xref: /openbmc/linux/drivers/mtd/nand/raw/sh_flctl.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sh_dma.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/rawnand.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/sh_flctl.h>
44 
45 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
46 					struct mtd_oob_region *oobregion)
47 {
48 	struct nand_chip *chip = mtd_to_nand(mtd);
49 
50 	if (section)
51 		return -ERANGE;
52 
53 	oobregion->offset = 0;
54 	oobregion->length = chip->ecc.bytes;
55 
56 	return 0;
57 }
58 
59 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
60 					 struct mtd_oob_region *oobregion)
61 {
62 	if (section)
63 		return -ERANGE;
64 
65 	oobregion->offset = 12;
66 	oobregion->length = 4;
67 
68 	return 0;
69 }
70 
71 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
72 	.ecc = flctl_4secc_ooblayout_sp_ecc,
73 	.free = flctl_4secc_ooblayout_sp_free,
74 };
75 
76 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
77 					struct mtd_oob_region *oobregion)
78 {
79 	struct nand_chip *chip = mtd_to_nand(mtd);
80 
81 	if (section >= chip->ecc.steps)
82 		return -ERANGE;
83 
84 	oobregion->offset = (section * 16) + 6;
85 	oobregion->length = chip->ecc.bytes;
86 
87 	return 0;
88 }
89 
90 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
91 					 struct mtd_oob_region *oobregion)
92 {
93 	struct nand_chip *chip = mtd_to_nand(mtd);
94 
95 	if (section >= chip->ecc.steps)
96 		return -ERANGE;
97 
98 	oobregion->offset = section * 16;
99 	oobregion->length = 6;
100 
101 	if (!section) {
102 		oobregion->offset += 2;
103 		oobregion->length -= 2;
104 	}
105 
106 	return 0;
107 }
108 
109 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
110 	.ecc = flctl_4secc_ooblayout_lp_ecc,
111 	.free = flctl_4secc_ooblayout_lp_free,
112 };
113 
114 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
115 
116 static struct nand_bbt_descr flctl_4secc_smallpage = {
117 	.options = NAND_BBT_SCAN2NDPAGE,
118 	.offs = 11,
119 	.len = 1,
120 	.pattern = scan_ff_pattern,
121 };
122 
123 static struct nand_bbt_descr flctl_4secc_largepage = {
124 	.options = NAND_BBT_SCAN2NDPAGE,
125 	.offs = 0,
126 	.len = 2,
127 	.pattern = scan_ff_pattern,
128 };
129 
130 static void empty_fifo(struct sh_flctl *flctl)
131 {
132 	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
133 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
134 }
135 
136 static void start_translation(struct sh_flctl *flctl)
137 {
138 	writeb(TRSTRT, FLTRCR(flctl));
139 }
140 
141 static void timeout_error(struct sh_flctl *flctl, const char *str)
142 {
143 	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
144 }
145 
146 static void wait_completion(struct sh_flctl *flctl)
147 {
148 	uint32_t timeout = LOOP_TIMEOUT_MAX;
149 
150 	while (timeout--) {
151 		if (readb(FLTRCR(flctl)) & TREND) {
152 			writeb(0x0, FLTRCR(flctl));
153 			return;
154 		}
155 		udelay(1);
156 	}
157 
158 	timeout_error(flctl, __func__);
159 	writeb(0x0, FLTRCR(flctl));
160 }
161 
162 static void flctl_dma_complete(void *param)
163 {
164 	struct sh_flctl *flctl = param;
165 
166 	complete(&flctl->dma_complete);
167 }
168 
169 static void flctl_release_dma(struct sh_flctl *flctl)
170 {
171 	if (flctl->chan_fifo0_rx) {
172 		dma_release_channel(flctl->chan_fifo0_rx);
173 		flctl->chan_fifo0_rx = NULL;
174 	}
175 	if (flctl->chan_fifo0_tx) {
176 		dma_release_channel(flctl->chan_fifo0_tx);
177 		flctl->chan_fifo0_tx = NULL;
178 	}
179 }
180 
181 static void flctl_setup_dma(struct sh_flctl *flctl)
182 {
183 	dma_cap_mask_t mask;
184 	struct dma_slave_config cfg;
