1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Rockchip NAND Flash controller driver. 4 * Copyright (C) 2020 Rockchip Inc. 5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mtd/rawnand.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 22 /* 23 * NFC Page Data Layout: 24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 25 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + 26 * ...... 27 * NAND Page Data Layout: 28 * 1024 * n data + m Bytes oob 29 * Original Bad Block Mask Location: 30 * First byte of oob(spare). 31 * nand_chip->oob_poi data layout: 32 * 4Bytes sys data + .... + 4Bytes sys data + ECC data. 33 */ 34 35 /* NAND controller register definition */ 36 #define NFC_READ (0) 37 #define NFC_WRITE (1) 38 39 #define NFC_FMCTL (0x00) 40 #define FMCTL_CE_SEL_M 0xFF 41 #define FMCTL_CE_SEL(x) (1 << (x)) 42 #define FMCTL_WP BIT(8) 43 #define FMCTL_RDY BIT(9) 44 45 #define NFC_FMWAIT (0x04) 46 #define FLCTL_RST BIT(0) 47 #define FLCTL_WR (1) /* 0: read, 1: write */ 48 #define FLCTL_XFER_ST BIT(2) 49 #define FLCTL_XFER_EN BIT(3) 50 #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ 51 #define FLCTL_XFER_READY BIT(20) 52 #define FLCTL_XFER_SECTOR (22) 53 #define FLCTL_TOG_FIX BIT(29) 54 55 #define BCHCTL_BANK_M (7 << 5) 56 #define BCHCTL_BANK (5) 57 58 #define DMA_ST BIT(0) 59 #define DMA_WR (1) /* 0: write, 1: read */ 60 #define DMA_EN BIT(2) 61 #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ 62 #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ 63 #define DMA_INC_NUM (9) /* 1 - 16 */ 64 65 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ 66 (((x) >> (e).high) & (e).high_mask) << (e).low_bn) 67 #define INT_DMA BIT(0) 68 #define NFC_BANK (0x800) 69 #define NFC_BANK_STEP (0x100) 70 #define BANK_DATA (0x00) 71 #define BANK_ADDR (0x04) 72 #define BANK_CMD (0x08) 73 #define NFC_SRAM0 (0x1000) 74 #define NFC_SRAM1 (0x1400) 75 #define NFC_SRAM_SIZE (0x400) 76 #define NFC_TIMEOUT (500000) 77 #define NFC_MAX_OOB_PER_STEP 128 78 #define NFC_MIN_OOB_PER_STEP 64 79 #define MAX_DATA_SIZE 0xFFFC 80 #define MAX_ADDRESS_CYC 6 81 #define NFC_ECC_MAX_MODES 4 82 #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ 83 #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ 84 #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ 85 #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) 86 87 enum nfc_type { 88 NFC_V6, 89 NFC_V8, 90 NFC_V9, 91 }; 92 93 /** 94 * struct rk_ecc_cnt_status: represent a ecc status data. 95 * @err_flag_bit: error flag bit index at register. 96 * @low: ECC count low bit index at register. 97 * @low_mask: mask bit. 98 * @low_bn: ECC count low bit number. 99 * @high: ECC count high bit index at register. 100 * @high_mask: mask bit 101 */ 102 struct ecc_cnt_status { 103 u8 err_flag_bit; 104 u8 low; 105 u8 low_mask; 106 u8 low_bn; 107 u8 high; 108 u8 high_mask; 109 }; 110 111 /** 112 * @type: NFC version 113 * @ecc_strengths: ECC strengths 114 * @ecc_cfgs: ECC config values 115 * @flctl_off: FLCTL register offset 116 * @bchctl_off: BCHCTL register offset 117 * @dma_data_buf_off: DMA_DATA_BUF register offset 118 * @dma_oob_buf_off: DMA_OOB_BUF register offset 119 * @dma_cfg_off: DMA_CFG register offset 120 * @dma_st_off: DMA_ST register offset 121 * @bch_st_off: BCG_ST register offset 122 * @randmz_off: RANDMZ register offset 123 * @int_en_off: interrupt enable register offset 124 * @int_clr_off: interrupt clean register offset 125 * @int_st_off: interrupt status register offset 126 * @oob0_off: oob0 register offset 127 * @oob1_off: oob1 register offset 128 * @ecc0: represent ECC0 status data 129 * @ecc1: represent ECC1 status data 130 */ 131 struct nfc_cfg { 132 enum nfc_type type; 133 u8 ecc_strengths[NFC_ECC_MAX_MODES]; 134 u32 ecc_cfgs[NFC_ECC_MAX_MODES]; 135 u32 flctl_off; 136 u32 bchctl_off; 137 u32 dma_cfg_off; 138 u32 dma_data_buf_off; 139 u32 dma_oob_buf_off; 140 u32 dma_st_off; 141 u32 bch_st_off; 142 u32 randmz_off; 143 u32 int_en_off; 144 u32 int_clr_off; 145 u32 int_st_off; 146 u32 oob0_off; 147 u32 oob1_off; 148 struct ecc_cnt_status ecc0; 149 struct ecc_cnt_status ecc1; 150 }; 151 152 struct rk_nfc_nand_chip { 153 struct list_head node; 154 struct nand_chip chip; 155 156 u16 boot_blks; 157 u16 metadata_size; 158 u32 boot_ecc; 159 u32 timing; 160 161 u8 nsels; 162 u8 sels[]; 163 /* Nothing after this field. */ 164 }; 165 166 struct rk_nfc { 167 struct nand_controller controller; 168 const struct nfc_cfg *cfg; 169 struct device *dev; 170 171 struct clk *nfc_clk; 172 struct clk *ahb_clk; 173 void __iomem *regs; 174 175 u32 selected_bank; 176 u32 band_offset; 177 u32 cur_ecc; 178 u32 cur_timing; 179 180 struct completion done; 181 struct list_head chips; 182 183 u8 *page_buf; 184 u32 *oob_buf; 185 u32 page_buf_size; 186 u32 oob_buf_size; 187 188 unsigned long assigned_cs; 189 }; 190 191 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) 192 { 193 return container_of(chip, struct rk_nfc_nand_chip, chip); 194 } 195 196 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) 197 { 198 return (u8 *)p + i * chip->ecc.size; 199 } 200 201 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) 