xref: /openbmc/linux/drivers/mtd/nand/raw/s3c2410.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright © 2004-2008 Simtec Electronics
4  *	http://armlinux.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 */
9 
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
11 
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13 #define DEBUG
14 #endif
15 
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/io.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/nand_ecc.h>
34 #include <linux/mtd/partitions.h>
35 
36 #include <linux/platform_data/mtd-nand-s3c2410.h>
37 
38 #define S3C2410_NFREG(x) (x)
39 
40 #define S3C2410_NFCONF		S3C2410_NFREG(0x00)
41 #define S3C2410_NFCMD		S3C2410_NFREG(0x04)
42 #define S3C2410_NFADDR		S3C2410_NFREG(0x08)
43 #define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
44 #define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
45 #define S3C2410_NFECC		S3C2410_NFREG(0x14)
46 #define S3C2440_NFCONT		S3C2410_NFREG(0x04)
47 #define S3C2440_NFCMD		S3C2410_NFREG(0x08)
48 #define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
49 #define S3C2440_NFDATA		S3C2410_NFREG(0x10)
50 #define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
51 #define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
52 #define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
53 #define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
54 #define S3C2410_NFCONF_EN		(1<<15)
55 #define S3C2410_NFCONF_INITECC		(1<<12)
56 #define S3C2410_NFCONF_nFCE		(1<<11)
57 #define S3C2410_NFCONF_TACLS(x)		((x)<<8)
58 #define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
59 #define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
60 #define S3C2410_NFSTAT_BUSY		(1<<0)
61 #define S3C2440_NFCONF_TACLS(x)		((x)<<12)
62 #define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
63 #define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
64 #define S3C2440_NFCONT_INITECC		(1<<4)
65 #define S3C2440_NFCONT_nFCE		(1<<1)
66 #define S3C2440_NFCONT_ENABLE		(1<<0)
67 #define S3C2440_NFSTAT_READY		(1<<0)
68 #define S3C2412_NFCONF_NANDBOOT		(1<<31)
69 #define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
70 #define S3C2412_NFCONT_nFCE0		(1<<1)
71 #define S3C2412_NFSTAT_READY		(1<<0)
72 
73 /* new oob placement block for use with hardware ecc generation
74  */
75 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
76 				 struct mtd_oob_region *oobregion)
77 {
78 	if (section)
79 		return -ERANGE;
80 
81 	oobregion->offset = 0;
82 	oobregion->length = 3;
83 
84 	return 0;
85 }
86 
87 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
88 				  struct mtd_oob_region *oobregion)
89 {
90 	if (section)
91 		return -ERANGE;
92 
93 	oobregion->offset = 8;
94 	oobregion->length = 8;
95 
96 	return 0;
97 }
98 
99 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
100 	.ecc = s3c2410_ooblayout_ecc,
101 	.free = s3c2410_ooblayout_free,
102 };
103 
104 /* controller and mtd information */
105 
106 struct s3c2410_nand_info;
107 
108 /**
109  * struct s3c2410_nand_mtd - driver MTD structure
110  * @mtd: The MTD instance to pass to the MTD layer.
111  * @chip: The NAND chip information.
112  * @set: The platform information supplied for this set of NAND chips.
113  * @info: Link back to the hardware information.
114 */
115 struct s3c2410_nand_mtd {
116 	struct nand_chip		chip;
117 	struct s3c2410_nand_set		*set;
118 	struct s3c2410_nand_info	*info;
119 };
120 
121 enum s3c_cpu_type {
122 	TYPE_S3C2410,
123 	TYPE_S3C2412,
124 	TYPE_S3C2440,
125 };
126 
127 enum s3c_nand_clk_state {
128 	CLOCK_DISABLE	= 0,
129 	CLOCK_ENABLE,
130 	CLOCK_SUSPEND,
131 };
132 
133 /* overview of the s3c2410 nand state */
134 
135 /**
136  * struct s3c2410_nand_info - NAND controller state.
137  * @mtds: An array of MTD instances on this controoler.
138  * @platform: The platform data for this board.
139  * @device: The platform device we bound to.
140  * @clk: The clock resource for this controller.
141  * @regs: The area mapped for the hardware registers.
142  * @sel_reg: Pointer to the register controlling the NAND selection.
143  * @sel_bit: The bit in @sel_reg to select the NAND chip.
144  * @mtd_count: The number of MTDs created from this controller.
145  * @save_sel: The contents of @sel_reg to be saved over suspend.
146  * @clk_rate: The clock rate from @clk.
147  * @clk_state: The current clock state.
