xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/slab.h>
8 #include <linux/bitops.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
18 
19 /* NANDc reg offsets */
20 #define	NAND_FLASH_CMD			0x00
21 #define	NAND_ADDR0			0x04
22 #define	NAND_ADDR1			0x08
23 #define	NAND_FLASH_CHIP_SELECT		0x0c
24 #define	NAND_EXEC_CMD			0x10
25 #define	NAND_FLASH_STATUS		0x14
26 #define	NAND_BUFFER_STATUS		0x18
27 #define	NAND_DEV0_CFG0			0x20
28 #define	NAND_DEV0_CFG1			0x24
29 #define	NAND_DEV0_ECC_CFG		0x28
30 #define	NAND_AUTO_STATUS_EN		0x2c
31 #define	NAND_DEV1_CFG0			0x30
32 #define	NAND_DEV1_CFG1			0x34
33 #define	NAND_READ_ID			0x40
34 #define	NAND_READ_STATUS		0x44
35 #define	NAND_DEV_CMD0			0xa0
36 #define	NAND_DEV_CMD1			0xa4
37 #define	NAND_DEV_CMD2			0xa8
38 #define	NAND_DEV_CMD_VLD		0xac
39 #define	SFLASHC_BURST_CFG		0xe0
40 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
41 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
42 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
43 #define	FLASH_BUF_ACC			0x100
44 
45 #define	NAND_CTRL			0xf00
46 #define	NAND_VERSION			0xf08
47 #define	NAND_READ_LOCATION_0		0xf20
48 #define	NAND_READ_LOCATION_1		0xf24
49 #define	NAND_READ_LOCATION_2		0xf28
50 #define	NAND_READ_LOCATION_3		0xf2c
51 #define	NAND_READ_LOCATION_LAST_CW_0	0xf40
52 #define	NAND_READ_LOCATION_LAST_CW_1	0xf44
53 #define	NAND_READ_LOCATION_LAST_CW_2	0xf48
54 #define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
55 
56 /* dummy register offsets, used by write_reg_dma */
57 #define	NAND_DEV_CMD1_RESTORE		0xdead
58 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
59 
60 /* NAND_FLASH_CMD bits */
61 #define	PAGE_ACC			BIT(4)
62 #define	LAST_PAGE			BIT(5)
63 
64 /* NAND_FLASH_CHIP_SELECT bits */
65 #define	NAND_DEV_SEL			0
66 #define	DM_EN				BIT(2)
67 
68 /* NAND_FLASH_STATUS bits */
69 #define	FS_OP_ERR			BIT(4)
70 #define	FS_READY_BSY_N			BIT(5)
71 #define	FS_MPU_ERR			BIT(8)
72 #define	FS_DEVICE_STS_ERR		BIT(16)
73 #define	FS_DEVICE_WP			BIT(23)
74 
75 /* NAND_BUFFER_STATUS bits */
76 #define	BS_UNCORRECTABLE_BIT		BIT(8)
77 #define	BS_CORRECTABLE_ERR_MSK		0x1f
78 
79 /* NAND_DEVn_CFG0 bits */
80 #define	DISABLE_STATUS_AFTER_WRITE	4
81 #define	CW_PER_PAGE			6
82 #define	UD_SIZE_BYTES			9
83 #define	ECC_PARITY_SIZE_BYTES_RS	19
84 #define	SPARE_SIZE_BYTES		23
85 #define	NUM_ADDR_CYCLES			27
86 #define	STATUS_BFR_READ			30
87 #define	SET_RD_MODE_AFTER_STATUS	31
88 
89 /* NAND_DEVn_CFG0 bits */
90 #define	DEV0_CFG1_ECC_DISABLE		0
91 #define	WIDE_FLASH			1
92 #define	NAND_RECOVERY_CYCLES		2
93 #define	CS_ACTIVE_BSY			5
94 #define	BAD_BLOCK_BYTE_NUM		6
95 #define	BAD_BLOCK_IN_SPARE_AREA		16
96 #define	WR_RD_BSY_GAP			17
97 #define	ENABLE_BCH_ECC			27
98 
99 /* NAND_DEV0_ECC_CFG bits */
100 #define	ECC_CFG_ECC_DISABLE		0
101 #define	ECC_SW_RESET			1
102 #define	ECC_MODE			4
103 #define	ECC_PARITY_SIZE_BYTES_BCH	8
104 #define	ECC_NUM_DATA_BYTES		16
105 #define	ECC_FORCE_CLK_OPEN		30
106 
107 /* NAND_DEV_CMD1 bits */
108 #define	READ_ADDR			0
109 
110 /* NAND_DEV_CMD_VLD bits */
111 #define	READ_START_VLD			BIT(0)
112 #define	READ_STOP_VLD			BIT(1)
113 #define	WRITE_START_VLD			BIT(2)
114 #define	ERASE_START_VLD			BIT(3)
115 #define	SEQ_READ_START_VLD		BIT(4)
116 
117 /* NAND_EBI2_ECC_BUF_CFG bits */
118 #define	NUM_STEPS			0
119 
120 /* NAND_ERASED_CW_DETECT_CFG bits */
121 #define	ERASED_CW_ECC_MASK		1
122 #define	AUTO_DETECT_RES			0
123 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
124 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
125 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
126 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
127 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
128 
129 /* NAND_ERASED_CW_DETECT_STATUS bits */
130 #define	PAGE_ALL_ERASED			BIT(7)
131 #define	CODEWORD_ALL_ERASED		BIT(6)
132 #define	PAGE_ERASED			BIT(5)
133 #define	CODEWORD_ERASED			BIT(4)
134 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
135 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
136 
137 /* NAND_READ_LOCATION_n bits */
138 #define READ_LOCATION_OFFSET		0
139 #define READ_LOCATION_SIZE		16
140 #define READ_LOCATION_LAST		31
141 
142 /* Version Mask */
143 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
144 #define	NAND_VERSION_MAJOR_SHIFT	28
145 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
146 #define	NAND_VERSION_MINOR_SHIFT	16
147 
148 /* NAND OP_CMDs */
149 #define	OP_PAGE_READ			0x2
150 #define	OP_PAGE_READ_WITH_ECC		0x3
151 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
152 #define	OP_PAGE_READ_ONFI_READ		0x5
153 #define	OP_PROGRAM_PAGE			0x6
154 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
155 #define	OP_PROGRAM_PAGE_SPARE		0x9
156 #define	OP_BLOCK_ERASE			0xa
157 #define	OP_FETCH_ID			0xb
158 #define	OP_RESET_DEVICE			0xd
159 
160 /* Default Value for NAND_DEV_CMD_VLD */
161 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
162 					 ERASE_START_VLD | SEQ_READ_START_VLD)
163 
164 /* NAND_CTRL bits */
165 #define	BAM_MODE_EN			BIT(0)
166 
167 /*
168  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
169  * the driver calls the chunks 'step' or 'codeword' interchangeably
170  */
171 #define	NANDC_STEP_SIZE			512
172 
173 /*
174  * the largest page size we support is 8K, this will have 16 steps/codewords
175  * of 512 bytes each
176  */
177 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
178 
179 /* we read at most 3 registers per codeword scan */
180 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
181 
182 /* ECC modes supported by the controller */
183 #define	ECC_NONE	BIT(0)
184 #define	ECC_RS_4BIT	BIT(1)
185 #define	ECC_BCH_4BIT	BIT(2)
186 #define	ECC_BCH_8BIT	BIT(3)
187 
188 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc)	\
189 nandc_set_reg(chip, reg,			\
190 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
191 	      ((read_size) << READ_LOCATION_SIZE) |			\
192 	      ((is_last_read_loc) << READ_LOCATION_LAST))
193 
194 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc)	\
195 nandc_set_reg(chip, reg,			\
196 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
197 	      ((read_size) << READ_LOCATION_SIZE) |			\
198 	      ((is_last_read_loc) << READ_LOCATION_LAST))
199 /*
200  * Returns the actual register address for all NAND_DEV_ registers
201  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
202  */
203 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
204 
205 /* Returns the NAND register physical address */
206 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
207 
208 /* Returns the dma address for reg read buffer */
209 #define reg_buf_dma_addr(chip, vaddr) \
210 	((chip)->reg_read_dma + \
211 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
212 
213 #define QPIC_PER_CW_CMD_ELEMENTS	32
214 #define QPIC_PER_CW_CMD_SGL		32
215 #define QPIC_PER_CW_DATA_SGL		8
216 
217 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
218 
219 /*
220  * Flags used in DMA descriptor preparation helper functions
221  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
222  */
223 /* Don't set the EOT in current tx BAM sgl */
224 #define NAND_BAM_NO_EOT			BIT(0)
225 /* Set the NWD flag in current BAM sgl */
226 #define NAND_BAM_NWD			BIT(1)
227 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
228 #define NAND_BAM_NEXT_SGL		BIT(2)
229 /*
230  * Erased codeword status is being used two times in single transfer so this
231  * flag will determine the current value of erased codeword status register
232  */
233 #define NAND_ERASED_CW_SET		BIT(4)
234 
235 /*
236  * This data type corresponds to the BAM transaction which will be used for all
237  * NAND transfers.
238  * @bam_ce - the array of BAM command elements
239  * @cmd_sgl - sgl for NAND BAM command pipe
240  * @data_sgl - sgl for NAND BAM consumer/producer pipe
241  * @bam_ce_pos - the index in bam_ce which is available for next sgl
242  * @bam_ce_start - the index in bam_ce which marks the start position ce
243  *		   for current sgl. It will be used for size calculation
244  *		   for current sgl
245  * @cmd_sgl_pos - current index in command sgl.
246  * @cmd_sgl_start - start index in command sgl.
247  * @tx_sgl_pos - current index in data sgl for tx.
248  * @tx_sgl_start - start index in data sgl for tx.
249  * @rx_sgl_pos - current index in data sgl for rx.
250  * @rx_sgl_start - start index in data sgl for rx.
251  * @wait_second_completion - wait for second DMA desc completion before making
252  *			     the NAND transfer completion.
253  * @txn_done - completion for NAND transfer.
254  * @last_data_desc - last DMA desc in data channel (tx/rx).
255  * @last_cmd_desc - last DMA desc in command channel.
256  */
257 struct bam_transaction {
258 	struct bam_cmd_element *bam_ce;
259 	struct scatterlist *cmd_sgl;
260 	struct scatterlist *data_sgl;
261 	u32 bam_ce_pos;
262 	u32 bam_ce_start;
263 	u32 cmd_sgl_pos;
264 	u32 cmd_sgl_start;
265 	u32 tx_sgl_pos;
266 	u32 tx_sgl_start;
267 	u32 rx_sgl_pos;
268 	u32 rx_sgl_start;
269 	bool wait_second_completion;
270 	struct completion txn_done;
271 	struct dma_async_tx_descriptor *last_data_desc;
272 	struct dma_async_tx_descriptor *last_cmd_desc;
273 };
274 
275 /*
276  * This data type corresponds to the nand dma descriptor
277  * @list - list for desc_info
278  * @dir - DMA transfer direction
279  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
280  *	      ADM
281  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
282  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
283  * @dma_desc - low level DMA engine descriptor
284  */
285 struct desc_info {
286 	struct list_head node;
287 
288 	enum dma_data_direction dir;
289 	union {
290 		struct scatterlist adm_sgl;
291 		struct {
292 			struct scatterlist *bam_sgl;
293 			int sgl_cnt;
294 		};
295 	};
296 	struct dma_async_tx_descriptor *dma_desc;
297 };
298 
299 /*
300  * holds the current register values that we want to write. acts as a contiguous
301  * chunk of memory which we use to write the controller registers through DMA.