202 { 203 u8 *poi; 204 205 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; 206 207 return poi; 208 } 209 210 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) 211 { 212 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 213 u8 *poi; 214 215 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; 216 217 return poi; 218 } 219 220 static inline int rk_nfc_data_len(struct nand_chip *chip) 221 { 222 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; 223 } 224 225 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) 226 { 227 struct rk_nfc *nfc = nand_get_controller_data(chip); 228 229 return nfc->page_buf + i * rk_nfc_data_len(chip); 230 } 231 232 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) 233 { 234 struct rk_nfc *nfc = nand_get_controller_data(chip); 235 236 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; 237 } 238 239 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) 240 { 241 struct rk_nfc *nfc = nand_get_controller_data(chip); 242 u32 reg, i; 243 244 for (i = 0; i < NFC_ECC_MAX_MODES; i++) { 245 if (strength == nfc->cfg->ecc_strengths[i]) { 246 reg = nfc->cfg->ecc_cfgs[i]; 247 break; 248 } 249 } 250 251 if (i >= NFC_ECC_MAX_MODES) 252 return -EINVAL; 253 254 writel(reg, nfc->regs + nfc->cfg->bchctl_off); 255 256 /* Save chip ECC setting */ 257 nfc->cur_ecc = strength; 258 259 return 0; 260 } 261 262 static void rk_nfc_select_chip(struct nand_chip *chip, int cs) 263 { 264 struct rk_nfc *nfc = nand_get_controller_data(chip); 265 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 266 struct nand_ecc_ctrl *ecc = &chip->ecc; 267 u32 val; 268 269 if (cs < 0) { 270 nfc->selected_bank = -1; 271 /* Deselect the currently selected target. */ 272 val = readl_relaxed(nfc->regs + NFC_FMCTL); 273 val &= ~FMCTL_CE_SEL_M; 274 writel(val, nfc->regs + NFC_FMCTL); 275 return; 276 } 277 278 nfc->selected_bank = rknand->sels[cs]; 279 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; 280 281 val = readl_relaxed(nfc->regs + NFC_FMCTL); 282 val &= ~FMCTL_CE_SEL_M; 283 val |= FMCTL_CE_SEL(nfc->selected_bank); 284 285 writel(val, nfc->regs + NFC_FMCTL); 286 287 /* 288 * Compare current chip timing with selected chip timing and 289 * change if needed. 290 */ 291 if (nfc->cur_timing != rknand->timing) { 292 writel(rknand->timing, nfc->regs + NFC_FMWAIT); 293 nfc->cur_timing = rknand->timing; 294 } 295 296 /* 297 * Compare current chip ECC setting with selected chip ECC setting and 298 * change if needed. 299 */ 300 if (nfc->cur_ecc != ecc->strength) 301 rk_nfc_hw_ecc_setup(chip, ecc->strength); 302 } 303 304 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) 305 { 306 int rc; 307 u32 val; 308 309 rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, 310 val & FMCTL_RDY, 10, NFC_TIMEOUT); 311 312 return rc; 313 } 314 315 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) 316 { 317 int i; 318 319 for (i = 0; i < len; i++) 320 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + 321 BANK_DATA); 322 } 323 324 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) 325 { 326 int i; 327 328 for (i = 0; i < len; i++) 329 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); 330 } 331 332 static int rk_nfc_cmd(struct nand_chip *chip, 333 const struct nand_subop *subop) 334 { 335 struct rk_nfc *nfc = nand_get_controller_data(chip); 336 unsigned int i, j, remaining, start; 337 int reg_offset = nfc->band_offset; 338 u8 *inbuf = NULL; 339 const u8 *outbuf; 340 u32 cnt = 0; 341 int ret = 0; 342 343 for (i = 0; i < subop->ninstrs; i++) { 344 const struct nand_op_instr *instr = &subop->instrs[i]; 345 346 switch (instr->type) { 347 case NAND_OP_CMD_INSTR: 348 writeb(instr->ctx.cmd.opcode, 349 nfc->regs + reg_offset + BANK_CMD); 350 break; 351 352 case NAND_OP_ADDR_INSTR: 353 remaining = nand_subop_get_num_addr_cyc(subop, i); 354 start = nand_subop_get_addr_start_off(subop, i); 355 356 for (j = 0; j < 8 && j + start < remaining; j++) 357 writeb(instr->ctx.addr.addrs[j + start], 358 nfc->regs + reg_offset + BANK_ADDR); 359 break; 360 361 case NAND_OP_DATA_IN_INSTR: 362 case NAND_OP_DATA_OUT_INSTR: 363 start = nand_subop_get_data_start_off(subop, i); 364 cnt = nand_subop_get_data_len(subop, i); 365 366 if (instr->type == NAND_OP_DATA_OUT_INSTR) { 367 outbuf = instr->ctx.data.buf.out + start; 368 rk_nfc_write_buf(nfc, outbuf, cnt); 369 } else { 370 inbuf = instr->ctx.data.buf.in + start; 371 rk_nfc_read_buf(nfc, inbuf, cnt); 372 } 373 break; 374 375 case NAND_OP_WAITRDY_INSTR: 376 if (rk_nfc_wait_ioready(nfc) < 0) { 377 ret = -ETIMEDOUT; 378 dev_err(nfc->dev, "IO not ready\n"); 379 } 380 break; 381 } 382 } 383 384 return ret; 385 } 386 387 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( 388 NAND_OP_PARSER_PATTERN( 389 rk_nfc_cmd, 390 NAND_OP_PARSER_PAT_CMD_ELEM(true), 391 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), 392 NAND_OP_PARSER_PAT_CMD_ELEM(true), 393 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 394 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), 395 NAND_OP_PARSER_PATTERN( 396 rk_nfc_cmd, 397 NAND_OP_PARSER_PAT_CMD_ELEM(true), 398 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), 