xref: /openbmc/linux/drivers/mtd/nand/raw/s3c2410.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright © 2004-2008 Simtec Electronics
3  *	http://armlinux.simtec.co.uk/
4  *	Ben Dooks <ben@simtec.co.uk>
5  *
6  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 */
22 
23 #define pr_fmt(fmt) "nand-s3c2410: " fmt
24 
25 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26 #define DEBUG
27 #endif
28 
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/io.h>
34 #include <linux/ioport.h>
35 #include <linux/platform_device.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/slab.h>
39 #include <linux/clk.h>
40 #include <linux/cpufreq.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/rawnand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48 
49 #include <linux/platform_data/mtd-nand-s3c2410.h>
50 
51 #define S3C2410_NFREG(x) (x)
52 
53 #define S3C2410_NFCONF		S3C2410_NFREG(0x00)
54 #define S3C2410_NFCMD		S3C2410_NFREG(0x04)
55 #define S3C2410_NFADDR		S3C2410_NFREG(0x08)
56 #define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
57 #define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
58 #define S3C2410_NFECC		S3C2410_NFREG(0x14)
59 #define S3C2440_NFCONT		S3C2410_NFREG(0x04)
60 #define S3C2440_NFCMD		S3C2410_NFREG(0x08)
61 #define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
62 #define S3C2440_NFDATA		S3C2410_NFREG(0x10)
63 #define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
64 #define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
65 #define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
66 #define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
67 #define S3C2410_NFCONF_EN		(1<<15)
68 #define S3C2410_NFCONF_INITECC		(1<<12)
69 #define S3C2410_NFCONF_nFCE		(1<<11)
70 #define S3C2410_NFCONF_TACLS(x)		((x)<<8)
71 #define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
72 #define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
73 #define S3C2410_NFSTAT_BUSY		(1<<0)
74 #define S3C2440_NFCONF_TACLS(x)		((x)<<12)
75 #define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
76 #define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
77 #define S3C2440_NFCONT_INITECC		(1<<4)
78 #define S3C2440_NFCONT_nFCE		(1<<1)
79 #define S3C2440_NFCONT_ENABLE		(1<<0)
80 #define S3C2440_NFSTAT_READY		(1<<0)
81 #define S3C2412_NFCONF_NANDBOOT		(1<<31)
82 #define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
83 #define S3C2412_NFCONT_nFCE0		(1<<1)
84 #define S3C2412_NFSTAT_READY		(1<<0)
85 
86 /* new oob placement block for use with hardware ecc generation
87  */
88 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89 				 struct mtd_oob_region *oobregion)
90 {
91 	if (section)
92 		return -ERANGE;
93 
94 	oobregion->offset = 0;
95 	oobregion->length = 3;
96 
97 	return 0;
98 }
99 
100 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101 				  struct mtd_oob_region *oobregion)
102 {
103 	if (section)
104 		return -ERANGE;
105 
106 	oobregion->offset = 8;
107 	oobregion->length = 8;
108 
109 	return 0;
110 }
111 
112 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113 	.ecc = s3c2410_ooblayout_ecc,
114 	.free = s3c2410_ooblayout_free,
115 };
116 
117 /* controller and mtd information */
118 
119 struct s3c2410_nand_info;
120 
121 /**
122  * struct s3c2410_nand_mtd - driver MTD structure
123  * @mtd: The MTD instance to pass to the MTD layer.
124  * @chip: The NAND chip information.
125  * @set: The platform information supplied for this set of NAND chips.
126  * @info: Link back to the hardware information.
127 */
128 struct s3c2410_nand_mtd {
129 	struct nand_chip		chip;
130 	struct s3c2410_nand_set		*set;
131 	struct s3c2410_nand_info	*info;
132 };
133 
134 enum s3c_cpu_type {
135 	TYPE_S3C2410,
136 	TYPE_S3C2412,
137 	TYPE_S3C2440,
138 };
139 
140 enum s3c_nand_clk_state {
141 	CLOCK_DISABLE	= 0,
142 	CLOCK_ENABLE,
143 	CLOCK_SUSPEND,
144 };
145 
146 /* overview of the s3c2410 nand state */
147 
148 /**
149  * struct s3c2410_nand_info - NAND controller state.
150  * @mtds: An array of MTD instances on this controoler.
151  * @platform: The platform data for this board.
152  * @device: The platform device we bound to.
153  * @clk: The clock resource for this controller.
154  * @regs: The area mapped for the hardware registers.
155  * @sel_reg: Pointer to the register controlling the NAND selection.
156  * @sel_bit: The bit in @sel_reg to select the NAND chip.