302  */
303 struct nandc_regs {
304 	__le32 cmd;
305 	__le32 addr0;
306 	__le32 addr1;
307 	__le32 chip_sel;
308 	__le32 exec;
309 
310 	__le32 cfg0;
311 	__le32 cfg1;
312 	__le32 ecc_bch_cfg;
313 
314 	__le32 clrflashstatus;
315 	__le32 clrreadstatus;
316 
317 	__le32 cmd1;
318 	__le32 vld;
319 
320 	__le32 orig_cmd1;
321 	__le32 orig_vld;
322 
323 	__le32 ecc_buf_cfg;
324 	__le32 read_location0;
325 	__le32 read_location1;
326 	__le32 read_location2;
327 	__le32 read_location3;
328 	__le32 read_location_last0;
329 	__le32 read_location_last1;
330 	__le32 read_location_last2;
331 	__le32 read_location_last3;
332 
333 	__le32 erased_cw_detect_cfg_clr;
334 	__le32 erased_cw_detect_cfg_set;
335 };
336 
337 /*
338  * NAND controller data struct
339  *
340  * @controller:			base controller structure
341  * @host_list:			list containing all the chips attached to the
342  *				controller
343  * @dev:			parent device
344  * @base:			MMIO base
345  * @base_phys:			physical base address of controller registers
346  * @base_dma:			dma base address of controller registers
347  * @core_clk:			controller clock
348  * @aon_clk:			another controller clock
349  *
350  * @chan:			dma channel
351  * @cmd_crci:			ADM DMA CRCI for command flow control
352  * @data_crci:			ADM DMA CRCI for data flow control
353  * @desc_list:			DMA descriptor list (list of desc_infos)
354  *
355  * @data_buffer:		our local DMA buffer for page read/writes,
356  *				used when we can't use the buffer provided
357  *				by upper layers directly
358  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
359  *				functions
360  * @reg_read_buf:		local buffer for reading back registers via DMA
361  * @reg_read_dma:		contains dma address for register read buffer
362  * @reg_read_pos:		marker for data read in reg_read_buf
363  *
364  * @regs:			a contiguous chunk of memory for DMA register
365  *				writes. contains the register values to be
366  *				written to controller
367  * @cmd1/vld:			some fixed controller register values
368  * @props:			properties of current NAND controller,
369  *				initialized via DT match data
370  * @max_cwperpage:		maximum QPIC codewords required. calculated
371  *				from all connected NAND devices pagesize
372  */
373 struct qcom_nand_controller {
374 	struct nand_controller controller;
375 	struct list_head host_list;
376 
377 	struct device *dev;
378 
379 	void __iomem *base;
380 	phys_addr_t base_phys;
381 	dma_addr_t base_dma;
382 
383 	struct clk *core_clk;
384 	struct clk *aon_clk;
385 
386 	union {
387 		/* will be used only by QPIC for BAM DMA */
388 		struct {
389 			struct dma_chan *tx_chan;
390 			struct dma_chan *rx_chan;
391 			struct dma_chan *cmd_chan;
392 		};
393 
394 		/* will be used only by EBI2 for ADM DMA */
395 		struct {
396 			struct dma_chan *chan;
397 			unsigned int cmd_crci;
398 			unsigned int data_crci;
399 		};
400 	};
401 
402 	struct list_head desc_list;
403 	struct bam_transaction *bam_txn;
404 
405 	u8		*data_buffer;
406 	int		buf_size;
407 	int		buf_count;
408 	int		buf_start;
409 	unsigned int	max_cwperpage;
410 
411 	__le32 *reg_read_buf;
412 	dma_addr_t reg_read_dma;
413 	int reg_read_pos;
414 
415 	struct nandc_regs *regs;
416 
417 	u32 cmd1, vld;
418 	const struct qcom_nandc_props *props;
419 };
420 
421 /*
422  * NAND chip structure
423  *
424  * @chip:			base NAND chip structure
425  * @node:			list node to add itself to host_list in
426  *				qcom_nand_controller
427  *
428  * @cs:				chip select value for this chip
429  * @cw_size:			the number of bytes in a single step/codeword
430  *				of a page, consisting of all data, ecc, spare
431  *				and reserved bytes
432  * @cw_data:			the number of bytes within a codeword protected
433  *				by ECC
434  * @use_ecc:			request the controller to use ECC for the
435  *				upcoming read/write
436  * @bch_enabled:		flag to tell whether BCH ECC mode is used
437  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
438  *				chip
439  * @status:			value to be returned if NAND_CMD_STATUS command
440  *				is executed
441  * @last_command:		keeps track of last command on this chip. used
442  *				for reading correct status
443  *
444  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
445  *				ecc/non-ecc mode for the current nand flash
446  *				device
447  */
448 struct qcom_nand_host {
449 	struct nand_chip chip;
450 	struct list_head node;
451 
452 	int cs;
453 	int cw_size;
454 	int cw_data;
455 	bool use_ecc;
456 	bool bch_enabled;
457 	int ecc_bytes_hw;
458 	int spare_bytes;
459 	int bbm_size;
460 	u8 status;
461 	int last_command;
462 
463 	u32 cfg0, cfg1;
464 	u32 cfg0_raw, cfg1_raw;
465 	u32 ecc_buf_cfg;
466 	u32 ecc_bch_cfg;
467 	u32 clrflashstatus;
468 	u32 clrreadstatus;
469 };
470 
471 /*
472  * This data type corresponds to the NAND controller properties which varies
473  * among different NAND controllers.
474  * @ecc_modes - ecc mode for NAND
475  * @is_bam - whether NAND controller is using BAM
476  * @is_qpic - whether NAND CTRL is part of qpic IP
477  * @qpic_v2 - flag to indicate QPIC IP version 2
478  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
479  */
480 struct qcom_nandc_props {
481 	u32 ecc_modes;
482 	bool is_bam;
483 	bool is_qpic;
484 	bool qpic_v2;
485 	u32 dev_cmd_reg_start;
486 };
487 
488 /* Frees the BAM transaction memory */
489 static void free_bam_transaction(struct qcom_nand_controller *nandc)
490 {
491 	struct bam_transaction *bam_txn = nandc->bam_txn;
492 
493 	devm_kfree(nandc->dev, bam_txn);
494 }
495 
496 /* Allocates and Initializes the BAM transaction */
497 static struct bam_transaction *
498 alloc_bam_transaction(struct qcom_nand_controller *nandc)
499 {
500 	struct bam_transaction *bam_txn;
501 	size_t bam_txn_size;
502 	unsigned int num_cw = nandc->max_cwperpage;
503 	void *bam_txn_buf;
504 
505 	bam_txn_size =
506 		sizeof(*bam_txn) + num_cw *
507 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
508 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
509 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
510 
511 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
512 	if (!bam_txn_buf)
513 		return NULL;
514 
515 	bam_txn = bam_txn_buf;
516 	bam_txn_buf += sizeof(*bam_txn);
517 
518 	bam_txn->bam_ce = bam_txn_buf;
519 	bam_txn_buf +=
520 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
521 
522 	bam_txn->cmd_sgl = bam_txn_buf;
523 	bam_txn_buf +=
524 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
525 
526 	bam_txn->data_sgl = bam_txn_buf;
527 
528 	init_completion(&bam_txn->txn_done);
529 
530 	return bam_txn;
531 }
532 
533 /* Clears the BAM transaction indexes */
534 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
535 {
536 	struct bam_transaction *bam_txn = nandc->bam_txn;
537 
538 	if (!nandc->props->is_bam)
539 		return;
540 
541 	bam_txn->bam_ce_pos = 0;
542 	bam_txn->bam_ce_start = 0;
543 	bam_txn->cmd_sgl_pos = 0;
544 	bam_txn->cmd_sgl_start = 0;
545 	bam_txn->tx_sgl_pos = 0;
546 	bam_txn->tx_sgl_start = 0;
547 	bam_txn->rx_sgl_pos = 0;
548 	bam_txn->rx_sgl_start = 0;
549 	bam_txn->last_data_desc = NULL;
550 	bam_txn->wait_second_completion = false;
551 
552 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
553 		      QPIC_PER_CW_CMD_SGL);
554 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
555 		      QPIC_PER_CW_DATA_SGL);
556 
557 	reinit_completion(&bam_txn->txn_done);
558 }
559 
560 /* Callback for DMA descriptor completion */
561 static void qpic_bam_dma_done(void *data)
562 {
563 	struct bam_transaction *bam_txn = data;
564 
565 	/*
566 	 * In case of data transfer with NAND, 2 callbacks will be generated.
567 	 * One for command channel and another one for data channel.
568 	 * If current transaction has data descriptors
569 	 * (i.e. wait_second_completion is true), then set this to false
570 	 * and wait for second DMA descriptor completion.
571 	 */
572 	if (bam_txn->wait_second_completion)
573 		bam_txn->wait_second_completion = false;
574 	else
575 		complete(&bam_txn->txn_done);
576 }
577 
578 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
579 {
580 	return container_of(chip, struct qcom_nand_host, chip);
581 }
582 
583 static inline struct qcom_nand_controller *
584 get_qcom_nand_controller(struct nand_chip *chip)
585 {
586 	return container_of(chip->controller, struct qcom_nand_controller,
587 			    controller);
588 }
589 
590 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
591 {
592 	return ioread32(nandc->base + offset);
593 }
594 
595 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
596 			       u32 val)
597 {
598 	iowrite32(val, nandc->base + offset);
599 }
600 
601 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
602 					  bool is_cpu)
603 {
604 	if (!nandc->props->is_bam)
605 		return;
606 
607 	if (is_cpu)
608 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
609 					MAX_REG_RD *
610 					sizeof(*nandc->reg_read_buf),
611 					DMA_FROM_DEVICE);
612 	else
613 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
614 					   MAX_REG_RD *
615 					   sizeof(*nandc->reg_read_buf),
616 					   DMA_FROM_DEVICE);
617 }
618 
619 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
620 {
621 	switch (offset) {
622 	case NAND_FLASH_CMD:
623 		return &regs->cmd;
624 	case NAND_ADDR0:
625 		return &regs->addr0;
626 	case NAND_ADDR1:
627 		return &regs->addr1;
628 	case NAND_FLASH_CHIP_SELECT:
629 		return &regs->chip_sel;
630 	case NAND_EXEC_CMD:
631 		return &regs->exec;
632 	case NAND_FLASH_STATUS:
633 		return &regs->clrflashstatus;
634 	case NAND_DEV0_CFG0:
635 		return &regs->cfg0;
636 	case NAND_DEV0_CFG1:
637 		return &regs->cfg1;
638 	case NAND_DEV0_ECC_CFG:
639 		return &regs->ecc_bch_cfg;
640 	case NAND_READ_STATUS:
641 		return &regs->clrreadstatus;
642 	case NAND_DEV_CMD1:
643 		return &regs->cmd1;
644 	case NAND_DEV_CMD1_RESTORE:
645 		return &regs->orig_cmd1;
646 	case NAND_DEV_CMD_VLD:
647 		return &regs->vld;
648 	case NAND_DEV_CMD_VLD_RESTORE:
649 		return &regs->orig_vld;
650 	case NAND_EBI2_ECC_BUF_CFG:
651 		return &regs->ecc_buf_cfg;
652 	case NAND_READ_LOCATION_0:
653 		return &regs->read_location0;
654 	case NAND_READ_LOCATION_1:
655 		return &regs->read_location1;
656 	case NAND_READ_LOCATION_2:
657 		return &regs->read_location2;
658 	case NAND_READ_LOCATION_3:
659 		return &regs->read_location3;
660 	case NAND_READ_LOCATION_LAST_CW_0:
661 		return &regs->read_location_last0;
662 	case NAND_READ_LOCATION_LAST_CW_1:
663 		return &regs->read_location_last1;
664 	case NAND_READ_LOCATION_LAST_CW_2:
665 		return &regs->read_location_last2;
666 	case NAND_READ_LOCATION_LAST_CW_3:
667 		return &regs->read_location_last3;
668 	default:
669 		return NULL;
670 	}
671 }
672 
673 static void nandc_set_reg(struct nand_chip *chip, int offset,
674 			  u32 val)
675 {
676 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
677 	struct nandc_regs *regs = nandc->regs;
678 	__le32 *reg;
679 
680 	reg = offset_to_nandc_reg(regs, offset);
681 
682 	if (reg)
683 		*reg = cpu_to_le32(val);
684 }
685 
686 /* Helper to check the code word, whether it is last cw or not */
687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
688 {
689 	return cw == (ecc->steps - 1);
690 }
691 
692 /* helper to configure location register values */
693 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
694 			       int cw_offset, int read_size, int is_last_read_loc)
695 {
696 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
697 	struct nand_ecc_ctrl *ecc = &chip->ecc;
698 	int reg_base = NAND_READ_LOCATION_0;
699 
700 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
701 		reg_base = NAND_READ_LOCATION_LAST_CW_0;
702 
703 	reg_base += reg * 4;
704 
705 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
706 		return nandc_set_read_loc_last(chip, reg_base, cw_offset,
707 				read_size, is_last_read_loc);
708 	else
709 		return nandc_set_read_loc_first(chip, reg_base, cw_offset,
710 				read_size, is_last_read_loc);
711 }
712 
713 /* helper to configure address register values */
714 static void set_address(struct qcom_nand_host *host, u16 column, int page)
715 {
716 	struct nand_chip *chip = &host->chip;
717 
718 	if (chip->options & NAND_BUSWIDTH_16)
719 		column >>= 1;
720 
721 	nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
722 	nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
723 }
724 
725 /*
726  * update_rw_regs:	set up read/write register values, these will be
727  *			written to the NAND controller registers via DMA
728  *
729  * @num_cw:		number of steps for the read/write operation
730  * @read:		read or write operation
731  * @cw	:		which code word
732  */
733 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
734 {
735 	struct nand_chip *chip = &host->chip;
736 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
737 
738 	if (read) {
739 		if (host->use_ecc)
740 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
741 		else
742 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
743 	} else {
744 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
745 	}
746 
747 	if (host->use_ecc) {
748 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
749 				(num_cw - 1) << CW_PER_PAGE;
750 
751 		cfg1 = host->cfg1;
752 		ecc_bch_cfg = host->ecc_bch_cfg;
753 	} else {
754 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
755 				(num_cw - 1) << CW_PER_PAGE;
756 
757 		cfg1 = host->cfg1_raw;
758 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
759 	}
760 
761 	nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
762 	nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
763 	nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
764 	nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
765 	nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
766 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
767 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
768 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
769 
770 	if (read)
771 		nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
772 				   host->cw_data : host->cw_size, 1);
773 }
774 
775 /*
776  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
777  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
778  * which will be submitted to DMA engine.