148  * @cpu_type: The exact type of this controller.
149  */
150 struct s3c2410_nand_info {
151 	/* mtd info */
152 	struct nand_controller		controller;
153 	struct s3c2410_nand_mtd		*mtds;
154 	struct s3c2410_platform_nand	*platform;
155 
156 	/* device info */
157 	struct device			*device;
158 	struct clk			*clk;
159 	void __iomem			*regs;
160 	void __iomem			*sel_reg;
161 	int				sel_bit;
162 	int				mtd_count;
163 	unsigned long			save_sel;
164 	unsigned long			clk_rate;
165 	enum s3c_nand_clk_state		clk_state;
166 
167 	enum s3c_cpu_type		cpu_type;
168 
169 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
170 	struct notifier_block	freq_transition;
171 #endif
172 };
173 
174 struct s3c24XX_nand_devtype_data {
175 	enum s3c_cpu_type type;
176 };
177 
178 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
179 	.type = TYPE_S3C2410,
180 };
181 
182 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
183 	.type = TYPE_S3C2412,
184 };
185 
186 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
187 	.type = TYPE_S3C2440,
188 };
189 
190 /* conversion functions */
191 
192 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
193 {
194 	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
195 			    chip);
196 }
197 
198 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
199 {
200 	return s3c2410_nand_mtd_toours(mtd)->info;
201 }
202 
203 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
204 {
205 	return platform_get_drvdata(dev);
206 }
207 
208 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
209 {
210 	return dev_get_platdata(&dev->dev);
211 }
212 
213 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
214 {
215 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
216 	return 1;
217 #else
218 	return 0;
219 #endif
220 }
221 
222 /**
223  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
224  * @info: The controller instance.
225  * @new_state: State to which clock should be set.
226  */
227 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
228 		enum s3c_nand_clk_state new_state)
229 {
230 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
231 		return;
232 
233 	if (info->clk_state == CLOCK_ENABLE) {
234 		if (new_state != CLOCK_ENABLE)
235 			clk_disable_unprepare(info->clk);
236 	} else {
237 		if (new_state == CLOCK_ENABLE)
238 			clk_prepare_enable(info->clk);
239 	}
240 
241 	info->clk_state = new_state;
242 }
243 
244 /* timing calculations */
245 
246 #define NS_IN_KHZ 1000000
247 
248 /**
249  * s3c_nand_calc_rate - calculate timing data.
250  * @wanted: The cycle time in nanoseconds.
251  * @clk: The clock rate in kHz.
252  * @max: The maximum divider value.
253  *
254  * Calculate the timing value from the given parameters.
255  */
256 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
257 {
258 	int result;
259 
260 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
261 
262 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
263 
264 	if (result > max) {
265 		pr_err("%d ns is too big for current clock rate %ld\n",
266 			wanted, clk);
267 		return -1;
268 	}
269 
270 	if (result < 1)
271 		result = 1;
272 
273 	return result;
274 }
275 
276 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
277 
278 /* controller setup */
279 
280 /**
281  * s3c2410_nand_setrate - setup controller timing information.
282  * @info: The controller instance.
283  *
284  * Given the information supplied by the platform, calculate and set
285  * the necessary timing registers in the hardware to generate the
286  * necessary timing cycles to the hardware.
287  */
288 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
289 {
290 	struct s3c2410_platform_nand *plat = info->platform;
291 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
292 	int tacls, twrph0, twrph1;
293 	unsigned long clkrate = clk_get_rate(info->clk);
294 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
295 	unsigned long flags;
296 
297 	/* calculate the timing information for the controller */
298 
299 	info->clk_rate = clkrate;
300 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
301 
302 	if (plat != NULL) {
303 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
304 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
305 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
306 	} else {
307 		/* default timings */
308 		tacls = tacls_max;
309 		twrph0 = 8;
310 		twrph1 = 8;
311 	}
312 
313 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
314 		dev_err(info->device, "cannot get suitable timings\n");
315 		return -EINVAL;
316 	}
317 
318 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
319 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
320 						twrph1, to_ns(twrph1, clkrate));
321 
322 	switch (info->cpu_type) {
323 	case TYPE_S3C2410:
324 		mask = (S3C2410_NFCONF_TACLS(3) |
325 			S3C2410_NFCONF_TWRPH0(7) |
326 			S3C2410_NFCONF_TWRPH1(7));
327 		set = S3C2410_NFCONF_EN;
328 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
329 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
330 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
331 		break;
332 
333 	case TYPE_S3C2440:
334 	case TYPE_S3C2412:
335 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
336 			S3C2440_NFCONF_TWRPH0(7) |
337 			S3C2440_NFCONF_TWRPH1(7));
338 
339 		set = S3C2440_NFCONF_TACLS(tacls - 1);
340 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
341 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
342 		break;
343 
344 	default:
345 		BUG();
346 	}
347 
348 	local_irq_save(flags);
349 
350 	cfg = readl(info->regs + S3C2410_NFCONF);
351 	cfg &= ~mask;
352 	cfg |= set;
353 	writel(cfg, info->regs + S3C2410_NFCONF);
354 
355 	local_irq_restore(flags);
356 
357 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
358 
359 	return 0;
360 }
361 
362 /**
363  * s3c2410_nand_inithw - basic hardware initialisation
364  * @info: The hardware state.