157  * @mtd_count: The number of MTDs created from this controller.
158  * @save_sel: The contents of @sel_reg to be saved over suspend.
159  * @clk_rate: The clock rate from @clk.
160  * @clk_state: The current clock state.
161  * @cpu_type: The exact type of this controller.
162  */
163 struct s3c2410_nand_info {
164 	/* mtd info */
165 	struct nand_controller		controller;
166 	struct s3c2410_nand_mtd		*mtds;
167 	struct s3c2410_platform_nand	*platform;
168 
169 	/* device info */
170 	struct device			*device;
171 	struct clk			*clk;
172 	void __iomem			*regs;
173 	void __iomem			*sel_reg;
174 	int				sel_bit;
175 	int				mtd_count;
176 	unsigned long			save_sel;
177 	unsigned long			clk_rate;
178 	enum s3c_nand_clk_state		clk_state;
179 
180 	enum s3c_cpu_type		cpu_type;
181 
182 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
183 	struct notifier_block	freq_transition;
184 #endif
185 };
186 
187 struct s3c24XX_nand_devtype_data {
188 	enum s3c_cpu_type type;
189 };
190 
191 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192 	.type = TYPE_S3C2410,
193 };
194 
195 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196 	.type = TYPE_S3C2412,
197 };
198 
199 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200 	.type = TYPE_S3C2440,
201 };
202 
203 /* conversion functions */
204 
205 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206 {
207 	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208 			    chip);
209 }
210 
211 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212 {
213 	return s3c2410_nand_mtd_toours(mtd)->info;
214 }
215 
216 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
217 {
218 	return platform_get_drvdata(dev);
219 }
220 
221 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
222 {
223 	return dev_get_platdata(&dev->dev);
224 }
225 
226 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
227 {
228 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229 	return 1;
230 #else
231 	return 0;
232 #endif
233 }
234 
235 /**
236  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237  * @info: The controller instance.
238  * @new_state: State to which clock should be set.
239  */
240 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241 		enum s3c_nand_clk_state new_state)
242 {
243 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244 		return;
245 
246 	if (info->clk_state == CLOCK_ENABLE) {
247 		if (new_state != CLOCK_ENABLE)
248 			clk_disable_unprepare(info->clk);
249 	} else {
250 		if (new_state == CLOCK_ENABLE)
251 			clk_prepare_enable(info->clk);
252 	}
253 
254 	info->clk_state = new_state;
255 }
256 
257 /* timing calculations */
258 
259 #define NS_IN_KHZ 1000000
260 
261 /**
262  * s3c_nand_calc_rate - calculate timing data.
263  * @wanted: The cycle time in nanoseconds.
264  * @clk: The clock rate in kHz.
265  * @max: The maximum divider value.
266  *
267  * Calculate the timing value from the given parameters.
268  */
269 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
270 {
271 	int result;
272 
273 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
274 
275 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276 
277 	if (result > max) {
278 		pr_err("%d ns is too big for current clock rate %ld\n",
279 			wanted, clk);
280 		return -1;
281 	}
282 
283 	if (result < 1)
284 		result = 1;
285 
286 	return result;
287 }
288 
289 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
290 
291 /* controller setup */
292 
293 /**
294  * s3c2410_nand_setrate - setup controller timing information.
295  * @info: The controller instance.
296  *
297  * Given the information supplied by the platform, calculate and set
298  * the necessary timing registers in the hardware to generate the
299  * necessary timing cycles to the hardware.
300  */
301 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
302 {
303 	struct s3c2410_platform_nand *plat = info->platform;
304 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
305 	int tacls, twrph0, twrph1;
306 	unsigned long clkrate = clk_get_rate(info->clk);
307 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
308 	unsigned long flags;
309 
310 	/* calculate the timing information for the controller */
311 
312 	info->clk_rate = clkrate;
313 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
314 
315 	if (plat != NULL) {
316 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
319 	} else {
320 		/* default timings */
321 		tacls = tacls_max;
322 		twrph0 = 8;
323 		twrph1 = 8;
324 	}
325 
326 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
327 		dev_err(info->device, "cannot get suitable timings\n");
328 		return -EINVAL;
329 	}
330 
331 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
332 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333 						twrph1, to_ns(twrph1, clkrate));
334 
335 	switch (info->cpu_type) {
336 	case TYPE_S3C2410:
337 		mask = (S3C2410_NFCONF_TACLS(3) |
338 			S3C2410_NFCONF_TWRPH0(7) |
339 			S3C2410_NFCONF_TWRPH1(7));
340 		set = S3C2410_NFCONF_EN;
341 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
342 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344 		break;
345 
346 	case TYPE_S3C2440:
347 	case TYPE_S3C2412:
348 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349 			S3C2440_NFCONF_TWRPH0(7) |
350 			S3C2440_NFCONF_TWRPH1(7));
351 
352 		set = S3C2440_NFCONF_TACLS(tacls - 1);
353 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355 		break;
356 
357 	default:
358 		BUG();
359 	}
360 
361 	local_irq_save(flags);
362 
363 	cfg = readl(info->regs + S3C2410_NFCONF);
364 	cfg &= ~mask;
365 	cfg |= set;
366 	writel(cfg, info->regs + S3C2410_NFCONF);
367 
368 	local_irq_restore(flags);
369 
370 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371 
372 	return 0;
373 }
374 
375 /**
376  * s3c2410_nand_inithw - basic hardware initialisation
377  * @info: The hardware state.
