xref: /openbmc/linux/drivers/mtd/nand/raw/sh_flctl.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sh_dma.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/rawnand.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/sh_flctl.h>
44 
45 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
46 					struct mtd_oob_region *oobregion)
47 {
48 	struct nand_chip *chip = mtd_to_nand(mtd);
49 
50 	if (section)
51 		return -ERANGE;
52 
53 	oobregion->offset = 0;
54 	oobregion->length = chip->ecc.bytes;
55 
56 	return 0;
57 }
58 
59 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
60 					 struct mtd_oob_region *oobregion)
61 {
62 	if (section)
63 		return -ERANGE;
64 
65 	oobregion->offset = 12;
66 	oobregion->length = 4;
67 
68 	return 0;
69 }
70 
71 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
72 	.ecc = flctl_4secc_ooblayout_sp_ecc,
73 	.free = flctl_4secc_ooblayout_sp_free,
74 };
75 
76 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
77 					struct mtd_oob_region *oobregion)
78 {
79 	struct nand_chip *chip = mtd_to_nand(mtd);
80 
81 	if (section >= chip->ecc.steps)
82 		return -ERANGE;
83 
84 	oobregion->offset = (section * 16) + 6;
85 	oobregion->length = chip->ecc.bytes;
86 
87 	return 0;
88 }
89 
90 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
91 					 struct mtd_oob_region *oobregion)
92 {
93 	struct nand_chip *chip = mtd_to_nand(mtd);
94 
95 	if (section >= chip->ecc.steps)
96 		return -ERANGE;
97 
98 	oobregion->offset = section * 16;
99 	oobregion->length = 6;
100 
101 	if (!section) {
102 		oobregion->offset += 2;
103 		oobregion->length -= 2;
104 	}
105 
106 	return 0;
107 }
108 
109 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
110 	.ecc = flctl_4secc_ooblayout_lp_ecc,
111 	.free = flctl_4secc_ooblayout_lp_free,
112 };
113 
114 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
115 
116 static struct nand_bbt_descr flctl_4secc_smallpage = {
117 	.options = NAND_BBT_SCAN2NDPAGE,
118 	.offs = 11,
119 	.len = 1,
120 	.pattern = scan_ff_pattern,
121 };
122 
123 static struct nand_bbt_descr flctl_4secc_largepage = {
124 	.options = NAND_BBT_SCAN2NDPAGE,
125 	.offs = 0,
126 	.len = 2,
127 	.pattern = scan_ff_pattern,
128 };
129 
130 static void empty_fifo(struct sh_flctl *flctl)
131 {
132 	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
133 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
134 }
135 
136 static void start_translation(struct sh_flctl *flctl)
137 {
138 	writeb(TRSTRT, FLTRCR(flctl));
139 }
140 
141 static void timeout_error(struct sh_flctl *flctl, const char *str)
142 {
143 	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
144 }
145 
146 static void wait_completion(struct sh_flctl *flctl)
147 {
148 	uint32_t timeout = LOOP_TIMEOUT_MAX;
149 
150 	while (timeout--) {
151 		if (readb(FLTRCR(flctl)) & TREND) {
152 			writeb(0x0, FLTRCR(flctl));
153 			return;
154 		}
155 		udelay(1);
156 	}
157 
158 	timeout_error(flctl, __func__);
159 	writeb(0x0, FLTRCR(flctl));
160 }
161 
162 static void flctl_dma_complete(void *param)
163 {
164 	struct sh_flctl *flctl = param;
165 
166 	complete(&flctl->dma_complete);
167 }
168 
169 static void flctl_release_dma(struct sh_flctl *flctl)
170 {
171 	if (flctl->chan_fifo0_rx) {
172 		dma_release_channel(flctl->chan_fifo0_rx);
173 		flctl->chan_fifo0_rx = NULL;
174 	}
175 	if (flctl->chan_fifo0_tx) {
176 		dma_release_channel(flctl->chan_fifo0_tx);
177 		flctl->chan_fifo0_tx = NULL;
178 	}
179 }
180 
181 static void flctl_setup_dma(struct sh_flctl *flctl)
182 {
183 	dma_cap_mask_t mask;
184 	struct dma_slave_config cfg;
