xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 #include <linux/clk.h>
6 #include <linux/slab.h>
7 #include <linux/bitops.h>
8 #include <linux/dma/qcom_adm.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
18 
19 /* NANDc reg offsets */
20 #define	NAND_FLASH_CMD			0x00
21 #define	NAND_ADDR0			0x04
22 #define	NAND_ADDR1			0x08
23 #define	NAND_FLASH_CHIP_SELECT		0x0c
24 #define	NAND_EXEC_CMD			0x10
25 #define	NAND_FLASH_STATUS		0x14
26 #define	NAND_BUFFER_STATUS		0x18
27 #define	NAND_DEV0_CFG0			0x20
28 #define	NAND_DEV0_CFG1			0x24
29 #define	NAND_DEV0_ECC_CFG		0x28
30 #define	NAND_AUTO_STATUS_EN		0x2c
31 #define	NAND_DEV1_CFG0			0x30
32 #define	NAND_DEV1_CFG1			0x34
33 #define	NAND_READ_ID			0x40
34 #define	NAND_READ_STATUS		0x44
35 #define	NAND_DEV_CMD0			0xa0
36 #define	NAND_DEV_CMD1			0xa4
37 #define	NAND_DEV_CMD2			0xa8
38 #define	NAND_DEV_CMD_VLD		0xac
39 #define	SFLASHC_BURST_CFG		0xe0
40 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
41 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
42 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
43 #define	FLASH_BUF_ACC			0x100
44 
45 #define	NAND_CTRL			0xf00
46 #define	NAND_VERSION			0xf08
47 #define	NAND_READ_LOCATION_0		0xf20
48 #define	NAND_READ_LOCATION_1		0xf24
49 #define	NAND_READ_LOCATION_2		0xf28
50 #define	NAND_READ_LOCATION_3		0xf2c
51 #define	NAND_READ_LOCATION_LAST_CW_0	0xf40
52 #define	NAND_READ_LOCATION_LAST_CW_1	0xf44
53 #define	NAND_READ_LOCATION_LAST_CW_2	0xf48
54 #define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
55 
56 /* dummy register offsets, used by write_reg_dma */
57 #define	NAND_DEV_CMD1_RESTORE		0xdead
58 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
59 
60 /* NAND_FLASH_CMD bits */
61 #define	PAGE_ACC			BIT(4)
62 #define	LAST_PAGE			BIT(5)
63 
64 /* NAND_FLASH_CHIP_SELECT bits */
65 #define	NAND_DEV_SEL			0
66 #define	DM_EN				BIT(2)
67 
68 /* NAND_FLASH_STATUS bits */
69 #define	FS_OP_ERR			BIT(4)
70 #define	FS_READY_BSY_N			BIT(5)
71 #define	FS_MPU_ERR			BIT(8)
72 #define	FS_DEVICE_STS_ERR		BIT(16)
73 #define	FS_DEVICE_WP			BIT(23)
74 
75 /* NAND_BUFFER_STATUS bits */
76 #define	BS_UNCORRECTABLE_BIT		BIT(8)
77 #define	BS_CORRECTABLE_ERR_MSK		0x1f
78 
79 /* NAND_DEVn_CFG0 bits */
80 #define	DISABLE_STATUS_AFTER_WRITE	4
81 #define	CW_PER_PAGE			6
82 #define	UD_SIZE_BYTES			9
83 #define	UD_SIZE_BYTES_MASK		GENMASK(18, 9)
84 #define	ECC_PARITY_SIZE_BYTES_RS	19
85 #define	SPARE_SIZE_BYTES		23
86 #define	SPARE_SIZE_BYTES_MASK		GENMASK(26, 23)
87 #define	NUM_ADDR_CYCLES			27
88 #define	STATUS_BFR_READ			30
89 #define	SET_RD_MODE_AFTER_STATUS	31
90 
91 /* NAND_DEVn_CFG0 bits */
92 #define	DEV0_CFG1_ECC_DISABLE		0
93 #define	WIDE_FLASH			1
94 #define	NAND_RECOVERY_CYCLES		2
95 #define	CS_ACTIVE_BSY			5
96 #define	BAD_BLOCK_BYTE_NUM		6
97 #define	BAD_BLOCK_IN_SPARE_AREA		16
98 #define	WR_RD_BSY_GAP			17
99 #define	ENABLE_BCH_ECC			27
100 
101 /* NAND_DEV0_ECC_CFG bits */
102 #define	ECC_CFG_ECC_DISABLE		0
103 #define	ECC_SW_RESET			1
104 #define	ECC_MODE			4
105 #define	ECC_PARITY_SIZE_BYTES_BCH	8
106 #define	ECC_NUM_DATA_BYTES		16
107 #define	ECC_NUM_DATA_BYTES_MASK		GENMASK(25, 16)
108 #define	ECC_FORCE_CLK_OPEN		30
109 
110 /* NAND_DEV_CMD1 bits */
111 #define	READ_ADDR			0
112 
113 /* NAND_DEV_CMD_VLD bits */
114 #define	READ_START_VLD			BIT(0)
115 #define	READ_STOP_VLD			BIT(1)
116 #define	WRITE_START_VLD			BIT(2)
117 #define	ERASE_START_VLD			BIT(3)
118 #define	SEQ_READ_START_VLD		BIT(4)
119 
120 /* NAND_EBI2_ECC_BUF_CFG bits */
121 #define	NUM_STEPS			0
122 
123 /* NAND_ERASED_CW_DETECT_CFG bits */
124 #define	ERASED_CW_ECC_MASK		1
125 #define	AUTO_DETECT_RES			0
126 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
127 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
128 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
129 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
130 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