779  */
780 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
781 				  struct dma_chan *chan,
782 				  unsigned long flags)
783 {
784 	struct desc_info *desc;
785 	struct scatterlist *sgl;
786 	unsigned int sgl_cnt;
787 	int ret;
788 	struct bam_transaction *bam_txn = nandc->bam_txn;
789 	enum dma_transfer_direction dir_eng;
790 	struct dma_async_tx_descriptor *dma_desc;
791 
792 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
793 	if (!desc)
794 		return -ENOMEM;
795 
796 	if (chan == nandc->cmd_chan) {
797 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
798 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
799 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
800 		dir_eng = DMA_MEM_TO_DEV;
801 		desc->dir = DMA_TO_DEVICE;
802 	} else if (chan == nandc->tx_chan) {
803 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
804 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
805 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
806 		dir_eng = DMA_MEM_TO_DEV;
807 		desc->dir = DMA_TO_DEVICE;
808 	} else {
809 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
810 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
811 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
812 		dir_eng = DMA_DEV_TO_MEM;
813 		desc->dir = DMA_FROM_DEVICE;
814 	}
815 
816 	sg_mark_end(sgl + sgl_cnt - 1);
817 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
818 	if (ret == 0) {
819 		dev_err(nandc->dev, "failure in mapping desc\n");
820 		kfree(desc);
821 		return -ENOMEM;
822 	}
823 
824 	desc->sgl_cnt = sgl_cnt;
825 	desc->bam_sgl = sgl;
826 
827 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
828 					   flags);
829 
830 	if (!dma_desc) {
831 		dev_err(nandc->dev, "failure in prep desc\n");
832 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
833 		kfree(desc);
834 		return -EINVAL;
835 	}
836 
837 	desc->dma_desc = dma_desc;
838 
839 	/* update last data/command descriptor */
840 	if (chan == nandc->cmd_chan)
841 		bam_txn->last_cmd_desc = dma_desc;
842 	else
843 		bam_txn->last_data_desc = dma_desc;
844 
845 	list_add_tail(&desc->node, &nandc->desc_list);
846 
847 	return 0;
848 }
849 
850 /*
851  * Prepares the command descriptor for BAM DMA which will be used for NAND
852  * register reads and writes. The command descriptor requires the command
853  * to be formed in command element type so this function uses the command
854  * element from bam transaction ce array and fills the same with required
855  * data. A single SGL can contain multiple command elements so
856  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
857  * after the current command element.
858  */
859 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
860 				 int reg_off, const void *vaddr,
861 				 int size, unsigned int flags)
862 {
863 	int bam_ce_size;
864 	int i, ret;
865 	struct bam_cmd_element *bam_ce_buffer;
866 	struct bam_transaction *bam_txn = nandc->bam_txn;
867 
868 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
869 
870 	/* fill the command desc */
871 	for (i = 0; i < size; i++) {
872 		if (read)
873 			bam_prep_ce(&bam_ce_buffer[i],
874 				    nandc_reg_phys(nandc, reg_off + 4 * i),
875 				    BAM_READ_COMMAND,
876 				    reg_buf_dma_addr(nandc,
877 						     (__le32 *)vaddr + i));
878 		else
879 			bam_prep_ce_le32(&bam_ce_buffer[i],
880 					 nandc_reg_phys(nandc, reg_off + 4 * i),
881 					 BAM_WRITE_COMMAND,
882 					 *((__le32 *)vaddr + i));
883 	}
884 
885 	bam_txn->bam_ce_pos += size;
886 
887 	/* use the separate sgl after this command */
888 	if (flags & NAND_BAM_NEXT_SGL) {
889 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
890 		bam_ce_size = (bam_txn->bam_ce_pos -
891 				bam_txn->bam_ce_start) *
892 				sizeof(struct bam_cmd_element);
893 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
894 			   bam_ce_buffer, bam_ce_size);
895 		bam_txn->cmd_sgl_pos++;
896 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
897 
898 		if (flags & NAND_BAM_NWD) {
899 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
900 						     DMA_PREP_FENCE |
901 						     DMA_PREP_CMD);
902 			if (ret)
903 				return ret;
904 		}
905 	}
906 
907 	return 0;
908 }
909 
910 /*
911  * Prepares the data descriptor for BAM DMA which will be used for NAND
912  * data reads and writes.
913  */
914 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
915 				  const void *vaddr,
916 				  int size, unsigned int flags)
917 {
918 	int ret;
919 	struct bam_transaction *bam_txn = nandc->bam_txn;
920 
921 	if (read) {
922 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
923 			   vaddr, size);
924 		bam_txn->rx_sgl_pos++;
925 	} else {
926 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
927 			   vaddr, size);
928 		bam_txn->tx_sgl_pos++;
929 
930 		/*
931 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
932 		 * is not set, form the DMA descriptor
933 		 */
934 		if (!(flags & NAND_BAM_NO_EOT)) {
935 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
936 						     DMA_PREP_INTERRUPT);
937 			if (ret)
938 				return ret;
939 		}
940 	}
941 
942 	return 0;
943 }
944 
945 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
946 			     int reg_off, const void *vaddr, int size,
947 			     bool flow_control)
948 {
949 	struct desc_info *desc;
950 	struct dma_async_tx_descriptor *dma_desc;
951 	struct scatterlist *sgl;
952 	struct dma_slave_config slave_conf;
953 	enum dma_transfer_direction dir_eng;
954 	int ret;
955 
956 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
957 	if (!desc)
958 		return -ENOMEM;
959 
960 	sgl = &desc->adm_sgl;
961 
962 	sg_init_one(sgl, vaddr, size);
963 
964 	if (read) {
965 		dir_eng = DMA_DEV_TO_MEM;
966 		desc->dir = DMA_FROM_DEVICE;
967 	} else {
968 		dir_eng = DMA_MEM_TO_DEV;
969 		desc->dir = DMA_TO_DEVICE;
970 	}
971 
972 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
973 	if (ret == 0) {
974 		ret = -ENOMEM;
975 		goto err;
976 	}
977 
978 	memset(&slave_conf, 0x00, sizeof(slave_conf));
979 
980 	slave_conf.device_fc = flow_control;
981 	if (read) {
982 		slave_conf.src_maxburst = 16;
983 		slave_conf.src_addr = nandc->base_dma + reg_off;
984 		slave_conf.slave_id = nandc->data_crci;
985 	} else {
986 		slave_conf.dst_maxburst = 16;
987 		slave_conf.dst_addr = nandc->base_dma + reg_off;
988 		slave_conf.slave_id = nandc->cmd_crci;
989 	}
990 
991 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
992 	if (ret) {
993 		dev_err(nandc->dev, "failed to configure dma channel\n");
994 		goto err;
995 	}
996 
997 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
998 	if (!dma_desc) {
999 		dev_err(nandc->dev, "failed to prepare desc\n");
1000 		ret = -EINVAL;
1001 		goto err;
1002 	}
1003 
1004 	desc->dma_desc = dma_desc;
1005 
1006 	list_add_tail(&desc->node, &nandc->desc_list);
1007 
1008 	return 0;
1009 err:
1010 	kfree(desc);
1011 
1012 	return ret;
1013 }
1014 
1015 /*
1016  * read_reg_dma:	prepares a descriptor to read a given number of
1017  *			contiguous registers to the reg_read_buf pointer
1018  *
1019  * @first:		offset of the first register in the contiguous block
1020  * @num_regs:		number of registers to read
1021  * @flags:		flags to control DMA descriptor preparation
1022  */
1023 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1024 			int num_regs, unsigned int flags)
1025 {
1026 	bool flow_control = false;
1027 	void *vaddr;
1028 
1029 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1030 	nandc->reg_read_pos += num_regs;
1031 
1032 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1033 		first = dev_cmd_reg_addr(nandc, first);
1034 
1035 	if (nandc->props->is_bam)
1036 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1037 					     num_regs, flags);
1038 
1039 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1040 		flow_control = true;
1041 
1042 	return prep_adm_dma_desc(nandc, true, first, vaddr,
1043 				 num_regs * sizeof(u32), flow_control);
1044 }
1045 
1046 /*
1047  * write_reg_dma:	prepares a descriptor to write a given number of
1048  *			contiguous registers
1049  *
1050  * @first:		offset of the first register in the contiguous block
1051  * @num_regs:		number of registers to write
1052  * @flags:		flags to control DMA descriptor preparation
1053  */
1054 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1055 			 int num_regs, unsigned int flags)
1056 {
1057 	bool flow_control = false;
1058 	struct nandc_regs *regs = nandc->regs;
1059 	void *vaddr;
1060 
1061 	vaddr = offset_to_nandc_reg(regs, first);
1062 
1063 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1064 		if (flags & NAND_ERASED_CW_SET)
1065 			vaddr = &regs->erased_cw_detect_cfg_set;
1066 		else
1067 			vaddr = &regs->erased_cw_detect_cfg_clr;
1068 	}
1069 
1070 	if (first == NAND_EXEC_CMD)
1071 		flags |= NAND_BAM_NWD;
1072 
1073 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1074 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1075 
1076 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1077 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1078 
1079 	if (nandc->props->is_bam)
1080 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1081 					     num_regs, flags);
1082 
1083 	if (first == NAND_FLASH_CMD)
1084 		flow_control = true;
1085 
1086 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1087 				 num_regs * sizeof(u32), flow_control);
1088 }
1089 
1090 /*
1091  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1092  *			controller's internal buffer to the buffer 'vaddr'
1093  *
1094  * @reg_off:		offset within the controller's data buffer
1095  * @vaddr:		virtual address of the buffer we want to write to
1096  * @size:		DMA transaction size in bytes
1097  * @flags:		flags to control DMA descriptor preparation
1098  */
1099 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1100 			 const u8 *vaddr, int size, unsigned int flags)
1101 {
1102 	if (nandc->props->is_bam)
1103 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1104 
1105 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1106 }
1107 
1108 /*
1109  * write_data_dma:	prepares a DMA descriptor to transfer data from
1110  *			'vaddr' to the controller's internal buffer
1111  *
1112  * @reg_off:		offset within the controller's data buffer
1113  * @vaddr:		virtual address of the buffer we want to read from
1114  * @size:		DMA transaction size in bytes
1115  * @flags:		flags to control DMA descriptor preparation
1116  */
1117 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1118 			  const u8 *vaddr, int size, unsigned int flags)
1119 {
1120 	if (nandc->props->is_bam)
1121 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1122 
1123 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1124 }
1125 
1126 /*
1127  * Helper to prepare DMA descriptors for configuring registers
1128  * before reading a NAND page.