365  *
366  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
367  * to setup the hardware access speeds and set the controller to be enabled.
368 */
369 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
370 {
371 	int ret;
372 
373 	ret = s3c2410_nand_setrate(info);
374 	if (ret < 0)
375 		return ret;
376 
377 	switch (info->cpu_type) {
378 	case TYPE_S3C2410:
379 	default:
380 		break;
381 
382 	case TYPE_S3C2440:
383 	case TYPE_S3C2412:
384 		/* enable the controller and de-assert nFCE */
385 
386 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
387 	}
388 
389 	return 0;
390 }
391 
392 /**
393  * s3c2410_nand_select_chip - select the given nand chip
394  * @this: NAND chip object.
395  * @chip: The chip number.
396  *
397  * This is called by the MTD layer to either select a given chip for the
398  * @mtd instance, or to indicate that the access has finished and the
399  * chip can be de-selected.
400  *
401  * The routine ensures that the nFCE line is correctly setup, and any
402  * platform specific selection code is called to route nFCE to the specific
403  * chip.
404  */
405 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
406 {
407 	struct s3c2410_nand_info *info;
408 	struct s3c2410_nand_mtd *nmtd;
409 	unsigned long cur;
410 
411 	nmtd = nand_get_controller_data(this);
412 	info = nmtd->info;
413 
414 	if (chip != -1)
415 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
416 
417 	cur = readl(info->sel_reg);
418 
419 	if (chip == -1) {
420 		cur |= info->sel_bit;
421 	} else {
422 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
423 			dev_err(info->device, "invalid chip %d\n", chip);
424 			return;
425 		}
426 
427 		if (info->platform != NULL) {
428 			if (info->platform->select_chip != NULL)
429 				(info->platform->select_chip) (nmtd->set, chip);
430 		}
431 
432 		cur &= ~info->sel_bit;
433 	}
434 
435 	writel(cur, info->sel_reg);
436 
437 	if (chip == -1)
438 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
439 }
440 
441 /* s3c2410_nand_hwcontrol
442  *
443  * Issue command and address cycles to the chip
444 */
445 
446 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
447 				   unsigned int ctrl)
448 {
449 	struct mtd_info *mtd = nand_to_mtd(chip);
450 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
451 
452 	if (cmd == NAND_CMD_NONE)
453 		return;
454 
455 	if (ctrl & NAND_CLE)
456 		writeb(cmd, info->regs + S3C2410_NFCMD);
457 	else
458 		writeb(cmd, info->regs + S3C2410_NFADDR);
459 }
460 
461 /* command and control functions */
462 
463 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
464 				   unsigned int ctrl)
465 {
466 	struct mtd_info *mtd = nand_to_mtd(chip);
467 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
468 
469 	if (cmd == NAND_CMD_NONE)
470 		return;
471 
472 	if (ctrl & NAND_CLE)
473 		writeb(cmd, info->regs + S3C2440_NFCMD);
474 	else
475 		writeb(cmd, info->regs + S3C2440_NFADDR);
476 }
477 
478 /* s3c2410_nand_devready()
479  *
480  * returns 0 if the nand is busy, 1 if it is ready
481 */
482 
483 static int s3c2410_nand_devready(struct nand_chip *chip)
484 {
485 	struct mtd_info *mtd = nand_to_mtd(chip);
486 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
487 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
488 }
489 
490 static int s3c2440_nand_devready(struct nand_chip *chip)
491 {
492 	struct mtd_info *mtd = nand_to_mtd(chip);
493 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
494 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
495 }
496 
497 static int s3c2412_nand_devready(struct nand_chip *chip)
498 {
499 	struct mtd_info *mtd = nand_to_mtd(chip);
500 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
502 }
503 
504 /* ECC handling functions */
505 
506 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
507 				     u_char *read_ecc, u_char *calc_ecc)
508 {
509 	struct mtd_info *mtd = nand_to_mtd(chip);
510 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
511 	unsigned int diff0, diff1, diff2;
512 	unsigned int bit, byte;
513 
514 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
515 
516 	diff0 = read_ecc[0] ^ calc_ecc[0];
517 	diff1 = read_ecc[1] ^ calc_ecc[1];
518 	diff2 = read_ecc[2] ^ calc_ecc[2];
519 
520 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
521 		 __func__, 3, read_ecc, 3, calc_ecc,
522 		 diff0, diff1, diff2);
523 
524 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
525 		return 0;		/* ECC is ok */
526 
527 	/* sometimes people do not think about using the ECC, so check
528 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
529 	 * the error, on the assumption that this is an un-eccd page.