399 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), 400 NAND_OP_PARSER_PAT_CMD_ELEM(true), 401 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 402 ); 403 404 static int rk_nfc_exec_op(struct nand_chip *chip, 405 const struct nand_operation *op, 406 bool check_only) 407 { 408 if (!check_only) 409 rk_nfc_select_chip(chip, op->cs); 410 411 return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, 412 check_only); 413 } 414 415 static int rk_nfc_setup_interface(struct nand_chip *chip, int target, 416 const struct nand_interface_config *conf) 417 { 418 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 419 struct rk_nfc *nfc = nand_get_controller_data(chip); 420 const struct nand_sdr_timings *timings; 421 u32 rate, tc2rw, trwpw, trw2c; 422 u32 temp; 423 424 if (target < 0) 425 return 0; 426 427 timings = nand_get_sdr_timings(conf); 428 if (IS_ERR(timings)) 429 return -EOPNOTSUPP; 430 431 if (IS_ERR(nfc->nfc_clk)) 432 rate = clk_get_rate(nfc->ahb_clk); 433 else 434 rate = clk_get_rate(nfc->nfc_clk); 435 436 /* Turn clock rate into kHz. */ 437 rate /= 1000; 438 439 tc2rw = 1; 440 trw2c = 1; 441 442 trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; 443 trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); 444 445 temp = timings->tREA_max / 1000; 446 temp = DIV_ROUND_UP(temp * rate, 1000000); 447 448 if (trwpw < temp) 449 trwpw = temp; 450 451 /* 452 * ACCON: access timing control register 453 * ------------------------------------- 454 * 31:18: reserved 455 * 17:12: csrw, clock cycles from the falling edge of CSn to the 456 * falling edge of RDn or WRn 457 * 11:11: reserved 458 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles 459 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the 460 * rising edge of CSn 461 */ 462 463 /* Save chip timing */ 464 rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); 465 466 return 0; 467 } 468 469 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, 470 dma_addr_t dma_data, dma_addr_t dma_oob) 471 { 472 u32 dma_reg, fl_reg, bch_reg; 473 474 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | 475 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); 476 477 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | 478 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; 479 480 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { 481 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); 482 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | 483 (nfc->selected_bank << BCHCTL_BANK); 484 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); 485 } 486 487 writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); 488 writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); 489 writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); 490 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); 491 fl_reg |= FLCTL_XFER_ST; 492 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); 493 } 494 495 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) 496 { 497 void __iomem *ptr; 498 u32 reg; 499 500 ptr = nfc->regs + nfc->cfg->flctl_off; 501 502 return readl_relaxed_poll_timeout(ptr, reg, 503 reg & FLCTL_XFER_READY, 504 10, NFC_TIMEOUT); 505 } 506 507 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, 508 int oob_on, int page) 509 { 510 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 511 struct rk_nfc *nfc = nand_get_controller_data(chip); 512 struct mtd_info *mtd = nand_to_mtd(chip); 513 struct nand_ecc_ctrl *ecc = &chip->ecc; 514 int i, pages_per_blk; 515 516 pages_per_blk = mtd->erasesize / mtd->writesize; 517 if ((chip->options & NAND_IS_BOOT_MEDIUM) && 518 (page < (pages_per_blk * rknand->boot_blks)) && 519 rknand->boot_ecc != ecc->strength) { 520 /* 521 * There's currently no method to notify the MTD framework that 522 * a different ECC strength is in use for the boot blocks. 523 */ 524 return -EIO; 525 } 526 527 if (!buf) 528 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); 529 530 for (i = 0; i < ecc->steps; i++) { 531 /* Copy data to the NFC buffer. */ 532 if (buf) 533 memcpy(rk_nfc_data_ptr(chip, i), 534 rk_nfc_buf_to_data_ptr(chip, buf, i), 535 ecc->size); 536 /* 537 * The first four bytes of OOB are reserved for the 538 * boot ROM. In some debugging cases, such as with a 539 * read, erase and write back test these 4 bytes stored 540 * in OOB also need to be written back. 541 * 542 * The function nand_block_bad detects bad blocks like: 543 * 544 * bad = chip->oob_poi[chip->badblockpos]; 545 * 546 * chip->badblockpos == 0 for a large page NAND Flash, 547 * so chip->oob_poi[0] is the bad block mask (BBM). 548 * 549 * The OOB data layout on the NFC is: 550 * 551 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... 552 * 553 * or 554 * 555 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... 