378  *
379  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380  * to setup the hardware access speeds and set the controller to be enabled.
381 */
382 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383 {
384 	int ret;
385 
386 	ret = s3c2410_nand_setrate(info);
387 	if (ret < 0)
388 		return ret;
389 
390 	switch (info->cpu_type) {
391 	case TYPE_S3C2410:
392 	default:
393 		break;
394 
395 	case TYPE_S3C2440:
396 	case TYPE_S3C2412:
397 		/* enable the controller and de-assert nFCE */
398 
399 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
400 	}
401 
402 	return 0;
403 }
404 
405 /**
406  * s3c2410_nand_select_chip - select the given nand chip
407  * @this: NAND chip object.
408  * @chip: The chip number.
409  *
410  * This is called by the MTD layer to either select a given chip for the
411  * @mtd instance, or to indicate that the access has finished and the
412  * chip can be de-selected.
413  *
414  * The routine ensures that the nFCE line is correctly setup, and any
415  * platform specific selection code is called to route nFCE to the specific
416  * chip.
417  */
418 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
419 {
420 	struct s3c2410_nand_info *info;
421 	struct s3c2410_nand_mtd *nmtd;
422 	unsigned long cur;
423 
424 	nmtd = nand_get_controller_data(this);
425 	info = nmtd->info;
426 
427 	if (chip != -1)
428 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
429 
430 	cur = readl(info->sel_reg);
431 
432 	if (chip == -1) {
433 		cur |= info->sel_bit;
434 	} else {
435 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
436 			dev_err(info->device, "invalid chip %d\n", chip);
437 			return;
438 		}
439 
440 		if (info->platform != NULL) {
441 			if (info->platform->select_chip != NULL)
442 				(info->platform->select_chip) (nmtd->set, chip);
443 		}
444 
445 		cur &= ~info->sel_bit;
446 	}
447 
448 	writel(cur, info->sel_reg);
449 
450 	if (chip == -1)
451 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
452 }
453 
454 /* s3c2410_nand_hwcontrol
455  *
456  * Issue command and address cycles to the chip
457 */
458 
459 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
460 				   unsigned int ctrl)
461 {
462 	struct mtd_info *mtd = nand_to_mtd(chip);
463 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
464 
465 	if (cmd == NAND_CMD_NONE)
466 		return;
467 
468 	if (ctrl & NAND_CLE)
469 		writeb(cmd, info->regs + S3C2410_NFCMD);
470 	else
471 		writeb(cmd, info->regs + S3C2410_NFADDR);
472 }
473 
474 /* command and control functions */
475 
476 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
477 				   unsigned int ctrl)
478 {
479 	struct mtd_info *mtd = nand_to_mtd(chip);
480 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
481 
482 	if (cmd == NAND_CMD_NONE)
483 		return;
484 
485 	if (ctrl & NAND_CLE)
486 		writeb(cmd, info->regs + S3C2440_NFCMD);
487 	else
488 		writeb(cmd, info->regs + S3C2440_NFADDR);
489 }
490 
491 /* s3c2410_nand_devready()
492  *
493  * returns 0 if the nand is busy, 1 if it is ready
494 */
495 
496 static int s3c2410_nand_devready(struct nand_chip *chip)
497 {
498 	struct mtd_info *mtd = nand_to_mtd(chip);
499 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
500 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
501 }
502 
503 static int s3c2440_nand_devready(struct nand_chip *chip)
504 {
505 	struct mtd_info *mtd = nand_to_mtd(chip);
506 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
507 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
508 }
509 
510 static int s3c2412_nand_devready(struct nand_chip *chip)
511 {
512 	struct mtd_info *mtd = nand_to_mtd(chip);
513 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
514 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
515 }
516 
517 /* ECC handling functions */
518 
519 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
520 				     u_char *read_ecc, u_char *calc_ecc)
521 {
522 	struct mtd_info *mtd = nand_to_mtd(chip);
523 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
524 	unsigned int diff0, diff1, diff2;
525 	unsigned int bit, byte;
526 
527 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
528 
529 	diff0 = read_ecc[0] ^ calc_ecc[0];
530 	diff1 = read_ecc[1] ^ calc_ecc[1];
531 	diff2 = read_ecc[2] ^ calc_ecc[2];
532 
533 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
534 		 __func__, 3, read_ecc, 3, calc_ecc,
535 		 diff0, diff1, diff2);
536 
537 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
538 		return 0;		/* ECC is ok */
539 
540 	/* sometimes people do not think about using the ECC, so check
541 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
542 	 * the error, on the assumption that this is an un-eccd page.