530 	 */
531 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
532 	    && info->platform->ignore_unset_ecc)
533 		return 0;
534 
535 	/* Can we correct this ECC (ie, one row and column change).
536 	 * Note, this is similar to the 256 error code on smartmedia */
537 
538 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
539 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
540 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
541 		/* calculate the bit position of the error */
542 
543 		bit  = ((diff2 >> 3) & 1) |
544 		       ((diff2 >> 4) & 2) |
545 		       ((diff2 >> 5) & 4);
546 
547 		/* calculate the byte position of the error */
548 
549 		byte = ((diff2 << 7) & 0x100) |
550 		       ((diff1 << 0) & 0x80)  |
551 		       ((diff1 << 1) & 0x40)  |
552 		       ((diff1 << 2) & 0x20)  |
553 		       ((diff1 << 3) & 0x10)  |
554 		       ((diff0 >> 4) & 0x08)  |
555 		       ((diff0 >> 3) & 0x04)  |
556 		       ((diff0 >> 2) & 0x02)  |
557 		       ((diff0 >> 1) & 0x01);
558 
559 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
560 			bit, byte);
561 
562 		dat[byte] ^= (1 << bit);
563 		return 1;
564 	}
565 
566 	/* if there is only one bit difference in the ECC, then
567 	 * one of only a row or column parity has changed, which
568 	 * means the error is most probably in the ECC itself */
569 
570 	diff0 |= (diff1 << 8);
571 	diff0 |= (diff2 << 16);
572 
573 	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
574 	if ((diff0 & (diff0 - 1)) == 0)
575 		return 1;
576 
577 	return -1;
578 }
579 
580 /* ECC functions
581  *
582  * These allow the s3c2410 and s3c2440 to use the controller's ECC
583  * generator block to ECC the data as it passes through]
584 */
585 
586 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
587 {
588 	struct s3c2410_nand_info *info;
589 	unsigned long ctrl;
590 
591 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
592 	ctrl = readl(info->regs + S3C2410_NFCONF);
593 	ctrl |= S3C2410_NFCONF_INITECC;
594 	writel(ctrl, info->regs + S3C2410_NFCONF);
595 }
596 
597 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
598 {
599 	struct s3c2410_nand_info *info;
600 	unsigned long ctrl;
601 
602 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
603 	ctrl = readl(info->regs + S3C2440_NFCONT);
604 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
605 	       info->regs + S3C2440_NFCONT);
606 }
607 
608 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
609 {
610 	struct s3c2410_nand_info *info;
611 	unsigned long ctrl;
612 
613 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
614 	ctrl = readl(info->regs + S3C2440_NFCONT);
615 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
616 }
617 
618 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
619 				      const u_char *dat, u_char *ecc_code)
620 {
621 	struct mtd_info *mtd = nand_to_mtd(chip);
622 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
623 
624 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
625 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
626 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
627 
628 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
629 
630 	return 0;
631 }
632 
633 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
634 				      const u_char *dat, u_char *ecc_code)
635 {
636 	struct mtd_info *mtd = nand_to_mtd(chip);
637 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
638 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
639 
640 	ecc_code[0] = ecc;
641 	ecc_code[1] = ecc >> 8;
642 	ecc_code[2] = ecc >> 16;
643 
644 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
645 
646 	return 0;
647 }
648 
649 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
650 				      const u_char *dat, u_char *ecc_code)
651 {
652 	struct mtd_info *mtd = nand_to_mtd(chip);
653 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
654 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
655 
656 	ecc_code[0] = ecc;
657 	ecc_code[1] = ecc >> 8;
658 	ecc_code[2] = ecc >> 16;
659 
660 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
661 
662 	return 0;
663 }
664 
665 /* over-ride the standard functions for a little more speed. We can
666  * use read/write block to move the data buffers to/from the controller
667 */
668 
669 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
670 {
671 	readsb(this->legacy.IO_ADDR_R, buf, len);
672 }
673 
674 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
675 {
676 	struct mtd_info *mtd = nand_to_mtd(this);
677 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
678 