185 	struct platform_device *pdev = flctl->pdev;
186 	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
187 	int ret;
188 
189 	if (!pdata)
190 		return;
191 
192 	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
193 		return;
194 
195 	/* We can only either use DMA for both Tx and Rx or not use it at all */
196 	dma_cap_zero(mask);
197 	dma_cap_set(DMA_SLAVE, mask);
198 
199 	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
200 				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
201 	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
202 		flctl->chan_fifo0_tx);
203 
204 	if (!flctl->chan_fifo0_tx)
205 		return;
206 
207 	memset(&cfg, 0, sizeof(cfg));
208 	cfg.direction = DMA_MEM_TO_DEV;
209 	cfg.dst_addr = flctl->fifo;
210 	cfg.src_addr = 0;
211 	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
212 	if (ret < 0)
213 		goto err;
214 
215 	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
216 				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
217 	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
218 		flctl->chan_fifo0_rx);
219 
220 	if (!flctl->chan_fifo0_rx)
221 		goto err;
222 
223 	cfg.direction = DMA_DEV_TO_MEM;
224 	cfg.dst_addr = 0;
225 	cfg.src_addr = flctl->fifo;
226 	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
227 	if (ret < 0)
228 		goto err;
229 
230 	init_completion(&flctl->dma_complete);
231 
232 	return;
233 
234 err:
235 	flctl_release_dma(flctl);
236 }
237 
238 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
239 {
240 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
241 	uint32_t addr = 0;
242 
243 	if (column == -1) {
244 		addr = page_addr;	/* ERASE1 */
245 	} else if (page_addr != -1) {
246 		/* SEQIN, READ0, etc.. */
247 		if (flctl->chip.options & NAND_BUSWIDTH_16)
248 			column >>= 1;
249 		if (flctl->page_size) {
250 			addr = column & 0x0FFF;
251 			addr |= (page_addr & 0xff) << 16;
252 			addr |= ((page_addr >> 8) & 0xff) << 24;
253 			/* big than 128MB */
254 			if (flctl->rw_ADRCNT == ADRCNT2_E) {
255 				uint32_t 	addr2;
256 				addr2 = (page_addr >> 16) & 0xff;
257 				writel(addr2, FLADR2(flctl));
258 			}
259 		} else {
260 			addr = column;
261 			addr |= (page_addr & 0xff) << 8;
262 			addr |= ((page_addr >> 8) & 0xff) << 16;
263 			addr |= ((page_addr >> 16) & 0xff) << 24;
264 		}
265 	}
266 	writel(addr, FLADR(flctl));
267 }
268 
269 static void wait_rfifo_ready(struct sh_flctl *flctl)
270 {
271 	uint32_t timeout = LOOP_TIMEOUT_MAX;
272 
273 	while (timeout--) {
274 		uint32_t val;
275 		/* check FIFO */
276 		val = readl(FLDTCNTR(flctl)) >> 16;
277 		if (val & 0xFF)
278 			return;
279 		udelay(1);
280 	}
281 	timeout_error(flctl, __func__);
282 }
283 
284 static void wait_wfifo_ready(struct sh_flctl *flctl)
285 {
286 	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
287 
288 	while (timeout--) {
289 		/* check FIFO */
290 		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
291 		if (len >= 4)
292 			return;
293 		udelay(1);
294 	}
295 	timeout_error(flctl, __func__);
296 }
297 
298 static enum flctl_ecc_res_t wait_recfifo_ready
299 		(struct sh_flctl *flctl, int sector_number)
300 {
301 	uint32_t timeout = LOOP_TIMEOUT_MAX;
302 	void __iomem *ecc_reg[4];
303 	int i;
304 	int state = FL_SUCCESS;
305 	uint32_t data, size;
306 
307 	/*
308 	 * First this loops checks in FLDTCNTR if we are ready to read out the
309 	 * oob data. This is the case if either all went fine without errors or
310 	 * if the bottom part of the loop corrected the errors or marked them as
311 	 * uncorrectable and the controller is given time to push the data into
312 	 * the FIFO.