131 
132 /* NAND_ERASED_CW_DETECT_STATUS bits */
133 #define	PAGE_ALL_ERASED			BIT(7)
134 #define	CODEWORD_ALL_ERASED		BIT(6)
135 #define	PAGE_ERASED			BIT(5)
136 #define	CODEWORD_ERASED			BIT(4)
137 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
138 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139 
140 /* NAND_READ_LOCATION_n bits */
141 #define READ_LOCATION_OFFSET		0
142 #define READ_LOCATION_SIZE		16
143 #define READ_LOCATION_LAST		31
144 
145 /* Version Mask */
146 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
147 #define	NAND_VERSION_MAJOR_SHIFT	28
148 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
149 #define	NAND_VERSION_MINOR_SHIFT	16
150 
151 /* NAND OP_CMDs */
152 #define	OP_PAGE_READ			0x2
153 #define	OP_PAGE_READ_WITH_ECC		0x3
154 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
155 #define	OP_PAGE_READ_ONFI_READ		0x5
156 #define	OP_PROGRAM_PAGE			0x6
157 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
158 #define	OP_PROGRAM_PAGE_SPARE		0x9
159 #define	OP_BLOCK_ERASE			0xa
160 #define	OP_FETCH_ID			0xb
161 #define	OP_RESET_DEVICE			0xd
162 
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
165 					 ERASE_START_VLD | SEQ_READ_START_VLD)
166 
167 /* NAND_CTRL bits */
168 #define	BAM_MODE_EN			BIT(0)
169 
170 /*
171  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172  * the driver calls the chunks 'step' or 'codeword' interchangeably
173  */
174 #define	NANDC_STEP_SIZE			512
175 
176 /*
177  * the largest page size we support is 8K, this will have 16 steps/codewords
178  * of 512 bytes each
179  */
180 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
181 
182 /* we read at most 3 registers per codeword scan */
183 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
184 
185 /* ECC modes supported by the controller */
186 #define	ECC_NONE	BIT(0)
187 #define	ECC_RS_4BIT	BIT(1)
188 #define	ECC_BCH_4BIT	BIT(2)
189 #define	ECC_BCH_8BIT	BIT(3)
190 
191 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc)	\
192 nandc_set_reg(chip, reg,			\
193 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
194 	      ((read_size) << READ_LOCATION_SIZE) |			\
195 	      ((is_last_read_loc) << READ_LOCATION_LAST))
196 
197 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc)	\
198 nandc_set_reg(chip, reg,			\
199 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
200 	      ((read_size) << READ_LOCATION_SIZE) |			\
201 	      ((is_last_read_loc) << READ_LOCATION_LAST))
202 /*
203  * Returns the actual register address for all NAND_DEV_ registers
204  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
205  */
206 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
207 
208 /* Returns the NAND register physical address */
209 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
210 
211 /* Returns the dma address for reg read buffer */
212 #define reg_buf_dma_addr(chip, vaddr) \
213 	((chip)->reg_read_dma + \
214 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
215 
216 #define QPIC_PER_CW_CMD_ELEMENTS	32
217 #define QPIC_PER_CW_CMD_SGL		32
218 #define QPIC_PER_CW_DATA_SGL		8
219 
220 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
221 
222 /*
223  * Flags used in DMA descriptor preparation helper functions
224  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
225  */
226 /* Don't set the EOT in current tx BAM sgl */
227 #define NAND_BAM_NO_EOT			BIT(0)
228 /* Set the NWD flag in current BAM sgl */
229 #define NAND_BAM_NWD			BIT(1)
230 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
231 #define NAND_BAM_NEXT_SGL		BIT(2)
232 /*
233  * Erased codeword status is being used two times in single transfer so this
234  * flag will determine the current value of erased codeword status register
235  */
236 #define NAND_ERASED_CW_SET		BIT(4)
237 
238 /*
239  * This data type corresponds to the BAM transaction which will be used for all
240  * NAND transfers.