556 * 557 * The code here just swaps the first 4 bytes with the last 558 * 4 bytes without losing any data. 559 * 560 * The chip->oob_poi data layout: 561 * 562 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 563 * 564 * The rk_nfc_ooblayout_free() function already has reserved 565 * these 4 bytes with: 566 * 567 * oob_region->offset = NFC_SYS_DATA_SIZE + 2; 568 */ 569 if (!i) 570 memcpy(rk_nfc_oob_ptr(chip, i), 571 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), 572 NFC_SYS_DATA_SIZE); 573 else 574 memcpy(rk_nfc_oob_ptr(chip, i), 575 rk_nfc_buf_to_oob_ptr(chip, i - 1), 576 NFC_SYS_DATA_SIZE); 577 /* Copy ECC data to the NFC buffer. */ 578 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, 579 rk_nfc_buf_to_oob_ecc_ptr(chip, i), 580 ecc->bytes); 581 } 582 583 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 584 rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); 585 return nand_prog_page_end_op(chip); 586 } 587 588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, 589 int oob_on, int page) 590 { 591 struct mtd_info *mtd = nand_to_mtd(chip); 592 struct rk_nfc *nfc = nand_get_controller_data(chip); 593 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 594 struct nand_ecc_ctrl *ecc = &chip->ecc; 595 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : 596 NFC_MIN_OOB_PER_STEP; 597 int pages_per_blk = mtd->erasesize / mtd->writesize; 598 int ret = 0, i, boot_rom_mode = 0; 599 dma_addr_t dma_data, dma_oob; 600 u32 reg; 601 u8 *oob; 602 603 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 604 605 if (buf) 606 memcpy(nfc->page_buf, buf, mtd->writesize); 607 else 608 memset(nfc->page_buf, 0xFF, mtd->writesize); 609 610 /* 611 * The first blocks (4, 8 or 16 depending on the device) are used 612 * by the boot ROM and the first 32 bits of OOB need to link to 613 * the next page address in the same block. We can't directly copy 614 * OOB data from the MTD framework, because this page address 615 * conflicts for example with the bad block marker (BBM), 616 * so we shift all OOB data including the BBM with 4 byte positions. 617 * As a consequence the OOB size available to the MTD framework is 618 * also reduced with 4 bytes. 619 * 620 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... 621 * 622 * If a NAND is not a boot medium or the page is not a boot block, 623 * the first 4 bytes are left untouched by writing 0xFF to them. 624 * 625 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... 626 * 627 * Configure the ECC algorithm supported by the boot ROM. 628 */ 629 if ((page < (pages_per_blk * rknand->boot_blks)) && 630 (chip->options & NAND_IS_BOOT_MEDIUM)) { 631 boot_rom_mode = 1; 632 if (rknand->boot_ecc != ecc->strength) 633 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); 634 } 635 636 for (i = 0; i < ecc->steps; i++) { 637 if (!i) { 638 reg = 0xFFFFFFFF; 639 } else { 640 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; 641 reg = oob[0] | oob[1] << 8 | oob[2] << 16 | 642 oob[3] << 24; 643 } 644 645 if (!i && boot_rom_mode) 646 reg = (page & (pages_per_blk - 1)) * 4; 647 648 if (nfc->cfg->type == NFC_V9) 649 nfc->oob_buf[i] = reg; 650 else 651 nfc->oob_buf[i * (oob_step / 4)] = reg; 652 } 653 654 dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, 655 mtd->writesize, DMA_TO_DEVICE); 656 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, 657 ecc->steps * oob_step, 658 DMA_TO_DEVICE); 659 660 reinit_completion(&nfc->done); 661 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); 662 663 rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, 664 dma_oob); 665 ret = wait_for_completion_timeout(&nfc->done, 666 msecs_to_jiffies(100)); 667 if (!ret) 668 dev_warn(nfc->dev, "write: wait dma done timeout.\n"); 669 /* 670 * Whether the DMA transfer is completed or not. The driver 671 * needs to check the NFC`s status register to see if the data 672 * transfer was completed. 673 */ 674 ret = rk_nfc_wait_for_xfer_done(nfc); 675 676 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 677 DMA_TO_DEVICE); 678 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, 679 DMA_TO_DEVICE); 680 681 if (boot_rom_mode && rknand->boot_ecc != ecc->strength) 682 rk_nfc_hw_ecc_setup(chip, ecc->strength); 683 684 if (ret) { 685 dev_err(nfc->dev, "write: wait transfer done timeout.\n"); 686 return -ETIMEDOUT; 687 } 688 689 return nand_prog_page_end_op(chip); 690 } 691 692 static int rk_nfc_write_oob(struct nand_chip *chip, int page) 693 { 694 return rk_nfc_write_page_hwecc(chip, NULL, 1, page); 695 } 696 697 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, 698 int page) 699 { 700 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 701 struct rk_nfc *nfc = nand_get_controller_data(chip); 702 struct mtd_info *mtd = nand_to_mtd(chip); 703 struct nand_ecc_ctrl *ecc = &chip->ecc; 704 int i, pages_per_blk; 705 706 pages_per_blk = mtd->erasesize / mtd->writesize; 707 if ((chip->options & NAND_IS_BOOT_MEDIUM) && 708 (page < (pages_per_blk * rknand->boot_blks)) && 709 rknand->boot_ecc != ecc->strength) { 710 /* 711 * There's currently no method to notify the MTD framework that 712 * a different ECC strength is in use for the boot blocks. 