1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright © 2004-2008 Simtec Electronics 4 * http://armlinux.simtec.co.uk/ 5 * Ben Dooks <ben@simtec.co.uk> 6 * 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver 8 */ 9 10 #define pr_fmt(fmt) "nand-s3c2410: " fmt 11 12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG 13 #define DEBUG 14 #endif 15 16 #include <linux/module.h> 17 #include <linux/types.h> 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/io.h> 21 #include <linux/ioport.h> 22 #include <linux/platform_device.h> 23 #include <linux/delay.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 #include <linux/clk.h> 27 #include <linux/cpufreq.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 31 #include <linux/mtd/mtd.h> 32 #include <linux/mtd/rawnand.h> 33 #include <linux/mtd/nand_ecc.h> 34 #include <linux/mtd/partitions.h> 35 36 #include <linux/platform_data/mtd-nand-s3c2410.h> 37 38 #define S3C2410_NFREG(x) (x) 39 40 #define S3C2410_NFCONF S3C2410_NFREG(0x00) 41 #define S3C2410_NFCMD S3C2410_NFREG(0x04) 42 #define S3C2410_NFADDR S3C2410_NFREG(0x08) 43 #define S3C2410_NFDATA S3C2410_NFREG(0x0C) 44 #define S3C2410_NFSTAT S3C2410_NFREG(0x10) 45 #define S3C2410_NFECC S3C2410_NFREG(0x14) 46 #define S3C2440_NFCONT S3C2410_NFREG(0x04) 47 #define S3C2440_NFCMD S3C2410_NFREG(0x08) 48 #define S3C2440_NFADDR S3C2410_NFREG(0x0C) 49 #define S3C2440_NFDATA S3C2410_NFREG(0x10) 50 #define S3C2440_NFSTAT S3C2410_NFREG(0x20) 51 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) 52 #define S3C2412_NFSTAT S3C2410_NFREG(0x28) 53 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34) 54 #define S3C2410_NFCONF_EN (1<<15) 55 #define S3C2410_NFCONF_INITECC (1<<12) 56 #define S3C2410_NFCONF_nFCE (1<<11) 57 #define S3C2410_NFCONF_TACLS(x) ((x)<<8) 58 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) 59 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) 60 #define S3C2410_NFSTAT_BUSY (1<<0) 61 #define S3C2440_NFCONF_TACLS(x) ((x)<<12) 62 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) 63 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) 64 #define S3C2440_NFCONT_INITECC (1<<4) 65 #define S3C2440_NFCONT_nFCE (1<<1) 66 #define S3C2440_NFCONT_ENABLE (1<<0) 67 #define S3C2440_NFSTAT_READY (1<<0) 68 #define S3C2412_NFCONF_NANDBOOT (1<<31) 69 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) 70 #define S3C2412_NFCONT_nFCE0 (1<<1) 71 #define S3C2412_NFSTAT_READY (1<<0) 72 73 /* new oob placement block for use with hardware ecc generation 74 */ 75 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section, 76 struct mtd_oob_region *oobregion) 77 { 78 if (section) 79 return -ERANGE; 80 81 oobregion->offset = 0; 82 oobregion->length = 3; 83 84 return 0; 85 } 86 87 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section, 88 struct mtd_oob_region *oobregion) 89 { 90 if (section) 91 return -ERANGE; 92 93 oobregion->offset = 8; 94 oobregion->length = 8; 95 96 return 0; 97 } 98 99 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = { 100 .ecc = s3c2410_ooblayout_ecc, 101 .free = s3c2410_ooblayout_free, 102 }; 103 104 /* controller and mtd information */ 105 106 struct s3c2410_nand_info; 107 108 /** 109 * struct s3c2410_nand_mtd - driver MTD structure 110 * @mtd: The MTD instance to pass to the MTD layer. 111 * @chip: The NAND chip information. 112 * @set: The platform information supplied for this set of NAND chips. 113 * @info: Link back to the hardware information. 114 */ 115 struct s3c2410_nand_mtd { 116 struct nand_chip chip; 117 struct s3c2410_nand_set *set; 118 struct s3c2410_nand_info *info; 119 }; 120 121 enum s3c_cpu_type { 122 TYPE_S3C2410, 123 TYPE_S3C2412, 124 TYPE_S3C2440, 125 }; 126 127 enum s3c_nand_clk_state { 128 CLOCK_DISABLE = 0, 129 CLOCK_ENABLE, 130 CLOCK_SUSPEND, 131 }; 132 133 /* overview of the s3c2410 nand state */ 134 135 /** 136 * struct s3c2410_nand_info - NAND controller state. 137 * @mtds: An array of MTD instances on this controoler. 138 * @platform: The platform data for this board. 139 * @device: The platform device we bound to. 140 * @clk: The clock resource for this controller. 141 * @regs: The area mapped for the hardware registers. 142 * @sel_reg: Pointer to the register controlling the NAND selection. 143 * @sel_bit: The bit in @sel_reg to select the NAND chip. 144 * @mtd_count: The number of MTDs created from this controller. 145 * @save_sel: The contents of @sel_reg to be saved over suspend. 146 * @clk_rate: The clock rate from @clk. 147 * @clk_state: The current clock state. 