1129  */
1130 static void config_nand_page_read(struct nand_chip *chip)
1131 {
1132 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1133 
1134 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1135 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1136 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1137 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1138 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1139 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1140 }
1141 
1142 /*
1143  * Helper to prepare DMA descriptors for configuring registers
1144  * before reading each codeword in NAND page.
1145  */
1146 static void
1147 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1148 {
1149 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1150 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1151 
1152 	int reg = NAND_READ_LOCATION_0;
1153 
1154 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1155 		reg = NAND_READ_LOCATION_LAST_CW_0;
1156 
1157 	if (nandc->props->is_bam)
1158 		write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1159 
1160 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1161 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1162 
1163 	if (use_ecc) {
1164 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1165 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1166 			     NAND_BAM_NEXT_SGL);
1167 	} else {
1168 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1169 	}
1170 }
1171 
1172 /*
1173  * Helper to prepare dma descriptors to configure registers needed for reading a
1174  * single codeword in page
1175  */
1176 static void
1177 config_nand_single_cw_page_read(struct nand_chip *chip,
1178 				bool use_ecc, int cw)
1179 {
1180 	config_nand_page_read(chip);
1181 	config_nand_cw_read(chip, use_ecc, cw);
1182 }
1183 
1184 /*
1185  * Helper to prepare DMA descriptors used to configure registers needed for
1186  * before writing a NAND page.
1187  */
1188 static void config_nand_page_write(struct nand_chip *chip)
1189 {
1190 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1191 
1192 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1193 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1194 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1195 		      NAND_BAM_NEXT_SGL);
1196 }
1197 
1198 /*
1199  * Helper to prepare DMA descriptors for configuring registers
1200  * before writing each codeword in NAND page.
1201  */
1202 static void config_nand_cw_write(struct nand_chip *chip)
1203 {
1204 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1205 
1206 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1207 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1208 
1209 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1210 
1211 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1212 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1213 }
1214 
1215 /*
1216  * the following functions are used within chip->legacy.cmdfunc() to
1217  * perform different NAND_CMD_* commands
1218  */
1219 
1220 /* sets up descriptors for NAND_CMD_PARAM */
1221 static int nandc_param(struct qcom_nand_host *host)
1222 {
1223 	struct nand_chip *chip = &host->chip;
1224 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225 
1226 	/*
1227 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1228 	 * in use. we configure the controller to perform a raw read of 512
1229 	 * bytes to read onfi params
1230 	 */
1231 	if (nandc->props->qpic_v2)
1232 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ |
1233 			      PAGE_ACC | LAST_PAGE);
1234 	else
1235 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ |
1236 			      PAGE_ACC | LAST_PAGE);
1237 
1238 	nandc_set_reg(chip, NAND_ADDR0, 0);
1239 	nandc_set_reg(chip, NAND_ADDR1, 0);
1240 	nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1241 					| 512 << UD_SIZE_BYTES
1242 					| 5 << NUM_ADDR_CYCLES
1243 					| 0 << SPARE_SIZE_BYTES);
1244 	nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1245 					| 0 << CS_ACTIVE_BSY
1246 					| 17 << BAD_BLOCK_BYTE_NUM
1247 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1248 					| 2 << WR_RD_BSY_GAP
1249 					| 0 << WIDE_FLASH
1250 					| 1 << DEV0_CFG1_ECC_DISABLE);
1251 	nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1252 
1253 	/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1254 	if (!nandc->props->qpic_v2) {
1255 		nandc_set_reg(chip, NAND_DEV_CMD_VLD,
1256 			      (nandc->vld & ~READ_START_VLD));
1257 		nandc_set_reg(chip, NAND_DEV_CMD1,
1258 			      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1259 			      | NAND_CMD_PARAM << READ_ADDR);
1260 	}
1261 
1262 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1263 
1264 	if (!nandc->props->qpic_v2) {
1265 		nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1266 		nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1267 	}
1268 
1269 	nandc_set_read_loc(chip, 0, 0, 0, 512, 1);
1270 
1271 	if (!nandc->props->qpic_v2) {
1272 		write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1273 		write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1274 	}
1275 
1276 	nandc->buf_count = 512;
1277 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1278 
1279 	config_nand_single_cw_page_read(chip, false, 0);
1280 
1281 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1282 		      nandc->buf_count, 0);
1283 
1284 	/* restore CMD1 and VLD regs */
1285 	if (!nandc->props->qpic_v2) {
1286 		write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1287 		write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /* sets up descriptors for NAND_CMD_ERASE1 */
1294 static int erase_block(struct qcom_nand_host *host, int page_addr)
1295 {
1296 	struct nand_chip *chip = &host->chip;
1297 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1298 
1299 	nandc_set_reg(chip, NAND_FLASH_CMD,
1300 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1301 	nandc_set_reg(chip, NAND_ADDR0, page_addr);
1302 	nandc_set_reg(chip, NAND_ADDR1, 0);
1303 	nandc_set_reg(chip, NAND_DEV0_CFG0,
1304 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1305 	nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
1306 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1307 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
1308 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
1309 
1310 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1311 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1312 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1313 
1314 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1315 
1316 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1317 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1318 
1319 	return 0;
1320 }
1321 
1322 /* sets up descriptors for NAND_CMD_READID */
1323 static int read_id(struct qcom_nand_host *host, int column)
1324 {
1325 	struct nand_chip *chip = &host->chip;
1326 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1327 
1328 	if (column == -1)
1329 		return 0;
1330 
1331 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID);
1332 	nandc_set_reg(chip, NAND_ADDR0, column);
1333 	nandc_set_reg(chip, NAND_ADDR1, 0);
1334 	nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
1335 		      nandc->props->is_bam ? 0 : DM_EN);
1336 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1337 
1338 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1339 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1340 
1341 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1342 
1343 	return 0;
1344 }
1345 
1346 /* sets up descriptors for NAND_CMD_RESET */
1347 static int reset(struct qcom_nand_host *host)
1348 {
1349 	struct nand_chip *chip = &host->chip;
1350 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1351 
1352 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE);
1353 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1354 
1355 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1356 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1357 
1358 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1359 
1360 	return 0;
1361 }
1362 
1363 /* helpers to submit/free our list of dma descriptors */
1364 static int submit_descs(struct qcom_nand_controller *nandc)
1365 {
1366 	struct desc_info *desc;
1367 	dma_cookie_t cookie = 0;
1368 	struct bam_transaction *bam_txn = nandc->bam_txn;
1369 	int r;
1370 
1371 	if (nandc->props->is_bam) {
1372 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1373 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1374 			if (r)
1375 				return r;
1376 		}
1377 
1378 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1379 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1380 						   DMA_PREP_INTERRUPT);
1381 			if (r)
1382 				return r;
1383 		}
1384 
1385 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1386 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1387 						   DMA_PREP_CMD);
1388 			if (r)
1389 				return r;
1390 		}
1391 	}
1392 
1393 	list_for_each_entry(desc, &nandc->desc_list, node)
1394 		cookie = dmaengine_submit(desc->dma_desc);
1395 
1396 	if (nandc->props->is_bam) {
1397 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1398 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1399 		if (bam_txn->last_data_desc) {
1400 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1401 			bam_txn->last_data_desc->callback_param = bam_txn;
1402 			bam_txn->wait_second_completion = true;
1403 		}
1404 
1405 		dma_async_issue_pending(nandc->tx_chan);
1406 		dma_async_issue_pending(nandc->rx_chan);
1407 		dma_async_issue_pending(nandc->cmd_chan);
1408 
1409 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1410 						 QPIC_NAND_COMPLETION_TIMEOUT))
1411 			return -ETIMEDOUT;
1412 	} else {
1413 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1414 			return -ETIMEDOUT;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static void free_descs(struct qcom_nand_controller *nandc)
1421 {
1422 	struct desc_info *desc, *n;
1423 
1424 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1425 		list_del(&desc->node);
1426 
1427 		if (nandc->props->is_bam)
1428 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1429 				     desc->sgl_cnt, desc->dir);
1430 		else
1431 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1432 				     desc->dir);
1433 
1434 		kfree(desc);
1435 	}
1436 }
1437 
1438 /* reset the register read buffer for next NAND operation */
1439 static void clear_read_regs(struct qcom_nand_controller *nandc)
1440 {
1441 	nandc->reg_read_pos = 0;
1442 	nandc_read_buffer_sync(nandc, false);
1443 }
1444 
1445 static void pre_command(struct qcom_nand_host *host, int command)
1446 {
1447 	struct nand_chip *chip = &host->chip;
1448 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1449 
1450 	nandc->buf_count = 0;
1451 	nandc->buf_start = 0;
1452 	host->use_ecc = false;
1453 	host->last_command = command;
1454 
1455 	clear_read_regs(nandc);
1456 
1457 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1458 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1459 		clear_bam_transaction(nandc);
1460 }
1461 
1462 /*
1463  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1464  * privately maintained status byte, this status byte can be read after
1465  * NAND_CMD_STATUS is called
1466  */
1467 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1468 {
1469 	struct nand_chip *chip = &host->chip;
1470 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1471 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1472 	int num_cw;
1473 	int i;
1474 
1475 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1476 	nandc_read_buffer_sync(nandc, true);
1477 
1478 	for (i = 0; i < num_cw; i++) {
1479 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1480 
1481 		if (flash_status & FS_MPU_ERR)
1482 			host->status &= ~NAND_STATUS_WP;
1483 
1484 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1485 						 (flash_status &
1486 						  FS_DEVICE_STS_ERR)))
1487 			host->status |= NAND_STATUS_FAIL;
1488 	}
1489 }
1490 
1491 static void post_command(struct qcom_nand_host *host, int command)
1492 {
1493 	struct nand_chip *chip = &host->chip;
1494 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1495 
1496 	switch (command) {
1497 	case NAND_CMD_READID:
1498 		nandc_read_buffer_sync(nandc, true);
1499 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1500 		       nandc->buf_count);
1501 		break;
1502 	case NAND_CMD_PAGEPROG:
1503 	case NAND_CMD_ERASE1:
1504 		parse_erase_write_errors(host, command);
1505 		break;
1506 	default:
1507 		break;
1508 	}
1509 }
1510 
1511 /*
1512  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1513  * commands. The rest of the commands wouldn't be called by upper layers.
1514  * For example, NAND_CMD_READOOB would never be called because we have our own
1515  * versions of read_oob ops for nand_ecc_ctrl.
1516  */
1517 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1518 			       int column, int page_addr)
1519 {
1520 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1521 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1522 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1523 	bool wait = false;
1524 	int ret = 0;
1525 
1526 	pre_command(host, command);
1527 
1528 	switch (command) {
1529 	case NAND_CMD_RESET:
1530 		ret = reset(host);
1531 		wait = true;
1532 		break;
1533 
1534 	case NAND_CMD_READID:
1535 		nandc->buf_count = 4;
1536 		ret = read_id(host, column);
1537 		wait = true;
1538 		break;
1539 
1540 	case NAND_CMD_PARAM:
1541 		ret = nandc_param(host);
1542 		wait = true;
1543 		break;
1544 
1545 	case NAND_CMD_ERASE1:
1546 		ret = erase_block(host, page_addr);
1547 		wait = true;
1548 		break;
1549 
1550 	case NAND_CMD_READ0:
1551 		/* we read the entire page for now */
1552 		WARN_ON(column != 0);
1553 
1554 		host->use_ecc = true;
1555 		set_address(host, 0, page_addr);
1556 		update_rw_regs(host, ecc->steps, true, 0);
1557 		break;
1558 
1559 	case NAND_CMD_SEQIN:
1560 		WARN_ON(column != 0);
1561 		set_address(host, 0, page_addr);
1562 		break;
1563 
1564 	case NAND_CMD_PAGEPROG:
1565 	case NAND_CMD_STATUS:
1566 	case NAND_CMD_NONE:
1567 	default:
1568 		break;
1569 	}
1570 
1571 	if (ret) {
1572 		dev_err(nandc->dev, "failure executing command %d\n",
1573 			command);
1574 		free_descs(nandc);
1575 		return;
1576 	}
1577 
1578 	if (wait) {
1579 		ret = submit_descs(nandc);
1580 		if (ret)
1581 			dev_err(nandc->dev,
1582 				"failure submitting descs for command %d\n",
1583 				command);
1584 	}
1585 
1586 	free_descs(nandc);
1587 
1588 	post_command(host, command);
1589 }
1590 
1591 /*
1592  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1593  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1594  *
1595  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1596  * but it notifies that it is an erased CW by placing special characters at
1597  * certain offsets in the buffer.