713 */ 714 return -EIO; 715 } 716 717 nand_read_page_op(chip, page, 0, NULL, 0); 718 rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); 719 for (i = 0; i < ecc->steps; i++) { 720 /* 721 * The first four bytes of OOB are reserved for the 722 * boot ROM. In some debugging cases, such as with a read, 723 * erase and write back test, these 4 bytes also must be 724 * saved somewhere, otherwise this information will be 725 * lost during a write back. 726 */ 727 if (!i) 728 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), 729 rk_nfc_oob_ptr(chip, i), 730 NFC_SYS_DATA_SIZE); 731 else 732 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), 733 rk_nfc_oob_ptr(chip, i), 734 NFC_SYS_DATA_SIZE); 735 736 /* Copy ECC data from the NFC buffer. */ 737 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), 738 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, 739 ecc->bytes); 740 741 /* Copy data from the NFC buffer. */ 742 if (buf) 743 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), 744 rk_nfc_data_ptr(chip, i), 745 ecc->size); 746 } 747 748 return 0; 749 } 750 751 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, 752 int page) 753 { 754 struct mtd_info *mtd = nand_to_mtd(chip); 755 struct rk_nfc *nfc = nand_get_controller_data(chip); 756 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 757 struct nand_ecc_ctrl *ecc = &chip->ecc; 758 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : 759 NFC_MIN_OOB_PER_STEP; 760 int pages_per_blk = mtd->erasesize / mtd->writesize; 761 dma_addr_t dma_data, dma_oob; 762 int ret = 0, i, cnt, boot_rom_mode = 0; 763 int max_bitflips = 0, bch_st, ecc_fail = 0; 764 u8 *oob; 765 u32 tmp; 766 767 nand_read_page_op(chip, page, 0, NULL, 0); 768 769 dma_data = dma_map_single(nfc->dev, nfc->page_buf, 770 mtd->writesize, 771 DMA_FROM_DEVICE); 772 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, 773 ecc->steps * oob_step, 774 DMA_FROM_DEVICE); 775 776 /* 777 * The first blocks (4, 8 or 16 depending on the device) 778 * are used by the boot ROM. 779 * Configure the ECC algorithm supported by the boot ROM. 780 */ 781 if ((page < (pages_per_blk * rknand->boot_blks)) && 782 (chip->options & NAND_IS_BOOT_MEDIUM)) { 783 boot_rom_mode = 1; 784 if (rknand->boot_ecc != ecc->strength) 785 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); 786 } 787 788 reinit_completion(&nfc->done); 789 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); 790 rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, 791 dma_oob); 792 ret = wait_for_completion_timeout(&nfc->done, 793 msecs_to_jiffies(100)); 794 if (!ret) 795 dev_warn(nfc->dev, "read: wait dma done timeout.\n"); 796 /* 797 * Whether the DMA transfer is completed or not. The driver 798 * needs to check the NFC`s status register to see if the data 799 * transfer was completed. 800 */ 801 ret = rk_nfc_wait_for_xfer_done(nfc); 802 803 dma_unmap_single(nfc->dev, dma_data, mtd->writesize, 804 DMA_FROM_DEVICE); 805 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, 806 DMA_FROM_DEVICE); 807 808 if (ret) { 809 ret = -ETIMEDOUT; 810 dev_err(nfc->dev, "read: wait transfer done timeout.\n"); 811 goto timeout_err; 812 } 813 814 for (i = 1; i < ecc->steps; i++) { 815 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; 816 if (nfc->cfg->type == NFC_V9) 817 tmp = nfc->oob_buf[i]; 818 else 819 tmp = nfc->oob_buf[i * (oob_step / 4)]; 820 *oob++ = (u8)tmp; 821 *oob++ = (u8)(tmp >> 8); 822 *oob++ = (u8)(tmp >> 16); 823 *oob++ = (u8)(tmp >> 24); 824 } 825 826 for (i = 0; i < (ecc->steps / 2); i++) { 827 bch_st = readl_relaxed(nfc->regs + 828 nfc->cfg->bch_st_off + i * 4); 829 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || 830 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { 831 mtd->ecc_stats.failed++; 832 ecc_fail = 1; 833 } else { 834 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); 835 mtd->ecc_stats.corrected += cnt; 836 max_bitflips = max_t(u32, max_bitflips, cnt); 837 838 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); 839 mtd->ecc_stats.corrected += cnt; 840 max_bitflips = max_t(u32, max_bitflips, cnt); 841 } 842 } 843 844 if (buf) 845 memcpy(buf, nfc->page_buf, mtd->writesize); 846 847 timeout_err: 848 if (boot_rom_mode && rknand->boot_ecc != ecc->strength) 849 rk_nfc_hw_ecc_setup(chip, ecc->strength); 850 851 if (ret) 852 return ret; 853 854 if (ecc_fail) { 855 dev_err(nfc->dev, "read page: %x ecc error!\n", page); 856 return 0; 857 } 858 859 return max_bitflips; 860 } 861 862 static int rk_nfc_read_oob(struct nand_chip *chip, int page) 863 { 864 return rk_nfc_read_page_hwecc(chip, NULL, 1, page); 865 } 866 867 static inline void rk_nfc_hw_init(struct rk_nfc *nfc) 868 { 869 /* Disable flash wp. */ 870 writel(FMCTL_WP, nfc->regs + NFC_FMCTL); 871 /* Config default timing 40ns at 150 Mhz NFC clock. */ 872 writel(0x1081, nfc->regs + NFC_FMWAIT); 873 nfc->cur_timing = 0x1081; 874 /* Disable randomizer and DMA. */ 875 writel(0, nfc->regs + nfc->cfg->randmz_off); 876 writel(0, nfc->regs + nfc->cfg->dma_cfg_off); 877 writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); 878 } 879 880 static irqreturn_t rk_nfc_irq(int irq, void *id) 881 { 882 struct rk_nfc *nfc = id; 883 u32 sta, ien; 884 885 sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); 886 ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); 887 888 if (!