xref: /openbmc/linux/drivers/mtd/nand/raw/sh_flctl.c (revision 9a32dd32)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH FLCTL nand controller
4  *
5  * Copyright (c) 2008 Renesas Solutions Corp.
6  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7  *
8  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_dma.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/sh_flctl.h>
31 
32 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
33 					struct mtd_oob_region *oobregion)
34 {
35 	struct nand_chip *chip = mtd_to_nand(mtd);
36 
37 	if (section)
38 		return -ERANGE;
39 
40 	oobregion->offset = 0;
41 	oobregion->length = chip->ecc.bytes;
42 
43 	return 0;
44 }
45 
46 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
47 					 struct mtd_oob_region *oobregion)
48 {
49 	if (section)
50 		return -ERANGE;
51 
52 	oobregion->offset = 12;
53 	oobregion->length = 4;
54 
55 	return 0;
56 }
57 
58 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
59 	.ecc = flctl_4secc_ooblayout_sp_ecc,
60 	.free = flctl_4secc_ooblayout_sp_free,
61 };
62 
63 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
64 					struct mtd_oob_region *oobregion)
65 {
66 	struct nand_chip *chip = mtd_to_nand(mtd);
67 
68 	if (section >= chip->ecc.steps)
69 		return -ERANGE;
70 
71 	oobregion->offset = (section * 16) + 6;
72 	oobregion->length = chip->ecc.bytes;
73 
74 	return 0;
75 }
76 
77 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
78 					 struct mtd_oob_region *oobregion)
79 {
80 	struct nand_chip *chip = mtd_to_nand(mtd);
81 
82 	if (section >= chip->ecc.steps)
83 		return -ERANGE;
84 
85 	oobregion->offset = section * 16;
86 	oobregion->length = 6;
87 
88 	if (!section) {
89 		oobregion->offset += 2;
90 		oobregion->length -= 2;
91 	}
92 
93 	return 0;
94 }
95 
96 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
97 	.ecc = flctl_4secc_ooblayout_lp_ecc,
98 	.free = flctl_4secc_ooblayout_lp_free,
99 };
100 
101 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
102 
103 static struct nand_bbt_descr flctl_4secc_smallpage = {
104 	.offs = 11,
105 	.len = 1,
106 	.pattern = scan_ff_pattern,
107 };
108 
109 static struct nand_bbt_descr flctl_4secc_largepage = {
110 	.offs = 0,
111 	.len = 2,
112 	.pattern = scan_ff_pattern,
113 };
114 
115 static void empty_fifo(struct sh_flctl *flctl)
116 {
117 	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
118 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
119 }
120 
121 static void start_translation(struct sh_flctl *flctl)
122 {
123 	writeb(TRSTRT, FLTRCR(flctl));
124 }
125 
126 static void timeout_error(struct sh_flctl *flctl, const char *str)
127 {
128 	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
129 }
130 
131 static void wait_completion(struct sh_flctl *flctl)
132 {
133 	uint32_t timeout = LOOP_TIMEOUT_MAX;
134 
135 	while (timeout--) {
136 		if (readb(FLTRCR(flctl)) & TREND) {
137 			writeb(0x0, FLTRCR(flctl));
138 			return;
139 		}
140 		udelay(1);
141 	}
142 
143 	timeout_error(flctl, __func__);
144 	writeb(0x0, FLTRCR(flctl));
145 }
146 
147 static void flctl_dma_complete(void *param)
148 {
149 	struct sh_flctl *flctl = param;
150 
151 	complete(&flctl->dma_complete);
152 }
153 
154 static void flctl_release_dma(struct sh_flctl *flctl)
155 {
156 	if (flctl->chan_fifo0_rx) {
157 		dma_release_channel(flctl->chan_fifo0_rx);
158 		flctl->chan_fifo0_rx = NULL;
159 	}
160 	if (flctl->chan_fifo0_tx) {
161 		dma_release_channel(flctl->chan_fifo0_tx);
162 		flctl->chan_fifo0_tx = NULL;
163 	}
164 }
165 
166 static void flctl_setup_dma(struct sh_flctl *flctl)
167 {
168 	dma_cap_mask_t mask;
169 	struct dma_slave_config cfg;