1598  *
1599  * verify if the page is erased or not, and fix up the page for RS ECC by
1600  * replacing the special characters with 0xff.
1601  */
1602 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1603 {
1604 	u8 empty1, empty2;
1605 
1606 	/*
1607 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1608 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1609 	 * beginning of each codeword
1610 	 */
1611 
1612 	empty1 = data_buf[3];
1613 	empty2 = data_buf[175];
1614 
1615 	/*
1616 	 * if the erased codework markers, if they exist override them with
1617 	 * 0xffs
1618 	 */
1619 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1620 	    (empty1 == 0xff && empty2 == 0x54)) {
1621 		data_buf[3] = 0xff;
1622 		data_buf[175] = 0xff;
1623 	}
1624 
1625 	/*
1626 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1627 	 * restore the original values at the special offsets
1628 	 */
1629 	if (memchr_inv(data_buf, 0xff, data_len)) {
1630 		data_buf[3] = empty1;
1631 		data_buf[175] = empty2;
1632 
1633 		return false;
1634 	}
1635 
1636 	return true;
1637 }
1638 
1639 struct read_stats {
1640 	__le32 flash;
1641 	__le32 buffer;
1642 	__le32 erased_cw;
1643 };
1644 
1645 /* reads back FLASH_STATUS register set by the controller */
1646 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1647 {
1648 	struct nand_chip *chip = &host->chip;
1649 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1650 	int i;
1651 
1652 	nandc_read_buffer_sync(nandc, true);
1653 
1654 	for (i = 0; i < cw_cnt; i++) {
1655 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1656 
1657 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1658 			return -EIO;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 /* performs raw read for one codeword */
1665 static int
1666 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1667 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1668 {
1669 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1670 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1671 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1672 	int data_size1, data_size2, oob_size1, oob_size2;
1673 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1674 
1675 	nand_read_page_op(chip, page, 0, NULL, 0);
1676 	host->use_ecc = false;
1677 
1678 	clear_bam_transaction(nandc);
1679 	set_address(host, host->cw_size * cw, page);
1680 	update_rw_regs(host, 1, true, cw);
1681 	config_nand_page_read(chip);
1682 
1683 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1684 	oob_size1 = host->bbm_size;
1685 
1686 	if (qcom_nandc_is_last_cw(ecc, cw)) {
1687 		data_size2 = ecc->size - data_size1 -
1688 			     ((ecc->steps - 1) * 4);
1689 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1690 			    host->spare_bytes;
1691 	} else {
1692 		data_size2 = host->cw_data - data_size1;
1693 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1694 	}
1695 
1696 	if (nandc->props->is_bam) {
1697 		nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1698 		read_loc += data_size1;
1699 
1700 		nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1701 		read_loc += oob_size1;
1702 
1703 		nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1704 		read_loc += data_size2;
1705 
1706 		nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1707 	}
1708 
1709 	config_nand_cw_read(chip, false, cw);
1710 
1711 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1712 	reg_off += data_size1;
1713 
1714 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1715 	reg_off += oob_size1;
1716 
1717 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1718 	reg_off += data_size2;
1719 
1720 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1721 
1722 	ret = submit_descs(nandc);
1723 	free_descs(nandc);
1724 	if (ret) {
1725 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1726 		return ret;
1727 	}
1728 
1729 	return check_flash_errors(host, 1);
1730 }
1731 
1732 /*
1733  * Bitflips can happen in erased codewords also so this function counts the
1734  * number of 0 in each CW for which ECC engine returns the uncorrectable
1735  * error. The page will be assumed as erased if this count is less than or
1736  * equal to the ecc->strength for each CW.
1737  *
1738  * 1. Both DATA and OOB need to be checked for number of 0. The
1739  *    top-level API can be called with only data buf or OOB buf so use
1740  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1741  *    is null for copying the raw bytes.
1742  * 2. Perform raw read for all the CW which has uncorrectable errors.
1743  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1744  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1745  *    the number of bitflips in this area.
1746  */
1747 static int
1748 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1749 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1750 		      int page, unsigned int max_bitflips)
1751 {
1752 	struct nand_chip *chip = &host->chip;
1753 	struct mtd_info *mtd = nand_to_mtd(chip);
1754 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1755 	u8 *cw_data_buf, *cw_oob_buf;
1756 	int cw, data_size, oob_size, ret = 0;
1757 
1758 	if (!data_buf)
1759 		data_buf = nand_get_data_buf(chip);
1760 
1761 	if (!oob_buf) {
1762 		nand_get_data_buf(chip);
1763 		oob_buf = chip->oob_poi;
1764 	}
1765 
1766 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1767 		if (qcom_nandc_is_last_cw(ecc, cw)) {
1768 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1769 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1770 		} else {
1771 			data_size = host->cw_data;
1772 			oob_size = host->ecc_bytes_hw;
1773 		}
1774 
1775 		/* determine starting buffer address for current CW */
1776 		cw_data_buf = data_buf + (cw * host->cw_data);
1777 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1778 
1779 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1780 					     cw_oob_buf, page, cw);
1781 		if (ret)
1782 			return ret;
1783 
1784 		/*
1785 		 * make sure it isn't an erased page reported
1786 		 * as not-erased by HW because of a few bitflips
1787 		 */
1788 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1789 						  cw_oob_buf + host->bbm_size,
1790 						  oob_size, NULL,
1791 						  0, ecc->strength);
1792 		if (ret < 0) {
1793 			mtd->ecc_stats.failed++;
1794 		} else {
1795 			mtd->ecc_stats.corrected += ret;
1796 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1797 		}
1798 	}
1799 
1800 	return max_bitflips;
1801 }
1802 
1803 /*
1804  * reads back status registers set by the controller to notify page read
1805  * errors. this is equivalent to what 'ecc->correct()' would do.
1806  */
1807 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1808 			     u8 *oob_buf, int page)
1809 {
1810 	struct nand_chip *chip = &host->chip;
1811 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1812 	struct mtd_info *mtd = nand_to_mtd(chip);
1813 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1814 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1815 	struct read_stats *buf;
1816 	bool flash_op_err = false, erased;
1817 	int i;
1818 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1819 
1820 	buf = (struct read_stats *)nandc->reg_read_buf;
1821 	nandc_read_buffer_sync(nandc, true);
1822 
1823 	for (i = 0; i < ecc->steps; i++, buf++) {
1824 		u32 flash, buffer, erased_cw;
1825 		int data_len, oob_len;
1826 
1827 		if (qcom_nandc_is_last_cw(ecc, i)) {
1828 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1829 			oob_len = ecc->steps << 2;
1830 		} else {
1831 			data_len = host->cw_data;
1832 			oob_len = 0;
1833 		}
1834 
1835 		flash = le32_to_cpu(buf->flash);
1836 		buffer = le32_to_cpu(buf->buffer);
1837 		erased_cw = le32_to_cpu(buf->erased_cw);
1838 
1839 		/*
1840 		 * Check ECC failure for each codeword. ECC failure can
1841 		 * happen in either of the following conditions
1842 		 * 1. If number of bitflips are greater than ECC engine
1843 		 *    capability.
1844 		 * 2. If this codeword contains all 0xff for which erased
1845 		 *    codeword detection check will be done.
1846 		 */
1847 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1848 			/*
1849 			 * For BCH ECC, ignore erased codeword errors, if
1850 			 * ERASED_CW bits are set.
1851 			 */
1852 			if (host->bch_enabled) {
1853 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1854 					 true : false;
1855 			/*
1856 			 * For RS ECC, HW reports the erased CW by placing
1857 			 * special characters at certain offsets in the buffer.
1858 			 * These special characters will be valid only if
1859 			 * complete page is read i.e. data_buf is not NULL.
1860 			 */
1861 			} else if (data_buf) {
1862 				erased = erased_chunk_check_and_fixup(data_buf,
1863 								      data_len);
1864 			} else {
1865 				erased = false;
1866 			}
1867 
1868 			if (!erased)
1869 				uncorrectable_cws |= BIT(i);
1870 		/*
1871 		 * Check if MPU or any other operational error (timeout,
1872 		 * device failure, etc.) happened for this codeword and
1873 		 * make flash_op_err true. If flash_op_err is set, then
1874 		 * EIO will be returned for page read.
1875 		 */
1876 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1877 			flash_op_err = true;
1878 		/*
1879 		 * No ECC or operational errors happened. Check the number of
1880 		 * bits corrected and update the ecc_stats.corrected.