148 * @cpu_type: The exact type of this controller. 149 */ 150 struct s3c2410_nand_info { 151 /* mtd info */ 152 struct nand_controller controller; 153 struct s3c2410_nand_mtd *mtds; 154 struct s3c2410_platform_nand *platform; 155 156 /* device info */ 157 struct device *device; 158 struct clk *clk; 159 void __iomem *regs; 160 void __iomem *sel_reg; 161 int sel_bit; 162 int mtd_count; 163 unsigned long save_sel; 164 unsigned long clk_rate; 165 enum s3c_nand_clk_state clk_state; 166 167 enum s3c_cpu_type cpu_type; 168 169 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ 170 struct notifier_block freq_transition; 171 #endif 172 }; 173 174 struct s3c24XX_nand_devtype_data { 175 enum s3c_cpu_type type; 176 }; 177 178 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = { 179 .type = TYPE_S3C2410, 180 }; 181 182 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = { 183 .type = TYPE_S3C2412, 184 }; 185 186 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = { 187 .type = TYPE_S3C2440, 188 }; 189 190 /* conversion functions */ 191 192 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) 193 { 194 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd, 195 chip); 196 } 197 198 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) 199 { 200 return s3c2410_nand_mtd_toours(mtd)->info; 201 } 202 203 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) 204 { 205 return platform_get_drvdata(dev); 206 } 207 208 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) 209 { 210 return dev_get_platdata(&dev->dev); 211 } 212 213 static inline int allow_clk_suspend(struct s3c2410_nand_info *info) 214 { 215 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP 216 return 1; 217 #else 218 return 0; 219 #endif 220 } 221 222 /** 223 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. 224 * @info: The controller instance. 225 * @new_state: State to which clock should be set. 226 */ 227 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, 228 enum s3c_nand_clk_state new_state) 229 { 230 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) 231 return; 232 233 if (info->clk_state == CLOCK_ENABLE) { 234 if (new_state != CLOCK_ENABLE) 235 clk_disable_unprepare(info->clk); 236 } else { 237 if (new_state == CLOCK_ENABLE) 238 clk_prepare_enable(info->clk); 239 } 240 241 info->clk_state = new_state; 242 } 243 244 /* timing calculations */ 245 246 #define NS_IN_KHZ 1000000 247 248 /** 249 * s3c_nand_calc_rate - calculate timing data. 250 * @wanted: The cycle time in nanoseconds. 251 * @clk: The clock rate in kHz. 252 * @max: The maximum divider value. 253 * 254 * Calculate the timing value from the given parameters. 255 */ 256 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) 257 { 258 int result; 259 260 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); 261 262 pr_debug("result %d from %ld, %d\n", result, clk, wanted); 263 264 if (result > max) { 265 pr_err("%d ns is too big for current clock rate %ld\n", 266 wanted, clk); 267 return -1; 268 } 269 270 if (result < 1) 271 result = 1; 272 273 return result; 274 } 275 276 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) 277 278 /* controller setup */ 279 280 /** 281 * s3c2410_nand_setrate - setup controller timing information. 282 * @info: The controller instance. 283 * 284 * Given the information supplied by the platform, calculate and set 285 * the necessary timing registers in the hardware to generate the 286 * necessary timing cycles to the hardware. 287 */ 288 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) 289 { 290 struct s3c2410_platform_nand *plat = info->platform; 291 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; 292 int tacls, twrph0, twrph1; 293 unsigned long clkrate = clk_get_rate(info->clk); 294 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); 295 unsigned long flags; 296 297 /* calculate the timing information for the controller */ 298 299 info->clk_rate = clkrate; 300 clkrate /= 1000; /* turn clock into kHz for ease of use */ 301 302 if (plat != NULL) { 303 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); 304 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); 305 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); 306 } else { 307 /* default timings */ 308 tacls = tacls_max; 309 twrph0 = 8; 310 twrph1 = 8; 311 } 312 313 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { 314 dev_err(info->device, "cannot get suitable timings\n"); 315 return -EINVAL; 316 } 317 318 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", 319 