xref: /openbmc/linux/drivers/mtd/nand/raw/s3c2410.c (revision 98ddec80)
1 /*
2  * Copyright © 2004-2008 Simtec Electronics
3  *	http://armlinux.simtec.co.uk/
4  *	Ben Dooks <ben@simtec.co.uk>
5  *
6  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 */
22 
23 #define pr_fmt(fmt) "nand-s3c2410: " fmt
24 
25 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26 #define DEBUG
27 #endif
28 
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/io.h>
34 #include <linux/ioport.h>
35 #include <linux/platform_device.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/slab.h>
39 #include <linux/clk.h>
40 #include <linux/cpufreq.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/rawnand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48 
49 #include <linux/platform_data/mtd-nand-s3c2410.h>
50 
51 #define S3C2410_NFREG(x) (x)
52 
53 #define S3C2410_NFCONF		S3C2410_NFREG(0x00)
54 #define S3C2410_NFCMD		S3C2410_NFREG(0x04)
55 #define S3C2410_NFADDR		S3C2410_NFREG(0x08)
56 #define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
57 #define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
58 #define S3C2410_NFECC		S3C2410_NFREG(0x14)
59 #define S3C2440_NFCONT		S3C2410_NFREG(0x04)
60 #define S3C2440_NFCMD		S3C2410_NFREG(0x08)
61 #define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
62 #define S3C2440_NFDATA		S3C2410_NFREG(0x10)
63 #define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
64 #define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
65 #define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
66 #define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
67 #define S3C2410_NFCONF_EN		(1<<15)
68 #define S3C2410_NFCONF_INITECC		(1<<12)
69 #define S3C2410_NFCONF_nFCE		(1<<11)
70 #define S3C2410_NFCONF_TACLS(x)		((x)<<8)
71 #define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
72 #define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
73 #define S3C2410_NFSTAT_BUSY		(1<<0)
74 #define S3C2440_NFCONF_TACLS(x)		((x)<<12)
75 #define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
76 #define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
77 #define S3C2440_NFCONT_INITECC		(1<<4)
78 #define S3C2440_NFCONT_nFCE		(1<<1)
79 #define S3C2440_NFCONT_ENABLE		(1<<0)
80 #define S3C2440_NFSTAT_READY		(1<<0)
81 #define S3C2412_NFCONF_NANDBOOT		(1<<31)
82 #define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
83 #define S3C2412_NFCONT_nFCE0		(1<<1)
84 #define S3C2412_NFSTAT_READY		(1<<0)
85 
86 /* new oob placement block for use with hardware ecc generation
87  */
88 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89 				 struct mtd_oob_region *oobregion)
90 {
91 	if (section)
92 		return -ERANGE;
93 
94 	oobregion->offset = 0;
95 	oobregion->length = 3;
96 
97 	return 0;
98 }
99 
100 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101 				  struct mtd_oob_region *oobregion)
102 {
103 	if (section)
104 		return -ERANGE;
105 
106 	oobregion->offset = 8;
107 	oobregion->length = 8;
108 
109 	return 0;
110 }
111 
112 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113 	.ecc = s3c2410_ooblayout_ecc,
114 	.free = s3c2410_ooblayout_free,
115 };
116 
117 /* controller and mtd information */
118 
119 struct s3c2410_nand_info;
120 
121 /**
122  * struct s3c2410_nand_mtd - driver MTD structure
123  * @mtd: The MTD instance to pass to the MTD layer.
124  * @chip: The NAND chip information.
125  * @set: The platform information supplied for this set of NAND chips.
126  * @info: Link back to the hardware information.
127 */
128 struct s3c2410_nand_mtd {
129 	struct nand_chip		chip;
130 	struct s3c2410_nand_set		*set;
131 	struct s3c2410_nand_info	*info;
132 };
133 
134 enum s3c_cpu_type {
135 	TYPE_S3C2410,
136 	TYPE_S3C2412,
137 	TYPE_S3C2440,
138 };
139 
140 enum s3c_nand_clk_state {
141 	CLOCK_DISABLE	= 0,
142 	CLOCK_ENABLE,
143 	CLOCK_SUSPEND,
144 };
145 
146 /* overview of the s3c2410 nand state */
147 
148 /**
149  * struct s3c2410_nand_info - NAND controller state.
150  * @mtds: An array of MTD instances on this controoler.
151  * @platform: The platform data for this board.
152  * @device: The platform device we bound to.
153  * @clk: The clock resource for this controller.
154  * @regs: The area mapped for the hardware registers.