1881 		 */
1882 		} else {
1883 			unsigned int stat;
1884 
1885 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1886 			mtd->ecc_stats.corrected += stat;
1887 			max_bitflips = max(max_bitflips, stat);
1888 		}
1889 
1890 		if (data_buf)
1891 			data_buf += data_len;
1892 		if (oob_buf)
1893 			oob_buf += oob_len + ecc->bytes;
1894 	}
1895 
1896 	if (flash_op_err)
1897 		return -EIO;
1898 
1899 	if (!uncorrectable_cws)
1900 		return max_bitflips;
1901 
1902 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1903 				     uncorrectable_cws, page,
1904 				     max_bitflips);
1905 }
1906 
1907 /*
1908  * helper to perform the actual page read operation, used by ecc->read_page(),
1909  * ecc->read_oob()
1910  */
1911 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1912 			 u8 *oob_buf, int page)
1913 {
1914 	struct nand_chip *chip = &host->chip;
1915 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1916 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1917 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1918 	int i, ret;
1919 
1920 	config_nand_page_read(chip);
1921 
1922 	/* queue cmd descs for each codeword */
1923 	for (i = 0; i < ecc->steps; i++) {
1924 		int data_size, oob_size;
1925 
1926 		if (qcom_nandc_is_last_cw(ecc, i)) {
1927 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1928 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1929 				   host->spare_bytes;
1930 		} else {
1931 			data_size = host->cw_data;
1932 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1933 		}
1934 
1935 		if (nandc->props->is_bam) {
1936 			if (data_buf && oob_buf) {
1937 				nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
1938 				nandc_set_read_loc(chip, i, 1, data_size,
1939 						   oob_size, 1);
1940 			} else if (data_buf) {
1941 				nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
1942 			} else {
1943 				nandc_set_read_loc(chip, i, 0, data_size,
1944 						   oob_size, 1);
1945 			}
1946 		}
1947 
1948 		config_nand_cw_read(chip, true, i);
1949 
1950 		if (data_buf)
1951 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1952 				      data_size, 0);
1953 
1954 		/*
1955 		 * when ecc is enabled, the controller doesn't read the real
1956 		 * or dummy bad block markers in each chunk. To maintain a
1957 		 * consistent layout across RAW and ECC reads, we just
1958 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1959 		 * 0xffs)
1960 		 */
1961 		if (oob_buf) {
1962 			int j;
1963 
1964 			for (j = 0; j < host->bbm_size; j++)
1965 				*oob_buf++ = 0xff;
1966 
1967 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1968 				      oob_buf, oob_size, 0);
1969 		}
1970 
1971 		if (data_buf)
1972 			data_buf += data_size;
1973 		if (oob_buf)
1974 			oob_buf += oob_size;
1975 	}
1976 
1977 	ret = submit_descs(nandc);
1978 	free_descs(nandc);
1979 
1980 	if (ret) {
1981 		dev_err(nandc->dev, "failure to read page/oob\n");
1982 		return ret;
1983 	}
1984 
1985 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1986 }
1987 
1988 /*
1989  * a helper that copies the last step/codeword of a page (containing free oob)
1990  * into our local buffer
1991  */
1992 static int copy_last_cw(struct qcom_nand_host *host, int page)
1993 {
1994 	struct nand_chip *chip = &host->chip;
1995 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1996 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1997 	int size;
1998 	int ret;
1999 
2000 	clear_read_regs(nandc);
2001 
2002 	size = host->use_ecc ? host->cw_data : host->cw_size;
2003 
2004 	/* prepare a clean read buffer */
2005 	memset(nandc->data_buffer, 0xff, size);
2006 
2007 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2008 	update_rw_regs(host, 1, true, ecc->steps - 1);
2009 
2010 	config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
2011 
2012 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
2013 
2014 	ret = submit_descs(nandc);
2015 	if (ret)
2016 		dev_err(nandc->dev, "failed to copy last codeword\n");
2017 
2018 	free_descs(nandc);
2019 
2020 	return ret;
2021 }
2022 
2023 /* implements ecc->read_page() */
2024 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
2025 				int oob_required, int page)
2026 {
2027 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2028 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2029 	u8 *data_buf, *oob_buf = NULL;
2030 
2031 	nand_read_page_op(chip, page, 0, NULL, 0);
2032 	data_buf = buf;
2033 	oob_buf = oob_required ? chip->oob_poi : NULL;
2034 
2035 	clear_bam_transaction(nandc);
2036 
2037 	return read_page_ecc(host, data_buf, oob_buf, page);
2038 }
2039 
2040 /* implements ecc->read_page_raw() */
2041 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2042 				    int oob_required, int page)
2043 {
2044 	struct mtd_info *mtd = nand_to_mtd(chip);
2045 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2046 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2047 	int cw, ret;
2048 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
2049 
2050 	for (cw = 0; cw < ecc->steps; cw++) {
2051 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
2052 					     page, cw);
2053 		if (ret)
2054 			return ret;
2055 
2056 		data_buf += host->cw_data;
2057 		oob_buf += ecc->bytes;
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 /* implements ecc->read_oob() */
2064 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
2065 {
2066 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2067 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2068 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2069 
2070 	clear_read_regs(nandc);
2071 	clear_bam_transaction(nandc);
2072 
2073 	host->use_ecc = true;
2074 	set_address(host, 0, page);
2075 	update_rw_regs(host, ecc->steps, true, 0);
2076 
2077 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2078 }
2079 
2080 /* implements ecc->write_page() */
2081 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2082 				 int oob_required, int page)
2083 {
2084 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2085 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2086 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2087 	u8 *data_buf, *oob_buf;
2088 	int i, ret;
2089 
2090 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2091 
2092 	clear_read_regs(nandc);
2093 	clear_bam_transaction(nandc);
2094 
2095 	data_buf = (u8 *)buf;
2096 	oob_buf = chip->oob_poi;
2097 
2098 	host->use_ecc = true;
2099 	update_rw_regs(host, ecc->steps, false, 0);
2100 	config_nand_page_write(chip);
2101 
2102 	for (i = 0; i < ecc->steps; i++) {
2103 		int data_size, oob_size;
2104 
2105 		if (qcom_nandc_is_last_cw(ecc, i)) {
2106 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2107 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2108 				   host->spare_bytes;
2109 		} else {
2110 			data_size = host->cw_data;
2111 			oob_size = ecc->bytes;
2112 		}
2113 
2114 
2115 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2116 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2117 
2118 		/*
2119 		 * when ECC is enabled, we don't really need to write anything
2120 		 * to oob for the first n - 1 codewords since these oob regions
2121 		 * just contain ECC bytes that's written by the controller
2122 		 * itself. For the last codeword, we skip the bbm positions and
2123 		 * write to the free oob area.
2124 		 */
2125 		if (qcom_nandc_is_last_cw(ecc, i)) {
2126 			oob_buf += host->bbm_size;
2127 
2128 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2129 				       oob_buf, oob_size, 0);
2130 		}
2131 
2132 		config_nand_cw_write(chip);
2133 
2134 		data_buf += data_size;
2135 		oob_buf += oob_size;
2136 	}
2137 
2138 	ret = submit_descs(nandc);
2139 	if (ret)
2140 		dev_err(nandc->dev, "failure to write page\n");
2141 
2142 	free_descs(nandc);
2143 
2144 	if (!ret)
2145 		ret = nand_prog_page_end_op(chip);
2146 
2147 	return ret;
2148 }
2149 
2150 /* implements ecc->write_page_raw() */
2151 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2152 				     const uint8_t *buf, int oob_required,
2153 				     int page)
2154 {
2155 	struct mtd_info *mtd = nand_to_mtd(chip);
2156 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2157 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2158 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2159 	u8 *data_buf, *oob_buf;
2160 	int i, ret;
2161 
2162 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2163 	clear_read_regs(nandc);
2164 	clear_bam_transaction(nandc);
2165 
2166 	data_buf = (u8 *)buf;
2167 	oob_buf = chip->oob_poi;
2168 
2169 	host->use_ecc = false;
2170 	update_rw_regs(host, ecc->steps, false, 0);
2171 	config_nand_page_write(chip);
2172 
2173 	for (i = 0; i < ecc->steps; i++) {
2174 		int data_size1, data_size2, oob_size1, oob_size2;
2175 		int reg_off = FLASH_BUF_ACC;
2176 
2177 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2178 		oob_size1 = host->bbm_size;
2179 
2180 		if (qcom_nandc_is_last_cw(ecc, i)) {
2181 			data_size2 = ecc->size - data_size1 -
2182 				     ((ecc->steps - 1) << 2);
2183 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2184 				    host->spare_bytes;
2185 		} else {
2186 			data_size2 = host->cw_data - data_size1;
2187 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2188 		}
2189 
2190 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2191 			       NAND_BAM_NO_EOT);
2192 		reg_off += data_size1;
2193 		data_buf += data_size1;
2194 
2195 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2196 			       NAND_BAM_NO_EOT);
2197 		reg_off += oob_size1;
2198 		oob_buf += oob_size1;
2199 
2200 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2201 			       NAND_BAM_NO_EOT);
2202 		reg_off += data_size2;
2203 		data_buf += data_size2;
2204 
2205 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2206 		oob_buf += oob_size2;
2207 
2208 		config_nand_cw_write(chip);
2209 	}
2210 
2211 	ret = submit_descs(nandc);
2212 	if (ret)
2213 		dev_err(nandc->dev, "failure to write raw page\n");
2214 
2215 	free_descs(nandc);
2216 
2217 	if (!ret)
2218 		ret = nand_prog_page_end_op(chip);
2219 
2220 	return ret;
2221 }
2222 
2223 /*
2224  * implements ecc->write_oob()
2225  *
2226  * the NAND controller cannot write only data or only OOB within a codeword
2227  * since ECC is calculated for the combined codeword. So update the OOB from
2228  * chip->oob_poi, and pad the data area with OxFF before writing.
2229  */
2230 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2231 {
2232 	struct mtd_info *mtd = nand_to_mtd(chip);
2233 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2234 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2235 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2236 	u8 *oob = chip->oob_poi;
2237 	int data_size, oob_size;
2238 	int ret;
2239 
2240 	host->use_ecc = true;
2241 	clear_bam_transaction(nandc);
2242 
2243 	/* calculate the data and oob size for the last codeword/step */
2244 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2245 	oob_size = mtd->oobavail;
2246 
2247 	memset(nandc->data_buffer, 0xff, host->cw_data);
2248 	/* override new oob content to last codeword */
2249 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2250 				    0, mtd->oobavail);
2251 
2252 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2253 	update_rw_regs(host, 1, false, 0);
2254 
2255 	config_nand_page_write(chip);
2256 	write_data_dma(nandc, FLASH_BUF_ACC,
2257 		       nandc->data_buffer, data_size + oob_size, 0);
2258 	config_nand_cw_write(chip);
2259 
2260 	ret = submit_descs(nandc);
2261 
2262 	free_descs(nandc);
2263 
2264 	if (ret) {
2265 		dev_err(nandc->dev, "failure to write oob\n");
2266 		return -EIO;
2267 	}
2268 
2269 	return nand_prog_page_end_op(chip);
2270 }
2271 
2272 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2273 {
2274 	struct mtd_info *mtd = nand_to_mtd(chip);
2275 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2276 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2277 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2278 	int page, ret, bbpos, bad = 0;
2279 
2280 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2281 
2282 	/*
2283 	 * configure registers for a raw sub page read, the address is set to
2284 	 * the beginning of the last codeword, we don't care about reading ecc
2285 	 * portion of oob. we just want the first few bytes from this codeword
2286 	 * that contains the BBM
2287 	 */
2288 	host->use_ecc = false;
2289 
2290 	clear_bam_transaction(nandc);
2291 	ret = copy_last_cw(host, page);
2292 	if (ret)
2293 		goto err;
2294 
2295 	if (check_flash_errors(host, 1)) {
2296 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2297 		goto err;
2298 	}
2299 
2300 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2301 
2302 	bad = nandc->data_buffer[bbpos] != 0xff;
2303 
2304 	if (chip->options & NAND_BUSWIDTH_16)
2305 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2306 err:
2307 	return bad;
2308 }
2309 
2310 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2311 {
2312 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2313 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2314 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2315 	int page, ret;
2316 
2317 	clear_read_regs(nandc);
2318 	clear_bam_transaction(nandc);
2319 
2320 	/*
2321 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2322 	 * we don't care about the rest of the content in the codeword since
2323 	 * we aren't going to use this block again
2324 	 */
2325 	memset(nandc->data_buffer, 0x00, host->cw_size);
2326 
2327 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2328 
2329 	/* prepare write */
2330 	host->use_ecc = false;
2331 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2332 	update_rw_regs(host, 1, false, ecc->steps - 1);
2333 
2334 	config_nand_page_write(chip);
2335 	write_data_dma(nandc, FLASH_BUF_ACC,
2336 		       nandc->data_buffer, host->cw_size, 0);
2337 	config_nand_cw_write(chip);
2338 
2339 	ret = submit_descs(nandc);
2340 
2341 	free_descs(nandc);
2342 
2343 	if (ret) {
2344 		dev_err(nandc->dev, "failure to update BBM\n");
2345 		return -EIO;
2346 	}
2347 
2348 	return nand_prog_page_end_op(chip);
2349 }
2350 
2351 /*
2352  * the three functions below implement chip->legacy.read_byte(),
2353  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2354  * aren't used for reading/writing page data, they are used for smaller data
2355  * like reading	id, status etc
2356  */
2357 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2358 {
2359 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2360 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2361 	u8 *buf = nandc->data_buffer;
2362 	u8 ret = 0x0;
2363 
2364 	if (host->last_command == NAND_CMD_STATUS) {
2365 		ret = host->status;
2366 
2367 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2368 
2369 		return ret;
2370 	}
2371 
2372 	if (nandc->buf_start < nandc->buf_count)
2373 		ret = buf[nandc->buf_start++];
2374 
2375 	return ret;
2376 }
2377 
2378 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2379 {
2380 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2381 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2382 
2383 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2384 	nandc->buf_start += real_len;
2385 }
2386 
2387 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2388 				 int len)
2389 {
2390 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2391 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2392 
2393 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2394 
2395 	nandc->buf_start += real_len;
2396 }
2397 
2398 /* we support only one external chip for now */
2399 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2400 {
2401 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2402 
2403 	if (chipnr <= 0)
2404 		return;
2405 
2406 	dev_warn(nandc->dev, "invalid chip select\n");
2407 }
2408 
2409 /*
2410  * NAND controller page layout info
2411  *
2412  * Layout with ECC enabled:
2413  *
2414  * |----------------------|  |---------------------------------|
2415  * |           xx.......yy|  |             *********xx.......yy|
2416  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2417  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2418  * |           xx.......yy|  |             *********xx.......yy|
2419  * |----------------------|  |---------------------------------|
2420  *     codeword 1,2..n-1                  codeword n
2421  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2422  *
2423  * n = Number of codewords in the page
2424  * . = ECC bytes
2425  * * = Spare/free bytes
2426  * x = Unused byte(s)
2427  * y = Reserved byte(s)
2428  *
2429  * 2K page: n = 4, spare = 16 bytes
2430  * 4K page: n = 8, spare = 32 bytes
2431  * 8K page: n = 16, spare = 64 bytes
2432  *
2433  * the qcom nand controller operates at a sub page/codeword level. each
2434  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2435  * the number of ECC bytes vary based on the ECC strength and the bus width.