679 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
680 
681 	/* cleanup if we've got less than a word to do */
682 	if (len & 3) {
683 		buf += len & ~3;
684 
685 		for (; len & 3; len--)
686 			*buf++ = readb(info->regs + S3C2440_NFDATA);
687 	}
688 }
689 
690 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
691 				   int len)
692 {
693 	writesb(this->legacy.IO_ADDR_W, buf, len);
694 }
695 
696 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
697 				   int len)
698 {
699 	struct mtd_info *mtd = nand_to_mtd(this);
700 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
701 
702 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
703 
704 	/* cleanup any fractional write */
705 	if (len & 3) {
706 		buf += len & ~3;
707 
708 		for (; len & 3; len--, buf++)
709 			writeb(*buf, info->regs + S3C2440_NFDATA);
710 	}
711 }
712 
713 /* cpufreq driver support */
714 
715 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
716 
717 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
718 					  unsigned long val, void *data)
719 {
720 	struct s3c2410_nand_info *info;
721 	unsigned long newclk;
722 
723 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
724 	newclk = clk_get_rate(info->clk);
725 
726 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
727 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
728 		s3c2410_nand_setrate(info);
729 	}
730 
731 	return 0;
732 }
733 
734 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
735 {
736 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
737 
738 	return cpufreq_register_notifier(&info->freq_transition,
739 					 CPUFREQ_TRANSITION_NOTIFIER);
740 }
741 
742 static inline void
743 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
744 {
745 	cpufreq_unregister_notifier(&info->freq_transition,
746 				    CPUFREQ_TRANSITION_NOTIFIER);
747 }
748 
749 #else
750 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
751 {
752 	return 0;
753 }
754 
755 static inline void
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
757 {
758 }
759 #endif
760 
761 /* device management functions */
762 
763 static int s3c24xx_nand_remove(struct platform_device *pdev)
764 {
765 	struct s3c2410_nand_info *info = to_nand_info(pdev);
766 
767 	if (info == NULL)
768 		return 0;
769 
770 	s3c2410_nand_cpufreq_deregister(info);
771 
772 	/* Release all our mtds  and their partitions, then go through
773 	 * freeing the resources used
774 	 */
775 
776 	if (info->mtds != NULL) {
777 		struct s3c2410_nand_mtd *ptr = info->mtds;
778 		int mtdno;
779 
780 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
781 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
782 			WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
783 			nand_cleanup(&ptr->chip);
784 		}
785 	}
786 
787 	/* free the common resources */
788 
789 	if (!IS_ERR(info->clk))
790 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
791 
792 	return 0;
793 }
794 
795 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
796 				      struct s3c2410_nand_mtd *mtd,
797 				      struct s3c2410_nand_set *set)
798 {
799 	if (set) {
800 		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
801 
802 		mtdinfo->name = set->name;
803 
804 		return mtd_device_register(mtdinfo, set->partitions,
805 					   set->nr_partitions);
806 	}
807 
808 	return -ENODEV;
809 }
810 
811 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
812 					const struct nand_data_interface *conf)
813 {
814 	struct mtd_info *mtd = nand_to_mtd(chip);
815 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816 	struct s3c2410_platform_nand *pdata = info->platform;
817 	const struct nand_sdr_timings *timings;
818 	int tacls;
819 
820 	timings = nand_get_sdr_timings(conf);
821 	if (IS_ERR(timings))
822 		return -ENOTSUPP;
823 
824 	tacls = timings->tCLS_min - timings->tWP_min;
825 	if (tacls < 0)
826 		tacls = 0;
827 
828 	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
829 	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830 	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831 
832 	return s3c2410_nand_setrate(info);
833 }
834 
835 /**
836  * s3c2410_nand_init_chip - initialise a single instance of an chip
837  * @info: The base NAND controller the chip is on.
838  * @nmtd: The new controller MTD instance to fill in.
839  * @set: The information passed from the board specific platform data.
840  *
841  * Initialise the given @nmtd from the information in @info and @set. This
842  * readies the structure for use with the MTD layer functions by ensuring
843  * all pointers are setup and the necessary control routines selected.