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), 320 twrph1, to_ns(twrph1, clkrate)); 321 322 switch (info->cpu_type) { 323 case TYPE_S3C2410: 324 mask = (S3C2410_NFCONF_TACLS(3) | 325 S3C2410_NFCONF_TWRPH0(7) | 326 S3C2410_NFCONF_TWRPH1(7)); 327 set = S3C2410_NFCONF_EN; 328 set |= S3C2410_NFCONF_TACLS(tacls - 1); 329 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); 330 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); 331 break; 332 333 case TYPE_S3C2440: 334 case TYPE_S3C2412: 335 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | 336 S3C2440_NFCONF_TWRPH0(7) | 337 S3C2440_NFCONF_TWRPH1(7)); 338 339 set = S3C2440_NFCONF_TACLS(tacls - 1); 340 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); 341 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); 342 break; 343 344 default: 345 BUG(); 346 } 347 348 local_irq_save(flags); 349 350 cfg = readl(info->regs + S3C2410_NFCONF); 351 cfg &= ~mask; 352 cfg |= set; 353 writel(cfg, info->regs + S3C2410_NFCONF); 354 355 local_irq_restore(flags); 356 357 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); 358 359 return 0; 360 } 361 362 /** 363 * s3c2410_nand_inithw - basic hardware initialisation 364 * @info: The hardware state. 365 * 366 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() 367 * to setup the hardware access speeds and set the controller to be enabled. 368 */ 369 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) 370 { 371 int ret; 372 373 ret = s3c2410_nand_setrate(info); 374 if (ret < 0) 375 return ret; 376 377 switch (info->cpu_type) { 378 case TYPE_S3C2410: 379 default: 380 break; 381 382 case TYPE_S3C2440: 383 case TYPE_S3C2412: 384 /* enable the controller and de-assert nFCE */ 385 386 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); 387 } 388 389 return 0; 390 } 391 392 /** 393 * s3c2410_nand_select_chip - select the given nand chip 394 * @this: NAND chip object. 395 * @chip: The chip number. 396 * 397 * This is called by the MTD layer to either select a given chip for the 398 * @mtd instance, or to indicate that the access has finished and the 399 * chip can be de-selected. 400 * 401 * The routine ensures that the nFCE line is correctly setup, and any 402 * platform specific selection code is called to route nFCE to the specific 403 * chip. 404 */ 405 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip) 406 { 407 struct s3c2410_nand_info *info; 408 struct s3c2410_nand_mtd *nmtd; 409 unsigned long cur; 410 411 nmtd = nand_get_controller_data(this); 412 info = nmtd->info; 413 414 if (chip != -1) 415 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); 416 417 cur = readl(info->sel_reg); 418 419 if (chip == -1) { 420 cur |= info->sel_bit; 421 } else { 422 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { 423 dev_err(info->device, "invalid chip %d\n", chip); 424 return; 425 } 426 427 if (info->platform != NULL) { 428 if (info->platform->select_chip != NULL) 429 (info->platform->select_chip) (nmtd->set, chip); 430 } 431 432 cur &= ~info->sel_bit; 433 } 434 435 writel(cur, info->sel_reg); 436 437 if (chip == -1) 438 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); 439 } 440 441 /* s3c2410_nand_hwcontrol 442 * 443 * Issue command and address cycles to the chip 444 */ 445 446 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd, 447 unsigned int ctrl) 448 { 449 struct mtd_info *mtd = nand_to_mtd(chip); 450 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 451 452 if (cmd == NAND_CMD_NONE) 453 return; 454 455 if (ctrl & NAND_CLE) 456 writeb(cmd, info->regs + S3C2410_NFCMD); 457 else 458 writeb(cmd, info->regs + S3C2410_NFADDR); 459 } 460 461 /* command and control functions */ 462 463 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd, 464 unsigned int ctrl) 465 { 466 struct mtd_info *mtd = nand_to_mtd(chip); 467 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 468 469 if (cmd == NAND_CMD_NONE) 470 return; 471 472 if (ctrl & NAND_CLE) 473 writeb(cmd, info->regs + S3C2440_NFCMD); 474 else 475 writeb(cmd, info->regs + S3C2440_NFADDR); 476 } 477 478 /* s3c2410_nand_devready() 479 * 480 * returns 0 if the nand is busy, 1 if it is ready 481 */ 482 483 static int s3c2410_nand_devready(struct nand_chip *chip) 484 { 485 struct mtd_info *mtd = nand_to_mtd(chip); 486 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 487 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; 488 } 489 490 static int s3c2440_nand_devready(struct nand_chip *chip) 491 { 492 struct mtd_info *mtd = nand_to_mtd(chip); 493 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 