185 	struct platform_device *pdev = flctl->pdev;
186 	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
187 	int ret;
188 
189 	if (!pdata)
190 		return;
191 
192 	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
193 		return;
194 
195 	/* We can only either use DMA for both Tx and Rx or not use it at all */
196 	dma_cap_zero(mask);
197 	dma_cap_set(DMA_SLAVE, mask);
198 
199 	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
200 				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
201 	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
202 		flctl->chan_fifo0_tx);
203 
204 	if (!flctl->chan_fifo0_tx)
205 		return;
206 
207 	memset(&cfg, 0, sizeof(cfg));
208 	cfg.direction = DMA_MEM_TO_DEV;
209 	cfg.dst_addr = flctl->fifo;
210 	cfg.src_addr = 0;
211 	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
212 	if (ret < 0)
213 		goto err;
214 
215 	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
216 				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
217 	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
218 		flctl->chan_fifo0_rx);
219 
220 	if (!flctl->chan_fifo0_rx)
221 		goto err;
222 
223 	cfg.direction = DMA_DEV_TO_MEM;
224 	cfg.dst_addr = 0;
225 	cfg.src_addr = flctl->fifo;
226 	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
227 	if (ret < 0)
228 		goto err;
229 
230 	init_completion(&flctl->dma_complete);
231 
232 	return;
233 
234 err:
235 	flctl_release_dma(flctl);
236 }
237 
238 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
239 {
240 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
241 	uint32_t addr = 0;
242 
243 	if (column == -1) {
244 		addr = page_addr;	/* ERASE1 */
245 	} else if (page_addr != -1) {
246 		/* SEQIN, READ0, etc.. */
247 		if (flctl->chip.options & NAND_BUSWIDTH_16)
248 			column >>= 1;
249 		if (flctl->page_size) {
250 			addr = column & 0x0FFF;
251 			addr |= (page_addr & 0xff) << 16;
252 			addr |= ((page_addr >> 8) & 0xff) << 24;
253 			/* big than 128MB */
254 			if (flctl->rw_ADRCNT == ADRCNT2_E) {
255 				uint32_t 	addr2;
256 				addr2 = (page_addr >> 16) & 0xff;
257 				writel(addr2, FLADR2(flctl));
258 			}
259 		} else {
260 			addr = column;
261 			addr |= (page_addr & 0xff) << 8;
262 			addr |= ((page_addr >> 8) & 0xff) << 16;
263 			addr |= ((page_addr >> 16) & 0xff) << 24;
264 		}
265 	}
266 	writel(addr, FLADR(flctl));
267 }
268 
269 static void wait_rfifo_ready(struct sh_flctl *flctl)
270 {
271 	uint32_t timeout = LOOP_TIMEOUT_MAX;
272 
273 	while (timeout--) {
274 		uint32_t val;
275 		/* check FIFO */
276 		val = readl(FLDTCNTR(flctl)) >> 16;
277 		if (val & 0xFF)
278 			return;
279 		udelay(1);
280 	}
281 	timeout_error(flctl, __func__);
282 }
283 
284 static void wait_wfifo_ready(struct sh_flctl *flctl)
285 {
286 	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
287 
288 	while (timeout--) {
289 		/* check FIFO */
290 		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
291 		if (len >= 4)
292 			return;
293 		udelay(1);
294 	}
295 	timeout_error(flctl, __func__);
296 }
297 
298 static enum flctl_ecc_res_t wait_recfifo_ready
299 		(struct sh_flctl *flctl, int sector_number)
300 {
301 	uint32_t timeout = LOOP_TIMEOUT_MAX;
302 	void __iomem *ecc_reg[4];
303 	int i;
304 	int state = FL_SUCCESS;
305 	uint32_t data, size;
306 
307 	/*
308 	 * First this loops checks in FLDTCNTR if we are ready to read out the
309 	 * oob data. This is the case if either all went fine without errors or
310 	 * if the bottom part of the loop corrected the errors or marked them as
311 	 * uncorrectable and the controller is given time to push the data into
312 	 * the FIFO.