170 	struct platform_device *pdev = flctl->pdev;
171 	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
172 	int ret;
173 
174 	if (!pdata)
175 		return;
176 
177 	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
178 		return;
179 
180 	/* We can only either use DMA for both Tx and Rx or not use it at all */
181 	dma_cap_zero(mask);
182 	dma_cap_set(DMA_SLAVE, mask);
183 
184 	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
185 				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
186 	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
187 		flctl->chan_fifo0_tx);
188 
189 	if (!flctl->chan_fifo0_tx)
190 		return;
191 
192 	memset(&cfg, 0, sizeof(cfg));
193 	cfg.direction = DMA_MEM_TO_DEV;
194 	cfg.dst_addr = flctl->fifo;
195 	cfg.src_addr = 0;
196 	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
197 	if (ret < 0)
198 		goto err;
199 
200 	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
201 				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
202 	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
203 		flctl->chan_fifo0_rx);
204 
205 	if (!flctl->chan_fifo0_rx)
206 		goto err;
207 
208 	cfg.direction = DMA_DEV_TO_MEM;
209 	cfg.dst_addr = 0;
210 	cfg.src_addr = flctl->fifo;
211 	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
212 	if (ret < 0)
213 		goto err;
214 
215 	init_completion(&flctl->dma_complete);
216 
217 	return;
218 
219 err:
220 	flctl_release_dma(flctl);
221 }
222 
223 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
224 {
225 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
226 	uint32_t addr = 0;
227 
228 	if (column == -1) {
229 		addr = page_addr;	/* ERASE1 */
230 	} else if (page_addr != -1) {
231 		/* SEQIN, READ0, etc.. */
232 		if (flctl->chip.options & NAND_BUSWIDTH_16)
233 			column >>= 1;
234 		if (flctl->page_size) {
235 			addr = column & 0x0FFF;
236 			addr |= (page_addr & 0xff) << 16;
237 			addr |= ((page_addr >> 8) & 0xff) << 24;
238 			/* big than 128MB */
239 			if (flctl->rw_ADRCNT == ADRCNT2_E) {
240 				uint32_t 	addr2;
241 				addr2 = (page_addr >> 16) & 0xff;
242 				writel(addr2, FLADR2(flctl));
243 			}
244 		} else {
245 			addr = column;
246 			addr |= (page_addr & 0xff) << 8;
247 			addr |= ((page_addr >> 8) & 0xff) << 16;
248 			addr |= ((page_addr >> 16) & 0xff) << 24;
249 		}
250 	}
251 	writel(addr, FLADR(flctl));
252 }
253 
254 static void wait_rfifo_ready(struct sh_flctl *flctl)
255 {
256 	uint32_t timeout = LOOP_TIMEOUT_MAX;
257 
258 	while (timeout--) {
259 		uint32_t val;
260 		/* check FIFO */
261 		val = readl(FLDTCNTR(flctl)) >> 16;
262 		if (val & 0xFF)
263 			return;
264 		udelay(1);
265 	}
266 	timeout_error(flctl, __func__);
267 }
268 
269 static void wait_wfifo_ready(struct sh_flctl *flctl)
270 {
271 	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
272 
273 	while (timeout--) {
274 		/* check FIFO */
275 		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
276 		if (len >= 4)
277 			return;
278 		udelay(1);
279 	}
280 	timeout_error(flctl, __func__);
281 }
282 
283 static enum flctl_ecc_res_t wait_recfifo_ready
284 		(struct sh_flctl *flctl, int sector_number)
285 {
286 	uint32_t timeout = LOOP_TIMEOUT_MAX;
287 	void __iomem *ecc_reg[4];
288 	int i;
289 	int state = FL_SUCCESS;
290 	uint32_t data, size;
291 
292 	/*
293 	 * First this loops checks in FLDTCNTR if we are ready to read out the
294 	 * oob data. This is the case if either all went fine without errors or
295 	 * if the bottom part of the loop corrected the errors or marked them as
296 	 * uncorrectable and the controller is given time to push the data into
297 	 * the FIFO.