494 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; 495 } 496 497 static int s3c2412_nand_devready(struct nand_chip *chip) 498 { 499 struct mtd_info *mtd = nand_to_mtd(chip); 500 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 501 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; 502 } 503 504 /* ECC handling functions */ 505 506 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat, 507 u_char *read_ecc, u_char *calc_ecc) 508 { 509 struct mtd_info *mtd = nand_to_mtd(chip); 510 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 511 unsigned int diff0, diff1, diff2; 512 unsigned int bit, byte; 513 514 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); 515 516 diff0 = read_ecc[0] ^ calc_ecc[0]; 517 diff1 = read_ecc[1] ^ calc_ecc[1]; 518 diff2 = read_ecc[2] ^ calc_ecc[2]; 519 520 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", 521 __func__, 3, read_ecc, 3, calc_ecc, 522 diff0, diff1, diff2); 523 524 if (diff0 == 0 && diff1 == 0 && diff2 == 0) 525 return 0; /* ECC is ok */ 526 527 /* sometimes people do not think about using the ECC, so check 528 * to see if we have an 0xff,0xff,0xff read ECC and then ignore 529 * the error, on the assumption that this is an un-eccd page. 530 */ 531 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff 532 && info->platform->ignore_unset_ecc) 533 return 0; 534 535 /* Can we correct this ECC (ie, one row and column change). 536 * Note, this is similar to the 256 error code on smartmedia */ 537 538 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && 539 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && 540 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { 541 /* calculate the bit position of the error */ 542 543 bit = ((diff2 >> 3) & 1) | 544 ((diff2 >> 4) & 2) | 545 ((diff2 >> 5) & 4); 546 547 /* calculate the byte position of the error */ 548 549 byte = ((diff2 << 7) & 0x100) | 550 ((diff1 << 0) & 0x80) | 551 ((diff1 << 1) & 0x40) | 552 ((diff1 << 2) & 0x20) | 553 ((diff1 << 3) & 0x10) | 554 ((diff0 >> 4) & 0x08) | 555 ((diff0 >> 3) & 0x04) | 556 ((diff0 >> 2) & 0x02) | 557 ((diff0 >> 1) & 0x01); 558 559 dev_dbg(info->device, "correcting error bit %d, byte %d\n", 560 bit, byte); 561 562 dat[byte] ^= (1 << bit); 563 return 1; 564 } 565 566 /* if there is only one bit difference in the ECC, then 567 * one of only a row or column parity has changed, which 568 * means the error is most probably in the ECC itself */ 569 570 diff0 |= (diff1 << 8); 571 diff0 |= (diff2 << 16); 572 573 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */ 574 if ((diff0 & (diff0 - 1)) == 0) 575 return 1; 576 577 return -1; 578 } 579 580 /* ECC functions 581 * 582 * These allow the s3c2410 and s3c2440 to use the controller's ECC 583 * generator block to ECC the data as it passes through] 584 */ 585 586 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode) 587 { 588 struct s3c2410_nand_info *info; 589 unsigned long ctrl; 590 591 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); 592 ctrl = readl(info->regs + S3C2410_NFCONF); 593 ctrl |= S3C2410_NFCONF_INITECC; 594 writel(ctrl, info->regs + S3C2410_NFCONF); 595 } 596 597 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode) 598 { 599 struct s3c2410_nand_info *info; 600 unsigned long ctrl; 601 602 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); 603 ctrl = readl(info->regs + S3C2440_NFCONT); 604 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, 605 info->regs + S3C2440_NFCONT); 606 } 607 608 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode) 609 { 610 struct s3c2410_nand_info *info; 611 unsigned long ctrl; 612 613 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); 614 ctrl = readl(info->regs + S3C2440_NFCONT); 615 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); 616 } 617 618 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip, 619 const u_char *dat, u_char *ecc_code) 620 { 621 struct mtd_info *mtd = nand_to_mtd(chip); 622 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 623 624 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); 625 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); 626 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); 627 628 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); 629 630 return 0; 631 } 632 633 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip, 634 const u_char *dat, u_char *ecc_code) 635 { 636 struct mtd_info *mtd = nand_to_mtd(chip); 637 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 638 