313 	 */
314 	while (timeout--) {
315 		/* check if all is ok and we can read out the OOB */
316 		size = readl(FLDTCNTR(flctl)) >> 24;
317 		if ((size & 0xFF) == 4)
318 			return state;
319 
320 		/* check if a correction code has been calculated */
321 		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
322 			/*
323 			 * either we wait for the fifo to be filled or a
324 			 * correction pattern is being generated
325 			 */
326 			udelay(1);
327 			continue;
328 		}
329 
330 		/* check for an uncorrectable error */
331 		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
332 			/* check if we face a non-empty page */
333 			for (i = 0; i < 512; i++) {
334 				if (flctl->done_buff[i] != 0xff) {
335 					state = FL_ERROR; /* can't correct */
336 					break;
337 				}
338 			}
339 
340 			if (state == FL_SUCCESS)
341 				dev_dbg(&flctl->pdev->dev,
342 				"reading empty sector %d, ecc error ignored\n",
343 				sector_number);
344 
345 			writel(0, FL4ECCCR(flctl));
346 			continue;
347 		}
348 
349 		/* start error correction */
350 		ecc_reg[0] = FL4ECCRESULT0(flctl);
351 		ecc_reg[1] = FL4ECCRESULT1(flctl);
352 		ecc_reg[2] = FL4ECCRESULT2(flctl);
353 		ecc_reg[3] = FL4ECCRESULT3(flctl);
354 
355 		for (i = 0; i < 3; i++) {
356 			uint8_t org;
357 			unsigned int index;
358 
359 			data = readl(ecc_reg[i]);
360 
361 			if (flctl->page_size)
362 				index = (512 * sector_number) +
363 					(data >> 16);
364 			else
365 				index = data >> 16;
366 
367 			org = flctl->done_buff[index];
368 			flctl->done_buff[index] = org ^ (data & 0xFF);
369 		}
370 		state = FL_REPAIRABLE;
371 		writel(0, FL4ECCCR(flctl));
372 	}
373 
374 	timeout_error(flctl, __func__);
375 	return FL_TIMEOUT;	/* timeout */
376 }
377 
378 static void wait_wecfifo_ready(struct sh_flctl *flctl)
379 {
380 	uint32_t timeout = LOOP_TIMEOUT_MAX;
381 	uint32_t len;
382 
383 	while (timeout--) {
384 		/* check FLECFIFO */
385 		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
386 		if (len >= 4)
387 			return;
388 		udelay(1);
389 	}
390 	timeout_error(flctl, __func__);
391 }
392 
393 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
394 					int len, enum dma_data_direction dir)
395 {
396 	struct dma_async_tx_descriptor *desc = NULL;
397 	struct dma_chan *chan;
398 	enum dma_transfer_direction tr_dir;
399 	dma_addr_t dma_addr;
400 	dma_cookie_t cookie;
401 	uint32_t reg;
402 	int ret;
403 
404 	if (dir == DMA_FROM_DEVICE) {
405 		chan = flctl->chan_fifo0_rx;
406 		tr_dir = DMA_DEV_TO_MEM;
407 	} else {
408 		chan = flctl->chan_fifo0_tx;
409 		tr_dir = DMA_MEM_TO_DEV;
410 	}
411 
412 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
413 
414 	if (!dma_mapping_error(chan->device->dev, dma_addr))
415 		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
416 			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417 
418 	if (desc) {
419 		reg = readl(FLINTDMACR(flctl));
420 		reg |= DREQ0EN;
421 		writel(reg, FLINTDMACR(flctl));
422 
423 		desc->callback = flctl_dma_complete;
424 		desc->callback_param = flctl;
425 		cookie = dmaengine_submit(desc);
426 		if (dma_submit_error(cookie)) {
427 			ret = dma_submit_error(cookie);
428 			dev_warn(&flctl->pdev->dev,
429 				 "DMA submit failed, falling back to PIO\n");
430 			goto out;
431 		}
432 
433 		dma_async_issue_pending(chan);
434 	} else {
435 		/* DMA failed, fall back to PIO */
436 		flctl_release_dma(flctl);
437 		dev_warn(&flctl->pdev->dev,
438 			 "DMA failed, falling back to PIO\n");
439 		ret = -EIO;
440 		goto out;
441 	}
442 
443 	ret =
444 	wait_for_completion_timeout(&flctl->dma_complete,
445 				msecs_to_jiffies(3000));
446 
447 	if (ret <= 0) {
448 		dmaengine_terminate_all(chan);
449 		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
450 	}
451 
452 out:
453 	reg = readl(FLINTDMACR(flctl));
454 	reg &= ~DREQ0EN;
455 	writel(reg, FLINTDMACR(flctl));
456 
457 	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
458 
459 	/* ret > 0 is success */
460 	return ret;
461 }
462 
463 static void read_datareg(struct sh_flctl *flctl, int offset)
464 {
465 	unsigned long data;
466 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
467 
468 	wait_completion(flctl);
469 
470 	data = readl(FLDATAR(flctl));
471 	*buf = le32_to_cpu(data);
472 }
473 
474 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
475 {
476 	int i, len_4align;
477 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