2436  *
2437  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2438  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2439  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2440  *
2441  * When we access a page with ECC enabled, the reserved bytes(s) are not
2442  * accessible at all. When reading, we fill up these unreadable positions
2443  * with 0xffs. When writing, the controller skips writing the inaccessible
2444  * bytes.
2445  *
2446  * Layout with ECC disabled:
2447  *
2448  * |------------------------------|  |---------------------------------------|
2449  * |         yy          xx.......|  |         bb          *********xx.......|
2450  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2451  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2452  * |         yy          xx.......|  |         bb          *********xx.......|
2453  * |------------------------------|  |---------------------------------------|
2454  *         codeword 1,2..n-1                        codeword n
2455  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2456  *
2457  * n = Number of codewords in the page
2458  * . = ECC bytes
2459  * * = Spare/free bytes
2460  * x = Unused byte(s)
2461  * y = Dummy Bad Bock byte(s)
2462  * b = Real Bad Block byte(s)
2463  * size1/size2 = function of codeword size and 'n'
2464  *
2465  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2466  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2467  * Block Markers. In the last codeword, this position contains the real BBM
2468  *
2469  * In order to have a consistent layout between RAW and ECC modes, we assume
2470  * the following OOB layout arrangement:
2471  *
2472  * |-----------|  |--------------------|
2473  * |yyxx.......|  |bb*********xx.......|
2474  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2475  * |yyxx.......|  |bb*********xx.......|
2476  * |yyxx.......|  |bb*********xx.......|
2477  * |-----------|  |--------------------|
2478  *  first n - 1       nth OOB region
2479  *  OOB regions
2480  *
2481  * n = Number of codewords in the page
2482  * . = ECC bytes
2483  * * = FREE OOB bytes
2484  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2485  * x = Unused byte(s)
2486  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2487  *
2488  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2489  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2490  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2491  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2492  * the sum of the three).
2493  */
2494 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2495 				   struct mtd_oob_region *oobregion)
2496 {
2497 	struct nand_chip *chip = mtd_to_nand(mtd);
2498 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2499 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2500 
2501 	if (section > 1)
2502 		return -ERANGE;
2503 
2504 	if (!section) {
2505 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2506 				    host->bbm_size;
2507 		oobregion->offset = 0;
2508 	} else {
2509 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2510 		oobregion->offset = mtd->oobsize - oobregion->length;
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2517 				     struct mtd_oob_region *oobregion)
2518 {
2519 	struct nand_chip *chip = mtd_to_nand(mtd);
2520 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2521 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2522 
2523 	if (section)
2524 		return -ERANGE;
2525 
2526 	oobregion->length = ecc->steps * 4;
2527 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2528 
2529 	return 0;
2530 }
2531 
2532 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2533 	.ecc = qcom_nand_ooblayout_ecc,
2534 	.free = qcom_nand_ooblayout_free,
2535 };
2536 
2537 static int
2538 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2539 {
2540 	return strength == 4 ? 12 : 16;
2541 }
2542 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2543 		     NANDC_STEP_SIZE, 4, 8);
2544 
2545 static int qcom_nand_attach_chip(struct nand_chip *chip)
2546 {
2547 	struct mtd_info *mtd = nand_to_mtd(chip);
2548 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2549 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2550 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2551 	int cwperpage, bad_block_byte, ret;
2552 	bool wide_bus;
2553 	int ecc_mode = 1;
2554 
2555 	/* controller only supports 512 bytes data steps */
2556 	ecc->size = NANDC_STEP_SIZE;
2557 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2558 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2559 
2560 	/*
2561 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2562 	 * so remaining bytes can be used for ECC.
2563 	 */
2564 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2565 				   mtd->oobsize - (cwperpage * 4));
2566 	if (ret) {
2567 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2568 		return ret;
2569 	}
2570 
2571 	if (ecc->strength >= 8) {
2572 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2573 		host->bch_enabled = true;
2574 		ecc_mode = 1;
2575 
2576 		if (wide_bus) {
2577 			host->ecc_bytes_hw = 14;
2578 			host->spare_bytes = 0;
2579 			host->bbm_size = 2;
2580 		} else {
2581 			host->ecc_bytes_hw = 13;
2582 			host->spare_bytes = 2;
2583 			host->bbm_size = 1;
2584 		}
2585 	} else {
2586 		/*
2587 		 * if the controller supports BCH for 4 bit ECC, the controller
2588 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2589 		 * always 10 bytes
2590 		 */
2591 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2592 			/* BCH */
2593 			host->bch_enabled = true;
2594 			ecc_mode = 0;
2595 
2596 			if (wide_bus) {
2597 				host->ecc_bytes_hw = 8;
2598 				host->spare_bytes = 2;
2599 				host->bbm_size = 2;
2600 			} else {
2601 				host->ecc_bytes_hw = 7;
2602 				host->spare_bytes = 4;
2603 				host->bbm_size = 1;
2604 			}
2605 		} else {
2606 			/* RS */
2607 			host->ecc_bytes_hw = 10;
2608 
2609 			if (wide_bus) {
2610 				host->spare_bytes = 0;
2611 				host->bbm_size = 2;
2612 			} else {
2613 				host->spare_bytes = 1;
2614 				host->bbm_size = 1;
2615 			}
2616 		}
2617 	}
2618 
2619 	/*
2620 	 * we consider ecc->bytes as the sum of all the non-data content in a
2621 	 * step. It gives us a clean representation of the oob area (even if
2622 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2623 	 * ECC and 12 bytes for 4 bit ECC
2624 	 */
2625 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2626 
2627 	ecc->read_page		= qcom_nandc_read_page;
2628 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2629 	ecc->read_oob		= qcom_nandc_read_oob;
2630 	ecc->write_page		= qcom_nandc_write_page;
2631 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2632 	ecc->write_oob		= qcom_nandc_write_oob;
2633 
2634 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2635 
2636 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2637 
2638 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2639 				     cwperpage);
2640 
2641 	/*
2642 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2643 	 * spare data with ECC too. We protect spare data by default, so we set
2644 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2645 	 */
2646 	host->cw_data = 516;
2647 
2648 	/*
2649 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2650 	 * for 8 bit ECC
2651 	 */
2652 	host->cw_size = host->cw_data + ecc->bytes;
2653 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2654 
2655 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2656 				| host->cw_data << UD_SIZE_BYTES
2657 				| 0 << DISABLE_STATUS_AFTER_WRITE
2658 				| 5 << NUM_ADDR_CYCLES
2659 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2660 				| 0 << STATUS_BFR_READ
2661 				| 1 << SET_RD_MODE_AFTER_STATUS
2662 				| host->spare_bytes << SPARE_SIZE_BYTES;
2663 
2664 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2665 				| 0 <<  CS_ACTIVE_BSY
2666 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2667 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2668 				| 2 << WR_RD_BSY_GAP
2669 				| wide_bus << WIDE_FLASH
2670 				| host->bch_enabled << ENABLE_BCH_ECC;
2671 
2672 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2673 				| host->cw_size << UD_SIZE_BYTES
2674 				| 5 << NUM_ADDR_CYCLES
2675 				| 0 << SPARE_SIZE_BYTES;
2676 
2677 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2678 				| 0 << CS_ACTIVE_BSY
2679 				| 17 << BAD_BLOCK_BYTE_NUM
2680 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2681 				| 2 << WR_RD_BSY_GAP
2682 				| wide_bus << WIDE_FLASH
2683 				| 1 << DEV0_CFG1_ECC_DISABLE;
2684 
2685 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2686 				| 0 << ECC_SW_RESET
2687 				| host->cw_data << ECC_NUM_DATA_BYTES
2688 				| 1 << ECC_FORCE_CLK_OPEN
2689 				| ecc_mode << ECC_MODE
2690 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2691 
2692 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2693 
2694 	host->clrflashstatus = FS_READY_BSY_N;
2695 	host->clrreadstatus = 0xc0;
2696 	nandc->regs->erased_cw_detect_cfg_clr =
2697 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2698 	nandc->regs->erased_cw_detect_cfg_set =
2699 		cpu_to_le32(SET_ERASED_PAGE_DET);
2700 
2701 	dev_dbg(nandc->dev,
2702 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2703 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2704 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2705 		cwperpage);
2706 
2707 	return 0;
2708 }
2709 
2710 static const struct nand_controller_ops qcom_nandc_ops = {
2711 	.attach_chip = qcom_nand_attach_chip,
2712 };
2713 
2714 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2715 {
2716 	if (nandc->props->is_bam) {
2717 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2718 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2719 					 MAX_REG_RD *
2720 					 sizeof(*nandc->reg_read_buf),
2721 					 DMA_FROM_DEVICE);
2722 
2723 		if (nandc->tx_chan)
2724 			dma_release_channel(nandc->tx_chan);
2725 
2726 		if (nandc->rx_chan)
2727 			dma_release_channel(nandc->rx_chan);
2728 
2729 		if (nandc->cmd_chan)
2730 			dma_release_channel(nandc->cmd_chan);
2731 	} else {
2732 		if (nandc->chan)
2733 			dma_release_channel(nandc->chan);
2734 	}
2735 }
2736 
2737 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2738 {
2739 	int ret;
2740 
2741 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2742 	if (ret) {
2743 		dev_err(nandc->dev, "failed to set DMA mask\n");
2744 		return ret;
2745 	}
2746 
2747 	/*
2748 	 * we use the internal buffer for reading ONFI params, reading small
2749 	 * data like ID and status, and preforming read-copy-write operations
2750 	 * when writing to a codeword partially. 532 is the maximum possible
2751 	 * size of a codeword for our nand controller
2752 	 */
2753 	nandc->buf_size = 532;
2754 
2755 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2756 					GFP_KERNEL);
2757 	if (!nandc->data_buffer)
2758 		return -ENOMEM;
2759 
2760 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2761 					GFP_KERNEL);
2762 	if (!nandc->regs)
2763 		return -ENOMEM;
2764 
2765 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2766 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2767 				GFP_KERNEL);
2768 	if (!nandc->reg_read_buf)
2769 		return -ENOMEM;
2770 
2771 	if (nandc->props->is_bam) {
2772 		nandc->reg_read_dma =
2773 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2774 				       MAX_REG_RD *
2775 				       sizeof(*nandc->reg_read_buf),
2776 				       DMA_FROM_DEVICE);
2777 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2778 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2779 			return -EIO;
2780 		}
2781 
2782 		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2783 		if (IS_ERR(nandc->tx_chan)) {
2784 			ret = PTR_ERR(nandc->tx_chan);
2785 			nandc->tx_chan = NULL;
2786 			dev_err_probe(nandc->dev, ret,
2787 				      "tx DMA channel request failed\n");
2788 			goto unalloc;
2789 		}
2790 
2791 		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2792 		if (IS_ERR(nandc->rx_chan)) {
2793 			ret = PTR_ERR(nandc->rx_chan);
2794 			nandc->rx_chan = NULL;
2795 			dev_err_probe(nandc->dev, ret,
2796 				      "rx DMA channel request failed\n");
2797 			goto unalloc;
2798 		}
2799 
2800 		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2801 		if (IS_ERR(nandc->cmd_chan)) {
2802 			ret = PTR_ERR(nandc->cmd_chan);
2803 			nandc->cmd_chan = NULL;
2804 			dev_err_probe(nandc->dev, ret,
2805 				      "cmd DMA channel request failed\n");
2806 			goto unalloc;
2807 		}
2808 
2809 		/*
2810 		 * Initially allocate BAM transaction to read ONFI param page.