155  * @sel_reg: Pointer to the register controlling the NAND selection.
156  * @sel_bit: The bit in @sel_reg to select the NAND chip.
157  * @mtd_count: The number of MTDs created from this controller.
158  * @save_sel: The contents of @sel_reg to be saved over suspend.
159  * @clk_rate: The clock rate from @clk.
160  * @clk_state: The current clock state.
161  * @cpu_type: The exact type of this controller.
162  */
163 struct s3c2410_nand_info {
164 	/* mtd info */
165 	struct nand_hw_control		controller;
166 	struct s3c2410_nand_mtd		*mtds;
167 	struct s3c2410_platform_nand	*platform;
168 
169 	/* device info */
170 	struct device			*device;
171 	struct clk			*clk;
172 	void __iomem			*regs;
173 	void __iomem			*sel_reg;
174 	int				sel_bit;
175 	int				mtd_count;
176 	unsigned long			save_sel;
177 	unsigned long			clk_rate;
178 	enum s3c_nand_clk_state		clk_state;
179 
180 	enum s3c_cpu_type		cpu_type;
181 
182 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
183 	struct notifier_block	freq_transition;
184 #endif
185 };
186 
187 struct s3c24XX_nand_devtype_data {
188 	enum s3c_cpu_type type;
189 };
190 
191 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192 	.type = TYPE_S3C2410,
193 };
194 
195 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196 	.type = TYPE_S3C2412,
197 };
198 
199 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200 	.type = TYPE_S3C2440,
201 };
202 
203 /* conversion functions */
204 
205 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206 {
207 	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208 			    chip);
209 }
210 
211 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212 {
213 	return s3c2410_nand_mtd_toours(mtd)->info;
214 }
215 
216 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
217 {
218 	return platform_get_drvdata(dev);
219 }
220 
221 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
222 {
223 	return dev_get_platdata(&dev->dev);
224 }
225 
226 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
227 {
228 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229 	return 1;
230 #else
231 	return 0;
232 #endif
233 }
234 
235 /**
236  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237  * @info: The controller instance.
238  * @new_state: State to which clock should be set.
239  */
240 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241 		enum s3c_nand_clk_state new_state)
242 {
243 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244 		return;
245 
246 	if (info->clk_state == CLOCK_ENABLE) {
247 		if (new_state != CLOCK_ENABLE)
248 			clk_disable_unprepare(info->clk);
249 	} else {
250 		if (new_state == CLOCK_ENABLE)
251 			clk_prepare_enable(info->clk);
252 	}
253 
254 	info->clk_state = new_state;
255 }
256 
257 /* timing calculations */
258 
259 #define NS_IN_KHZ 1000000
260 
261 /**
262  * s3c_nand_calc_rate - calculate timing data.
263  * @wanted: The cycle time in nanoseconds.
264  * @clk: The clock rate in kHz.
265  * @max: The maximum divider value.
266  *
267  * Calculate the timing value from the given parameters.
268  */
269 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
270 {
271 	int result;
272 
273 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
274 
275 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276 
277 	if (result > max) {
278 		pr_err("%d ns is too big for current clock rate %ld\n",
279 			wanted, clk);
280 		return -1;
281 	}
282 
283 	if (result < 1)
284 		result = 1;
285 
286 	return result;
287 }
288 
289 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
290 
291 /* controller setup */
292 
293 /**
294  * s3c2410_nand_setrate - setup controller timing information.
295  * @info: The controller instance.
296  *
297  * Given the information supplied by the platform, calculate and set
298  * the necessary timing registers in the hardware to generate the
299  * necessary timing cycles to the hardware.