298 	 */
299 	while (timeout--) {
300 		/* check if all is ok and we can read out the OOB */
301 		size = readl(FLDTCNTR(flctl)) >> 24;
302 		if ((size & 0xFF) == 4)
303 			return state;
304 
305 		/* check if a correction code has been calculated */
306 		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
307 			/*
308 			 * either we wait for the fifo to be filled or a
309 			 * correction pattern is being generated
310 			 */
311 			udelay(1);
312 			continue;
313 		}
314 
315 		/* check for an uncorrectable error */
316 		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
317 			/* check if we face a non-empty page */
318 			for (i = 0; i < 512; i++) {
319 				if (flctl->done_buff[i] != 0xff) {
320 					state = FL_ERROR; /* can't correct */
321 					break;
322 				}
323 			}
324 
325 			if (state == FL_SUCCESS)
326 				dev_dbg(&flctl->pdev->dev,
327 				"reading empty sector %d, ecc error ignored\n",
328 				sector_number);
329 
330 			writel(0, FL4ECCCR(flctl));
331 			continue;
332 		}
333 
334 		/* start error correction */
335 		ecc_reg[0] = FL4ECCRESULT0(flctl);
336 		ecc_reg[1] = FL4ECCRESULT1(flctl);
337 		ecc_reg[2] = FL4ECCRESULT2(flctl);
338 		ecc_reg[3] = FL4ECCRESULT3(flctl);
339 
340 		for (i = 0; i < 3; i++) {
341 			uint8_t org;
342 			unsigned int index;
343 
344 			data = readl(ecc_reg[i]);
345 
346 			if (flctl->page_size)
347 				index = (512 * sector_number) +
348 					(data >> 16);
349 			else
350 				index = data >> 16;
351 
352 			org = flctl->done_buff[index];
353 			flctl->done_buff[index] = org ^ (data & 0xFF);
354 		}
355 		state = FL_REPAIRABLE;
356 		writel(0, FL4ECCCR(flctl));
357 	}
358 
359 	timeout_error(flctl, __func__);
360 	return FL_TIMEOUT;	/* timeout */
361 }
362 
363 static void wait_wecfifo_ready(struct sh_flctl *flctl)
364 {
365 	uint32_t timeout = LOOP_TIMEOUT_MAX;
366 	uint32_t len;
367 
368 	while (timeout--) {
369 		/* check FLECFIFO */
370 		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
371 		if (len >= 4)
372 			return;
373 		udelay(1);
374 	}
375 	timeout_error(flctl, __func__);
376 }
377 
378 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
379 					int len, enum dma_data_direction dir)
380 {
381 	struct dma_async_tx_descriptor *desc = NULL;
382 	struct dma_chan *chan;
383 	enum dma_transfer_direction tr_dir;
384 	dma_addr_t dma_addr;
385 	dma_cookie_t cookie;
386 	uint32_t reg;
387 	int ret = 0;
388 	unsigned long time_left;
389 
390 	if (dir == DMA_FROM_DEVICE) {
391 		chan = flctl->chan_fifo0_rx;
392 		tr_dir = DMA_DEV_TO_MEM;
393 	} else {
394 		chan = flctl->chan_fifo0_tx;
395 		tr_dir = DMA_MEM_TO_DEV;
396 	}
397 
398 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
399 
400 	if (!dma_mapping_error(chan->device->dev, dma_addr))
401 		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
402 			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
403 
404 	if (desc) {
405 		reg = readl(FLINTDMACR(flctl));
406 		reg |= DREQ0EN;
407 		writel(reg, FLINTDMACR(flctl));
408 
409 		desc->callback = flctl_dma_complete;
410 		desc->callback_param = flctl;
411 		cookie = dmaengine_submit(desc);
412 		if (dma_submit_error(cookie)) {
413 			ret = dma_submit_error(cookie);
414 			dev_warn(&flctl->pdev->dev,
415 				 "DMA submit failed, falling back to PIO\n");
416 			goto out;
417 		}
418 
419 		dma_async_issue_pending(chan);
420 	} else {
421 		/* DMA failed, fall back to PIO */
422 		flctl_release_dma(flctl);
423 		dev_warn(&flctl->pdev->dev,
424 			 "DMA failed, falling back to PIO\n");
425 		ret = -EIO;
426 		goto out;
427 	}
428 
429 	time_left =
430 	wait_for_completion_timeout(&flctl->dma_complete,
431 				msecs_to_jiffies(3000));
432 
433 	if (time_left == 0) {
434 		dmaengine_terminate_all(chan);
435 		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
436 		ret = -ETIMEDOUT;
437 	}
438 
439 out:
440 	reg = readl(FLINTDMACR(flctl));
441 	reg &= ~DREQ0EN;
442 	writel(reg, FLINTDMACR(flctl));
443 
444 	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
445 
446 	/* ret == 0 is success */
447 	return ret;
448 }
449 
450 static void read_datareg(struct sh_flctl *flctl, int offset)
451 {
452 	unsigned long data;
453 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
454 
455 	wait_completion(flctl);
456 
457 	data = readl(FLDATAR(flctl));
458 	*buf = le32_to_cpu(data);
459 }
460 
461 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
462 {
463 	int i, len_4align;