543 	 */
544 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
545 	    && info->platform->ignore_unset_ecc)
546 		return 0;
547 
548 	/* Can we correct this ECC (ie, one row and column change).
549 	 * Note, this is similar to the 256 error code on smartmedia */
550 
551 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
552 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
553 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
554 		/* calculate the bit position of the error */
555 
556 		bit  = ((diff2 >> 3) & 1) |
557 		       ((diff2 >> 4) & 2) |
558 		       ((diff2 >> 5) & 4);
559 
560 		/* calculate the byte position of the error */
561 
562 		byte = ((diff2 << 7) & 0x100) |
563 		       ((diff1 << 0) & 0x80)  |
564 		       ((diff1 << 1) & 0x40)  |
565 		       ((diff1 << 2) & 0x20)  |
566 		       ((diff1 << 3) & 0x10)  |
567 		       ((diff0 >> 4) & 0x08)  |
568 		       ((diff0 >> 3) & 0x04)  |
569 		       ((diff0 >> 2) & 0x02)  |
570 		       ((diff0 >> 1) & 0x01);
571 
572 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
573 			bit, byte);
574 
575 		dat[byte] ^= (1 << bit);
576 		return 1;
577 	}
578 
579 	/* if there is only one bit difference in the ECC, then
580 	 * one of only a row or column parity has changed, which
581 	 * means the error is most probably in the ECC itself */
582 
583 	diff0 |= (diff1 << 8);
584 	diff0 |= (diff2 << 16);
585 
586 	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
587 	if ((diff0 & (diff0 - 1)) == 0)
588 		return 1;
589 
590 	return -1;
591 }
592 
593 /* ECC functions
594  *
595  * These allow the s3c2410 and s3c2440 to use the controller's ECC
596  * generator block to ECC the data as it passes through]
597 */
598 
599 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
600 {
601 	struct s3c2410_nand_info *info;
602 	unsigned long ctrl;
603 
604 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
605 	ctrl = readl(info->regs + S3C2410_NFCONF);
606 	ctrl |= S3C2410_NFCONF_INITECC;
607 	writel(ctrl, info->regs + S3C2410_NFCONF);
608 }
609 
610 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
611 {
612 	struct s3c2410_nand_info *info;
613 	unsigned long ctrl;
614 
615 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
616 	ctrl = readl(info->regs + S3C2440_NFCONT);
617 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
618 	       info->regs + S3C2440_NFCONT);
619 }
620 
621 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
622 {
623 	struct s3c2410_nand_info *info;
624 	unsigned long ctrl;
625 
626 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
627 	ctrl = readl(info->regs + S3C2440_NFCONT);
628 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
629 }
630 
631 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
632 				      const u_char *dat, u_char *ecc_code)
633 {
634 	struct mtd_info *mtd = nand_to_mtd(chip);
635 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
636 
637 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
638 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
639 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
640 
641 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
642 
643 	return 0;
644 }
645 
646 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
647 				      const u_char *dat, u_char *ecc_code)
648 {
649 	struct mtd_info *mtd = nand_to_mtd(chip);
650 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
651 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
652 
653 	ecc_code[0] = ecc;
654 	ecc_code[1] = ecc >> 8;
655 	ecc_code[2] = ecc >> 16;
656 
657 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
658 
659 	return 0;
660 }
661 
662 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
663 				      const u_char *dat, u_char *ecc_code)
664 {
665 	struct mtd_info *mtd = nand_to_mtd(chip);
666 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
667 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
668 
669 	ecc_code[0] = ecc;
670 	ecc_code[1] = ecc >> 8;
671 	ecc_code[2] = ecc >> 16;
672 
673 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
674 
675 	return 0;
676 }
677 
678 /* over-ride the standard functions for a little more speed. We can
679  * use read/write block to move the data buffers to/from the controller
680 */
681 
682 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
683 {
684 	readsb(this->legacy.IO_ADDR_R, buf, len);
685 }
686 
687 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
688 {
689 	struct mtd_info *mtd = nand_to_mtd(this);
690 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