300  */
301 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
302 {
303 	struct s3c2410_platform_nand *plat = info->platform;
304 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
305 	int tacls, twrph0, twrph1;
306 	unsigned long clkrate = clk_get_rate(info->clk);
307 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
308 	unsigned long flags;
309 
310 	/* calculate the timing information for the controller */
311 
312 	info->clk_rate = clkrate;
313 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
314 
315 	if (plat != NULL) {
316 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
319 	} else {
320 		/* default timings */
321 		tacls = tacls_max;
322 		twrph0 = 8;
323 		twrph1 = 8;
324 	}
325 
326 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
327 		dev_err(info->device, "cannot get suitable timings\n");
328 		return -EINVAL;
329 	}
330 
331 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
332 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333 						twrph1, to_ns(twrph1, clkrate));
334 
335 	switch (info->cpu_type) {
336 	case TYPE_S3C2410:
337 		mask = (S3C2410_NFCONF_TACLS(3) |
338 			S3C2410_NFCONF_TWRPH0(7) |
339 			S3C2410_NFCONF_TWRPH1(7));
340 		set = S3C2410_NFCONF_EN;
341 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
342 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344 		break;
345 
346 	case TYPE_S3C2440:
347 	case TYPE_S3C2412:
348 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349 			S3C2440_NFCONF_TWRPH0(7) |
350 			S3C2440_NFCONF_TWRPH1(7));
351 
352 		set = S3C2440_NFCONF_TACLS(tacls - 1);
353 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355 		break;
356 
357 	default:
358 		BUG();
359 	}
360 
361 	local_irq_save(flags);
362 
363 	cfg = readl(info->regs + S3C2410_NFCONF);
364 	cfg &= ~mask;
365 	cfg |= set;
366 	writel(cfg, info->regs + S3C2410_NFCONF);
367 
368 	local_irq_restore(flags);
369 
370 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371 
372 	return 0;
373 }
374 
375 /**
376  * s3c2410_nand_inithw - basic hardware initialisation
377  * @info: The hardware state.
378  *
379  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380  * to setup the hardware access speeds and set the controller to be enabled.
381 */
382 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383 {
384 	int ret;
385 
386 	ret = s3c2410_nand_setrate(info);
387 	if (ret < 0)
388 		return ret;
389 
390 	switch (info->cpu_type) {
391 	case TYPE_S3C2410:
392 	default:
393 		break;
394 
395 	case TYPE_S3C2440:
396 	case TYPE_S3C2412:
397 		/* enable the controller and de-assert nFCE */
398 
399 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
400 	}
401 
402 	return 0;
403 }
404 
405 /**
406  * s3c2410_nand_select_chip - select the given nand chip
407  * @mtd: The MTD instance for this chip.
408  * @chip: The chip number.
409  *
410  * This is called by the MTD layer to either select a given chip for the
411  * @mtd instance, or to indicate that the access has finished and the
412  * chip can be de-selected.
413  *
414  * The routine ensures that the nFCE line is correctly setup, and any
415  * platform specific selection code is called to route nFCE to the specific
416  * chip.
417  */
418 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
419 {
420 	struct s3c2410_nand_info *info;
421 	struct s3c2410_nand_mtd *nmtd;
422 	struct nand_chip *this = mtd_to_nand(mtd);
423 	unsigned long cur;
424 
425 	nmtd = nand_get_controller_data(this);
426 	info = nmtd->info;
427 
428 	if (chip != -1)
429 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
430 
431 	cur = readl(info->sel_reg);
432 
433 	if (chip == -1) {
434 		cur |= info->sel_bit;
435 	} else {
436 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
437 			dev_err(info->device, "invalid chip %d\n", chip);
438 			return;
439 		}
440 
441 		if (info->platform != NULL) {
442 			if (info->platform->select_chip != NULL)
443 				(info->platform->select_chip) (nmtd->set, chip);
444 		}
445 
446 		cur &= ~info->sel_bit;
447 	}
448 
449 	writel(cur, info->sel_reg);
450 
451 	if (chip == -1)
452 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
453 }
454 
455 /* s3c2410_nand_hwcontrol
456  *
457  * Issue command and address cycles to the chip
458 */
459 
460 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
461 				   unsigned int ctrl)
462 {
463 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
464 
465 	if (cmd == NAND_CMD_NONE)
466 		return;
467 
468 	if (ctrl & NAND_CLE)
469 		writeb(cmd, info->regs + S3C2410_NFCMD);
470 	else
471 		writeb(cmd, info->regs + S3C2410_NFADDR);
472 }
473 
474 /* command and control functions */
475 
476 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
477 				   unsigned int ctrl)
478 {
479 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
480 
481 	if (cmd == NAND_CMD_NONE)
482 		return;
483 
484 	if (ctrl & NAND_CLE)
485 		writeb(cmd, info->regs + S3C2440_NFCMD);
486 	else
487 		writeb(cmd, info->regs + S3C2440_NFADDR);
488 }
489 
490 /* s3c2410_nand_devready()
491  *
492  * returns 0 if the nand is busy, 1 if it is ready
493 */
494 
495 static int s3c2410_nand_devready(struct mtd_info *mtd)
496 {
497 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
498 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
499 }
500 
501 static int s3c2440_nand_devready(struct mtd_info *mtd)
502 {
503 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
504 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
505 }
506 
507 static int s3c2412_nand_devready(struct mtd_info *mtd)
508 {
509 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
510 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
511 }
512 
513 /* ECC handling functions */
514 
515 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
516 				     u_char *read_ecc, u_char *calc_ecc)
517 {
518 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
519 	unsigned int diff0, diff1, diff2;
520 	unsigned int bit, byte;
521 
522 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
523 
524 	diff0 = read_ecc[0] ^ calc_ecc[0];
525 	diff1 = read_ecc[1] ^ calc_ecc[1];
526 	diff2 = read_ecc[2] ^ calc_ecc[2];
527 
528 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
529 		 __func__, 3, read_ecc, 3, calc_ecc,
530 		 diff0, diff1, diff2);
531 
532 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
533 		return 0;		/* ECC is ok */
534 
535 	/* sometimes people do not think about using the ECC, so check
536 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
537 	 * the error, on the assumption that this is an un-eccd page.