464 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
465 
466 	len_4align = (rlen + 3) / 4;
467 
468 	/* initiate DMA transfer */
469 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
470 		!flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
471 			goto convert;	/* DMA success */
472 
473 	/* do polling transfer */
474 	for (i = 0; i < len_4align; i++) {
475 		wait_rfifo_ready(flctl);
476 		buf[i] = readl(FLDTFIFO(flctl));
477 	}
478 
479 convert:
480 	for (i = 0; i < len_4align; i++)
481 		buf[i] = be32_to_cpu(buf[i]);
482 }
483 
484 static enum flctl_ecc_res_t read_ecfiforeg
485 		(struct sh_flctl *flctl, uint8_t *buff, int sector)
486 {
487 	int i;
488 	enum flctl_ecc_res_t res;
489 	unsigned long *ecc_buf = (unsigned long *)buff;
490 
491 	res = wait_recfifo_ready(flctl , sector);
492 
493 	if (res != FL_ERROR) {
494 		for (i = 0; i < 4; i++) {
495 			ecc_buf[i] = readl(FLECFIFO(flctl));
496 			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
497 		}
498 	}
499 
500 	return res;
501 }
502 
503 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
504 						unsigned int offset)
505 {
506 	int i, len_4align;
507 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
508 
509 	len_4align = (rlen + 3) / 4;
510 	for (i = 0; i < len_4align; i++) {
511 		wait_wfifo_ready(flctl);
512 		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
513 	}
514 }
515 
516 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
517 						unsigned int offset)
518 {
519 	int i, len_4align;
520 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
521 
522 	len_4align = (rlen + 3) / 4;
523 
524 	for (i = 0; i < len_4align; i++)
525 		buf[i] = cpu_to_be32(buf[i]);
526 
527 	/* initiate DMA transfer */
528 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
529 		!flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
530 			return;	/* DMA success */
531 
532 	/* do polling transfer */
533 	for (i = 0; i < len_4align; i++) {
534 		wait_wecfifo_ready(flctl);
535 		writel(buf[i], FLECFIFO(flctl));
536 	}
537 }
538 
539 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
540 {
541 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
542 	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
543 	uint32_t flcmdcr_val, addr_len_bytes = 0;
544 
545 	/* Set SNAND bit if page size is 2048byte */
546 	if (flctl->page_size)
547 		flcmncr_val |= SNAND_E;
548 	else
549 		flcmncr_val &= ~SNAND_E;
550 
551 	/* default FLCMDCR val */
552 	flcmdcr_val = DOCMD1_E | DOADR_E;
553 
554 	/* Set for FLCMDCR */
555 	switch (cmd) {
556 	case NAND_CMD_ERASE1:
557 		addr_len_bytes = flctl->erase_ADRCNT;
558 		flcmdcr_val |= DOCMD2_E;
559 		break;
560 	case NAND_CMD_READ0:
561 	case NAND_CMD_READOOB:
562 	case NAND_CMD_RNDOUT:
563 		addr_len_bytes = flctl->rw_ADRCNT;
564 		flcmdcr_val |= CDSRC_E;
565 		if (flctl->chip.options & NAND_BUSWIDTH_16)
566 			flcmncr_val |= SEL_16BIT;
567 		break;
568 	case NAND_CMD_SEQIN:
569 		/* This case is that cmd is READ0 or READ1 or READ00 */
570 		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
571 		break;
572 	case NAND_CMD_PAGEPROG:
573 		addr_len_bytes = flctl->rw_ADRCNT;
574 		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
575 		if (flctl->chip.options & NAND_BUSWIDTH_16)
576 			flcmncr_val |= SEL_16BIT;
577 		break;
578 	case NAND_CMD_READID:
579 		flcmncr_val &= ~SNAND_E;
580 		flcmdcr_val |= CDSRC_E;
581 		addr_len_bytes = ADRCNT_1;
582 		break;
583 	case NAND_CMD_STATUS:
584 	case NAND_CMD_RESET:
585 		flcmncr_val &= ~SNAND_E;
586 		flcmdcr_val &= ~(DOADR_E | DOSR_E);
587 		break;
588 	default:
589 		break;
590 	}
591 
592 	/* Set address bytes parameter */
593 	flcmdcr_val |= addr_len_bytes;
594 
595 	/* Now actually write */
596 	writel(flcmncr_val, FLCMNCR(flctl));
597 	writel(flcmdcr_val, FLCMDCR(flctl));
598 	writel(flcmcdr_val, FLCMCDR(flctl));
599 }
600 
601 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
602 				 int oob_required, int page)
603 {
604 	struct mtd_info *mtd = nand_to_mtd(chip);
605 
606 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
607 	if (oob_required)
608 		chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
609 	return 0;
610 }
611 
612 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
613 				  int oob_required, int page)
614 {
615 	struct mtd_info *mtd = nand_to_mtd(chip);
616 
617 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