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); 639 640 ecc_code[0] = ecc; 641 ecc_code[1] = ecc >> 8; 642 ecc_code[2] = ecc >> 16; 643 644 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); 645 646 return 0; 647 } 648 649 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip, 650 const u_char *dat, u_char *ecc_code) 651 { 652 struct mtd_info *mtd = nand_to_mtd(chip); 653 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 654 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); 655 656 ecc_code[0] = ecc; 657 ecc_code[1] = ecc >> 8; 658 ecc_code[2] = ecc >> 16; 659 660 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); 661 662 return 0; 663 } 664 665 /* over-ride the standard functions for a little more speed. We can 666 * use read/write block to move the data buffers to/from the controller 667 */ 668 669 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len) 670 { 671 readsb(this->legacy.IO_ADDR_R, buf, len); 672 } 673 674 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len) 675 { 676 struct mtd_info *mtd = nand_to_mtd(this); 677 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 678 679 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); 680 681 /* cleanup if we've got less than a word to do */ 682 if (len & 3) { 683 buf += len & ~3; 684 685 for (; len & 3; len--) 686 *buf++ = readb(info->regs + S3C2440_NFDATA); 687 } 688 } 689 690 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf, 691 int len) 692 { 693 writesb(this->legacy.IO_ADDR_W, buf, len); 694 } 695 696 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf, 697 int len) 698 { 699 struct mtd_info *mtd = nand_to_mtd(this); 700 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 701 702 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); 703 704 /* cleanup any fractional write */ 705 if (len & 3) { 706 buf += len & ~3; 707 708 for (; len & 3; len--, buf++) 709 writeb(*buf, info->regs + S3C2440_NFDATA); 710 } 711 } 712 713 /* cpufreq driver support */ 714 715 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ 716 717 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, 718 unsigned long val, void *data) 719 { 720 struct s3c2410_nand_info *info; 721 unsigned long newclk; 722 723 info = container_of(nb, struct s3c2410_nand_info, freq_transition); 724 newclk = clk_get_rate(info->clk); 725 726 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || 727 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { 728 s3c2410_nand_setrate(info); 729 } 730 731 return 0; 732 } 733 734 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) 735 { 736 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; 737 738 return cpufreq_register_notifier(&info->freq_transition, 739 CPUFREQ_TRANSITION_NOTIFIER); 740 } 741 742 static inline void 743 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) 744 { 745 cpufreq_unregister_notifier(&info->freq_transition, 746 CPUFREQ_TRANSITION_NOTIFIER); 747 } 748 749 #else 750 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) 751 { 752 return 0; 753 } 754 755 static inline void 756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) 757 { 758 } 759 #endif 760 761 /* device management functions */ 762 763 static int s3c24xx_nand_remove(struct platform_device *pdev) 764 { 765 struct s3c2410_nand_info *info = to_nand_info(pdev); 766 767 if (info == NULL) 768 return 0; 769 770 s3c2410_nand_cpufreq_deregister(info); 771 772 /* Release all our mtds and their partitions, then go through 773 * freeing the resources used 774 */ 775 776 if (info->mtds != NULL) { 777 struct s3c2410_nand_mtd *ptr = info->mtds; 778 int mtdno; 779 780 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { 781 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); 782 WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip))); 783 nand_cleanup(&ptr->chip); 784 } 785 } 786 787 /* free the common resources */ 788 789 if (!IS_ERR(info->clk)) 790 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); 791 792 return 0; 793 } 794 795 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, 796 struct s3c2410_nand_mtd *mtd, 797 struct s3c2410_nand_set *set) 798 { 799 if (set) { 800 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip); 801 802 mtdinfo->name = set->name; 803 804 return mtd_device_register(mtdinfo, set->partitions, 805 set->nr_partitions); 806 } 807 808 return -ENODEV; 809 } 810 811 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline, 812 const struct nand_data_interface *conf) 813 { 814 struct mtd_info *mtd = nand_to_mtd(chip); 815 