538 	 */
539 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
540 	    && info->platform->ignore_unset_ecc)
541 		return 0;
542 
543 	/* Can we correct this ECC (ie, one row and column change).
544 	 * Note, this is similar to the 256 error code on smartmedia */
545 
546 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
547 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
548 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
549 		/* calculate the bit position of the error */
550 
551 		bit  = ((diff2 >> 3) & 1) |
552 		       ((diff2 >> 4) & 2) |
553 		       ((diff2 >> 5) & 4);
554 
555 		/* calculate the byte position of the error */
556 
557 		byte = ((diff2 << 7) & 0x100) |
558 		       ((diff1 << 0) & 0x80)  |
559 		       ((diff1 << 1) & 0x40)  |
560 		       ((diff1 << 2) & 0x20)  |
561 		       ((diff1 << 3) & 0x10)  |
562 		       ((diff0 >> 4) & 0x08)  |
563 		       ((diff0 >> 3) & 0x04)  |
564 		       ((diff0 >> 2) & 0x02)  |
565 		       ((diff0 >> 1) & 0x01);
566 
567 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
568 			bit, byte);
569 
570 		dat[byte] ^= (1 << bit);
571 		return 1;
572 	}
573 
574 	/* if there is only one bit difference in the ECC, then
575 	 * one of only a row or column parity has changed, which
576 	 * means the error is most probably in the ECC itself */
577 
578 	diff0 |= (diff1 << 8);
579 	diff0 |= (diff2 << 16);
580 
581 	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
582 	if ((diff0 & (diff0 - 1)) == 0)
583 		return 1;
584 
585 	return -1;
586 }
587 
588 /* ECC functions
589  *
590  * These allow the s3c2410 and s3c2440 to use the controller's ECC
591  * generator block to ECC the data as it passes through]
592 */
593 
594 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
595 {
596 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
597 	unsigned long ctrl;
598 
599 	ctrl = readl(info->regs + S3C2410_NFCONF);
600 	ctrl |= S3C2410_NFCONF_INITECC;
601 	writel(ctrl, info->regs + S3C2410_NFCONF);
602 }
603 
604 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
605 {
606 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
607 	unsigned long ctrl;
608 
609 	ctrl = readl(info->regs + S3C2440_NFCONT);
610 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
611 	       info->regs + S3C2440_NFCONT);
612 }
613 
614 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
615 {
616 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
617 	unsigned long ctrl;
618 
619 	ctrl = readl(info->regs + S3C2440_NFCONT);
620 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
621 }
622 
623 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
624 				      u_char *ecc_code)
625 {
626 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
627 
628 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
629 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
630 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
631 
632 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
633 
634 	return 0;
635 }
636 
637 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
638 				      u_char *ecc_code)
639 {
640 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
641 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
642 
643 	ecc_code[0] = ecc;
644 	ecc_code[1] = ecc >> 8;
645 	ecc_code[2] = ecc >> 16;
646 
647 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
648 
649 	return 0;
650 }
651 
652 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
653 				      u_char *ecc_code)
654 {
655 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
656 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
657 
658 	ecc_code[0] = ecc;
659 	ecc_code[1] = ecc >> 8;
660 	ecc_code[2] = ecc >> 16;
661 
662 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
663 
664 	return 0;
665 }
666 
667 /* over-ride the standard functions for a little more speed. We can
668  * use read/write block to move the data buffers to/from the controller
669 */
670 
671 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
672 {
673 	struct nand_chip *this = mtd_to_nand(mtd);
674 	readsb(this->IO_ADDR_R, buf, len);
675 }
676 
677 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
678 {
679 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
680 
681 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
682 
683 	/* cleanup if we've got less than a word to do */
684 	if (len & 3) {