313 	 */
314 	while (timeout--) {
315 		/* check if all is ok and we can read out the OOB */
316 		size = readl(FLDTCNTR(flctl)) >> 24;
317 		if ((size & 0xFF) == 4)
318 			return state;
319 
320 		/* check if a correction code has been calculated */
321 		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
322 			/*
323 			 * either we wait for the fifo to be filled or a
324 			 * correction pattern is being generated
325 			 */
326 			udelay(1);
327 			continue;
328 		}
329 
330 		/* check for an uncorrectable error */
331 		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
332 			/* check if we face a non-empty page */
333 			for (i = 0; i < 512; i++) {
334 				if (flctl->done_buff[i] != 0xff) {
335 					state = FL_ERROR; /* can't correct */
336 					break;
337 				}
338 			}
339 
340 			if (state == FL_SUCCESS)
341 				dev_dbg(&flctl->pdev->dev,
342 				"reading empty sector %d, ecc error ignored\n",
343 				sector_number);
344 
345 			writel(0, FL4ECCCR(flctl));
346 			continue;
347 		}
348 
349 		/* start error correction */
350 		ecc_reg[0] = FL4ECCRESULT0(flctl);
351 		ecc_reg[1] = FL4ECCRESULT1(flctl);
352 		ecc_reg[2] = FL4ECCRESULT2(flctl);
353 		ecc_reg[3] = FL4ECCRESULT3(flctl);
354 
355 		for (i = 0; i < 3; i++) {
356 			uint8_t org;
357 			unsigned int index;
358 
359 			data = readl(ecc_reg[i]);
360 
361 			if (flctl->page_size)
362 				index = (512 * sector_number) +
363 					(data >> 16);
364 			else
365 				index = data >> 16;
366 
367 			org = flctl->done_buff[index];
368 			flctl->done_buff[index] = org ^ (data & 0xFF);
369 		}
370 		state = FL_REPAIRABLE;
371 		writel(0, FL4ECCCR(flctl));
372 	}
373 
374 	timeout_error(flctl, __func__);
375 	return FL_TIMEOUT;	/* timeout */
376 }
377 
378 static void wait_wecfifo_ready(struct sh_flctl *flctl)
379 {
380 	uint32_t timeout = LOOP_TIMEOUT_MAX;
381 	uint32_t len;
382 
383 	while (timeout--) {
384 		/* check FLECFIFO */
385 		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
386 		if (len >= 4)
387 			return;
388 		udelay(1);
389 	}
390 	timeout_error(flctl, __func__);
391 }
392 
393 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
394 					int len, enum dma_data_direction dir)
395 {
396 	struct dma_async_tx_descriptor *desc = NULL;
397 	struct dma_chan *chan;
398 	enum dma_transfer_direction tr_dir;
399 	dma_addr_t dma_addr;
400 	dma_cookie_t cookie;
401 	uint32_t reg;
402 	int ret;
403 
404 	if (dir == DMA_FROM_DEVICE) {
405 		chan = flctl->chan_fifo0_rx;
406 		tr_dir = DMA_DEV_TO_MEM;
407 	} else {
408 		chan = flctl->chan_fifo0_tx;
409 		tr_dir = DMA_MEM_TO_DEV;
410 	}
411 
412 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
413 
414 	if (!dma_mapping_error(chan->device->dev, dma_addr))
415 		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
416 			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417 
418 	if (desc) {
419 		reg = readl(FLINTDMACR(flctl));
420 		reg |= DREQ0EN;
421 		writel(reg, FLINTDMACR(flctl));
422 
423 		desc->callback = flctl_dma_complete;
424 		desc->callback_param = flctl;
425 		cookie = dmaengine_submit(desc);
426 		if (dma_submit_error(cookie)) {
427 			ret = dma_submit_error(cookie);
428 			dev_warn(&flctl->pdev->dev,
429 				 "DMA submit failed, falling back to PIO\n");
430 			goto out;
431 		}
432 
433 		dma_async_issue_pending(chan);
434 	} else {
435 		/* DMA failed, fall back to PIO */
436 		flctl_release_dma(flctl);
437 		dev_warn(&flctl->pdev->dev,
438 			 "DMA failed, falling back to PIO\n");
439 		ret = -EIO;
440 		goto out;
441 	}
442 
443 	ret =
444 	wait_for_completion_timeout(&flctl->dma_complete,
445 				msecs_to_jiffies(3000));
446 
447 	if (ret <= 0) {
448 		dmaengine_terminate_all(chan);
449 		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
450 	}
451 
452 out:
453 	reg = readl(FLINTDMACR(flctl));
454 	reg &= ~DREQ0EN;
455 	writel(reg, FLINTDMACR(flctl));
456 
457 	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
458 
459 	/* ret > 0 is success */
460 	return ret;
461 }
462 
463 static void read_datareg(struct sh_flctl *flctl, int offset)
464 {
465 	unsigned long data;
466 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
467 
468 	wait_completion(flctl);
469 
470 	data = readl(FLDATAR(flctl));
471 	*buf = le32_to_cpu(data);
472 }
473 
474 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
475 {
476 	int i, len_4align;