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 816 struct s3c2410_platform_nand *pdata = info->platform; 817 const struct nand_sdr_timings *timings; 818 int tacls; 819 820 timings = nand_get_sdr_timings(conf); 821 if (IS_ERR(timings)) 822 return -ENOTSUPP; 823 824 tacls = timings->tCLS_min - timings->tWP_min; 825 if (tacls < 0) 826 tacls = 0; 827 828 pdata->tacls = DIV_ROUND_UP(tacls, 1000); 829 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000); 830 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000); 831 832 return s3c2410_nand_setrate(info); 833 } 834 835 /** 836 * s3c2410_nand_init_chip - initialise a single instance of an chip 837 * @info: The base NAND controller the chip is on. 838 * @nmtd: The new controller MTD instance to fill in. 839 * @set: The information passed from the board specific platform data. 840 * 841 * Initialise the given @nmtd from the information in @info and @set. This 842 * readies the structure for use with the MTD layer functions by ensuring 843 * all pointers are setup and the necessary control routines selected. 844 */ 845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, 846 struct s3c2410_nand_mtd *nmtd, 847 struct s3c2410_nand_set *set) 848 { 849 struct device_node *np = info->device->of_node; 850 struct nand_chip *chip = &nmtd->chip; 851 void __iomem *regs = info->regs; 852 853 nand_set_flash_node(chip, set->of_node); 854 855 chip->legacy.write_buf = s3c2410_nand_write_buf; 856 chip->legacy.read_buf = s3c2410_nand_read_buf; 857 chip->legacy.select_chip = s3c2410_nand_select_chip; 858 chip->legacy.chip_delay = 50; 859 nand_set_controller_data(chip, nmtd); 860 chip->options = set->options; 861 chip->controller = &info->controller; 862 863 /* 864 * let's keep behavior unchanged for legacy boards booting via pdata and 865 * auto-detect timings only when booting with a device tree. 866 */ 867 if (!np) 868 chip->options |= NAND_KEEP_TIMINGS; 869 870 switch (info->cpu_type) { 871 case TYPE_S3C2410: 872 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA; 873 info->sel_reg = regs + S3C2410_NFCONF; 874 info->sel_bit = S3C2410_NFCONF_nFCE; 875 chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol; 876 chip->legacy.dev_ready = s3c2410_nand_devready; 877 break; 878 879 case TYPE_S3C2440: 880 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; 881 info->sel_reg = regs + S3C2440_NFCONT; 882 info->sel_bit = S3C2440_NFCONT_nFCE; 883 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; 884 chip->legacy.dev_ready = s3c2440_nand_devready; 885 chip->legacy.read_buf = s3c2440_nand_read_buf; 886 chip->legacy.write_buf = s3c2440_nand_write_buf; 887 break; 888 889 case TYPE_S3C2412: 890 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; 891 info->sel_reg = regs + S3C2440_NFCONT; 892 info->sel_bit = S3C2412_NFCONT_nFCE0; 893 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; 894 chip->legacy.dev_ready = s3c2412_nand_devready; 895 896 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) 897 dev_info(info->device, "System booted from NAND\n"); 898 899 break; 900 } 901 902 chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W; 903 904 nmtd->info = info; 905 nmtd->set = set; 906 907 chip->ecc.mode = info->platform->ecc_mode; 908 909 /* 910 * If you use u-boot BBT creation code, specifying this flag will 911 * let the kernel fish out the BBT from the NAND. 912 */ 913 if (set->flash_bbt) 914 chip->bbt_options |= NAND_BBT_USE_FLASH; 915 } 916 917 /** 918 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan 919 * @chip: The NAND chip 920 * 921 * This hook is called by the core after the identification of the NAND chip, 922 * once the relevant per-chip information is up to date.. This call ensure that 923 * we update the internal state accordingly. 924 * 925 * The internal state is currently limited to the ECC state information. 