
1148 		dev_err(&pdev->dev, "no setup data defined\n");
1149 		return -EINVAL;
1150 	}
1151 
1152 	platform_set_drvdata(pdev, flctl);
1153 	nand = &flctl->chip;
1154 	flctl_mtd = nand_to_mtd(nand);
1155 	nand_set_flash_node(nand, pdev->dev.of_node);
1156 	flctl_mtd->dev.parent = &pdev->dev;
1157 	flctl->pdev = pdev;
1158 	flctl->hwecc = pdata->has_hwecc;
1159 	flctl->holden = pdata->use_holden;
1160 	flctl->flcmncr_base = pdata->flcmncr_val;
1161 	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1162 
1163 	/* Set address of hardware control function */
1164 	/* 20 us command delay time */
1165 	nand->legacy.chip_delay = 20;
1166 
1167 	nand->legacy.read_byte = flctl_read_byte;
1168 	nand->legacy.write_buf = flctl_write_buf;
1169 	nand->legacy.read_buf = flctl_read_buf;
1170 	nand->legacy.select_chip = flctl_select_chip;
1171 	nand->legacy.cmdfunc = flctl_cmdfunc;
1172 	nand->legacy.set_features = nand_get_set_features_notsupp;
1173 	nand->legacy.get_features = nand_get_set_features_notsupp;
1174 
1175 	if (pdata->flcmncr_val & SEL_16BIT)
1176 		nand->options |= NAND_BUSWIDTH_16;
1177 
1178 	nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1179 
1180 	pm_runtime_enable(&pdev->dev);
1181 	pm_runtime_resume(&pdev->dev);
1182 
1183 	flctl_setup_dma(flctl);
1184 
1185 	nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1186 	ret = nand_scan(nand, 1);
1187 	if (ret)
1188 		goto err_chip;
1189 
1190 	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1191 	if (ret)
1192 		goto cleanup_nand;
1193 
1194 	return 0;
1195 
1196 cleanup_nand:
1197 	nand_cleanup(nand);
1198 err_chip:
1199 	flctl_release_dma(flctl);
1200 	pm_runtime_disable(&pdev->dev);
1201 	return ret;
1202 }
1203 
1204 static int flctl_remove(struct platform_device *pdev)
1205 {
1206 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1207 	struct nand_chip *chip = &flctl->chip;
1208 	int ret;
1209 
1210 	flctl_release_dma(flctl);
1211 	ret = mtd_device_unregister(nand_to_mtd(chip));
1212 	WARN_ON(ret);
1213 	nand_cleanup(chip);
1214 	pm_runtime_disable(&pdev->dev);
1215 
1216 	return 0;
1217 }
1218 
1219 static struct platform_driver flctl_driver = {
1220 	.remove		= flctl_remove,
1221 	.driver = {
1222 		.name	= "sh_flctl",
1223 		.of_match_table = of_match_ptr(of_flctl_match),
1224 	},
1225 };
1226 
1227 module_platform_driver_probe(flctl_driver, flctl_probe);
1228 
1229 MODULE_LICENSE("GPL v2");
1230 MODULE_AUTHOR("Yoshihiro Shimoda");
1231 MODULE_DESCRIPTION("SuperH FLCTL driver");
1232 MODULE_ALIAS("platform:sh_flctl");
1233