691 
692 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
693 
694 	/* cleanup if we've got less than a word to do */
695 	if (len & 3) {
696 		buf += len & ~3;
697 
698 		for (; len & 3; len--)
699 			*buf++ = readb(info->regs + S3C2440_NFDATA);
700 	}
701 }
702 
703 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
704 				   int len)
705 {
706 	writesb(this->legacy.IO_ADDR_W, buf, len);
707 }
708 
709 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
710 				   int len)
711 {
712 	struct mtd_info *mtd = nand_to_mtd(this);
713 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
714 
715 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
716 
717 	/* cleanup any fractional write */
718 	if (len & 3) {
719 		buf += len & ~3;
720 
721 		for (; len & 3; len--, buf++)
722 			writeb(*buf, info->regs + S3C2440_NFDATA);
723 	}
724 }
725 
726 /* cpufreq driver support */
727 
728 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
729 
730 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
731 					  unsigned long val, void *data)
732 {
733 	struct s3c2410_nand_info *info;
734 	unsigned long newclk;
735 
736 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
737 	newclk = clk_get_rate(info->clk);
738 
739 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
740 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
741 		s3c2410_nand_setrate(info);
742 	}
743 
744 	return 0;
745 }
746 
747 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
748 {
749 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
750 
751 	return cpufreq_register_notifier(&info->freq_transition,
752 					 CPUFREQ_TRANSITION_NOTIFIER);
753 }
754 
755 static inline void
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
757 {
758 	cpufreq_unregister_notifier(&info->freq_transition,
759 				    CPUFREQ_TRANSITION_NOTIFIER);
760 }
761 
762 #else
763 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
764 {
765 	return 0;
766 }
767 
768 static inline void
769 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
770 {
771 }
772 #endif
773 
774 /* device management functions */
775 
776 static int s3c24xx_nand_remove(struct platform_device *pdev)
777 {
778 	struct s3c2410_nand_info *info = to_nand_info(pdev);
779 
780 	if (info == NULL)
781 		return 0;
782 
783 	s3c2410_nand_cpufreq_deregister(info);
784 
785 	/* Release all our mtds  and their partitions, then go through
786 	 * freeing the resources used
787 	 */
788 
789 	if (info->mtds != NULL) {
790 		struct s3c2410_nand_mtd *ptr = info->mtds;
791 		int mtdno;
792 
793 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
794 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
795 			nand_release(&ptr->chip);
796 		}
797 	}
798 
799 	/* free the common resources */
800 
801 	if (!IS_ERR(info->clk))
802 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
803 
804 	return 0;
805 }
806 
807 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
808 				      struct s3c2410_nand_mtd *mtd,
809 				      struct s3c2410_nand_set *set)
810 {
811 	if (set) {
812 		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
813 
814 		mtdinfo->name = set->name;
815 
816 		return mtd_device_register(mtdinfo, set->partitions,
817 					   set->nr_partitions);
818 	}
819 
820 	return -ENODEV;
821 }
822 
823 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
824 					const struct nand_data_interface *conf)
825 {
826 	struct mtd_info *mtd = nand_to_mtd(chip);
827 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
828 	struct s3c2410_platform_nand *pdata = info->platform;
829 	const struct nand_sdr_timings *timings;
830 	int tacls;
831 
832 	timings = nand_get_sdr_timings(conf);
833 	if (IS_ERR(timings))
834 		return -ENOTSUPP;
835 
836 	tacls = timings->tCLS_min - timings->tWP_min;
837 	if (tacls < 0)
838 		tacls = 0;
839 
840 	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
841 	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
842 	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
843 
844 	return s3c2410_nand_setrate(info);
845 }
846 
847 /**
848  * s3c2410_nand_init_chip - initialise a single instance of an chip
849  * @info: The base NAND controller the chip is on.
850  * @nmtd: The new controller MTD instance to fill in.
851  * @set: The information passed from the board specific platform data.
852  *
853  * Initialise the given @nmtd from the information in @info and @set. This
854  * readies the structure for use with the MTD layer functions by ensuring
855  * all pointers are setup and the necessary control routines selected.