241  * @bam_ce - the array of BAM command elements
242  * @cmd_sgl - sgl for NAND BAM command pipe
243  * @data_sgl - sgl for NAND BAM consumer/producer pipe
244  * @last_data_desc - last DMA desc in data channel (tx/rx).
245  * @last_cmd_desc - last DMA desc in command channel.
246  * @txn_done - completion for NAND transfer.
247  * @bam_ce_pos - the index in bam_ce which is available for next sgl
248  * @bam_ce_start - the index in bam_ce which marks the start position ce
249  *		   for current sgl. It will be used for size calculation
250  *		   for current sgl
251  * @cmd_sgl_pos - current index in command sgl.
252  * @cmd_sgl_start - start index in command sgl.
253  * @tx_sgl_pos - current index in data sgl for tx.
254  * @tx_sgl_start - start index in data sgl for tx.
255  * @rx_sgl_pos - current index in data sgl for rx.
256  * @rx_sgl_start - start index in data sgl for rx.
257  * @wait_second_completion - wait for second DMA desc completion before making
258  *			     the NAND transfer completion.
259  */
260 struct bam_transaction {
261 	struct bam_cmd_element *bam_ce;
262 	struct scatterlist *cmd_sgl;
263 	struct scatterlist *data_sgl;
264 	struct dma_async_tx_descriptor *last_data_desc;
265 	struct dma_async_tx_descriptor *last_cmd_desc;
266 	struct completion txn_done;
267 	u32 bam_ce_pos;
268 	u32 bam_ce_start;
269 	u32 cmd_sgl_pos;
270 	u32 cmd_sgl_start;
271 	u32 tx_sgl_pos;
272 	u32 tx_sgl_start;
273 	u32 rx_sgl_pos;
274 	u32 rx_sgl_start;
275 	bool wait_second_completion;
276 };
277 
278 /*
279  * This data type corresponds to the nand dma descriptor
280  * @dma_desc - low level DMA engine descriptor
281  * @list - list for desc_info
282  *
283  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
284  *	      ADM
285  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
286  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
287  * @dir - DMA transfer direction
288  */
289 struct desc_info {
290 	struct dma_async_tx_descriptor *dma_desc;
291 	struct list_head node;
292 
293 	union {
294 		struct scatterlist adm_sgl;
295 		struct {
296 			struct scatterlist *bam_sgl;
297 			int sgl_cnt;
298 		};
299 	};
300 	enum dma_data_direction dir;
301 };
302 
303 /*
304  * holds the current register values that we want to write. acts as a contiguous
305  * chunk of memory which we use to write the controller registers through DMA.