844  */
845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846 				   struct s3c2410_nand_mtd *nmtd,
847 				   struct s3c2410_nand_set *set)
848 {
849 	struct device_node *np = info->device->of_node;
850 	struct nand_chip *chip = &nmtd->chip;
851 	void __iomem *regs = info->regs;
852 
853 	nand_set_flash_node(chip, set->of_node);
854 
855 	chip->legacy.write_buf    = s3c2410_nand_write_buf;
856 	chip->legacy.read_buf     = s3c2410_nand_read_buf;
857 	chip->legacy.select_chip  = s3c2410_nand_select_chip;
858 	chip->legacy.chip_delay   = 50;
859 	nand_set_controller_data(chip, nmtd);
860 	chip->options	   = set->options;
861 	chip->controller   = &info->controller;
862 
863 	/*
864 	 * let's keep behavior unchanged for legacy boards booting via pdata and
865 	 * auto-detect timings only when booting with a device tree.
866 	 */
867 	if (!np)
868 		chip->options |= NAND_KEEP_TIMINGS;
869 
870 	switch (info->cpu_type) {
871 	case TYPE_S3C2410:
872 		chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
873 		info->sel_reg   = regs + S3C2410_NFCONF;
874 		info->sel_bit	= S3C2410_NFCONF_nFCE;
875 		chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
876 		chip->legacy.dev_ready = s3c2410_nand_devready;
877 		break;
878 
879 	case TYPE_S3C2440:
880 		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
881 		info->sel_reg   = regs + S3C2440_NFCONT;
882 		info->sel_bit	= S3C2440_NFCONT_nFCE;
883 		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
884 		chip->legacy.dev_ready = s3c2440_nand_devready;
885 		chip->legacy.read_buf  = s3c2440_nand_read_buf;
886 		chip->legacy.write_buf	= s3c2440_nand_write_buf;
887 		break;
888 
889 	case TYPE_S3C2412:
890 		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
891 		info->sel_reg   = regs + S3C2440_NFCONT;
892 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
893 		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
894 		chip->legacy.dev_ready = s3c2412_nand_devready;
895 
896 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897 			dev_info(info->device, "System booted from NAND\n");
898 
899 		break;
900 	}
901 
902 	chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
903 
904 	nmtd->info	   = info;
905 	nmtd->set	   = set;
906 
907 	chip->ecc.mode = info->platform->ecc_mode;
908 
909 	/*
910 	 * If you use u-boot BBT creation code, specifying this flag will
911 	 * let the kernel fish out the BBT from the NAND.
912 	 */
913 	if (set->flash_bbt)
914 		chip->bbt_options |= NAND_BBT_USE_FLASH;
915 }
916 
917 /**
918  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
919  * @chip: The NAND chip
920  *
921  * This hook is called by the core after the identification of the NAND chip,
922  * once the relevant per-chip information is up to date.. This call ensure that
923  * we update the internal state accordingly.
924  *
925  * The internal state is currently limited to the ECC state information.
926 */
927 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
928 {
929 	struct mtd_info *mtd = nand_to_mtd(chip);
930 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
931 
932 	switch (chip->ecc.mode) {
933 
934 	case NAND_ECC_NONE:
935 		dev_info(info->device, "ECC disabled\n");
936 		break;
937 
938 	case NAND_ECC_SOFT:
939 		/*
940 		 * This driver expects Hamming based ECC when ecc_mode is set
941 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
942 		 * avoid adding an extra ecc_algo field to
943 		 * s3c2410_platform_nand.