856  */
857 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
858 				   struct s3c2410_nand_mtd *nmtd,
859 				   struct s3c2410_nand_set *set)
860 {
861 	struct device_node *np = info->device->of_node;
862 	struct nand_chip *chip = &nmtd->chip;
863 	void __iomem *regs = info->regs;
864 
865 	nand_set_flash_node(chip, set->of_node);
866 
867 	chip->legacy.write_buf    = s3c2410_nand_write_buf;
868 	chip->legacy.read_buf     = s3c2410_nand_read_buf;
869 	chip->legacy.select_chip  = s3c2410_nand_select_chip;
870 	chip->legacy.chip_delay   = 50;
871 	nand_set_controller_data(chip, nmtd);
872 	chip->options	   = set->options;
873 	chip->controller   = &info->controller;
874 
875 	/*
876 	 * let's keep behavior unchanged for legacy boards booting via pdata and
877 	 * auto-detect timings only when booting with a device tree.
878 	 */
879 	if (!np)
880 		chip->options |= NAND_KEEP_TIMINGS;
881 
882 	switch (info->cpu_type) {
883 	case TYPE_S3C2410:
884 		chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
885 		info->sel_reg   = regs + S3C2410_NFCONF;
886 		info->sel_bit	= S3C2410_NFCONF_nFCE;
887 		chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
888 		chip->legacy.dev_ready = s3c2410_nand_devready;
889 		break;
890 
891 	case TYPE_S3C2440:
892 		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
893 		info->sel_reg   = regs + S3C2440_NFCONT;
894 		info->sel_bit	= S3C2440_NFCONT_nFCE;
895 		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
896 		chip->legacy.dev_ready = s3c2440_nand_devready;
897 		chip->legacy.read_buf  = s3c2440_nand_read_buf;
898 		chip->legacy.write_buf	= s3c2440_nand_write_buf;
899 		break;
900 
901 	case TYPE_S3C2412:
902 		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
903 		info->sel_reg   = regs + S3C2440_NFCONT;
904 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
905 		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
906 		chip->legacy.dev_ready = s3c2412_nand_devready;
907 
908 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
909 			dev_info(info->device, "System booted from NAND\n");
910 
911 		break;
912 	}
913 
914 	chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
915 
916 	nmtd->info	   = info;
917 	nmtd->set	   = set;
918 
919 	chip->ecc.mode = info->platform->ecc_mode;
920 
921 	/*
922 	 * If you use u-boot BBT creation code, specifying this flag will
923 	 * let the kernel fish out the BBT from the NAND.
924 	 */
925 	if (set->flash_bbt)
926 		chip->bbt_options |= NAND_BBT_USE_FLASH;
927 }
928 
929 /**
930  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
931  * @chip: The NAND chip
932  *
933  * This hook is called by the core after the identification of the NAND chip,
934  * once the relevant per-chip information is up to date.. This call ensure that
935  * we update the internal state accordingly.
936  *
937  * The internal state is currently limited to the ECC state information.
938 */
939 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
940 {
941 	struct mtd_info *mtd = nand_to_mtd(chip);
942 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
943 
944 	switch (chip->ecc.mode) {
945 
946 	case NAND_ECC_NONE:
947 		dev_info(info->device, "ECC disabled\n");
948 		break;
949 
950 	case NAND_ECC_SOFT:
951 		/*
952 		 * This driver expects Hamming based ECC when ecc_mode is set
953 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
954 		 * avoid adding an extra ecc_algo field to
955 		 * s3c2410_platform_nand.