(sta & ien)) 889 return IRQ_NONE; 890 891 writel(sta, nfc->regs + nfc->cfg->int_clr_off); 892 writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); 893 894 complete(&nfc->done); 895 896 return IRQ_HANDLED; 897 } 898 899 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) 900 { 901 int ret; 902 903 if (!IS_ERR(nfc->nfc_clk)) { 904 ret = clk_prepare_enable(nfc->nfc_clk); 905 if (ret) { 906 dev_err(dev, "failed to enable NFC clk\n"); 907 return ret; 908 } 909 } 910 911 ret = clk_prepare_enable(nfc->ahb_clk); 912 if (ret) { 913 dev_err(dev, "failed to enable ahb clk\n"); 914 clk_disable_unprepare(nfc->nfc_clk); 915 return ret; 916 } 917 918 return 0; 919 } 920 921 static void rk_nfc_disable_clks(struct rk_nfc *nfc) 922 { 923 clk_disable_unprepare(nfc->nfc_clk); 924 clk_disable_unprepare(nfc->ahb_clk); 925 } 926 927 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, 928 struct mtd_oob_region *oob_region) 929 { 930 struct nand_chip *chip = mtd_to_nand(mtd); 931 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 932 933 if (section) 934 return -ERANGE; 935 936 /* 937 * The beginning of the OOB area stores the reserved data for the NFC, 938 * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. 939 */ 940 oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; 941 oob_region->offset = NFC_SYS_DATA_SIZE + 2; 942 943 return 0; 944 } 945 946 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 947 struct mtd_oob_region *oob_region) 948 { 949 struct nand_chip *chip = mtd_to_nand(mtd); 950 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 951 952 if (section) 953 return -ERANGE; 954 955 oob_region->length = mtd->oobsize - rknand->metadata_size; 956 oob_region->offset = rknand->metadata_size; 957 958 return 0; 959 } 960 961 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { 962 .free = rk_nfc_ooblayout_free, 963 .ecc = rk_nfc_ooblayout_ecc, 964 }; 965 966 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) 967 { 968 struct nand_chip *chip = mtd_to_nand(mtd); 969 struct rk_nfc *nfc = nand_get_controller_data(chip); 970 struct nand_ecc_ctrl *ecc = &chip->ecc; 971 const u8 *strengths = nfc->cfg->ecc_strengths; 972 u8 max_strength, nfc_max_strength; 973 int i; 974 975 nfc_max_strength = nfc->cfg->ecc_strengths[0]; 976 /* If optional dt settings not present. */ 977 if (!ecc->size || !ecc->strength || 978 ecc->strength > nfc_max_strength) { 979 chip->ecc.size = 1024; 980 ecc->steps = mtd->writesize / ecc->size; 981 982 /* 983 * HW ECC always requests the number of ECC bytes per 1024 byte 984 * blocks. The first 4 OOB bytes are reserved for sys data. 985 */ 986 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / 987 fls(8 * 1024); 988 if (max_strength > nfc_max_strength) 989 max_strength = nfc_max_strength; 990 991 for (i = 0; i < 4; i++) { 992 if (max_strength >= strengths[i]) 993 break; 994 } 995 996 if (i >= 4) { 997 dev_err(nfc->dev, "unsupported ECC strength\n"); 998 return -EOPNOTSUPP; 999 } 1000 1001 ecc->strength = strengths[i]; 1002 } 1003 ecc->steps = mtd->writesize / ecc->size; 1004 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); 1005 1006 return 0; 1007 } 1008 1009 static int rk_nfc_attach_chip(struct nand_chip *chip) 1010 { 1011 struct mtd_info *mtd = nand_to_mtd(chip); 1012 struct device *dev = mtd->dev.parent; 1013 struct rk_nfc *nfc = nand_get_controller_data(chip); 1014 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); 1015 struct nand_ecc_ctrl *ecc = &chip->ecc; 1016 int new_page_len, new_oob_len; 1017 void *buf; 1018 int ret; 1019 1020 if (chip->options & NAND_BUSWIDTH_16) { 1021 dev_err(dev, "16 bits bus width not supported"); 1022 return -EINVAL; 1023 } 1024 1025 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 1026 return 0; 1027 1028 ret = rk_nfc_ecc_init(dev, mtd); 1029 if (ret) 1030 return ret; 1031 1032 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; 1033 1034 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { 1035 dev_err(dev, 1036 "driver needs at least %d bytes of meta data\n", 1037 NFC_SYS_DATA_SIZE + 2); 1038 return -EIO; 1039 } 1040 1041 /* Check buffer first, avoid duplicate alloc buffer. */ 1042 new_page_len = mtd->writesize + mtd->oobsize; 1043 if (nfc->page_buf && new_page_len > nfc->page_buf_size) { 1044 buf = krealloc(nfc->page_buf, new_page_len, 1045 GFP_KERNEL | GFP_DMA); 1046 if (!buf) 1047 return -ENOMEM; 1048 nfc->page_buf = buf; 1049 nfc->page_buf_size = new_page_len; 1050 } 1051 1052 new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; 1053 if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { 1054 buf = krealloc(nfc->oob_buf, new_oob_len, 1055 GFP_KERNEL | GFP_DMA); 1056 if (!buf) { 1057 kfree(nfc->page_buf); 1058 nfc->page_buf = NULL; 1059 return -ENOMEM; 1060 } 1061 nfc->oob_buf = buf; 1062 nfc->oob_buf_size = new_oob_len; 1063 } 1064 1065 if (!nfc->page_buf) { 1066 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); 1067 if (!nfc->page_buf) 1068 return -ENOMEM; 1069 nfc->page_buf_size = new_page_len; 1070 } 1071 1072 if (!nfc->oob_buf) { 1073 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); 1074 if (!nfc->oob_buf) { 1075 kfree(nfc->page_buf); 1076 nfc->page_buf = NULL; 1077 