944 		 */
945 		chip->ecc.algo = NAND_ECC_HAMMING;
946 		dev_info(info->device, "soft ECC\n");
947 		break;
948 
949 	case NAND_ECC_HW:
950 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
951 		chip->ecc.correct   = s3c2410_nand_correct_data;
952 		chip->ecc.strength  = 1;
953 
954 		switch (info->cpu_type) {
955 		case TYPE_S3C2410:
956 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
957 			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
958 			break;
959 
960 		case TYPE_S3C2412:
961 			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
962 			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
963 			break;
964 
965 		case TYPE_S3C2440:
966 			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
967 			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
968 			break;
969 		}
970 
971 		dev_dbg(info->device, "chip %p => page shift %d\n",
972 			chip, chip->page_shift);
973 
974 		/* change the behaviour depending on whether we are using
975 		 * the large or small page nand device */
976 		if (chip->page_shift > 10) {
977 			chip->ecc.size	    = 256;
978 			chip->ecc.bytes	    = 3;
979 		} else {
980 			chip->ecc.size	    = 512;
981 			chip->ecc.bytes	    = 3;
982 			mtd_set_ooblayout(nand_to_mtd(chip),
983 					  &s3c2410_ooblayout_ops);
984 		}
985 
986 		dev_info(info->device, "hardware ECC\n");
987 		break;
988 
989 	default:
990 		dev_err(info->device, "invalid ECC mode!\n");
991 		return -EINVAL;
992 	}
993 
994 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
995 		chip->options |= NAND_SKIP_BBTSCAN;
996 
997 	return 0;
998 }
999 
1000 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1001 	.attach_chip = s3c2410_nand_attach_chip,
1002 	.setup_data_interface = s3c2410_nand_setup_data_interface,
1003 };
1004 
1005 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1006 	{
1007 		.compatible = "samsung,s3c2410-nand",
1008 		.data = &s3c2410_nand_devtype_data,
1009 	}, {
1010 		/* also compatible with s3c6400 */
1011 		.compatible = "samsung,s3c2412-nand",
1012 		.data = &s3c2412_nand_devtype_data,
1013 	}, {
1014 		.compatible = "samsung,s3c2440-nand",
1015 		.data = &s3c2440_nand_devtype_data,
1016 	},
1017 	{ /* sentinel */ }
1018 };
1019 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1020 
1021 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1022 {
1023 	const struct s3c24XX_nand_devtype_data *devtype_data;
1024 	struct s3c2410_platform_nand *pdata;
1025 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1026 	struct device_node *np = pdev->dev.of_node, *child;
1027 	struct s3c2410_nand_set *sets;
1028 
1029 	devtype_data = of_device_get_match_data(&pdev->dev);
1030 	if (!devtype_data)
1031 		return -ENODEV;
1032 
1033 	info->cpu_type = devtype_data->type;
1034 
1035 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1036 	if (!pdata)
1037 		return -ENOMEM;
1038 
1039 	pdev->dev.platform_data = pdata;
1040 
1041 	pdata->nr_sets = of_get_child_count(np);
1042 	if (!pdata->nr_sets)
1043 		return 0;
1044 
1045 	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1046 			    GFP_KERNEL);
1047 	if (!sets)
1048 		return -ENOMEM;
1049 
1050 	pdata->sets = sets;
1051 
1052 	for_each_available_child_of_node(np, child) {
1053 		sets->name = (char *)child->name;
1054 		sets->of_node = child;
1055 		sets->nr_chips = 1;
1056 
1057 		of_node_get(child);
1058 
1059 		sets++;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1066 {
1067 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1068 
1069 	info->cpu_type = platform_get_device_id(pdev)->driver_data;
1070 
1071 	return 0;
1072 }
1073 
1074 /* s3c24xx_nand_probe
1075  *
1076  * called by device layer when it finds a device matching
1077  * one our driver can handled. This code checks to see if
1078  * it can allocate all necessary resources then calls the
1079  * nand layer to look for devices
1080 */
1081 static int s3c24xx_nand_probe(struct platform_device *pdev)
1082 {
1083 	struct s3c2410_platform_nand *plat;
1084 	struct s3c2410_nand_info *info;
1085 	struct s3c2410_nand_mtd *nmtd;
1086 	struct s3c2410_nand_set *sets;
1087 	struct resource *res;
1088 	int err = 0;
1089 	int size;
1090 	int nr_sets;
1091 	int setno;
1092 
1093 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1094 	if (info == NULL) {
1095 		err = -ENOMEM;
1096 		goto exit_error;
1097 	}
1098 
1099 	platform_set_drvdata(pdev, info);
1100 
1101 	nand_controller_init(&info->controller);
1102 	info->controller.ops = &s3c24xx_nand_controller_ops;
1103 
1104 	/* get the clock source and enable it */
1105 
1106 	info->clk = devm_clk_get(&pdev->dev, "nand");
1107 	if (IS_ERR(info->clk)) {
1108 		dev_err(&pdev->dev, "failed to get clock\n");
1109 		err = -ENOENT;
1110 		goto exit_error;