618 	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
619 	return nand_prog_page_end_op(chip);
620 }
621 
622 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
623 {
624 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
625 	int sector, page_sectors;
626 	enum flctl_ecc_res_t ecc_result;
627 
628 	page_sectors = flctl->page_size ? 4 : 1;
629 
630 	set_cmd_regs(mtd, NAND_CMD_READ0,
631 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
632 
633 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
634 		 FLCMNCR(flctl));
635 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
636 	writel(page_addr << 2, FLADR(flctl));
637 
638 	empty_fifo(flctl);
639 	start_translation(flctl);
640 
641 	for (sector = 0; sector < page_sectors; sector++) {
642 		read_fiforeg(flctl, 512, 512 * sector);
643 
644 		ecc_result = read_ecfiforeg(flctl,
645 			&flctl->done_buff[mtd->writesize + 16 * sector],
646 			sector);
647 
648 		switch (ecc_result) {
649 		case FL_REPAIRABLE:
650 			dev_info(&flctl->pdev->dev,
651 				"applied ecc on page 0x%x", page_addr);
652 			mtd->ecc_stats.corrected++;
653 			break;
654 		case FL_ERROR:
655 			dev_warn(&flctl->pdev->dev,
656 				"page 0x%x contains corrupted data\n",
657 				page_addr);
658 			mtd->ecc_stats.failed++;
659 			break;
660 		default:
661 			;
662 		}
663 	}
664 
665 	wait_completion(flctl);
666 
667 	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
668 			FLCMNCR(flctl));
669 }
670 
671 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
672 {
673 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
674 	int page_sectors = flctl->page_size ? 4 : 1;
675 	int i;
676 
677 	set_cmd_regs(mtd, NAND_CMD_READ0,
678 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
679 
680 	empty_fifo(flctl);
681 
682 	for (i = 0; i < page_sectors; i++) {
683 		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
684 		writel(16, FLDTCNTR(flctl));
685 
686 		start_translation(flctl);
687 		read_fiforeg(flctl, 16, 16 * i);
688 		wait_completion(flctl);
689 	}
690 }
691 
692 static void execmd_write_page_sector(struct mtd_info *mtd)
693 {
694 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
695 	int page_addr = flctl->seqin_page_addr;
696 	int sector, page_sectors;
697 
698 	page_sectors = flctl->page_size ? 4 : 1;
699 
700 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
701 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
702 
703 	empty_fifo(flctl);
704 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
705 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
706 	writel(page_addr << 2, FLADR(flctl));
707 	start_translation(flctl);
708 
709 	for (sector = 0; sector < page_sectors; sector++) {
710 		write_fiforeg(flctl, 512, 512 * sector);
711 		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
712 	}
713 
714 	wait_completion(flctl);
715 	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
716 }
717 
718 static void execmd_write_oob(struct mtd_info *mtd)
719 {
720 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
721 	int page_addr = flctl->seqin_page_addr;
722 	int sector, page_sectors;
723 
724 	page_sectors = flctl->page_size ? 4 : 1;
725 
726 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
727 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
728 
729 	for (sector = 0; sector < page_sectors; sector++) {
730 		empty_fifo(flctl);
731 		set_addr(mtd, sector * 528 + 512, page_addr);
732 		writel(16, FLDTCNTR(flctl));	/* set read size */
733 
734 		start_translation(flctl);
735 		write_fiforeg(flctl, 16, 16 * sector);
736 		wait_completion(flctl);
737 	}
738 }
739 
740 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
741 			int column, int page_addr)
742 {
743 	struct mtd_info *mtd = nand_to_mtd(chip);
744 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
745 	uint32_t read_cmd = 0;
746 
747 	pm_runtime_get_sync(&flctl->pdev->dev);
748 
749 	flctl->read_bytes = 0;
750 	if (command != NAND_CMD_PAGEPROG)
751 		flctl->index = 0;
752 
753 	switch (command) {
754 	case NAND_CMD_READ1:
755 	case NAND_CMD_READ0:
756 		if (flctl->hwecc) {
757 			/* read page with hwecc */
758 			execmd_read_page_sector(mtd, page_addr);
759 			break;
760 		}
761 		if (flctl->page_size)
762 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
763 				| command);
764 		else
765 			set_cmd_regs(mtd, command, command);
766 
767 		set_addr(mtd, 0, page_addr);
768 
769 		flctl->read_bytes = mtd->writesize + mtd->oobsize;