2811 		 * After detecting all the devices, this BAM transaction will
2812 		 * be freed and the next BAM tranasction will be allocated with
2813 		 * maximum codeword size
2814 		 */
2815 		nandc->max_cwperpage = 1;
2816 		nandc->bam_txn = alloc_bam_transaction(nandc);
2817 		if (!nandc->bam_txn) {
2818 			dev_err(nandc->dev,
2819 				"failed to allocate bam transaction\n");
2820 			ret = -ENOMEM;
2821 			goto unalloc;
2822 		}
2823 	} else {
2824 		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2825 		if (IS_ERR(nandc->chan)) {
2826 			ret = PTR_ERR(nandc->chan);
2827 			nandc->chan = NULL;
2828 			dev_err_probe(nandc->dev, ret,
2829 				      "rxtx DMA channel request failed\n");
2830 			return ret;
2831 		}
2832 	}
2833 
2834 	INIT_LIST_HEAD(&nandc->desc_list);
2835 	INIT_LIST_HEAD(&nandc->host_list);
2836 
2837 	nand_controller_init(&nandc->controller);
2838 	nandc->controller.ops = &qcom_nandc_ops;
2839 
2840 	return 0;
2841 unalloc:
2842 	qcom_nandc_unalloc(nandc);
2843 	return ret;
2844 }
2845 
2846 /* one time setup of a few nand controller registers */
2847 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2848 {
2849 	u32 nand_ctrl;
2850 
2851 	/* kill onenand */
2852 	if (!nandc->props->is_qpic)
2853 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2854 
2855 	if (!nandc->props->qpic_v2)
2856 		nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2857 			    NAND_DEV_CMD_VLD_VAL);
2858 
2859 	/* enable ADM or BAM DMA */
2860 	if (nandc->props->is_bam) {
2861 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2862 
2863 		/*
2864 		 *NAND_CTRL is an operational registers, and CPU
2865 		 * access to operational registers are read only
2866 		 * in BAM mode. So update the NAND_CTRL register
2867 		 * only if it is not in BAM mode. In most cases BAM
2868 		 * mode will be enabled in bootloader
2869 		 */
2870 		if (!(nand_ctrl & BAM_MODE_EN))
2871 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2872 	} else {
2873 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2874 	}
2875 
2876 	/* save the original values of these registers */
2877 	if (!nandc->props->qpic_v2) {
2878 		nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2879 		nandc->vld = NAND_DEV_CMD_VLD_VAL;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static const char * const probes[] = { "qcomsmem", NULL };
2886 
2887 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2888 					    struct qcom_nand_host *host,
2889 					    struct device_node *dn)
2890 {
2891 	struct nand_chip *chip = &host->chip;
2892 	struct mtd_info *mtd = nand_to_mtd(chip);
2893 	struct device *dev = nandc->dev;
2894 	int ret;
2895 
2896 	ret = of_property_read_u32(dn, "reg", &host->cs);
2897 	if (ret) {
2898 		dev_err(dev, "can't get chip-select\n");
2899 		return -ENXIO;
2900 	}
2901 
2902 	nand_set_flash_node(chip, dn);
2903 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2904 	if (!mtd->name)
2905 		return -ENOMEM;
2906 
2907 	mtd->owner = THIS_MODULE;
2908 	mtd->dev.parent = dev;
2909 
2910 	chip->legacy.cmdfunc	= qcom_nandc_command;
2911 	chip->legacy.select_chip	= qcom_nandc_select_chip;
2912 	chip->legacy.read_byte	= qcom_nandc_read_byte;
2913 	chip->legacy.read_buf	= qcom_nandc_read_buf;
2914 	chip->legacy.write_buf	= qcom_nandc_write_buf;
2915 	chip->legacy.set_features	= nand_get_set_features_notsupp;
2916 	chip->legacy.get_features	= nand_get_set_features_notsupp;
2917 
2918 	/*
2919 	 * the bad block marker is readable only when we read the last codeword
2920 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2921 	 * helpers don't allow us to read BB from a nand chip with ECC
2922 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2923 	 * and block_markbad helpers until we permanently switch to using
2924 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2925 	 */
2926 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2927 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2928 
2929 	chip->controller = &nandc->controller;
2930 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2931 			 NAND_SKIP_BBTSCAN;
2932 
2933 	/* set up initial status value */
2934 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2935 
2936 	ret = nand_scan(chip, 1);
2937 	if (ret)
2938 		return ret;
2939 
2940 	if (nandc->props->is_bam) {
2941 		free_bam_transaction(nandc);
2942 		nandc->bam_txn = alloc_bam_transaction(nandc);
2943 		if (!nandc->bam_txn) {
2944 			dev_err(nandc->dev,
2945 				"failed to allocate bam transaction\n");
2946 			nand_cleanup(chip);
2947 			return -ENOMEM;
2948 		}
2949 	}
2950 
2951 	ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
2952 	if (ret)
2953 		nand_cleanup(chip);
2954 
2955 	return ret;
2956 }
2957 
2958 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2959 {
2960 	struct device *dev = nandc->dev;
2961 	struct device_node *dn = dev->of_node, *child;
2962 	struct qcom_nand_host *host;
2963 	int ret = -ENODEV;
2964 
2965 	for_each_available_child_of_node(dn, child) {
2966 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2967 		if (!host) {
2968 			of_node_put(child);
2969 			return -ENOMEM;
2970 		}
2971 
2972 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2973 		if (ret) {
2974 			devm_kfree(dev, host);
2975 			continue;
2976 		}
2977 
2978 		list_add_tail(&host->node, &nandc->host_list);
2979 	}
2980 
2981 	return ret;
2982 }
2983 
2984 /* parse custom DT properties here */
2985 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2986 {
2987 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2988 	struct device_node *np = nandc->dev->of_node;
2989 	int ret;
2990 
2991 	if (!nandc->props->is_bam) {
2992 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2993 					   &nandc->cmd_crci);
2994 		if (ret) {
2995 			dev_err(nandc->dev, "command CRCI unspecified\n");
2996 			return ret;
2997 		}
2998 
2999 		ret = of_property_read_u32(np, "qcom,data-crci",
3000 					   &nandc->data_crci);
3001 		if (ret) {
3002 			dev_err(nandc->dev, "data CRCI unspecified\n");
3003 			return ret;
3004 		}
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 static int qcom_nandc_probe(struct platform_device *pdev)
3011 {
3012 	struct qcom_nand_controller *nandc;
3013 	const void *dev_data;
3014 	struct device *dev = &pdev->dev;
3015 	struct resource *res;
3016 	int ret;
3017 
3018 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3019 	if (!nandc)
3020 		return -ENOMEM;
3021 
3022 	platform_set_drvdata(pdev, nandc);
3023 	nandc->dev = dev;
3024 
3025 	dev_data = of_device_get_match_data(dev);
3026 	if (!dev_data) {
3027 		dev_err(&pdev->dev, "failed to get device data\n");
3028 		return -ENODEV;
3029 	}
3030 
3031 	nandc->props = dev_data;
3032 
3033 	nandc->core_clk = devm_clk_get(dev, "core");
3034 	if (IS_ERR(nandc->core_clk))
3035 		return PTR_ERR(nandc->core_clk);
3036 
3037 	nandc->aon_clk = devm_clk_get(dev, "aon");
3038 	if (IS_ERR(nandc->aon_clk))
3039 		return PTR_ERR(nandc->aon_clk);
3040 
3041 	ret = qcom_nandc_parse_dt(pdev);
3042 	if (ret)
3043 		return ret;
3044 
3045 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3046 	nandc->base = devm_ioremap_resource(dev, res);
3047 	if (IS_ERR(nandc->base))
3048 		return PTR_ERR(nandc->base);
3049 
3050 	nandc->base_phys = res->start;
3051 	nandc->base_dma = dma_map_resource(dev, res->start,
3052 					   resource_size(res),
3053 					   DMA_BIDIRECTIONAL, 0);
3054 	if (dma_mapping_error(dev, nandc->base_dma))
3055 		return -ENXIO;
3056 
3057 	ret = qcom_nandc_alloc(nandc);
3058 	if (ret)
3059 		goto err_nandc_alloc;
3060 
3061 	ret = clk_prepare_enable(nandc->core_clk);
3062 	if (ret)
3063 		goto err_core_clk;
3064 
3065 	ret = clk_prepare_enable(nandc->aon_clk);
3066 	if (ret)
3067 		goto err_aon_clk;
3068 
3069 	ret = qcom_nandc_setup(nandc);
3070 	if (ret)
3071 		goto err_setup;
3072 
3073 	ret = qcom_probe_nand_devices(nandc);
3074 	if (ret)
3075 		goto err_setup;
3076 
3077 	return 0;
3078 
3079 err_setup:
3080 	clk_disable_unprepare(nandc->aon_clk);
3081 err_aon_clk:
3082 	clk_disable_unprepare(nandc->core_clk);
3083 err_core_clk:
3084 	qcom_nandc_unalloc(nandc);
3085 err_nandc_alloc:
3086 	dma_unmap_resource(dev, res->start, resource_size(res),
3087 			   DMA_BIDIRECTIONAL, 0);
3088 
3089 	return ret;
3090 }
3091 
3092 static int qcom_nandc_remove(struct platform_device *pdev)
3093 {
3094 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3095 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3096 	struct qcom_nand_host *host;
3097 	struct nand_chip *chip;
3098 	int ret;
3099 
3100 	list_for_each_entry(host, &nandc->host_list, node) {
3101 		chip = &host->chip;
3102 		ret = mtd_device_unregister(nand_to_mtd(chip));
3103 		WARN_ON(ret);
3104 		nand_cleanup(chip);
3105 	}
3106 
3107 	qcom_nandc_unalloc(nandc);
3108 
3109 	clk_disable_unprepare(nandc->aon_clk);
3110 	clk_disable_unprepare(nandc->core_clk);
3111 
3112 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3113 			   DMA_BIDIRECTIONAL, 0);
3114 
3115 	return 0;
3116 }
3117 
3118 static const struct qcom_nandc_props ipq806x_nandc_props = {
3119 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3120 	.is_bam = false,
3121 	.dev_cmd_reg_start = 0x0,
3122 };
3123 
3124 static const struct qcom_nandc_props ipq4019_nandc_props = {
3125 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3126 	.is_bam = true,
3127 	.is_qpic = true,
3128 	.dev_cmd_reg_start = 0x0,
3129 };
3130 
3131 static const struct qcom_nandc_props ipq8074_nandc_props = {
3132 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3133 	.is_bam = true,
3134 	.is_qpic = true,
3135 	.dev_cmd_reg_start = 0x7000,
3136 };
3137 
3138 static const struct qcom_nandc_props sdx55_nandc_props = {
3139 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3140 	.is_bam = true,
3141 	.is_qpic = true,
3142 	.qpic_v2 = true,
3143 	.dev_cmd_reg_start = 0x7000,
3144 };
3145 
3146 /*
3147  * data will hold a struct pointer containing more differences once we support
3148  * more controller variants
3149  */
3150 static const struct of_device_id qcom_nandc_of_match[] = {
3151 	{
3152 		.compatible = "qcom,ipq806x-nand",
3153 		.data = &ipq806x_nandc_props,
3154 	},
3155 	{
3156 		.compatible = "qcom,ipq4019-nand",
3157 		.data = &ipq4019_nandc_props,
3158 	},
3159 	{
3160 		.compatible = "qcom,ipq6018-nand",
3161 		.data = &ipq8074_nandc_props,
3162 	},
3163 	{
3164 		.compatible = "qcom,ipq8074-nand",
3165 		.data = &ipq8074_nandc_props,
3166 	},
3167 	{
3168 		.compatible = "qcom,sdx55-nand",
3169 		.data = &sdx55_nandc_props,
3170 	},
3171 	{}
3172 };
3173 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3174 
3175 static struct platform_driver qcom_nandc_driver = {
3176 	.driver = {
3177 		.name = "qcom-nandc",
3178 		.of_match_table = qcom_nandc_of_match,
3179 	},
3180 	.probe   = qcom_nandc_probe,
3181 	.remove  = qcom_nandc_remove,
3182 };
3183 module_platform_driver(qcom_nandc_driver);
3184 
3185 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3186 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3187 MODULE_LICENSE("GPL v2");
3188