926 */ 927 static int s3c2410_nand_attach_chip(struct nand_chip *chip) 928 { 929 struct mtd_info *mtd = nand_to_mtd(chip); 930 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); 931 932 switch (chip->ecc.mode) { 933 934 case NAND_ECC_NONE: 935 dev_info(info->device, "ECC disabled\n"); 936 break; 937 938 case NAND_ECC_SOFT: 939 /* 940 * This driver expects Hamming based ECC when ecc_mode is set 941 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to 942 * avoid adding an extra ecc_algo field to 943 * s3c2410_platform_nand. 944 */ 945 chip->ecc.algo = NAND_ECC_HAMMING; 946 dev_info(info->device, "soft ECC\n"); 947 break; 948 949 case NAND_ECC_HW: 950 chip->ecc.calculate = s3c2410_nand_calculate_ecc; 951 chip->ecc.correct = s3c2410_nand_correct_data; 952 chip->ecc.strength = 1; 953 954 switch (info->cpu_type) { 955 case TYPE_S3C2410: 956 chip->ecc.hwctl = s3c2410_nand_enable_hwecc; 957 chip->ecc.calculate = s3c2410_nand_calculate_ecc; 958 break; 959 960 case TYPE_S3C2412: 961 chip->ecc.hwctl = s3c2412_nand_enable_hwecc; 962 chip->ecc.calculate = s3c2412_nand_calculate_ecc; 963 break; 964 965 case TYPE_S3C2440: 966 chip->ecc.hwctl = s3c2440_nand_enable_hwecc; 967 chip->ecc.calculate = s3c2440_nand_calculate_ecc; 968 break; 969 } 970 971 dev_dbg(info->device, "chip %p => page shift %d\n", 972 chip, chip->page_shift); 973 974 /* change the behaviour depending on whether we are using 975 * the large or small page nand device */ 976 if (chip->page_shift > 10) { 977 chip->ecc.size = 256; 978 chip->ecc.bytes = 3; 979 } else { 980 chip->ecc.size = 512; 981 chip->ecc.bytes = 3; 982 mtd_set_ooblayout(nand_to_mtd(chip), 983 &s3c2410_ooblayout_ops); 984 } 985 986 dev_info(info->device, "hardware ECC\n"); 987 break; 988 989 default: 990 dev_err(info->device, "invalid ECC mode!\n"); 991 return -EINVAL; 992 } 993 994 if (chip->bbt_options & NAND_BBT_USE_FLASH) 995 chip->options |= NAND_SKIP_BBTSCAN; 996 997 return 0; 998 } 999 1000 static const struct nand_controller_ops s3c24xx_nand_controller_ops = { 1001 .attach_chip = s3c2410_nand_attach_chip, 1002 .setup_data_interface = s3c2410_nand_setup_data_interface, 1003 }; 1004 1005 static const struct of_device_id s3c24xx_nand_dt_ids[] = { 1006 { 1007 .compatible = "samsung,s3c2410-nand", 1008 .data = &s3c2410_nand_devtype_data, 1009 }, { 1010 /* also compatible with s3c6400 */ 1011 .compatible = "samsung,s3c2412-nand", 1012 .data = &s3c2412_nand_devtype_data, 1013 }, { 1014 .compatible = "samsung,s3c2440-nand", 1015 .data = &s3c2440_nand_devtype_data, 1016 }, 1017 { /* sentinel */ } 1018 }; 1019 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids); 1020 1021 static int s3c24xx_nand_probe_dt(struct platform_device *pdev) 1022 { 1023 const struct s3c24XX_nand_devtype_data *devtype_data; 1024 struct s3c2410_platform_nand *pdata; 1025 struct s3c2410_nand_info *info = platform_get_drvdata(pdev); 1026 struct device_node *np = pdev->dev.of_node, *child; 1027 struct s3c2410_nand_set *sets; 1028 1029 devtype_data = of_device_get_match_data(&pdev->dev); 1030 if (!devtype_data) 1031 return -ENODEV; 1032 1033 info->cpu_type = devtype_data->type; 1034 1035 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1036 if (!pdata) 1037 return -ENOMEM; 1038 1039 pdev->dev.platform_data = pdata; 1040 1041 pdata->nr_sets = of_get_child_count(np); 1042 if (!pdata->nr_sets) 1043 return 0; 1044 1045 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets), 1046 GFP_KERNEL); 1047 if (!sets) 1048 return -ENOMEM; 1049 1050 pdata->sets = sets; 1051 1052 for_each_available_child_of_node(np, child) { 1053 sets->name = (char *)child->name; 1054 sets->of_node = child; 1055 sets->nr_chips = 1; 1056 1057 of_node_get(child); 1058 1059 sets++; 1060 } 1061 1062 return 0; 1063 } 1064 1065 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev) 1066 { 1067 struct s3c2410_nand_info *info = platform_get_drvdata(pdev); 1068 1069 info->cpu_type = platform_get_device_id(pdev)->driver_data; 1070 1071 return 0; 1072 } 1073 1074 /* s3c24xx_nand_probe 1075 * 1076 * called by device layer when it finds a device matching 1077 * one our driver can handled. This code checks to see if 1078 * it can allocate all necessary resources then calls the 1079 * nand layer to look for devices 1080 */ 1081 static int s3c24xx_nand_probe(struct platform_device *pdev) 1082 { 1083 struct s3c2410_platform_nand *plat; 1084 struct s3c2410_nand_info *info; 1085 struct s3c2410_nand_mtd *nmtd; 1086 struct s3c2410_nand_set *sets; 1087 struct resource *res; 1088 int err = 0; 1089 int size; 1090 int nr_sets; 1091 int setno; 1092 1093 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 1094 if (info == NULL) { 1095 err = -ENOMEM; 1096 goto exit_error; 1097 } 1098 1099 platform_set_drvdata(pdev, info); 1100 1101 nand_controller_init(&info->controller); 1102 info->controller.ops = &s3c24xx_nand_controller_ops; 1103 1104 /* get the clock source and enable it */ 1105 1106 info->clk = devm_clk_get(&pdev->dev, "nand"); 1107 if (IS_ERR(info->clk)) { 1108 dev_err(&pdev->dev, "failed to get clock\n"); 1109 err = -ENOENT; 1110 goto exit_error; 1111 } 1112 1113 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); 1114 1115 if (pdev->dev.of_node) 