478 
479 	len_4align = (rlen + 3) / 4;
480 
481 	/* initiate DMA transfer */
482 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
483 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
484 			goto convert;	/* DMA success */
485 
486 	/* do polling transfer */
487 	for (i = 0; i < len_4align; i++) {
488 		wait_rfifo_ready(flctl);
489 		buf[i] = readl(FLDTFIFO(flctl));
490 	}
491 
492 convert:
493 	for (i = 0; i < len_4align; i++)
494 		buf[i] = be32_to_cpu(buf[i]);
495 }
496 
497 static enum flctl_ecc_res_t read_ecfiforeg
498 		(struct sh_flctl *flctl, uint8_t *buff, int sector)
499 {
500 	int i;
501 	enum flctl_ecc_res_t res;
502 	unsigned long *ecc_buf = (unsigned long *)buff;
503 
504 	res = wait_recfifo_ready(flctl , sector);
505 
506 	if (res != FL_ERROR) {
507 		for (i = 0; i < 4; i++) {
508 			ecc_buf[i] = readl(FLECFIFO(flctl));
509 			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
510 		}
511 	}
512 
513 	return res;
514 }
515 
516 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
517 						unsigned int offset)
518 {
519 	int i, len_4align;
520 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
521 
522 	len_4align = (rlen + 3) / 4;
523 	for (i = 0; i < len_4align; i++) {
524 		wait_wfifo_ready(flctl);
525 		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
526 	}
527 }
528 
529 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
530 						unsigned int offset)
531 {
532 	int i, len_4align;
533 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
534 
535 	len_4align = (rlen + 3) / 4;
536 
537 	for (i = 0; i < len_4align; i++)
538 		buf[i] = cpu_to_be32(buf[i]);
539 
540 	/* initiate DMA transfer */
541 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
542 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
543 			return;	/* DMA success */
544 
545 	/* do polling transfer */
546 	for (i = 0; i < len_4align; i++) {
547 		wait_wecfifo_ready(flctl);
548 		writel(buf[i], FLECFIFO(flctl));
549 	}
550 }
551 
552 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
553 {
554 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
555 	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
556 	uint32_t flcmdcr_val, addr_len_bytes = 0;
557 
558 	/* Set SNAND bit if page size is 2048byte */
559 	if (flctl->page_size)
560 		flcmncr_val |= SNAND_E;
561 	else
562 		flcmncr_val &= ~SNAND_E;
563 
564 	/* default FLCMDCR val */
565 	flcmdcr_val = DOCMD1_E | DOADR_E;
566 
567 	/* Set for FLCMDCR */
568 	switch (cmd) {
569 	case NAND_CMD_ERASE1:
570 		addr_len_bytes = flctl->erase_ADRCNT;
571 		flcmdcr_val |= DOCMD2_E;
572 		break;
573 	case NAND_CMD_READ0:
574 	case NAND_CMD_READOOB:
575 	case NAND_CMD_RNDOUT:
576 		addr_len_bytes = flctl->rw_ADRCNT;
577 		flcmdcr_val |= CDSRC_E;
578 		if (flctl->chip.options & NAND_BUSWIDTH_16)
579 			flcmncr_val |= SEL_16BIT;
580 		break;
581 	case NAND_CMD_SEQIN:
582 		/* This case is that cmd is READ0 or READ1 or READ00 */
583 		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
584 		break;
585 	case NAND_CMD_PAGEPROG:
586 		addr_len_bytes = flctl->rw_ADRCNT;
587 		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
588 		if (flctl->chip.options & NAND_BUSWIDTH_16)
589 			flcmncr_val |= SEL_16BIT;
590 		break;
591 	case NAND_CMD_READID:
592 		flcmncr_val &= ~SNAND_E;
593 		flcmdcr_val |= CDSRC_E;
594 		addr_len_bytes = ADRCNT_1;
595 		break;
596 	case NAND_CMD_STATUS:
597 	case NAND_CMD_RESET:
598 		flcmncr_val &= ~SNAND_E;
599 		flcmdcr_val &= ~(DOADR_E | DOSR_E);
600 		break;
601 	default:
602 		break;
603 	}
604 
605 	/* Set address bytes parameter */
606 	flcmdcr_val |= addr_len_bytes;
607 
608 	/* Now actually write */
609 	writel(flcmncr_val, FLCMNCR(flctl));
610 	writel(flcmdcr_val, FLCMDCR(flctl));
611 	writel(flcmcdr_val, FLCMCDR(flctl));
612 }
613 
614 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
615 				uint8_t *buf, int oob_required, int page)
616 {
617 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
618 	if (oob_required)
619 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
620 	return 0;
621 }
622 
623 static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
624 				  const uint8_t *buf, int oob_required,
625 				  int page)
626 {
627 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
628 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
629 	return nand_prog_page_end_op(chip);
630 }
631 