770 		if (flctl->chip.options & NAND_BUSWIDTH_16)
771 			column >>= 1;
772 		flctl->index += column;
773 		goto read_normal_exit;
774 
775 	case NAND_CMD_READOOB:
776 		if (flctl->hwecc) {
777 			/* read page with hwecc */
778 			execmd_read_oob(mtd, page_addr);
779 			break;
780 		}
781 
782 		if (flctl->page_size) {
783 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
784 				| NAND_CMD_READ0);
785 			set_addr(mtd, mtd->writesize, page_addr);
786 		} else {
787 			set_cmd_regs(mtd, command, command);
788 			set_addr(mtd, 0, page_addr);
789 		}
790 		flctl->read_bytes = mtd->oobsize;
791 		goto read_normal_exit;
792 
793 	case NAND_CMD_RNDOUT:
794 		if (flctl->hwecc)
795 			break;
796 
797 		if (flctl->page_size)
798 			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
799 				| command);
800 		else
801 			set_cmd_regs(mtd, command, command);
802 
803 		set_addr(mtd, column, 0);
804 
805 		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
806 		goto read_normal_exit;
807 
808 	case NAND_CMD_READID:
809 		set_cmd_regs(mtd, command, command);
810 
811 		/* READID is always performed using an 8-bit bus */
812 		if (flctl->chip.options & NAND_BUSWIDTH_16)
813 			column <<= 1;
814 		set_addr(mtd, column, 0);
815 
816 		flctl->read_bytes = 8;
817 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
818 		empty_fifo(flctl);
819 		start_translation(flctl);
820 		read_fiforeg(flctl, flctl->read_bytes, 0);
821 		wait_completion(flctl);
822 		break;
823 
824 	case NAND_CMD_ERASE1:
825 		flctl->erase1_page_addr = page_addr;
826 		break;
827 
828 	case NAND_CMD_ERASE2:
829 		set_cmd_regs(mtd, NAND_CMD_ERASE1,
830 			(command << 8) | NAND_CMD_ERASE1);
831 		set_addr(mtd, -1, flctl->erase1_page_addr);
832 		start_translation(flctl);
833 		wait_completion(flctl);
834 		break;
835 
836 	case NAND_CMD_SEQIN:
837 		if (!flctl->page_size) {
838 			/* output read command */
839 			if (column >= mtd->writesize) {
840 				column -= mtd->writesize;
841 				read_cmd = NAND_CMD_READOOB;
842 			} else if (column < 256) {
843 				read_cmd = NAND_CMD_READ0;
844 			} else {
845 				column -= 256;
846 				read_cmd = NAND_CMD_READ1;
847 			}
848 		}
849 		flctl->seqin_column = column;
850 		flctl->seqin_page_addr = page_addr;
851 		flctl->seqin_read_cmd = read_cmd;
852 		break;
853 
854 	case NAND_CMD_PAGEPROG:
855 		empty_fifo(flctl);
856 		if (!flctl->page_size) {
857 			set_cmd_regs(mtd, NAND_CMD_SEQIN,
858 					flctl->seqin_read_cmd);
859 			set_addr(mtd, -1, -1);
860 			writel(0, FLDTCNTR(flctl));	/* set 0 size */
861 			start_translation(flctl);
862 			wait_completion(flctl);
863 		}
864 		if (flctl->hwecc) {
865 			/* write page with hwecc */
866 			if (flctl->seqin_column == mtd->writesize)
867 				execmd_write_oob(mtd);
868 			else if (!flctl->seqin_column)
869 				execmd_write_page_sector(mtd);
870 			else
871 				pr_err("Invalid address !?\n");
872 			break;
873 		}
874 		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
875 		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
876 		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
877 		start_translation(flctl);
878 		write_fiforeg(flctl, flctl->index, 0);
879 		wait_completion(flctl);
880 		break;
881 
882 	case NAND_CMD_STATUS:
883 		set_cmd_regs(mtd, command, command);
884 		set_addr(mtd, -1, -1);
885 
886 		flctl->read_bytes = 1;
887 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
888 		start_translation(flctl);
889 		read_datareg(flctl, 0); /* read and end */
890 		break;
891 
892 	case NAND_CMD_RESET:
893 		set_cmd_regs(mtd, command, command);
894 		set_addr(mtd, -1, -1);
895 
896 		writel(0, FLDTCNTR(flctl));	/* set 0 size */
897 		start_translation(flctl);
898 		wait_completion(flctl);
899 		break;
900 
901 	default:
902 		break;
903 	}
904 	goto runtime_exit;
905 
906 read_normal_exit:
907 	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
908 	empty_fifo(flctl);
909 	start_translation(flctl);
910 	read_fiforeg(flctl, flctl->read_bytes, 0);
911 	wait_completion(flctl);
912 runtime_exit:
913 	pm_runtime_put_sync(&flctl->pdev->dev);
914 	return;
915 }
916 
917 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
918 {
919 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
920 	int ret;
921 
922 	switch (chipnr) {
923 	case -1:
924 		flctl->flcmncr_base &= ~CE0_ENABLE;
925 
926 		pm_runtime_get_sync(&flctl->pdev->dev);