306  */
307 struct nandc_regs {
308 	__le32 cmd;
309 	__le32 addr0;
310 	__le32 addr1;
311 	__le32 chip_sel;
312 	__le32 exec;
313 
314 	__le32 cfg0;
315 	__le32 cfg1;
316 	__le32 ecc_bch_cfg;
317 
318 	__le32 clrflashstatus;
319 	__le32 clrreadstatus;
320 
321 	__le32 cmd1;
322 	__le32 vld;
323 
324 	__le32 orig_cmd1;
325 	__le32 orig_vld;
326 
327 	__le32 ecc_buf_cfg;
328 	__le32 read_location0;
329 	__le32 read_location1;
330 	__le32 read_location2;
331 	__le32 read_location3;
332 	__le32 read_location_last0;
333 	__le32 read_location_last1;
334 	__le32 read_location_last2;
335 	__le32 read_location_last3;
336 
337 	__le32 erased_cw_detect_cfg_clr;
338 	__le32 erased_cw_detect_cfg_set;
339 };
340 
341 /*
342  * NAND controller data struct
343  *
344  * @dev:			parent device
345  *
346  * @base:			MMIO base
347  *
348  * @core_clk:			controller clock
349  * @aon_clk:			another controller clock
350  *
351  * @regs:			a contiguous chunk of memory for DMA register
352  *				writes. contains the register values to be
353  *				written to controller
354  *
355  * @props:			properties of current NAND controller,
356  *				initialized via DT match data
357  *
358  * @controller:			base controller structure
359  * @host_list:			list containing all the chips attached to the
360  *				controller
361  *
362  * @chan:			dma channel
363  * @cmd_crci:			ADM DMA CRCI for command flow control
364  * @data_crci:			ADM DMA CRCI for data flow control
365  *
366  * @desc_list:			DMA descriptor list (list of desc_infos)
367  *
368  * @data_buffer:		our local DMA buffer for page read/writes,
369  *				used when we can't use the buffer provided
370  *				by upper layers directly
371  * @reg_read_buf:		local buffer for reading back registers via DMA
372  *
373  * @base_phys:			physical base address of controller registers
374  * @base_dma:			dma base address of controller registers
375  * @reg_read_dma:		contains dma address for register read buffer
376  *
377  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
378  *				functions
379  * @max_cwperpage:		maximum QPIC codewords required. calculated
380  *				from all connected NAND devices pagesize
381  *
382  * @reg_read_pos:		marker for data read in reg_read_buf
383  *
384  * @cmd1/vld:			some fixed controller register values
385  */
386 struct qcom_nand_controller {
387 	struct device *dev;
388 
389 	void __iomem *base;
390 
391 	struct clk *core_clk;
392 	struct clk *aon_clk;
393 
394 	struct nandc_regs *regs;
395 	struct bam_transaction *bam_txn;
396 
397 	const struct qcom_nandc_props *props;
398 
399 	struct nand_controller controller;
400 	struct list_head host_list;
401 
402 	union {
403 		/* will be used only by QPIC for BAM DMA */
404 		struct {
405 			struct dma_chan *tx_chan;
406 			struct dma_chan *rx_chan;
407 			struct dma_chan *cmd_chan;
408 		};
409 
410 		/* will be used only by EBI2 for ADM DMA */
411 		struct {
412 			struct dma_chan *chan;
413 			unsigned int cmd_crci;
414 			unsigned int data_crci;
415 		};
416 	};
417 
418 	struct list_head desc_list;
419 
420 	u8		*data_buffer;
421 	__le32		*reg_read_buf;
422 
423 	phys_addr_t base_phys;
424 	dma_addr_t base_dma;
425 	dma_addr_t reg_read_dma;
426 
427 	int		buf_size;
428 	int		buf_count;
429 	int		buf_start;
430 	unsigned int	max_cwperpage;
431 
432 	int reg_read_pos;
433 
434 	u32 cmd1, vld;
435 };
436 
437 /*
438  * NAND special boot partitions
439  *
440  * @page_offset:		offset of the partition where spare data is not protected
441  *				by ECC (value in pages)
442  * @page_offset:		size of the partition where spare data is not protected
443  *				by ECC (value in pages)
444  */
445 struct qcom_nand_boot_partition {
446 	u32 page_offset;
447 	u32 page_size;
448 };
449 
450 /*
451  * NAND chip structure
452  *
453  * @boot_partitions:		array of boot partitions where offset and size of the
454  *				boot partitions are stored
455  *
456  * @chip:			base NAND chip structure
457  * @node:			list node to add itself to host_list in
458  *				qcom_nand_controller
459  *
460  * @nr_boot_partitions:		count of the boot partitions where spare data is not
461  *				protected by ECC
462  *
463  * @cs:				chip select value for this chip
464  * @cw_size:			the number of bytes in a single step/codeword
465  *				of a page, consisting of all data, ecc, spare
466  *				and reserved bytes
467  * @cw_data:			the number of bytes within a codeword protected
468  *				by ECC
469  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
470  *				chip
471  *
472  * @last_command:		keeps track of last command on this chip. used
473  *				for reading correct status
474  *
475  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
476  *				ecc/non-ecc mode for the current nand flash
477  *				device
478  *
479  * @status:			value to be returned if NAND_CMD_STATUS command
480  *				is executed
481  * @codeword_fixup:		keep track of the current layout used by
482  *				the driver for read/write operation.