632 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
633 {
634 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
635 	int sector, page_sectors;
636 	enum flctl_ecc_res_t ecc_result;
637 
638 	page_sectors = flctl->page_size ? 4 : 1;
639 
640 	set_cmd_regs(mtd, NAND_CMD_READ0,
641 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
642 
643 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
644 		 FLCMNCR(flctl));
645 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
646 	writel(page_addr << 2, FLADR(flctl));
647 
648 	empty_fifo(flctl);
649 	start_translation(flctl);
650 
651 	for (sector = 0; sector < page_sectors; sector++) {
652 		read_fiforeg(flctl, 512, 512 * sector);
653 
654 		ecc_result = read_ecfiforeg(flctl,
655 			&flctl->done_buff[mtd->writesize + 16 * sector],
656 			sector);
657 
658 		switch (ecc_result) {
659 		case FL_REPAIRABLE:
660 			dev_info(&flctl->pdev->dev,
661 				"applied ecc on page 0x%x", page_addr);
662 			mtd->ecc_stats.corrected++;
663 			break;
664 		case FL_ERROR:
665 			dev_warn(&flctl->pdev->dev,
666 				"page 0x%x contains corrupted data\n",
667 				page_addr);
668 			mtd->ecc_stats.failed++;
669 			break;
670 		default:
671 			;
672 		}
673 	}
674 
675 	wait_completion(flctl);
676 
677 	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
678 			FLCMNCR(flctl));
679 }
680 
681 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
682 {
683 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
684 	int page_sectors = flctl->page_size ? 4 : 1;
685 	int i;
686 
687 	set_cmd_regs(mtd, NAND_CMD_READ0,
688 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
689 
690 	empty_fifo(flctl);
691 
692 	for (i = 0; i < page_sectors; i++) {
693 		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
694 		writel(16, FLDTCNTR(flctl));
695 
696 		start_translation(flctl);
697 		read_fiforeg(flctl, 16, 16 * i);
698 		wait_completion(flctl);
699 	}
700 }
701 
702 static void execmd_write_page_sector(struct mtd_info *mtd)
703 {
704 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
705 	int page_addr = flctl->seqin_page_addr;
706 	int sector, page_sectors;
707 
708 	page_sectors = flctl->page_size ? 4 : 1;
709 
710 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
711 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
712 
713 	empty_fifo(flctl);
714 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
715 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
716 	writel(page_addr << 2, FLADR(flctl));
717 	start_translation(flctl);
718 
719 	for (sector = 0; sector < page_sectors; sector++) {
720 		write_fiforeg(flctl, 512, 512 * sector);
721 		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
722 	}
723 
724 	wait_completion(flctl);
725 	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
726 }
727 
728 static void execmd_write_oob(struct mtd_info *mtd)
729 {
730 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
731 	int page_addr = flctl->seqin_page_addr;
732 	int sector, page_sectors;
733 
734 	page_sectors = flctl->page_size ? 4 : 1;
735 
736 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
737 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
738 
739 	for (sector = 0; sector < page_sectors; sector++) {
740 		empty_fifo(flctl);
741 		set_addr(mtd, sector * 528 + 512, page_addr);
742 		writel(16, FLDTCNTR(flctl));	/* set read size */
743 
744 		start_translation(flctl);
745 		write_fiforeg(flctl, 16, 16 * sector);
746 		wait_completion(flctl);
747 	}
748 }
749 
750 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
751 			int column, int page_addr)
752 {
753 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
754 	uint32_t read_cmd = 0;
755 
756 	pm_runtime_get_sync(&flctl->pdev->dev);
757 
758 	flctl->read_bytes = 0;
759 	if (command != NAND_CMD_PAGEPROG)
760 		flctl->index = 0;
761 
762 	switch (command) {
763 	case NAND_CMD_READ1:
764 	case NAND_CMD_READ0:
765 		if (flctl->hwecc) {
766 			/* read page with hwecc */
767 			execmd_read_page_sector(mtd, page_addr);
768 			break;
769 		}
770 		if (flctl->page_size)
771 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
772 				| command);
773 		else
774 			set_cmd_regs(mtd, command, command);
775 
776 		set_addr(mtd, 0, page_addr);
777 
778 		flctl->read_bytes = mtd->writesize + mtd->oobsize;
779 		if (flctl->chip.options & NAND_BUSWIDTH_16)
780 			column >>= 1;
781 		flctl->index += column;
782 		goto read_normal_exit;
783 