927 		writel(flctl->flcmncr_base, FLCMNCR(flctl));
928 
929 		if (flctl->qos_request) {
930 			dev_pm_qos_remove_request(&flctl->pm_qos);
931 			flctl->qos_request = 0;
932 		}
933 
934 		pm_runtime_put_sync(&flctl->pdev->dev);
935 		break;
936 	case 0:
937 		flctl->flcmncr_base |= CE0_ENABLE;
938 
939 		if (!flctl->qos_request) {
940 			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
941 							&flctl->pm_qos,
942 							DEV_PM_QOS_RESUME_LATENCY,
943 							100);
944 			if (ret < 0)
945 				dev_err(&flctl->pdev->dev,
946 					"PM QoS request failed: %d\n", ret);
947 			flctl->qos_request = 1;
948 		}
949 
950 		if (flctl->holden) {
951 			pm_runtime_get_sync(&flctl->pdev->dev);
952 			writel(HOLDEN, FLHOLDCR(flctl));
953 			pm_runtime_put_sync(&flctl->pdev->dev);
954 		}
955 		break;
956 	default:
957 		BUG();
958 	}
959 }
960 
961 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
962 {
963 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
964 
965 	memcpy(&flctl->done_buff[flctl->index], buf, len);
966 	flctl->index += len;
967 }
968 
969 static uint8_t flctl_read_byte(struct nand_chip *chip)
970 {
971 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
972 	uint8_t data;
973 
974 	data = flctl->done_buff[flctl->index];
975 	flctl->index++;
976 	return data;
977 }
978 
979 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
980 {
981 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
982 
983 	memcpy(buf, &flctl->done_buff[flctl->index], len);
984 	flctl->index += len;
985 }
986 
987 static int flctl_chip_attach_chip(struct nand_chip *chip)
988 {
989 	u64 targetsize = nanddev_target_size(&chip->base);
990 	struct mtd_info *mtd = nand_to_mtd(chip);
991 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
992 
993 	/*
994 	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
995 	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
996 	 */
997 	if (chip->options & NAND_BUSWIDTH_16)
998 		flctl->flcmncr_base |= SEL_16BIT;
999 
1000 	if (mtd->writesize == 512) {
1001 		flctl->page_size = 0;
1002 		if (targetsize > (32 << 20)) {
1003 			/* big than 32MB */
1004 			flctl->rw_ADRCNT = ADRCNT_4;
1005 			flctl->erase_ADRCNT = ADRCNT_3;
1006 		} else if (targetsize > (2 << 16)) {
1007 			/* big than 128KB */
1008 			flctl->rw_ADRCNT = ADRCNT_3;
1009 			flctl->erase_ADRCNT = ADRCNT_2;
1010 		} else {
1011 			flctl->rw_ADRCNT = ADRCNT_2;
1012 			flctl->erase_ADRCNT = ADRCNT_1;
1013 		}
1014 	} else {
1015 		flctl->page_size = 1;
1016 		if (targetsize > (128 << 20)) {
1017 			/* big than 128MB */
1018 			flctl->rw_ADRCNT = ADRCNT2_E;
1019 			flctl->erase_ADRCNT = ADRCNT_3;
1020 		} else if (targetsize > (8 << 16)) {
1021 			/* big than 512KB */
1022 			flctl->rw_ADRCNT = ADRCNT_4;
1023 			flctl->erase_ADRCNT = ADRCNT_2;
1024 		} else {
1025 			flctl->rw_ADRCNT = ADRCNT_3;
1026 			flctl->erase_ADRCNT = ADRCNT_1;
1027 		}
1028 	}
1029 
1030 	if (flctl->hwecc) {
1031 		if (mtd->writesize == 512) {
1032 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1033 			chip->badblock_pattern = &flctl_4secc_smallpage;
1034 		} else {
1035 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1036 			chip->badblock_pattern = &flctl_4secc_largepage;
1037 		}
1038 
1039 		chip->ecc.size = 512;
1040 		chip->ecc.bytes = 10;
1041 		chip->ecc.strength = 4;
1042 		chip->ecc.read_page = flctl_read_page_hwecc;
1043 		chip->ecc.write_page = flctl_write_page_hwecc;
1044 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1045 
1046 		/* 4 symbols ECC enabled */
1047 		flctl->flcmncr_base |= _4ECCEN;
1048 	} else {
1049 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1050 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 static const struct nand_controller_ops flctl_nand_controller_ops = {
1057 	.attach_chip = flctl_chip_attach_chip,
1058 };
1059 
1060 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1061 {
1062 	struct sh_flctl *flctl = dev_id;
1063 
1064 	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1065 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1066 
1067 	return IRQ_HANDLED;
1068 }
1069 
1070 struct flctl_soc_config {
1071 	unsigned long flcmncr_val;
1072 	unsigned has_hwecc:1;
1073 	unsigned use_holden:1;
1074 };
1075 
1076 static struct flctl_soc_config flctl_sh7372_config = {
1077 	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1078 	.has_hwecc = 1,
1079 	.use_holden = 1,
1080 };
1081 
1082 static const struct of_device_id of_flctl_match[] = {