685 		buf += len & ~3;
686 
687 		for (; len & 3; len--)
688 			*buf++ = readb(info->regs + S3C2440_NFDATA);
689 	}
690 }
691 
692 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
693 				   int len)
694 {
695 	struct nand_chip *this = mtd_to_nand(mtd);
696 	writesb(this->IO_ADDR_W, buf, len);
697 }
698 
699 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
700 				   int len)
701 {
702 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
703 
704 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
705 
706 	/* cleanup any fractional write */
707 	if (len & 3) {
708 		buf += len & ~3;
709 
710 		for (; len & 3; len--, buf++)
711 			writeb(*buf, info->regs + S3C2440_NFDATA);
712 	}
713 }
714 
715 /* cpufreq driver support */
716 
717 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
718 
719 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
720 					  unsigned long val, void *data)
721 {
722 	struct s3c2410_nand_info *info;
723 	unsigned long newclk;
724 
725 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
726 	newclk = clk_get_rate(info->clk);
727 
728 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
729 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
730 		s3c2410_nand_setrate(info);
731 	}
732 
733 	return 0;
734 }
735 
736 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
737 {
738 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
739 
740 	return cpufreq_register_notifier(&info->freq_transition,
741 					 CPUFREQ_TRANSITION_NOTIFIER);
742 }
743 
744 static inline void
745 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
746 {
747 	cpufreq_unregister_notifier(&info->freq_transition,
748 				    CPUFREQ_TRANSITION_NOTIFIER);
749 }
750 
751 #else
752 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
753 {
754 	return 0;
755 }
756 
757 static inline void
758 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
759 {
760 }
761 #endif
762 
763 /* device management functions */
764 
765 static int s3c24xx_nand_remove(struct platform_device *pdev)
766 {
767 	struct s3c2410_nand_info *info = to_nand_info(pdev);
768 
769 	if (info == NULL)
770 		return 0;
771 
772 	s3c2410_nand_cpufreq_deregister(info);
773 
774 	/* Release all our mtds  and their partitions, then go through
775 	 * freeing the resources used
776 	 */
777 
778 	if (info->mtds != NULL) {
779 		struct s3c2410_nand_mtd *ptr = info->mtds;
780 		int mtdno;
781 
782 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
783 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
784 			nand_release(nand_to_mtd(&ptr->chip));
785 		}
786 	}
787 
788 	/* free the common resources */
789 
790 	if (!IS_ERR(info->clk))
791 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
792 
793 	return 0;
794 }
795 
796 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
797 				      struct s3c2410_nand_mtd *mtd,
798 				      struct s3c2410_nand_set *set)
799 {
800 	if (set) {
801 		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
802 
803 		mtdinfo->name = set->name;
804 
805 		return mtd_device_parse_register(mtdinfo, NULL, NULL,
806 					 set->partitions, set->nr_partitions);
807 	}
808 
809 	return -ENODEV;
810 }
811 
812 static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
813 					const struct nand_data_interface *conf)
814 {
815 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816 	struct s3c2410_platform_nand *pdata = info->platform;
817 	const struct nand_sdr_timings *timings;
818 	int tacls;
819 
820 	timings = nand_get_sdr_timings(conf);
821 	if (IS_ERR(timings))
822 		return -ENOTSUPP;
823 
824 	tacls = timings->tCLS_min - timings->tWP_min;
825 	if (tacls < 0)
826 		tacls = 0;
827 
828 	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
829 	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830 	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831 
832 	return s3c2410_nand_setrate(info);
833 }
834 
835 /**
836  * s3c2410_nand_init_chip - initialise a single instance of an chip
837  * @info: The base NAND controller the chip is on.
838  * @nmtd: The new controller MTD instance to fill in.
839  * @set: The information passed from the board specific platform data.
840  *
841  * Initialise the given @nmtd from the information in @info and @set. This
842  * readies the structure for use with the MTD layer functions by ensuring
843  * all pointers are setup and the necessary control routines selected.