1116 err = s3c24xx_nand_probe_dt(pdev); 1117 else 1118 err = s3c24xx_nand_probe_pdata(pdev); 1119 1120 if (err) 1121 goto exit_error; 1122 1123 plat = to_nand_plat(pdev); 1124 1125 /* allocate and map the resource */ 1126 1127 /* currently we assume we have the one resource */ 1128 res = pdev->resource; 1129 size = resource_size(res); 1130 1131 info->device = &pdev->dev; 1132 info->platform = plat; 1133 1134 info->regs = devm_ioremap_resource(&pdev->dev, res); 1135 if (IS_ERR(info->regs)) { 1136 err = PTR_ERR(info->regs); 1137 goto exit_error; 1138 } 1139 1140 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); 1141 1142 if (!plat->sets || plat->nr_sets < 1) { 1143 err = -EINVAL; 1144 goto exit_error; 1145 } 1146 1147 sets = plat->sets; 1148 nr_sets = plat->nr_sets; 1149 1150 info->mtd_count = nr_sets; 1151 1152 /* allocate our information */ 1153 1154 size = nr_sets * sizeof(*info->mtds); 1155 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1156 if (info->mtds == NULL) { 1157 err = -ENOMEM; 1158 goto exit_error; 1159 } 1160 1161 /* initialise all possible chips */ 1162 1163 nmtd = info->mtds; 1164 1165 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) { 1166 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip); 1167 1168 pr_debug("initialising set %d (%p, info %p)\n", 1169 setno, nmtd, info); 1170 1171 mtd->dev.parent = &pdev->dev; 1172 s3c2410_nand_init_chip(info, nmtd, sets); 1173 1174 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1); 1175 if (err) 1176 goto exit_error; 1177 1178 s3c2410_nand_add_partition(info, nmtd, sets); 1179 } 1180 1181 /* initialise the hardware */ 1182 err = s3c2410_nand_inithw(info); 1183 if (err != 0) 1184 goto exit_error; 1185 1186 err = s3c2410_nand_cpufreq_register(info); 1187 if (err < 0) { 1188 dev_err(&pdev->dev, "failed to init cpufreq support\n"); 1189 goto exit_error; 1190 } 1191 1192 if (allow_clk_suspend(info)) { 1193 dev_info(&pdev->dev, "clock idle support enabled\n"); 1194 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); 1195 } 1196 1197 return 0; 1198 1199 exit_error: 1200 s3c24xx_nand_remove(pdev); 1201 1202 if (err == 0) 1203 err = -EINVAL; 1204 return err; 1205 } 1206 1207 /* PM Support */ 1208 #ifdef CONFIG_PM 1209 1210 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) 1211 { 1212 struct s3c2410_nand_info *info = platform_get_drvdata(dev); 1213 1214 if (info) { 1215 info->save_sel = readl(info->sel_reg); 1216 1217 /* For the moment, we must ensure nFCE is high during 1218 * the time we are suspended. This really should be 1219 * handled by suspending the MTDs we are using, but 1220 * that is currently not the case. */ 1221 1222 writel(info->save_sel | info->sel_bit, info->sel_reg); 1223 1224 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int s3c24xx_nand_resume(struct platform_device *dev) 1231 { 1232 struct s3c2410_nand_info *info = platform_get_drvdata(dev); 1233 unsigned long sel; 1234 1235 if (info) { 1236 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); 1237 s3c2410_nand_inithw(info); 1238 1239 /* Restore the state of the nFCE line. */ 1240 1241 sel = readl(info->sel_reg); 1242 sel &= ~info->sel_bit; 1243 sel |= info->save_sel & info->sel_bit; 1244 writel(sel, info->sel_reg); 1245 1246 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); 1247 } 1248 1249 return 0; 1250 } 1251 1252 #else 1253 #define s3c24xx_nand_suspend NULL 1254 #define s3c24xx_nand_resume NULL 1255 #endif 1256 1257 /* driver device registration */ 1258 1259 static const struct platform_device_id s3c24xx_driver_ids[] = { 1260 { 1261 .name = "s3c2410-nand", 1262 .driver_data = TYPE_S3C2410, 1263 }, { 1264 .name = "s3c2440-nand", 1265 .driver_data = TYPE_S3C2440, 1266 }, { 1267 .name = "s3c2412-nand", 1268 .driver_data = TYPE_S3C2412, 1269 }, { 1270 .name = "s3c6400-nand", 1271 .driver_data = TYPE_S3C2412, /* compatible with 2412 */ 1272 }, 1273 { } 1274 }; 1275 1276 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); 1277 1278 static struct platform_driver s3c24xx_nand_driver = { 1279 .probe = s3c24xx_nand_probe, 1280 .remove = s3c24xx_nand_remove, 1281 .suspend = s3c24xx_nand_suspend, 1282 .resume = s3c24xx_nand_resume, 1283 .id_table = s3c24xx_driver_ids, 1284 .driver = { 1285 .name = "s3c24xx-nand", 1286 .of_match_table = s3c24xx_nand_dt_ids, 1287 }, 1288 }; 1289 1290 module_platform_driver(s3c24xx_nand_driver); 1291 1292 MODULE_LICENSE("GPL"); 1293 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 1294 MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); 1295