956 		 */
957 		chip->ecc.algo = NAND_ECC_HAMMING;
958 		dev_info(info->device, "soft ECC\n");
959 		break;
960 
961 	case NAND_ECC_HW:
962 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
963 		chip->ecc.correct   = s3c2410_nand_correct_data;
964 		chip->ecc.strength  = 1;
965 
966 		switch (info->cpu_type) {
967 		case TYPE_S3C2410:
968 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
969 			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
970 			break;
971 
972 		case TYPE_S3C2412:
973 			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
974 			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
975 			break;
976 
977 		case TYPE_S3C2440:
978 			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
979 			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
980 			break;
981 		}
982 
983 		dev_dbg(info->device, "chip %p => page shift %d\n",
984 			chip, chip->page_shift);
985 
986 		/* change the behaviour depending on whether we are using
987 		 * the large or small page nand device */
988 		if (chip->page_shift > 10) {
989 			chip->ecc.size	    = 256;
990 			chip->ecc.bytes	    = 3;
991 		} else {
992 			chip->ecc.size	    = 512;
993 			chip->ecc.bytes	    = 3;
994 			mtd_set_ooblayout(nand_to_mtd(chip),
995 					  &s3c2410_ooblayout_ops);
996 		}
997 
998 		dev_info(info->device, "hardware ECC\n");
999 		break;
1000 
1001 	default:
1002 		dev_err(info->device, "invalid ECC mode!\n");
1003 		return -EINVAL;
1004 	}
1005 
1006 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1007 		chip->options |= NAND_SKIP_BBTSCAN;
1008 
1009 	return 0;
1010 }
1011 
1012 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1013 	.attach_chip = s3c2410_nand_attach_chip,
1014 	.setup_data_interface = s3c2410_nand_setup_data_interface,
1015 };
1016 
1017 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1018 	{
1019 		.compatible = "samsung,s3c2410-nand",
1020 		.data = &s3c2410_nand_devtype_data,
1021 	}, {
1022 		/* also compatible with s3c6400 */
1023 		.compatible = "samsung,s3c2412-nand",
1024 		.data = &s3c2412_nand_devtype_data,
1025 	}, {
1026 		.compatible = "samsung,s3c2440-nand",
1027 		.data = &s3c2440_nand_devtype_data,
1028 	},
1029 	{ /* sentinel */ }
1030 };
1031 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1032 
1033 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1034 {
1035 	const struct s3c24XX_nand_devtype_data *devtype_data;
1036 	struct s3c2410_platform_nand *pdata;
1037 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1038 	struct device_node *np = pdev->dev.of_node, *child;
1039 	struct s3c2410_nand_set *sets;
1040 
1041 	devtype_data = of_device_get_match_data(&pdev->dev);
1042 	if (!devtype_data)
1043 		return -ENODEV;
1044 
1045 	info->cpu_type = devtype_data->type;
1046 
1047 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1048 	if (!pdata)
1049 		return -ENOMEM;
1050 
1051 	pdev->dev.platform_data = pdata;
1052 
1053 	pdata->nr_sets = of_get_child_count(np);
1054 	if (!pdata->nr_sets)
1055 		return 0;
1056 
1057 	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1058 			    GFP_KERNEL);
1059 	if (!sets)
1060 		return -ENOMEM;
1061 
1062 	pdata->sets = sets;
1063 
1064 	for_each_available_child_of_node(np, child) {
1065 		sets->name = (char *)child->name;
1066 		sets->of_node = child;
1067 		sets->nr_chips = 1;
1068 
1069 		of_node_get(child);
1070 
1071 		sets++;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1078 {
1079 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1080 
1081 	info->cpu_type = platform_get_device_id(pdev)->driver_data;
1082 
1083 	return 0;
1084 }
1085 
1086 /* s3c24xx_nand_probe
1087  *
1088  * called by device layer when it finds a device matching
1089  * one our driver can handled. This code checks to see if
1090  * it can allocate all necessary resources then calls the
1091  * nand layer to look for devices
1092 */
1093 static int s3c24xx_nand_probe(struct platform_device *pdev)
1094 {
1095 	struct s3c2410_platform_nand *plat;
1096 	struct s3c2410_nand_info *info;
1097 	struct s3c2410_nand_mtd *nmtd;
1098 	struct s3c2410_nand_set *sets;
1099 	struct resource *res;
1100 	int err = 0;
1101 	int size;
1102 	int nr_sets;
1103 	int setno;
1104 
1105 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1106 	if (info == NULL) {
1107 		err = -ENOMEM;
1108 		goto exit_error;
1109 	}
1110 
1111 	platform_set_drvdata(pdev, info);
1112 
1113 	nand_controller_init(&info->controller);
1114 	info->controller.ops = &s3c24xx_nand_controller_ops;
1115 
1116 	/* get the clock source and enable it */
1117 
1118 	info->clk = devm_clk_get(&pdev->dev, "nand");
1119 	if (IS_ERR(info->clk)) {
1120 		dev_err(&pdev->dev, "failed to get clock\n");
1121 		err = -ENOENT;
1122 		goto exit_error;