844  */
845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846 				   struct s3c2410_nand_mtd *nmtd,
847 				   struct s3c2410_nand_set *set)
848 {
849 	struct device_node *np = info->device->of_node;
850 	struct nand_chip *chip = &nmtd->chip;
851 	void __iomem *regs = info->regs;
852 
853 	nand_set_flash_node(chip, set->of_node);
854 
855 	chip->write_buf    = s3c2410_nand_write_buf;
856 	chip->read_buf     = s3c2410_nand_read_buf;
857 	chip->select_chip  = s3c2410_nand_select_chip;
858 	chip->chip_delay   = 50;
859 	nand_set_controller_data(chip, nmtd);
860 	chip->options	   = set->options;
861 	chip->controller   = &info->controller;
862 
863 	/*
864 	 * let's keep behavior unchanged for legacy boards booting via pdata and
865 	 * auto-detect timings only when booting with a device tree.
866 	 */
867 	if (np)
868 		chip->setup_data_interface = s3c2410_nand_setup_data_interface;
869 
870 	switch (info->cpu_type) {
871 	case TYPE_S3C2410:
872 		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
873 		info->sel_reg   = regs + S3C2410_NFCONF;
874 		info->sel_bit	= S3C2410_NFCONF_nFCE;
875 		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
876 		chip->dev_ready = s3c2410_nand_devready;
877 		break;
878 
879 	case TYPE_S3C2440:
880 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
881 		info->sel_reg   = regs + S3C2440_NFCONT;
882 		info->sel_bit	= S3C2440_NFCONT_nFCE;
883 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
884 		chip->dev_ready = s3c2440_nand_devready;
885 		chip->read_buf  = s3c2440_nand_read_buf;
886 		chip->write_buf	= s3c2440_nand_write_buf;
887 		break;
888 
889 	case TYPE_S3C2412:
890 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
891 		info->sel_reg   = regs + S3C2440_NFCONT;
892 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
893 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
894 		chip->dev_ready = s3c2412_nand_devready;
895 
896 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897 			dev_info(info->device, "System booted from NAND\n");
898 
899 		break;
900 	}
901 
902 	chip->IO_ADDR_R = chip->IO_ADDR_W;
903 
904 	nmtd->info	   = info;
905 	nmtd->set	   = set;
906 
907 	chip->ecc.mode = info->platform->ecc_mode;
908 
909 	/*
910 	 * If you use u-boot BBT creation code, specifying this flag will
911 	 * let the kernel fish out the BBT from the NAND.
912 	 */
913 	if (set->flash_bbt)
914 		chip->bbt_options |= NAND_BBT_USE_FLASH;
915 }
916 
917 /**
918  * s3c2410_nand_update_chip - post probe update
919  * @info: The controller instance.
920  * @nmtd: The driver version of the MTD instance.
921  *
922  * This routine is called after the chip probe has successfully completed
923  * and the relevant per-chip information updated. This call ensure that
924  * we update the internal state accordingly.
925  *
926  * The internal state is currently limited to the ECC state information.
927 */
928 static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
929 				    struct s3c2410_nand_mtd *nmtd)
930 {
931 	struct nand_chip *chip = &nmtd->chip;
932 
933 	switch (chip->ecc.mode) {
934 
935 	case NAND_ECC_NONE:
936 		dev_info(info->device, "ECC disabled\n");
937 		break;
938 
939 	case NAND_ECC_SOFT:
940 		/*
941 		 * This driver expects Hamming based ECC when ecc_mode is set
942 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
943 		 * avoid adding an extra ecc_algo field to
944 		 * s3c2410_platform_nand.