477 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
478 
479 	len_4align = (rlen + 3) / 4;
480 
481 	/* initiate DMA transfer */
482 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
483 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0)
484 			goto convert;	/* DMA success */
485 
486 	/* do polling transfer */
487 	for (i = 0; i < len_4align; i++) {
488 		wait_rfifo_ready(flctl);
489 		buf[i] = readl(FLDTFIFO(flctl));
490 	}
491 
492 convert:
493 	for (i = 0; i < len_4align; i++)
494 		buf[i] = be32_to_cpu(buf[i]);
495 }
496 
497 static enum flctl_ecc_res_t read_ecfiforeg
498 		(struct sh_flctl *flctl, uint8_t *buff, int sector)
499 {
500 	int i;
501 	enum flctl_ecc_res_t res;
502 	unsigned long *ecc_buf = (unsigned long *)buff;
503 
504 	res = wait_recfifo_ready(flctl , sector);
505 
506 	if (res != FL_ERROR) {
507 		for (i = 0; i < 4; i++) {
508 			ecc_buf[i] = readl(FLECFIFO(flctl));
509 			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
510 		}
511 	}
512 
513 	return res;
514 }
515 
516 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
517 						unsigned int offset)
518 {
519 	int i, len_4align;
520 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
521 
522 	len_4align = (rlen + 3) / 4;
523 	for (i = 0; i < len_4align; i++) {
524 		wait_wfifo_ready(flctl);
525 		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
526 	}
527 }
528 
529 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
530 						unsigned int offset)
531 {
532 	int i, len_4align;
533 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
534 
535 	len_4align = (rlen + 3) / 4;
536 
537 	for (i = 0; i < len_4align; i++)
538 		buf[i] = cpu_to_be32(buf[i]);
539 
540 	/* initiate DMA transfer */
541 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
542 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0)
543 			return;	/* DMA success */
544 
545 	/* do polling transfer */
546 	for (i = 0; i < len_4align; i++) {
547 		wait_wecfifo_ready(flctl);
548 		writel(buf[i], FLECFIFO(flctl));
549 	}
550 }
551 
552 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
553 {
554 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
555 	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
556 	uint32_t flcmdcr_val, addr_len_bytes = 0;
557 
558 	/* Set SNAND bit if page size is 2048byte */
559 	if (flctl->page_size)
560 		flcmncr_val |= SNAND_E;
561 	else
562 		flcmncr_val &= ~SNAND_E;
563 
564 	/* default FLCMDCR val */
565 	flcmdcr_val = DOCMD1_E | DOADR_E;
566 
567 	/* Set for FLCMDCR */
568 	switch (cmd) {
569 	case NAND_CMD_ERASE1:
570 		addr_len_bytes = flctl->erase_ADRCNT;
571 		flcmdcr_val |= DOCMD2_E;
572 		break;
573 	case NAND_CMD_READ0:
574 	case NAND_CMD_READOOB:
575 	case NAND_CMD_RNDOUT:
576 		addr_len_bytes = flctl->rw_ADRCNT;
577 		flcmdcr_val |= CDSRC_E;
578 		if (flctl->chip.options & NAND_BUSWIDTH_16)
579 			flcmncr_val |= SEL_16BIT;
580 		break;
581 	case NAND_CMD_SEQIN:
582 		/* This case is that cmd is READ0 or READ1 or READ00 */
583 		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
584 		break;
585 	case NAND_CMD_PAGEPROG:
586 		addr_len_bytes = flctl->rw_ADRCNT;
587 		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
588 		if (flctl->chip.options & NAND_BUSWIDTH_16)
589 			flcmncr_val |= SEL_16BIT;
590 		break;
591 	case NAND_CMD_READID:
592 		flcmncr_val &= ~SNAND_E;
593 		flcmdcr_val |= CDSRC_E;
594 		addr_len_bytes = ADRCNT_1;
595 		break;
596 	case NAND_CMD_STATUS:
597 	case NAND_CMD_RESET:
598 		flcmncr_val &= ~SNAND_E;
599 		flcmdcr_val &= ~(DOADR_E | DOSR_E);
600 		break;
601 	default:
602 		break;
603 	}
604 
605 	/* Set address bytes parameter */
606 	flcmdcr_val |= addr_len_bytes;
607 
608 	/* Now actually write */
609 	writel(flcmncr_val, FLCMNCR(flctl));
610 	writel(flcmdcr_val, FLCMDCR(flctl));
611 	writel(flcmcdr_val, FLCMCDR(flctl));
612 }
613 
614 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
615 				 int oob_required, int page)
616 {
617 	struct mtd_info *mtd = nand_to_mtd(chip);
618 
619 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
620 	if (oob_required)
621 		chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
622 	return 0;
623 }
624 
625 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
626 				  int oob_required, int page)
627 {
628 	struct mtd_info *mtd = nand_to_mtd(chip);
629 
630 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