483  * @use_ecc:			request the controller to use ECC for the
484  *				upcoming read/write
485  * @bch_enabled:		flag to tell whether BCH ECC mode is used
486  */
487 struct qcom_nand_host {
488 	struct qcom_nand_boot_partition *boot_partitions;
489 
490 	struct nand_chip chip;
491 	struct list_head node;
492 
493 	int nr_boot_partitions;
494 
495 	int cs;
496 	int cw_size;
497 	int cw_data;
498 	int ecc_bytes_hw;
499 	int spare_bytes;
500 	int bbm_size;
501 
502 	int last_command;
503 
504 	u32 cfg0, cfg1;
505 	u32 cfg0_raw, cfg1_raw;
506 	u32 ecc_buf_cfg;
507 	u32 ecc_bch_cfg;
508 	u32 clrflashstatus;
509 	u32 clrreadstatus;
510 
511 	u8 status;
512 	bool codeword_fixup;
513 	bool use_ecc;
514 	bool bch_enabled;
515 };
516 
517 /*
518  * This data type corresponds to the NAND controller properties which varies
519  * among different NAND controllers.
520  * @ecc_modes - ecc mode for NAND
521  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
522  * @is_bam - whether NAND controller is using BAM
523  * @is_qpic - whether NAND CTRL is part of qpic IP
524  * @qpic_v2 - flag to indicate QPIC IP version 2
525  * @use_codeword_fixup - whether NAND has different layout for boot partitions
526  */
527 struct qcom_nandc_props {
528 	u32 ecc_modes;
529 	u32 dev_cmd_reg_start;
530 	bool is_bam;
531 	bool is_qpic;
532 	bool qpic_v2;
533 	bool use_codeword_fixup;
534 };
535 
536 /* Frees the BAM transaction memory */
537 static void free_bam_transaction(struct qcom_nand_controller *nandc)
538 {
539 	struct bam_transaction *bam_txn = nandc->bam_txn;
540 
541 	devm_kfree(nandc->dev, bam_txn);
542 }
543 
544 /* Allocates and Initializes the BAM transaction */
545 static struct bam_transaction *
546 alloc_bam_transaction(struct qcom_nand_controller *nandc)
547 {
548 	struct bam_transaction *bam_txn;
549 	size_t bam_txn_size;
550 	unsigned int num_cw = nandc->max_cwperpage;
551 	void *bam_txn_buf;
552 
553 	bam_txn_size =
554 		sizeof(*bam_txn) + num_cw *
555 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
556 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
557 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
558 
559 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
560 	if (!bam_txn_buf)
561 		return NULL;
562 
563 	bam_txn = bam_txn_buf;
564 	bam_txn_buf += sizeof(*bam_txn);
565 
566 	bam_txn->bam_ce = bam_txn_buf;
567 	bam_txn_buf +=
568 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
569 
570 	bam_txn->cmd_sgl = bam_txn_buf;
571 	bam_txn_buf +=
572 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
573 
574 	bam_txn->data_sgl = bam_txn_buf;
575 
576 	init_completion(&bam_txn->txn_done);
577 
578 	return bam_txn;
579 }
580 
581 /* Clears the BAM transaction indexes */
582 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
583 {
584 	struct bam_transaction *bam_txn = nandc->bam_txn;
585 
586 	if (!nandc->props->is_bam)
587 		return;
588 
589 	bam_txn->bam_ce_pos = 0;
590 	bam_txn->bam_ce_start = 0;
591 	bam_txn->cmd_sgl_pos = 0;
592 	bam_txn->cmd_sgl_start = 0;
593 	bam_txn->tx_sgl_pos = 0;
594 	bam_txn->tx_sgl_start = 0;
595 	bam_txn->rx_sgl_pos = 0;
596 	bam_txn->rx_sgl_start = 0;
597 	bam_txn->last_data_desc = NULL;
598 	bam_txn->wait_second_completion = false;
599 
600 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
601 		      QPIC_PER_CW_CMD_SGL);
602 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
603 		      QPIC_PER_CW_DATA_SGL);
604 
605 	reinit_completion(&bam_txn->txn_done);
606 }
607 
608 /* Callback for DMA descriptor completion */
609 static void qpic_bam_dma_done(void *data)
610 {
611 	struct bam_transaction *bam_txn = data;
612 
613 	/*
614 	 * In case of data transfer with NAND, 2 callbacks will be generated.