784 	case NAND_CMD_READOOB:
785 		if (flctl->hwecc) {
786 			/* read page with hwecc */
787 			execmd_read_oob(mtd, page_addr);
788 			break;
789 		}
790 
791 		if (flctl->page_size) {
792 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
793 				| NAND_CMD_READ0);
794 			set_addr(mtd, mtd->writesize, page_addr);
795 		} else {
796 			set_cmd_regs(mtd, command, command);
797 			set_addr(mtd, 0, page_addr);
798 		}
799 		flctl->read_bytes = mtd->oobsize;
800 		goto read_normal_exit;
801 
802 	case NAND_CMD_RNDOUT:
803 		if (flctl->hwecc)
804 			break;
805 
806 		if (flctl->page_size)
807 			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
808 				| command);
809 		else
810 			set_cmd_regs(mtd, command, command);
811 
812 		set_addr(mtd, column, 0);
813 
814 		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
815 		goto read_normal_exit;
816 
817 	case NAND_CMD_READID:
818 		set_cmd_regs(mtd, command, command);
819 
820 		/* READID is always performed using an 8-bit bus */
821 		if (flctl->chip.options & NAND_BUSWIDTH_16)
822 			column <<= 1;
823 		set_addr(mtd, column, 0);
824 
825 		flctl->read_bytes = 8;
826 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
827 		empty_fifo(flctl);
828 		start_translation(flctl);
829 		read_fiforeg(flctl, flctl->read_bytes, 0);
830 		wait_completion(flctl);
831 		break;
832 
833 	case NAND_CMD_ERASE1:
834 		flctl->erase1_page_addr = page_addr;
835 		break;
836 
837 	case NAND_CMD_ERASE2:
838 		set_cmd_regs(mtd, NAND_CMD_ERASE1,
839 			(command << 8) | NAND_CMD_ERASE1);
840 		set_addr(mtd, -1, flctl->erase1_page_addr);
841 		start_translation(flctl);
842 		wait_completion(flctl);
843 		break;
844 
845 	case NAND_CMD_SEQIN:
846 		if (!flctl->page_size) {
847 			/* output read command */
848 			if (column >= mtd->writesize) {
849 				column -= mtd->writesize;
850 				read_cmd = NAND_CMD_READOOB;
851 			} else if (column < 256) {
852 				read_cmd = NAND_CMD_READ0;
853 			} else {
854 				column -= 256;
855 				read_cmd = NAND_CMD_READ1;
856 			}
857 		}
858 		flctl->seqin_column = column;
859 		flctl->seqin_page_addr = page_addr;
860 		flctl->seqin_read_cmd = read_cmd;
861 		break;
862 
863 	case NAND_CMD_PAGEPROG:
864 		empty_fifo(flctl);
865 		if (!flctl->page_size) {
866 			set_cmd_regs(mtd, NAND_CMD_SEQIN,
867 					flctl->seqin_read_cmd);
868 			set_addr(mtd, -1, -1);
869 			writel(0, FLDTCNTR(flctl));	/* set 0 size */
870 			start_translation(flctl);
871 			wait_completion(flctl);
872 		}
873 		if (flctl->hwecc) {
874 			/* write page with hwecc */
875 			if (flctl->seqin_column == mtd->writesize)
876 				execmd_write_oob(mtd);
877 			else if (!flctl->seqin_column)
878 				execmd_write_page_sector(mtd);
879 			else
880 				pr_err("Invalid address !?\n");
881 			break;
882 		}
883 		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
884 		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
885 		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
886 		start_translation(flctl);
887 		write_fiforeg(flctl, flctl->index, 0);
888 		wait_completion(flctl);
889 		break;
890 
891 	case NAND_CMD_STATUS:
892 		set_cmd_regs(mtd, command, command);
893 		set_addr(mtd, -1, -1);
894 
895 		flctl->read_bytes = 1;
896 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
897 		start_translation(flctl);
898 		read_datareg(flctl, 0); /* read and end */
899 		break;
900 
901 	case NAND_CMD_RESET:
902 		set_cmd_regs(mtd, command, command);
903 		set_addr(mtd, -1, -1);
904 
905 		writel(0, FLDTCNTR(flctl));	/* set 0 size */
906 		start_translation(flctl);
907 		wait_completion(flctl);
908 		break;
909 
910 	default:
911 		break;
912 	}
913 	goto runtime_exit;
914 
915 read_normal_exit:
916 	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
917 	empty_fifo(flctl);
918 	start_translation(flctl);
919 	read_fiforeg(flctl, flctl->read_bytes, 0);
920 	wait_completion(flctl);
921 runtime_exit:
922 	pm_runtime_put_sync(&flctl->pdev->dev);
923 	return;
924 }
925 
926 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
927 {
928 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
929 	int ret;
930 
931 	switch (chipnr) {
932 	case -1:
933 		flctl->flcmncr_base &= ~CE0_ENABLE;
934 
935 		pm_runtime_get_sync(&flctl->pdev->dev);
936 		writel(flctl->flcmncr_base, FLCMNCR(flctl));
937 
938 		if (flctl->qos_request) {
939 			dev_pm_qos_remove_request(&flctl->pm_qos);
940 			flctl->qos_request = 0;