631 	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
632 	return nand_prog_page_end_op(chip);
633 }
634 
635 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
636 {
637 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
638 	int sector, page_sectors;
639 	enum flctl_ecc_res_t ecc_result;
640 
641 	page_sectors = flctl->page_size ? 4 : 1;
642 
643 	set_cmd_regs(mtd, NAND_CMD_READ0,
644 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
645 
646 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
647 		 FLCMNCR(flctl));
648 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
649 	writel(page_addr << 2, FLADR(flctl));
650 
651 	empty_fifo(flctl);
652 	start_translation(flctl);
653 
654 	for (sector = 0; sector < page_sectors; sector++) {
655 		read_fiforeg(flctl, 512, 512 * sector);
656 
657 		ecc_result = read_ecfiforeg(flctl,
658 			&flctl->done_buff[mtd->writesize + 16 * sector],
659 			sector);
660 
661 		switch (ecc_result) {
662 		case FL_REPAIRABLE:
663 			dev_info(&flctl->pdev->dev,
664 				"applied ecc on page 0x%x", page_addr);
665 			mtd->ecc_stats.corrected++;
666 			break;
667 		case FL_ERROR:
668 			dev_warn(&flctl->pdev->dev,
669 				"page 0x%x contains corrupted data\n",
670 				page_addr);
671 			mtd->ecc_stats.failed++;
672 			break;
673 		default:
674 			;
675 		}
676 	}
677 
678 	wait_completion(flctl);
679 
680 	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
681 			FLCMNCR(flctl));
682 }
683 
684 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
685 {
686 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
687 	int page_sectors = flctl->page_size ? 4 : 1;
688 	int i;
689 
690 	set_cmd_regs(mtd, NAND_CMD_READ0,
691 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
692 
693 	empty_fifo(flctl);
694 
695 	for (i = 0; i < page_sectors; i++) {
696 		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
697 		writel(16, FLDTCNTR(flctl));
698 
699 		start_translation(flctl);
700 		read_fiforeg(flctl, 16, 16 * i);
701 		wait_completion(flctl);
702 	}
703 }
704 
705 static void execmd_write_page_sector(struct mtd_info *mtd)
706 {
707 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
708 	int page_addr = flctl->seqin_page_addr;
709 	int sector, page_sectors;
710 
711 	page_sectors = flctl->page_size ? 4 : 1;
712 
713 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
714 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
715 
716 	empty_fifo(flctl);
717 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
718 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
719 	writel(page_addr << 2, FLADR(flctl));
720 	start_translation(flctl);
721 
722 	for (sector = 0; sector < page_sectors; sector++) {
723 		write_fiforeg(flctl, 512, 512 * sector);
724 		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
725 	}
726 
727 	wait_completion(flctl);
728 	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
729 }
730 
731 static void execmd_write_oob(struct mtd_info *mtd)
732 {
733 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
734 	int page_addr = flctl->seqin_page_addr;
735 	int sector, page_sectors;
736 
737 	page_sectors = flctl->page_size ? 4 : 1;
738 
739 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
740 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
741 
742 	for (sector = 0; sector < page_sectors; sector++) {
743 		empty_fifo(flctl);
744 		set_addr(mtd, sector * 528 + 512, page_addr);
745 		writel(16, FLDTCNTR(flctl));	/* set read size */
746 
747 		start_translation(flctl);
748 		write_fiforeg(flctl, 16, 16 * sector);
749 		wait_completion(flctl);
750 	}
751 }
752 
753 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
754 			int column, int page_addr)
755 {
756 	struct mtd_info *mtd = nand_to_mtd(chip);
757 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
758 	uint32_t read_cmd = 0;
759 
760 	pm_runtime_get_sync(&flctl->pdev->dev);
761 
762 	flctl->read_bytes = 0;
763 	if (command != NAND_CMD_PAGEPROG)
764 		flctl->index = 0;
765 
766 	switch (command) {
767 	case NAND_CMD_READ1:
768 	case NAND_CMD_READ0:
769 		if (flctl->hwecc) {
770 			/* read page with hwecc */
771 			execmd_read_page_sector(mtd, page_addr);
772 			break;
773 		}
774 		if (flctl->page_size)
775 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
776 				| command);
777 		else
778 			set_cmd_regs(mtd, command, command);
779 
780 		set_addr(mtd, 0, page_addr);
781 