945 		 */
946 		chip->ecc.algo = NAND_ECC_HAMMING;
947 		dev_info(info->device, "soft ECC\n");
948 		break;
949 
950 	case NAND_ECC_HW:
951 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
952 		chip->ecc.correct   = s3c2410_nand_correct_data;
953 		chip->ecc.strength  = 1;
954 
955 		switch (info->cpu_type) {
956 		case TYPE_S3C2410:
957 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
958 			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
959 			break;
960 
961 		case TYPE_S3C2412:
962 			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
963 			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
964 			break;
965 
966 		case TYPE_S3C2440:
967 			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
968 			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
969 			break;
970 		}
971 
972 		dev_dbg(info->device, "chip %p => page shift %d\n",
973 			chip, chip->page_shift);
974 
975 		/* change the behaviour depending on whether we are using
976 		 * the large or small page nand device */
977 		if (chip->page_shift > 10) {
978 			chip->ecc.size	    = 256;
979 			chip->ecc.bytes	    = 3;
980 		} else {
981 			chip->ecc.size	    = 512;
982 			chip->ecc.bytes	    = 3;
983 			mtd_set_ooblayout(nand_to_mtd(chip),
984 					  &s3c2410_ooblayout_ops);
985 		}
986 
987 		dev_info(info->device, "hardware ECC\n");
988 		break;
989 
990 	default:
991 		dev_err(info->device, "invalid ECC mode!\n");
992 		return -EINVAL;
993 	}
994 
995 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
996 		chip->options |= NAND_SKIP_BBTSCAN;
997 
998 	return 0;
999 }
1000 
1001 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1002 	{
1003 		.compatible = "samsung,s3c2410-nand",
1004 		.data = &s3c2410_nand_devtype_data,
1005 	}, {
1006 		/* also compatible with s3c6400 */
1007 		.compatible = "samsung,s3c2412-nand",
1008 		.data = &s3c2412_nand_devtype_data,
1009 	}, {
1010 		.compatible = "samsung,s3c2440-nand",
1011 		.data = &s3c2440_nand_devtype_data,
1012 	},
1013 	{ /* sentinel */ }
1014 };
1015 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1016 
1017 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1018 {
1019 	const struct s3c24XX_nand_devtype_data *devtype_data;
1020 	struct s3c2410_platform_nand *pdata;
1021 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1022 	struct device_node *np = pdev->dev.of_node, *child;
1023 	struct s3c2410_nand_set *sets;
1024 
1025 	devtype_data = of_device_get_match_data(&pdev->dev);
1026 	if (!devtype_data)
1027 		return -ENODEV;
1028 
1029 	info->cpu_type = devtype_data->type;
1030 
1031 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1032 	if (!pdata)
1033 		return -ENOMEM;
1034 
1035 	pdev->dev.platform_data = pdata;
1036 
1037 	pdata->nr_sets = of_get_child_count(np);
1038 	if (!pdata->nr_sets)
1039 		return 0;
1040 
1041 	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1042 			    GFP_KERNEL);
1043 	if (!sets)
1044 		return -ENOMEM;
1045 
1046 	pdata->sets = sets;
1047 
1048 	for_each_available_child_of_node(np, child) {
1049 		sets->name = (char *)child->name;
1050 		sets->of_node = child;
1051 		sets->nr_chips = 1;
1052 
1053 		of_node_get(child);
1054 
1055 		sets++;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1062 {
1063 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1064 
1065 	info->cpu_type = platform_get_device_id(pdev)->driver_data;
1066 
1067 	return 0;
1068 }
1069 
1070 /* s3c24xx_nand_probe
1071  *
1072  * called by device layer when it finds a device matching
1073  * one our driver can handled. This code checks to see if
1074  * it can allocate all necessary resources then calls the
1075  * nand layer to look for devices
1076 */
1077 static int s3c24xx_nand_probe(struct platform_device *pdev)
1078 {
1079 	struct s3c2410_platform_nand *plat;
1080 	struct s3c2410_nand_info *info;
1081 	struct s3c2410_nand_mtd *nmtd;
1082 	struct s3c2410_nand_set *sets;
1083 	struct resource *res;
1084 	int err = 0;
1085 	int size;
1086 	int nr_sets;
1087 	int setno;
1088 
1089 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1090 	if (info == NULL) {
1091 		err = -ENOMEM;
1092 		goto exit_error;
1093 	}
1094 
1095 	platform_set_drvdata(pdev, info);
1096 
1097 	nand_hw_control_init(&info->controller);
1098 
1099 	/* get the clock source and enable it */
1100 
1101 	info->clk = devm_clk_get(&pdev->dev, "nand");
1102 	if (IS_ERR(info->clk)) {
1103 		dev_err(&pdev->dev, "failed to get clock\n");
1104 		err = -ENOENT;
1105 		goto exit_error;
1106 	}
1107 
1108 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1109 
1110 	if (pdev->dev.of_node)
1111 		err = s3c24xx_nand_probe_dt(pdev);
1112 	else
1113 		err = s3c24xx_nand_probe_pdata(pdev);