1083 	{ .compatible = "renesas,shmobile-flctl-sh7372",
1084 				.data = &flctl_sh7372_config },
1085 	{},
1086 };
1087 MODULE_DEVICE_TABLE(of, of_flctl_match);
1088 
1089 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1090 {
1091 	const struct flctl_soc_config *config;
1092 	struct sh_flctl_platform_data *pdata;
1093 
1094 	config = of_device_get_match_data(dev);
1095 	if (!config) {
1096 		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1097 		return NULL;
1098 	}
1099 
1100 	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1101 								GFP_KERNEL);
1102 	if (!pdata)
1103 		return NULL;
1104 
1105 	/* set SoC specific options */
1106 	pdata->flcmncr_val = config->flcmncr_val;
1107 	pdata->has_hwecc = config->has_hwecc;
1108 	pdata->use_holden = config->use_holden;
1109 
1110 	return pdata;
1111 }
1112 
1113 static int flctl_probe(struct platform_device *pdev)
1114 {
1115 	struct resource *res;
1116 	struct sh_flctl *flctl;
1117 	struct mtd_info *flctl_mtd;
1118 	struct nand_chip *nand;
1119 	struct sh_flctl_platform_data *pdata;
1120 	int ret;
1121 	int irq;
1122 
1123 	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1124 	if (!flctl)
1125 		return -ENOMEM;
1126 
1127 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1128 	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1129 	if (IS_ERR(flctl->reg))
1130 		return PTR_ERR(flctl->reg);
1131 	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1132 
1133 	irq = platform_get_irq(pdev, 0);
1134 	if (irq < 0)
1135 		return irq;
1136 
1137 	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1138 			       "flste", flctl);
1139 	if (ret) {
1140 		dev_err(&pdev->dev, "request interrupt failed.\n");
1141 		return ret;
1142 	}
1143 
1144 	if (pdev->dev.of_node)
1145 		pdata = flctl_parse_dt(&pdev->dev);
1146 	else
1147 		pdata = dev_get_platdata(&pdev->dev);
1148 
1149 	if (!pdata) {
1150 		dev_err(&pdev->dev, "no setup data defined\n");
1151 		return -EINVAL;
1152 	}
1153 
1154 	platform_set_drvdata(pdev, flctl);
1155 	nand = &flctl->chip;
1156 	flctl_mtd = nand_to_mtd(nand);
1157 	nand_set_flash_node(nand, pdev->dev.of_node);
1158 	flctl_mtd->dev.parent = &pdev->dev;
1159 	flctl->pdev = pdev;
1160 	flctl->hwecc = pdata->has_hwecc;
1161 	flctl->holden = pdata->use_holden;
1162 	flctl->flcmncr_base = pdata->flcmncr_val;
1163 	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1164 
1165 	/* Set address of hardware control function */
1166 	/* 20 us command delay time */
1167 	nand->legacy.chip_delay = 20;
1168 
1169 	nand->legacy.read_byte = flctl_read_byte;
1170 	nand->legacy.write_buf = flctl_write_buf;
1171 	nand->legacy.read_buf = flctl_read_buf;
1172 	nand->legacy.select_chip = flctl_select_chip;
1173 	nand->legacy.cmdfunc = flctl_cmdfunc;
1174 	nand->legacy.set_features = nand_get_set_features_notsupp;
1175 	nand->legacy.get_features = nand_get_set_features_notsupp;
1176 
1177 	if (pdata->flcmncr_val & SEL_16BIT)
1178 		nand->options |= NAND_BUSWIDTH_16;
1179 
1180 	nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1181 
1182 	pm_runtime_enable(&pdev->dev);
1183 	pm_runtime_resume(&pdev->dev);
1184 
1185 	flctl_setup_dma(flctl);
1186 
1187 	nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1188 	ret = nand_scan(nand, 1);
1189 	if (ret)
1190 		goto err_chip;
1191 
1192 	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1193 	if (ret)
1194 		goto cleanup_nand;
1195 
1196 	return 0;
1197 
1198 cleanup_nand:
1199 	nand_cleanup(nand);
1200 err_chip:
1201 	flctl_release_dma(flctl);
1202 	pm_runtime_disable(&pdev->dev);
1203 	return ret;
1204 }
1205 
1206 static void flctl_remove(struct platform_device *pdev)
1207 {
1208 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1209 	struct nand_chip *chip = &flctl->chip;
1210 	int ret;
1211 
1212 	flctl_release_dma(flctl);
1213 	ret = mtd_device_unregister(nand_to_mtd(chip));
1214 	WARN_ON(ret);
1215 	nand_cleanup(chip);
1216 	pm_runtime_disable(&pdev->dev);
1217 }
1218 
1219 static struct platform_driver flctl_driver = {
1220 	.remove_new	= flctl_remove,
1221 	.driver = {
1222 		.name	= "sh_flctl",
1223 		.of_match_table = of_flctl_match,
1224 	},
1225 };
1226 
1227 module_platform_driver_probe(flctl_driver, flctl_probe);
1228 
1229 MODULE_LICENSE("GPL v2");
1230 MODULE_AUTHOR("Yoshihiro Shimoda");
1231 MODULE_DESCRIPTION("SuperH FLCTL driver");
1232 MODULE_ALIAS("platform:sh_flctl");
1233