1123 	}
1124 
1125 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1126 
1127 	if (pdev->dev.of_node)
1128 		err = s3c24xx_nand_probe_dt(pdev);
1129 	else
1130 		err = s3c24xx_nand_probe_pdata(pdev);
1131 
1132 	if (err)
1133 		goto exit_error;
1134 
1135 	plat = to_nand_plat(pdev);
1136 
1137 	/* allocate and map the resource */
1138 
1139 	/* currently we assume we have the one resource */
1140 	res = pdev->resource;
1141 	size = resource_size(res);
1142 
1143 	info->device	= &pdev->dev;
1144 	info->platform	= plat;
1145 
1146 	info->regs = devm_ioremap_resource(&pdev->dev, res);
1147 	if (IS_ERR(info->regs)) {
1148 		err = PTR_ERR(info->regs);
1149 		goto exit_error;
1150 	}
1151 
1152 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1153 
1154 	if (!plat->sets || plat->nr_sets < 1) {
1155 		err = -EINVAL;
1156 		goto exit_error;
1157 	}
1158 
1159 	sets = plat->sets;
1160 	nr_sets = plat->nr_sets;
1161 
1162 	info->mtd_count = nr_sets;
1163 
1164 	/* allocate our information */
1165 
1166 	size = nr_sets * sizeof(*info->mtds);
1167 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1168 	if (info->mtds == NULL) {
1169 		err = -ENOMEM;
1170 		goto exit_error;
1171 	}
1172 
1173 	/* initialise all possible chips */
1174 
1175 	nmtd = info->mtds;
1176 
1177 	for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1178 		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1179 
1180 		pr_debug("initialising set %d (%p, info %p)\n",
1181 			 setno, nmtd, info);
1182 
1183 		mtd->dev.parent = &pdev->dev;
1184 		s3c2410_nand_init_chip(info, nmtd, sets);
1185 
1186 		err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1187 		if (err)
1188 			goto exit_error;
1189 
1190 		s3c2410_nand_add_partition(info, nmtd, sets);
1191 	}
1192 
1193 	/* initialise the hardware */
1194 	err = s3c2410_nand_inithw(info);
1195 	if (err != 0)
1196 		goto exit_error;
1197 
1198 	err = s3c2410_nand_cpufreq_register(info);
1199 	if (err < 0) {
1200 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1201 		goto exit_error;
1202 	}
1203 
1204 	if (allow_clk_suspend(info)) {
1205 		dev_info(&pdev->dev, "clock idle support enabled\n");
1206 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1207 	}
1208 
1209 	return 0;
1210 
1211  exit_error:
1212 	s3c24xx_nand_remove(pdev);
1213 
1214 	if (err == 0)
1215 		err = -EINVAL;
1216 	return err;
1217 }
1218 
1219 /* PM Support */
1220 #ifdef CONFIG_PM
1221 
1222 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1223 {
1224 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1225 
1226 	if (info) {
1227 		info->save_sel = readl(info->sel_reg);
1228 
1229 		/* For the moment, we must ensure nFCE is high during
1230 		 * the time we are suspended. This really should be
1231 		 * handled by suspending the MTDs we are using, but
1232 		 * that is currently not the case. */
1233 
1234 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1235 
1236 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int s3c24xx_nand_resume(struct platform_device *dev)
1243 {
1244 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1245 	unsigned long sel;
1246 
1247 	if (info) {
1248 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1249 		s3c2410_nand_inithw(info);
1250 
1251 		/* Restore the state of the nFCE line. */
1252 
1253 		sel = readl(info->sel_reg);
1254 		sel &= ~info->sel_bit;
1255 		sel |= info->save_sel & info->sel_bit;
1256 		writel(sel, info->sel_reg);
1257 
1258 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 #else
1265 #define s3c24xx_nand_suspend NULL
1266 #define s3c24xx_nand_resume NULL
1267 #endif
1268 
1269 /* driver device registration */
1270 
1271 static const struct platform_device_id s3c24xx_driver_ids[] = {
1272 	{
1273 		.name		= "s3c2410-nand",
1274 		.driver_data	= TYPE_S3C2410,
1275 	}, {
1276 		.name		= "s3c2440-nand",
1277 		.driver_data	= TYPE_S3C2440,
1278 	}, {
1279 		.name		= "s3c2412-nand",
1280 		.driver_data	= TYPE_S3C2412,
1281 	}, {
1282 		.name		= "s3c6400-nand",
1283 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1284 	},
1285 	{ }
1286 };
1287 
1288 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1289 
1290 static struct platform_driver s3c24xx_nand_driver = {
1291 	.probe		= s3c24xx_nand_probe,
1292 	.remove		= s3c24xx_nand_remove,
1293 	.suspend	= s3c24xx_nand_suspend,
1294 	.resume		= s3c24xx_nand_resume,
1295 	.id_table	= s3c24xx_driver_ids,
1296 	.driver		= {
1297 		.name	= "s3c24xx-nand",
1298 		.of_match_table = s3c24xx_nand_dt_ids,
1299 	},
1300 };
1301 
1302 module_platform_driver(s3c24xx_nand_driver);
1303 
1304 MODULE_LICENSE("GPL");
1305 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1306 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1307