941 		}
942 
943 		pm_runtime_put_sync(&flctl->pdev->dev);
944 		break;
945 	case 0:
946 		flctl->flcmncr_base |= CE0_ENABLE;
947 
948 		if (!flctl->qos_request) {
949 			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
950 							&flctl->pm_qos,
951 							DEV_PM_QOS_RESUME_LATENCY,
952 							100);
953 			if (ret < 0)
954 				dev_err(&flctl->pdev->dev,
955 					"PM QoS request failed: %d\n", ret);
956 			flctl->qos_request = 1;
957 		}
958 
959 		if (flctl->holden) {
960 			pm_runtime_get_sync(&flctl->pdev->dev);
961 			writel(HOLDEN, FLHOLDCR(flctl));
962 			pm_runtime_put_sync(&flctl->pdev->dev);
963 		}
964 		break;
965 	default:
966 		BUG();
967 	}
968 }
969 
970 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
971 {
972 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
973 
974 	memcpy(&flctl->done_buff[flctl->index], buf, len);
975 	flctl->index += len;
976 }
977 
978 static uint8_t flctl_read_byte(struct mtd_info *mtd)
979 {
980 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
981 	uint8_t data;
982 
983 	data = flctl->done_buff[flctl->index];
984 	flctl->index++;
985 	return data;
986 }
987 
988 static uint16_t flctl_read_word(struct mtd_info *mtd)
989 {
990 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
991 	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
992 
993 	flctl->index += 2;
994 	return *buf;
995 }
996 
997 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
998 {
999 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
1000 
1001 	memcpy(buf, &flctl->done_buff[flctl->index], len);
1002 	flctl->index += len;
1003 }
1004 
1005 static int flctl_chip_attach_chip(struct nand_chip *chip)
1006 {
1007 	struct mtd_info *mtd = nand_to_mtd(chip);
1008 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
1009 
1010 	/*
1011 	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
1012 	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
1013 	 */
1014 	if (chip->options & NAND_BUSWIDTH_16)
1015 		flctl->flcmncr_base |= SEL_16BIT;
1016 
1017 	if (mtd->writesize == 512) {
1018 		flctl->page_size = 0;
1019 		if (chip->chipsize > (32 << 20)) {
1020 			/* big than 32MB */
1021 			flctl->rw_ADRCNT = ADRCNT_4;
1022 			flctl->erase_ADRCNT = ADRCNT_3;
1023 		} else if (chip->chipsize > (2 << 16)) {
1024 			/* big than 128KB */
1025 			flctl->rw_ADRCNT = ADRCNT_3;
1026 			flctl->erase_ADRCNT = ADRCNT_2;
1027 		} else {
1028 			flctl->rw_ADRCNT = ADRCNT_2;
1029 			flctl->erase_ADRCNT = ADRCNT_1;
1030 		}
1031 	} else {
1032 		flctl->page_size = 1;
1033 		if (chip->chipsize > (128 << 20)) {
1034 			/* big than 128MB */
1035 			flctl->rw_ADRCNT = ADRCNT2_E;
1036 			flctl->erase_ADRCNT = ADRCNT_3;
1037 		} else if (chip->chipsize > (8 << 16)) {
1038 			/* big than 512KB */
1039 			flctl->rw_ADRCNT = ADRCNT_4;
1040 			flctl->erase_ADRCNT = ADRCNT_2;
1041 		} else {
1042 			flctl->rw_ADRCNT = ADRCNT_3;
1043 			flctl->erase_ADRCNT = ADRCNT_1;
1044 		}
1045 	}
1046 
1047 	if (flctl->hwecc) {
1048 		if (mtd->writesize == 512) {
1049 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1050 			chip->badblock_pattern = &flctl_4secc_smallpage;
1051 		} else {
1052 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1053 			chip->badblock_pattern = &flctl_4secc_largepage;
1054 		}
1055 
1056 		chip->ecc.size = 512;
1057 		chip->ecc.bytes = 10;
1058 		chip->ecc.strength = 4;
1059 		chip->ecc.read_page = flctl_read_page_hwecc;
1060 		chip->ecc.write_page = flctl_write_page_hwecc;
1061 		chip->ecc.mode = NAND_ECC_HW;
1062 
1063 		/* 4 symbols ECC enabled */
1064 		flctl->flcmncr_base |= _4ECCEN;
1065 	} else {
1066 		chip->ecc.mode = NAND_ECC_SOFT;
1067 		chip->ecc.algo = NAND_ECC_HAMMING;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static const struct nand_controller_ops flctl_nand_controller_ops = {
1074 	.attach_chip = flctl_chip_attach_chip,
1075 };
1076 
1077 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1078 {
1079 	struct sh_flctl *flctl = dev_id;
1080 
1081 	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1082 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1083 
1084 	return IRQ_HANDLED;
1085 }
1086 
1087 struct flctl_soc_config {
1088 	unsigned long flcmncr_val;
1089 	unsigned has_hwecc:1;
1090 	unsigned use_holden:1;
1091 };
1092 
1093 static struct flctl_soc_config flctl_sh7372_config = {
1094 	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1095 	.has_hwecc = 1,