782 		flctl->read_bytes = mtd->writesize + mtd->oobsize;
783 		if (flctl->chip.options & NAND_BUSWIDTH_16)
784 			column >>= 1;
785 		flctl->index += column;
786 		goto read_normal_exit;
787 
788 	case NAND_CMD_READOOB:
789 		if (flctl->hwecc) {
790 			/* read page with hwecc */
791 			execmd_read_oob(mtd, page_addr);
792 			break;
793 		}
794 
795 		if (flctl->page_size) {
796 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
797 				| NAND_CMD_READ0);
798 			set_addr(mtd, mtd->writesize, page_addr);
799 		} else {
800 			set_cmd_regs(mtd, command, command);
801 			set_addr(mtd, 0, page_addr);
802 		}
803 		flctl->read_bytes = mtd->oobsize;
804 		goto read_normal_exit;
805 
806 	case NAND_CMD_RNDOUT:
807 		if (flctl->hwecc)
808 			break;
809 
810 		if (flctl->page_size)
811 			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
812 				| command);
813 		else
814 			set_cmd_regs(mtd, command, command);
815 
816 		set_addr(mtd, column, 0);
817 
818 		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
819 		goto read_normal_exit;
820 
821 	case NAND_CMD_READID:
822 		set_cmd_regs(mtd, command, command);
823 
824 		/* READID is always performed using an 8-bit bus */
825 		if (flctl->chip.options & NAND_BUSWIDTH_16)
826 			column <<= 1;
827 		set_addr(mtd, column, 0);
828 
829 		flctl->read_bytes = 8;
830 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
831 		empty_fifo(flctl);
832 		start_translation(flctl);
833 		read_fiforeg(flctl, flctl->read_bytes, 0);
834 		wait_completion(flctl);
835 		break;
836 
837 	case NAND_CMD_ERASE1:
838 		flctl->erase1_page_addr = page_addr;
839 		break;
840 
841 	case NAND_CMD_ERASE2:
842 		set_cmd_regs(mtd, NAND_CMD_ERASE1,
843 			(command << 8) | NAND_CMD_ERASE1);
844 		set_addr(mtd, -1, flctl->erase1_page_addr);
845 		start_translation(flctl);
846 		wait_completion(flctl);
847 		break;
848 
849 	case NAND_CMD_SEQIN:
850 		if (!flctl->page_size) {
851 			/* output read command */
852 			if (column >= mtd->writesize) {
853 				column -= mtd->writesize;
854 				read_cmd = NAND_CMD_READOOB;
855 			} else if (column < 256) {
856 				read_cmd = NAND_CMD_READ0;
857 			} else {
858 				column -= 256;
859 				read_cmd = NAND_CMD_READ1;
860 			}
861 		}
862 		flctl->seqin_column = column;
863 		flctl->seqin_page_addr = page_addr;
864 		flctl->seqin_read_cmd = read_cmd;
865 		break;
866 
867 	case NAND_CMD_PAGEPROG:
868 		empty_fifo(flctl);
869 		if (!flctl->page_size) {
870 			set_cmd_regs(mtd, NAND_CMD_SEQIN,
871 					flctl->seqin_read_cmd);
872 			set_addr(mtd, -1, -1);
873 			writel(0, FLDTCNTR(flctl));	/* set 0 size */
874 			start_translation(flctl);
875 			wait_completion(flctl);
876 		}
877 		if (flctl->hwecc) {
878 			/* write page with hwecc */
879 			if (flctl->seqin_column == mtd->writesize)
880 				execmd_write_oob(mtd);
881 			else if (!flctl->seqin_column)
882 				execmd_write_page_sector(mtd);
883 			else
884 				pr_err("Invalid address !?\n");
885 			break;
886 		}
887 		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
888 		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
889 		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
890 		start_translation(flctl);
891 		write_fiforeg(flctl, flctl->index, 0);
892 		wait_completion(flctl);
893 		break;
894 
895 	case NAND_CMD_STATUS:
896 		set_cmd_regs(mtd, command, command);
897 		set_addr(mtd, -1, -1);
898 
899 		flctl->read_bytes = 1;
900 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
901 		start_translation(flctl);
902 		read_datareg(flctl, 0); /* read and end */
903 		break;
904 
905 	case NAND_CMD_RESET:
906 		set_cmd_regs(mtd, command, command);
907 		set_addr(mtd, -1, -1);
908 
909 		writel(0, FLDTCNTR(flctl));	/* set 0 size */
910 		start_translation(flctl);
911 		wait_completion(flctl);
912 		break;
913 
914 	default:
915 		break;
916 	}
917 	goto runtime_exit;
918 
919 read_normal_exit:
920 	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
921 	empty_fifo(flctl);
922 	start_translation(flctl);
923 	read_fiforeg(flctl, flctl->read_bytes, 0);
924 	wait_completion(flctl);
925 runtime_exit:
926 	pm_runtime_put_sync(&flctl->pdev->dev);
927 	return;
928 }
929 
930 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
931 {
932 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
933 	int ret;
934 
935 	switch (chipnr) {
936 	case -1:
937 		flctl->flcmncr_base &= ~CE0_ENABLE;
938 