return -ENOMEM; 1078 } 1079 nfc->oob_buf_size = new_oob_len; 1080 } 1081 1082 chip->ecc.write_page_raw = rk_nfc_write_page_raw; 1083 chip->ecc.write_page = rk_nfc_write_page_hwecc; 1084 chip->ecc.write_oob = rk_nfc_write_oob; 1085 1086 chip->ecc.read_page_raw = rk_nfc_read_page_raw; 1087 chip->ecc.read_page = rk_nfc_read_page_hwecc; 1088 chip->ecc.read_oob = rk_nfc_read_oob; 1089 1090 return 0; 1091 } 1092 1093 static const struct nand_controller_ops rk_nfc_controller_ops = { 1094 .attach_chip = rk_nfc_attach_chip, 1095 .exec_op = rk_nfc_exec_op, 1096 .setup_interface = rk_nfc_setup_interface, 1097 }; 1098 1099 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, 1100 struct device_node *np) 1101 { 1102 struct rk_nfc_nand_chip *rknand; 1103 struct nand_chip *chip; 1104 struct mtd_info *mtd; 1105 int nsels; 1106 u32 tmp; 1107 int ret; 1108 int i; 1109 1110 if (!of_get_property(np, "reg", &nsels)) 1111 return -ENODEV; 1112 nsels /= sizeof(u32); 1113 if (!nsels || nsels > NFC_MAX_NSELS) { 1114 dev_err(dev, "invalid reg property size %d\n", nsels); 1115 return -EINVAL; 1116 } 1117 1118 rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), 1119 GFP_KERNEL); 1120 if (!rknand) 1121 return -ENOMEM; 1122 1123 rknand->nsels = nsels; 1124 for (i = 0; i < nsels; i++) { 1125 ret = of_property_read_u32_index(np, "reg", i, &tmp); 1126 if (ret) { 1127 dev_err(dev, "reg property failure : %d\n", ret); 1128 return ret; 1129 } 1130 1131 if (tmp >= NFC_MAX_NSELS) { 1132 dev_err(dev, "invalid CS: %u\n", tmp); 1133 return -EINVAL; 1134 } 1135 1136 if (test_and_set_bit(tmp, &nfc->assigned_cs)) { 1137 dev_err(dev, "CS %u already assigned\n", tmp); 1138 return -EINVAL; 1139 } 1140 1141 rknand->sels[i] = tmp; 1142 } 1143 1144 chip = &rknand->chip; 1145 chip->controller = &nfc->controller; 1146 1147 nand_set_flash_node(chip, np); 1148 1149 nand_set_controller_data(chip, nfc); 1150 1151 chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; 1152 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; 1153 1154 /* Set default mode in case dt entry is missing. */ 1155 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1156 1157 mtd = nand_to_mtd(chip); 1158 mtd->owner = THIS_MODULE; 1159 mtd->dev.parent = dev; 1160 1161 if (!mtd->name) { 1162 dev_err(nfc->dev, "NAND label property is mandatory\n"); 1163 return -EINVAL; 1164 } 1165 1166 mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); 1167 rk_nfc_hw_init(nfc); 1168 ret = nand_scan(chip, nsels); 1169 if (ret) 1170 return ret; 1171 1172 if (chip->options & NAND_IS_BOOT_MEDIUM) { 1173 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); 1174 rknand->boot_blks = ret ? 0 : tmp; 1175 1176 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", 1177 &tmp); 1178 rknand->boot_ecc = ret ? chip->ecc.strength : tmp; 1179 } 1180 1181 ret = mtd_device_register(mtd, NULL, 0); 1182 if (ret) { 1183 dev_err(dev, "MTD parse partition error\n"); 1184 nand_cleanup(chip); 1185 return ret; 1186 } 1187 1188 list_add_tail(&rknand->node, &nfc->chips); 1189 1190 return 0; 1191 } 1192 1193 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) 1194 { 1195 struct rk_nfc_nand_chip *rknand, *tmp; 1196 struct nand_chip *chip; 1197 int ret; 1198 1199 list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { 1200 chip = &rknand->chip; 1201 ret = mtd_device_unregister(nand_to_mtd(chip)); 1202 WARN_ON(ret); 1203 nand_cleanup(chip); 1204 list_del(&rknand->node); 1205 } 1206 } 1207 1208 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) 1209 { 1210 struct device_node *np = dev->of_node, *nand_np; 1211 int nchips = of_get_child_count(np); 1212 int ret; 1213 1214 if (!nchips || nchips > NFC_MAX_NSELS) { 1215 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", 1216 nchips); 1217 return -EINVAL; 1218 } 1219 1220 for_each_child_of_node(np, nand_np) { 1221 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); 1222 if (ret) { 1223 of_node_put(nand_np); 1224 rk_nfc_chips_cleanup(nfc); 1225 return ret; 1226 } 1227 } 1228 1229 return 0; 1230 } 1231 1232 static struct nfc_cfg nfc_v6_cfg = { 1233 .type = NFC_V6, 1234 .ecc_strengths = {60, 40, 24, 16}, 1235 .ecc_cfgs = { 1236 0x00040011, 0x00040001, 0x00000011, 0x00000001, 1237 }, 1238 .flctl_off = 0x08, 1239 .bchctl_off = 0x0C, 1240 .dma_cfg_off = 0x10, 1241 .dma_data_buf_off = 0x14, 1242 .dma_oob_buf_off = 0x18, 1243 .dma_st_off = 0x1C, 1244 .bch_st_off = 0x20, 1245 .randmz_off = 0x150, 1246 .int_en_off = 0x16C, 1247 .int_clr_off = 0x170, 1248 .int_st_off = 0x174, 1249 .oob0_off = 0x200, 1250 .oob1_off = 0x230, 1251 .ecc0 = { 1252 .err_flag_bit = 2, 1253 .low = 3, 1254 .low_mask = 0x1F, 1255 .low_bn = 5, 1256 .high = 27, 1257 .high_mask = 0x1, 1258 }, 1259 .ecc1 = { 1260 .err_flag_bit = 15, 1261 .low = 16, 1262 .low_mask = 0x1F, 1263 .low_bn = 5, 1264 .high = 29, 1265 .high_mask = 0x1, 1266 }, 1267 }; 1268 1269 static struct nfc_cfg nfc_v8_cfg = { 1270 .type = NFC_V8, 1271 .ecc_strengths = {16, 16, 16, 16}, 1272 .ecc_cfgs = { 1273 0x00000001, 0x00000001, 0x00000001, 0x00000001, 1274 }, 1275 .flctl_off = 0x08, 1276 .bchctl_off = 0x0C, 1277 .dma_cfg_off = 0x10, 1278 .dma_data_buf_off = 0x14, 1279 .dma_oob_buf_off = 0x18, 1280 .dma_st_off = 0x1C, 1281 .bch_st_off = 0x20, 1282 .randmz_off = 0x150, 1283 .int_en_off = 0x16C, 1284 .int_clr_off = 0x170, 1285 .int_st_off = 0x174, 1286 .oob0_off = 0x200, 1287 .oob1_off = 0x230, 1288 .ecc0 = { 1289 .err_flag_bit = 2, 1290 .low = 3, 1291 .low_mask = 0x1F, 1292 .low_bn = 5, 1293 .high = 27, 1294 .high_mask = 0x1, 1295 }, 1296 .ecc1 = { 1297 .err_flag_bit = 15, 1298 .low = 16, 1299 .low_mask = 0x1F, 1300 .low_bn = 5, 1301 .high = 29, 1302 .high_mask = 0x1, 1303 }, 1304 }; 1305 1306 static struct nfc_cfg nfc_v9_cfg = { 1307 .type = NFC_V9, 1308 .ecc_strengths = {70, 60, 40, 16}, 1309 .ecc_cfgs = { 1310 0x00000001, 0x06000001, 0x04000001, 0x02000001, 1311 }, 1312 .flctl_off = 0x10, 1313 .bchctl_off = 0x20, 1314 .dma_cfg_off = 0x30, 1315 .dma_data_buf_off = 0x34, 1316 .dma_oob_buf_off = 0x38, 1317 .dma_st_off = 0x3C, 1318 .bch_st_off = 0x150, 1319 .randmz_off = 0x208, 1320 .int_en_off = 0x120, 1321 .int_clr_off = 0x124, 1322 .int_st_off = 0x128, 1323 .oob0_off = 0x200, 1324 .oob1_off = 0x204, 1325 .ecc0 = { 1326 .err_flag_bit = 2, 1327 .low = 3, 1328 .low_mask = 0x7F, 1329 .low_bn = 7, 1330 .high = 0, 1331 .high_mask = 0x0, 1332 }, 1333 .ecc1 = { 1334 .err_flag_bit = 18, 1335 .low = 19, 1336 .low_mask = 0x7F, 1337 .low_bn = 7, 1338 .high = 0, 1339 .high_mask = 0x0, 1340 }, 1341 }; 1342 1343 static const struct of_device_id rk_nfc_id_table[] = { 1344 { 1345 .compatible = "rockchip,px30-nfc", 1346 .data = &nfc_v9_cfg 1347 }, 1348 { 1349 .compatible = "rockchip,rk2928-nfc", 1350 .data = &nfc_v6_cfg 1351 }, 1352 { 1353 .compatible = "rockchip,rv1108-nfc", 1354 .data = &nfc_v8_cfg 1355 }, 1356 { /* sentinel */ } 1357 }; 1358 MODULE_DEVICE_TABLE(of, rk_nfc_id_table); 1359 1360 static int rk_nfc_probe(struct platform_device *pdev) 1361 { 1362 struct device *dev = &pdev->dev; 1363 struct rk_nfc *nfc; 1364 int ret, irq; 1365 1366 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1367 if (!nfc) 1368 return -ENOMEM; 1369 1370 nand_controller_init(&nfc->controller); 1371 INIT_LIST_HEAD(&nfc->chips); 1372 nfc->controller.ops = &rk_nfc_controller_ops; 1373 1374 nfc->cfg = of_device_get_match_data(dev); 1375 nfc->dev = dev; 1376 1377 init_completion(&nfc->done); 1378 1379 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 1380 if (IS_ERR(nfc->regs)) { 1381 ret = PTR_ERR(nfc->regs); 1382 goto release_nfc; 1383 } 1384 1385 nfc->nfc_clk = devm_clk_get(dev, "nfc"); 1386 if (IS_ERR(nfc->nfc_clk)) { 1387 dev_dbg(dev, "no NFC clk\n"); 1388 /* Some earlier models, such as rk3066, have no NFC clk. */ 1389 } 1390 1391 nfc->ahb_clk = devm_clk_get(dev, "ahb"); 1392 if (IS_ERR(nfc->ahb_clk)) { 1393 dev_err(dev, "no ahb clk\n"); 1394 ret = PTR_ERR(nfc->ahb_clk); 1395 goto release_nfc; 1396 } 1397 1398 ret = rk_nfc_enable_clks(dev, nfc); 1399 if (ret) 1400 goto release_nfc; 1401 1402 irq = platform_get_irq(pdev, 0); 1403 if (irq < 0) { 1404 ret = -EINVAL; 1405 goto clk_disable; 1406 } 1407 1408 writel(0, nfc->regs + nfc->cfg->int_en_off); 1409 ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); 1410 if (ret) { 1411 dev_err(dev, "failed to request NFC irq\n"); 1412 goto clk_disable; 1413 } 1414 1415 platform_set_drvdata(pdev, nfc); 1416 1417 ret = rk_nfc_nand_chips_init(dev, nfc); 1418 if (ret) { 1419 dev_err(dev, "failed to init NAND chips\n"); 1420 goto clk_disable; 1421 } 1422 return 0; 1423 1424 clk_disable: 1425 rk_nfc_disable_clks(nfc); 1426 release_nfc: 1427 return ret; 1428 } 1429 1430 static int rk_nfc_remove(struct platform_device *pdev) 1431 { 1432 struct rk_nfc *nfc = platform_get_drvdata(pdev); 1433 1434 kfree(nfc->page_buf); 1435 kfree(nfc->oob_buf); 1436 rk_nfc_chips_cleanup(nfc); 1437 rk_nfc_disable_clks(nfc); 1438 1439 return 0; 1440 } 1441 1442 static int __maybe_unused rk_nfc_suspend(struct device *dev) 1443 { 1444 struct rk_nfc *nfc = dev_get_drvdata(dev); 1445 1446 rk_nfc_disable_clks(nfc); 1447 1448 return 0; 1449 } 1450 1451 static int __maybe_unused rk_nfc_resume(struct device *dev) 1452 { 1453 struct rk_nfc *nfc = dev_get_drvdata(dev); 1454 struct rk_nfc_nand_chip *rknand; 1455 struct nand_chip *chip; 1456 int ret; 1457 u32 i; 1458 1459 ret = rk_nfc_enable_clks(dev, nfc); 1460 if (ret) 1461 return ret; 1462 1463 /* Reset NAND chip if VCC was powered off. */ 1464 list_for_each_entry(rknand, &nfc->chips, node) { 1465 chip = &rknand->chip; 1466 for (i = 0; i < rknand->nsels; i++) 1467 nand_reset(chip, i); 1468 } 1469 1470 return 0; 1471 } 1472 1473 static const struct dev_pm_ops rk_nfc_pm_ops = { 1474 SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) 1475 }; 1476 1477 static struct platform_driver rk_nfc_driver = { 1478 .probe = rk_nfc_probe, 1479 .remove = rk_nfc_remove, 1480 .driver = { 1481 .name = "rockchip-nfc", 1482 .of_match_table = rk_nfc_id_table, 1483 .pm = &rk_nfc_pm_ops, 1484 }, 1485 }; 1486 1487 module_platform_driver(rk_nfc_driver); 1488 1489 MODULE_LICENSE("Dual MIT/GPL"); 1490 MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); 1491 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); 1492 MODULE_ALIAS("platform:rockchip-nand-controller"); 1493