1096 	.use_holden = 1,
1097 };
1098 
1099 static const struct of_device_id of_flctl_match[] = {
1100 	{ .compatible = "renesas,shmobile-flctl-sh7372",
1101 				.data = &flctl_sh7372_config },
1102 	{},
1103 };
1104 MODULE_DEVICE_TABLE(of, of_flctl_match);
1105 
1106 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1107 {
1108 	const struct flctl_soc_config *config;
1109 	struct sh_flctl_platform_data *pdata;
1110 
1111 	config = of_device_get_match_data(dev);
1112 	if (!config) {
1113 		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1114 		return NULL;
1115 	}
1116 
1117 	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1118 								GFP_KERNEL);
1119 	if (!pdata)
1120 		return NULL;
1121 
1122 	/* set SoC specific options */
1123 	pdata->flcmncr_val = config->flcmncr_val;
1124 	pdata->has_hwecc = config->has_hwecc;
1125 	pdata->use_holden = config->use_holden;
1126 
1127 	return pdata;
1128 }
1129 
1130 static int flctl_probe(struct platform_device *pdev)
1131 {
1132 	struct resource *res;
1133 	struct sh_flctl *flctl;
1134 	struct mtd_info *flctl_mtd;
1135 	struct nand_chip *nand;
1136 	struct sh_flctl_platform_data *pdata;
1137 	int ret;
1138 	int irq;
1139 
1140 	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1141 	if (!flctl)
1142 		return -ENOMEM;
1143 
1144 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1145 	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1146 	if (IS_ERR(flctl->reg))
1147 		return PTR_ERR(flctl->reg);
1148 	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1149 
1150 	irq = platform_get_irq(pdev, 0);
1151 	if (irq < 0) {
1152 		dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq);
1153 		return irq;
1154 	}
1155 
1156 	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1157 			       "flste", flctl);
1158 	if (ret) {
1159 		dev_err(&pdev->dev, "request interrupt failed.\n");
1160 		return ret;
1161 	}
1162 
1163 	if (pdev->dev.of_node)
1164 		pdata = flctl_parse_dt(&pdev->dev);
1165 	else
1166 		pdata = dev_get_platdata(&pdev->dev);
1167 
1168 	if (!pdata) {
1169 		dev_err(&pdev->dev, "no setup data defined\n");
1170 		return -EINVAL;
1171 	}
1172 
1173 	platform_set_drvdata(pdev, flctl);
1174 	nand = &flctl->chip;
1175 	flctl_mtd = nand_to_mtd(nand);
1176 	nand_set_flash_node(nand, pdev->dev.of_node);
1177 	flctl_mtd->dev.parent = &pdev->dev;
1178 	flctl->pdev = pdev;
1179 	flctl->hwecc = pdata->has_hwecc;
1180 	flctl->holden = pdata->use_holden;
1181 	flctl->flcmncr_base = pdata->flcmncr_val;
1182 	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1183 
1184 	/* Set address of hardware control function */
1185 	/* 20 us command delay time */
1186 	nand->chip_delay = 20;
1187 
1188 	nand->read_byte = flctl_read_byte;
1189 	nand->read_word = flctl_read_word;
1190 	nand->write_buf = flctl_write_buf;
1191 	nand->read_buf = flctl_read_buf;
1192 	nand->select_chip = flctl_select_chip;
1193 	nand->cmdfunc = flctl_cmdfunc;
1194 	nand->set_features = nand_get_set_features_notsupp;
1195 	nand->get_features = nand_get_set_features_notsupp;
1196 
1197 	if (pdata->flcmncr_val & SEL_16BIT)
1198 		nand->options |= NAND_BUSWIDTH_16;
1199 
1200 	pm_runtime_enable(&pdev->dev);
1201 	pm_runtime_resume(&pdev->dev);
1202 
1203 	flctl_setup_dma(flctl);
1204 
1205 	nand->dummy_controller.ops = &flctl_nand_controller_ops;
1206 	ret = nand_scan(flctl_mtd, 1);
1207 	if (ret)
1208 		goto err_chip;
1209 
1210 	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1211 	if (ret)
1212 		goto cleanup_nand;
1213 
1214 	return 0;
1215 
1216 cleanup_nand:
1217 	nand_cleanup(nand);
1218 err_chip:
1219 	flctl_release_dma(flctl);
1220 	pm_runtime_disable(&pdev->dev);
1221 	return ret;
1222 }
1223 
1224 static int flctl_remove(struct platform_device *pdev)
1225 {
1226 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1227 
1228 	flctl_release_dma(flctl);
1229 	nand_release(nand_to_mtd(&flctl->chip));
1230 	pm_runtime_disable(&pdev->dev);
1231 
1232 	return 0;
1233 }
1234 
1235 static struct platform_driver flctl_driver = {
1236 	.remove		= flctl_remove,
1237 	.driver = {
1238 		.name	= "sh_flctl",
1239 		.of_match_table = of_match_ptr(of_flctl_match),
1240 	},
1241 };
1242 
1243 module_platform_driver_probe(flctl_driver, flctl_probe);
1244 
1245 MODULE_LICENSE("GPL");
1246 MODULE_AUTHOR("Yoshihiro Shimoda");
1247 MODULE_DESCRIPTION("SuperH FLCTL driver");
1248 MODULE_ALIAS("platform:sh_flctl");
1249