939 		pm_runtime_get_sync(&flctl->pdev->dev);
940 		writel(flctl->flcmncr_base, FLCMNCR(flctl));
941 
942 		if (flctl->qos_request) {
943 			dev_pm_qos_remove_request(&flctl->pm_qos);
944 			flctl->qos_request = 0;
945 		}
946 
947 		pm_runtime_put_sync(&flctl->pdev->dev);
948 		break;
949 	case 0:
950 		flctl->flcmncr_base |= CE0_ENABLE;
951 
952 		if (!flctl->qos_request) {
953 			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
954 							&flctl->pm_qos,
955 							DEV_PM_QOS_RESUME_LATENCY,
956 							100);
957 			if (ret < 0)
958 				dev_err(&flctl->pdev->dev,
959 					"PM QoS request failed: %d\n", ret);
960 			flctl->qos_request = 1;
961 		}
962 
963 		if (flctl->holden) {
964 			pm_runtime_get_sync(&flctl->pdev->dev);
965 			writel(HOLDEN, FLHOLDCR(flctl));
966 			pm_runtime_put_sync(&flctl->pdev->dev);
967 		}
968 		break;
969 	default:
970 		BUG();
971 	}
972 }
973 
974 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
975 {
976 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
977 
978 	memcpy(&flctl->done_buff[flctl->index], buf, len);
979 	flctl->index += len;
980 }
981 
982 static uint8_t flctl_read_byte(struct nand_chip *chip)
983 {
984 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
985 	uint8_t data;
986 
987 	data = flctl->done_buff[flctl->index];
988 	flctl->index++;
989 	return data;
990 }
991 
992 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
993 {
994 	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
995 
996 	memcpy(buf, &flctl->done_buff[flctl->index], len);
997 	flctl->index += len;
998 }
999 
1000 static int flctl_chip_attach_chip(struct nand_chip *chip)
1001 {
1002 	struct mtd_info *mtd = nand_to_mtd(chip);
1003 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
1004 
1005 	/*
1006 	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
1007 	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
1008 	 */
1009 	if (chip->options & NAND_BUSWIDTH_16)
1010 		flctl->flcmncr_base |= SEL_16BIT;
1011 
1012 	if (mtd->writesize == 512) {
1013 		flctl->page_size = 0;
1014 		if (chip->chipsize > (32 << 20)) {
1015 			/* big than 32MB */
1016 			flctl->rw_ADRCNT = ADRCNT_4;
1017 			flctl->erase_ADRCNT = ADRCNT_3;
1018 		} else if (chip->chipsize > (2 << 16)) {
1019 			/* big than 128KB */
1020 			flctl->rw_ADRCNT = ADRCNT_3;
1021 			flctl->erase_ADRCNT = ADRCNT_2;
1022 		} else {
1023 			flctl->rw_ADRCNT = ADRCNT_2;
1024 			flctl->erase_ADRCNT = ADRCNT_1;
1025 		}
1026 	} else {
1027 		flctl->page_size = 1;
1028 		if (chip->chipsize > (128 << 20)) {
1029 			/* big than 128MB */
1030 			flctl->rw_ADRCNT = ADRCNT2_E;
1031 			flctl->erase_ADRCNT = ADRCNT_3;
1032 		} else if (chip->chipsize > (8 << 16)) {
1033 			/* big than 512KB */
1034 			flctl->rw_ADRCNT = ADRCNT_4;
1035 			flctl->erase_ADRCNT = ADRCNT_2;
1036 		} else {
1037 			flctl->rw_ADRCNT = ADRCNT_3;
1038 			flctl->erase_ADRCNT = ADRCNT_1;
1039 		}
1040 	}
1041 
1042 	if (flctl->hwecc) {
1043 		if (mtd->writesize == 512) {
1044 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1045 			chip->badblock_pattern = &flctl_4secc_smallpage;
1046 		} else {
1047 			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1048 			chip->badblock_pattern = &flctl_4secc_largepage;
1049 		}
1050 
1051 		chip->ecc.size = 512;
1052 		chip->ecc.bytes = 10;
1053 		chip->ecc.strength = 4;
1054 		chip->ecc.read_page = flctl_read_page_hwecc;
1055 		chip->ecc.write_page = flctl_write_page_hwecc;
1056 		chip->ecc.mode = NAND_ECC_HW;
1057 
1058 		/* 4 symbols ECC enabled */
1059 		flctl->flcmncr_base |= _4ECCEN;
1060 	} else {
1061 		chip->ecc.mode = NAND_ECC_SOFT;
1062 		chip->ecc.algo = NAND_ECC_HAMMING;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static const struct nand_controller_ops flctl_nand_controller_ops = {
1069 	.attach_chip = flctl_chip_attach_chip,
1070 };
1071 
1072 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1073 {
1074 	struct sh_flctl *flctl = dev_id;
1075 
1076 	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1077 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1078 
1079 	return IRQ_HANDLED;
1080 }
1081 
1082 struct flctl_soc_config {
1083 	unsigned long flcmncr_val;
1084 	unsigned has_hwecc:1;
1085 	unsigned use_holden:1;
1086 };
1087 
1088 static struct flctl_soc_config flctl_sh7372_config = {
1089 	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1090 	.has_hwecc = 1,
1091 	.use_holden = 1,