1114 
1115 	if (err)
1116 		goto exit_error;
1117 
1118 	plat = to_nand_plat(pdev);
1119 
1120 	/* allocate and map the resource */
1121 
1122 	/* currently we assume we have the one resource */
1123 	res = pdev->resource;
1124 	size = resource_size(res);
1125 
1126 	info->device	= &pdev->dev;
1127 	info->platform	= plat;
1128 
1129 	info->regs = devm_ioremap_resource(&pdev->dev, res);
1130 	if (IS_ERR(info->regs)) {
1131 		err = PTR_ERR(info->regs);
1132 		goto exit_error;
1133 	}
1134 
1135 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1136 
1137 	sets = (plat != NULL) ? plat->sets : NULL;
1138 	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1139 
1140 	info->mtd_count = nr_sets;
1141 
1142 	/* allocate our information */
1143 
1144 	size = nr_sets * sizeof(*info->mtds);
1145 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1146 	if (info->mtds == NULL) {
1147 		err = -ENOMEM;
1148 		goto exit_error;
1149 	}
1150 
1151 	/* initialise all possible chips */
1152 
1153 	nmtd = info->mtds;
1154 
1155 	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1156 		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1157 
1158 		pr_debug("initialising set %d (%p, info %p)\n",
1159 			 setno, nmtd, info);
1160 
1161 		mtd->dev.parent = &pdev->dev;
1162 		s3c2410_nand_init_chip(info, nmtd, sets);
1163 
1164 		err = nand_scan_ident(mtd, (sets) ? sets->nr_chips : 1, NULL);
1165 		if (err)
1166 			goto exit_error;
1167 
1168 		err = s3c2410_nand_update_chip(info, nmtd);
1169 		if (err < 0)
1170 			goto exit_error;
1171 
1172 		err = nand_scan_tail(mtd);
1173 		if (err)
1174 			goto exit_error;
1175 
1176 		s3c2410_nand_add_partition(info, nmtd, sets);
1177 
1178 		if (sets != NULL)
1179 			sets++;
1180 	}
1181 
1182 	/* initialise the hardware */
1183 	err = s3c2410_nand_inithw(info);
1184 	if (err != 0)
1185 		goto exit_error;
1186 
1187 	err = s3c2410_nand_cpufreq_register(info);
1188 	if (err < 0) {
1189 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1190 		goto exit_error;
1191 	}
1192 
1193 	if (allow_clk_suspend(info)) {
1194 		dev_info(&pdev->dev, "clock idle support enabled\n");
1195 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1196 	}
1197 
1198 	return 0;
1199 
1200  exit_error:
1201 	s3c24xx_nand_remove(pdev);
1202 
1203 	if (err == 0)
1204 		err = -EINVAL;
1205 	return err;
1206 }
1207 
1208 /* PM Support */
1209 #ifdef CONFIG_PM
1210 
1211 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212 {
1213 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1214 
1215 	if (info) {
1216 		info->save_sel = readl(info->sel_reg);
1217 
1218 		/* For the moment, we must ensure nFCE is high during
1219 		 * the time we are suspended. This really should be
1220 		 * handled by suspending the MTDs we are using, but
1221 		 * that is currently not the case. */
1222 
1223 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1224 
1225 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static int s3c24xx_nand_resume(struct platform_device *dev)
1232 {
1233 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1234 	unsigned long sel;
1235 
1236 	if (info) {
1237 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1238 		s3c2410_nand_inithw(info);
1239 
1240 		/* Restore the state of the nFCE line. */
1241 
1242 		sel = readl(info->sel_reg);
1243 		sel &= ~info->sel_bit;
1244 		sel |= info->save_sel & info->sel_bit;
1245 		writel(sel, info->sel_reg);
1246 
1247 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 #else
1254 #define s3c24xx_nand_suspend NULL
1255 #define s3c24xx_nand_resume NULL
1256 #endif
1257 
1258 /* driver device registration */
1259 
1260 static const struct platform_device_id s3c24xx_driver_ids[] = {
1261 	{
1262 		.name		= "s3c2410-nand",
1263 		.driver_data	= TYPE_S3C2410,
1264 	}, {
1265 		.name		= "s3c2440-nand",
1266 		.driver_data	= TYPE_S3C2440,
1267 	}, {
1268 		.name		= "s3c2412-nand",
1269 		.driver_data	= TYPE_S3C2412,
1270 	}, {
1271 		.name		= "s3c6400-nand",
1272 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1273 	},
1274 	{ }
1275 };
1276 
1277 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1278 
1279 static struct platform_driver s3c24xx_nand_driver = {
1280 	.probe		= s3c24xx_nand_probe,
1281 	.remove		= s3c24xx_nand_remove,
1282 	.suspend	= s3c24xx_nand_suspend,
1283 	.resume		= s3c24xx_nand_resume,
1284 	.id_table	= s3c24xx_driver_ids,
1285 	.driver		= {
1286 		.name	= "s3c24xx-nand",
1287 		.of_match_table = s3c24xx_nand_dt_ids,
1288 	},
1289 };
1290 
1291 module_platform_driver(s3c24xx_nand_driver);
1292 
1293 MODULE_LICENSE("GPL");
1294 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1295 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1296