1111 	}
1112 
1113 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1114 
1115 	if (pdev->dev.of_node)
1116 		err = s3c24xx_nand_probe_dt(pdev);
1117 	else
1118 		err = s3c24xx_nand_probe_pdata(pdev);
1119 
1120 	if (err)
1121 		goto exit_error;
1122 
1123 	plat = to_nand_plat(pdev);
1124 
1125 	/* allocate and map the resource */
1126 
1127 	/* currently we assume we have the one resource */
1128 	res = pdev->resource;
1129 	size = resource_size(res);
1130 
1131 	info->device	= &pdev->dev;
1132 	info->platform	= plat;
1133 
1134 	info->regs = devm_ioremap_resource(&pdev->dev, res);
1135 	if (IS_ERR(info->regs)) {
1136 		err = PTR_ERR(info->regs);
1137 		goto exit_error;
1138 	}
1139 
1140 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1141 
1142 	if (!plat->sets || plat->nr_sets < 1) {
1143 		err = -EINVAL;
1144 		goto exit_error;
1145 	}
1146 
1147 	sets = plat->sets;
1148 	nr_sets = plat->nr_sets;
1149 
1150 	info->mtd_count = nr_sets;
1151 
1152 	/* allocate our information */
1153 
1154 	size = nr_sets * sizeof(*info->mtds);
1155 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1156 	if (info->mtds == NULL) {
1157 		err = -ENOMEM;
1158 		goto exit_error;
1159 	}
1160 
1161 	/* initialise all possible chips */
1162 
1163 	nmtd = info->mtds;
1164 
1165 	for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1166 		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1167 
1168 		pr_debug("initialising set %d (%p, info %p)\n",
1169 			 setno, nmtd, info);
1170 
1171 		mtd->dev.parent = &pdev->dev;
1172 		s3c2410_nand_init_chip(info, nmtd, sets);
1173 
1174 		err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1175 		if (err)
1176 			goto exit_error;
1177 
1178 		s3c2410_nand_add_partition(info, nmtd, sets);
1179 	}
1180 
1181 	/* initialise the hardware */
1182 	err = s3c2410_nand_inithw(info);
1183 	if (err != 0)
1184 		goto exit_error;
1185 
1186 	err = s3c2410_nand_cpufreq_register(info);
1187 	if (err < 0) {
1188 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1189 		goto exit_error;
1190 	}
1191 
1192 	if (allow_clk_suspend(info)) {
1193 		dev_info(&pdev->dev, "clock idle support enabled\n");
1194 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1195 	}
1196 
1197 	return 0;
1198 
1199  exit_error:
1200 	s3c24xx_nand_remove(pdev);
1201 
1202 	if (err == 0)
1203 		err = -EINVAL;
1204 	return err;
1205 }
1206 
1207 /* PM Support */
1208 #ifdef CONFIG_PM
1209 
1210 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1211 {
1212 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1213 
1214 	if (info) {
1215 		info->save_sel = readl(info->sel_reg);
1216 
1217 		/* For the moment, we must ensure nFCE is high during
1218 		 * the time we are suspended. This really should be
1219 		 * handled by suspending the MTDs we are using, but
1220 		 * that is currently not the case. */
1221 
1222 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1223 
1224 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static int s3c24xx_nand_resume(struct platform_device *dev)
1231 {
1232 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1233 	unsigned long sel;
1234 
1235 	if (info) {
1236 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1237 		s3c2410_nand_inithw(info);
1238 
1239 		/* Restore the state of the nFCE line. */
1240 
1241 		sel = readl(info->sel_reg);
1242 		sel &= ~info->sel_bit;
1243 		sel |= info->save_sel & info->sel_bit;
1244 		writel(sel, info->sel_reg);
1245 
1246 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 #else
1253 #define s3c24xx_nand_suspend NULL
1254 #define s3c24xx_nand_resume NULL
1255 #endif
1256 
1257 /* driver device registration */
1258 
1259 static const struct platform_device_id s3c24xx_driver_ids[] = {
1260 	{
1261 		.name		= "s3c2410-nand",
1262 		.driver_data	= TYPE_S3C2410,
1263 	}, {
1264 		.name		= "s3c2440-nand",
1265 		.driver_data	= TYPE_S3C2440,
1266 	}, {
1267 		.name		= "s3c2412-nand",
1268 		.driver_data	= TYPE_S3C2412,
1269 	}, {
1270 		.name		= "s3c6400-nand",
1271 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1272 	},
1273 	{ }
1274 };
1275 
1276 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1277 
1278 static struct platform_driver s3c24xx_nand_driver = {
1279 	.probe		= s3c24xx_nand_probe,
1280 	.remove		= s3c24xx_nand_remove,
1281 	.suspend	= s3c24xx_nand_suspend,
1282 	.resume		= s3c24xx_nand_resume,
1283 	.id_table	= s3c24xx_driver_ids,
1284 	.driver		= {
1285 		.name	= "s3c24xx-nand",
1286 		.of_match_table = s3c24xx_nand_dt_ids,
1287 	},
1288 };
1289 
1290 module_platform_driver(s3c24xx_nand_driver);
1291 
1292 MODULE_LICENSE("GPL");
1293 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1294 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1295