1092 };
1093 
1094 static const struct of_device_id of_flctl_match[] = {
1095 	{ .compatible = "renesas,shmobile-flctl-sh7372",
1096 				.data = &flctl_sh7372_config },
1097 	{},
1098 };
1099 MODULE_DEVICE_TABLE(of, of_flctl_match);
1100 
1101 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1102 {
1103 	const struct flctl_soc_config *config;
1104 	struct sh_flctl_platform_data *pdata;
1105 
1106 	config = of_device_get_match_data(dev);
1107 	if (!config) {
1108 		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1109 		return NULL;
1110 	}
1111 
1112 	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1113 								GFP_KERNEL);
1114 	if (!pdata)
1115 		return NULL;
1116 
1117 	/* set SoC specific options */
1118 	pdata->flcmncr_val = config->flcmncr_val;
1119 	pdata->has_hwecc = config->has_hwecc;
1120 	pdata->use_holden = config->use_holden;
1121 
1122 	return pdata;
1123 }
1124 
1125 static int flctl_probe(struct platform_device *pdev)
1126 {
1127 	struct resource *res;
1128 	struct sh_flctl *flctl;
1129 	struct mtd_info *flctl_mtd;
1130 	struct nand_chip *nand;
1131 	struct sh_flctl_platform_data *pdata;
1132 	int ret;
1133 	int irq;
1134 
1135 	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1136 	if (!flctl)
1137 		return -ENOMEM;
1138 
1139 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1140 	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1141 	if (IS_ERR(flctl->reg))
1142 		return PTR_ERR(flctl->reg);
1143 	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1144 
1145 	irq = platform_get_irq(pdev, 0);
1146 	if (irq < 0) {
1147 		dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq);
1148 		return irq;
1149 	}
1150 
1151 	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1152 			       "flste", flctl);
1153 	if (ret) {
1154 		dev_err(&pdev->dev, "request interrupt failed.\n");
1155 		return ret;
1156 	}
1157 
1158 	if (pdev->dev.of_node)
1159 		pdata = flctl_parse_dt(&pdev->dev);
1160 	else
1161 		pdata = dev_get_platdata(&pdev->dev);
1162 
1163 	if (!pdata) {
1164 		dev_err(&pdev->dev, "no setup data defined\n");
1165 		return -EINVAL;
1166 	}
1167 
1168 	platform_set_drvdata(pdev, flctl);
1169 	nand = &flctl->chip;
1170 	flctl_mtd = nand_to_mtd(nand);
1171 	nand_set_flash_node(nand, pdev->dev.of_node);
1172 	flctl_mtd->dev.parent = &pdev->dev;
1173 	flctl->pdev = pdev;
1174 	flctl->hwecc = pdata->has_hwecc;
1175 	flctl->holden = pdata->use_holden;
1176 	flctl->flcmncr_base = pdata->flcmncr_val;
1177 	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1178 
1179 	/* Set address of hardware control function */
1180 	/* 20 us command delay time */
1181 	nand->legacy.chip_delay = 20;
1182 
1183 	nand->legacy.read_byte = flctl_read_byte;
1184 	nand->legacy.write_buf = flctl_write_buf;
1185 	nand->legacy.read_buf = flctl_read_buf;
1186 	nand->select_chip = flctl_select_chip;
1187 	nand->legacy.cmdfunc = flctl_cmdfunc;
1188 	nand->legacy.set_features = nand_get_set_features_notsupp;
1189 	nand->legacy.get_features = nand_get_set_features_notsupp;
1190 
1191 	if (pdata->flcmncr_val & SEL_16BIT)
1192 		nand->options |= NAND_BUSWIDTH_16;
1193 
1194 	pm_runtime_enable(&pdev->dev);
1195 	pm_runtime_resume(&pdev->dev);
1196 
1197 	flctl_setup_dma(flctl);
1198 
1199 	nand->dummy_controller.ops = &flctl_nand_controller_ops;
1200 	ret = nand_scan(nand, 1);
1201 	if (ret)
1202 		goto err_chip;
1203 
1204 	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1205 	if (ret)
1206 		goto cleanup_nand;
1207 
1208 	return 0;
1209 
1210 cleanup_nand:
1211 	nand_cleanup(nand);
1212 err_chip:
1213 	flctl_release_dma(flctl);
1214 	pm_runtime_disable(&pdev->dev);
1215 	return ret;
1216 }
1217 
1218 static int flctl_remove(struct platform_device *pdev)
1219 {
1220 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1221 
1222 	flctl_release_dma(flctl);
1223 	nand_release(&flctl->chip);
1224 	pm_runtime_disable(&pdev->dev);
1225 
1226 	return 0;
1227 }
1228 
1229 static struct platform_driver flctl_driver = {
1230 	.remove		= flctl_remove,
1231 	.driver = {
1232 		.name	= "sh_flctl",
1233 		.of_match_table = of_match_ptr(of_flctl_match),
1234 	},
1235 };
1236 
1237 module_platform_driver_probe(flctl_driver, flctl_probe);
1238 
1239 MODULE_LICENSE("GPL");
1240 MODULE_AUTHOR("Yoshihiro Shimoda");
1241 MODULE_DESCRIPTION("SuperH FLCTL driver");
1242 MODULE_ALIAS("platform:sh_flctl");
1243