615 	 * One for command channel and another one for data channel.
616 	 * If current transaction has data descriptors
617 	 * (i.e. wait_second_completion is true), then set this to false
618 	 * and wait for second DMA descriptor completion.
619 	 */
620 	if (bam_txn->wait_second_completion)
621 		bam_txn->wait_second_completion = false;
622 	else
623 		complete(&bam_txn->txn_done);
624 }
625 
626 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
627 {
628 	return container_of(chip, struct qcom_nand_host, chip);
629 }
630 
631 static inline struct qcom_nand_controller *
632 get_qcom_nand_controller(struct nand_chip *chip)
633 {
634 	return container_of(chip->controller, struct qcom_nand_controller,
635 			    controller);
636 }
637 
638 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
639 {
640 	return ioread32(nandc->base + offset);
641 }
642 
643 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
644 			       u32 val)
645 {
646 	iowrite32(val, nandc->base + offset);
647 }
648 
649 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
650 					  bool is_cpu)
651 {
652 	if (!nandc->props->is_bam)
653 		return;
654 
655 	if (is_cpu)
656 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
657 					MAX_REG_RD *
658 					sizeof(*nandc->reg_read_buf),
659 					DMA_FROM_DEVICE);
660 	else
661 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
662 					   MAX_REG_RD *
663 					   sizeof(*nandc->reg_read_buf),
664 					   DMA_FROM_DEVICE);
665 }
666 
667 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
668 {
669 	switch (offset) {
670 	case NAND_FLASH_CMD:
671 		return &regs->cmd;
672 	case NAND_ADDR0:
673 		return &regs->addr0;
674 	case NAND_ADDR1:
675 		return &regs->addr1;
676 	case NAND_FLASH_CHIP_SELECT:
677 		return &regs->chip_sel;
678 	case NAND_EXEC_CMD:
679 		return &regs->exec;
680 	case NAND_FLASH_STATUS:
681 		return &regs->clrflashstatus;
682 	case NAND_DEV0_CFG0:
683 		return &regs->cfg0;
684 	case NAND_DEV0_CFG1:
685 		return &regs->cfg1;
686 	case NAND_DEV0_ECC_CFG:
687 		return &regs->ecc_bch_cfg;
688 	case NAND_READ_STATUS:
689 		return &regs->clrreadstatus;
690 	case NAND_DEV_CMD1:
691 		return &regs->cmd1;
692 	case NAND_DEV_CMD1_RESTORE:
693 		return &regs->orig_cmd1;
694 	case NAND_DEV_CMD_VLD:
695 		return &regs->vld;
696 	case NAND_DEV_CMD_VLD_RESTORE:
697 		return &regs->orig_vld;
698 	case NAND_EBI2_ECC_BUF_CFG:
699 		return &regs->ecc_buf_cfg;
700 	case NAND_READ_LOCATION_0:
701 		return &regs->read_location0;
702 	case NAND_READ_LOCATION_1:
703 		return &regs->read_location1;
704 	case NAND_READ_LOCATION_2:
705 		return &regs->read_location2;
706 	case NAND_READ_LOCATION_3:
707 		return &regs->read_location3;
708 	case NAND_READ_LOCATION_LAST_CW_0:
709 		return &regs->read_location_last0;
710 	case NAND_READ_LOCATION_LAST_CW_1:
711 		return &regs->read_location_last1;
712 	case NAND_READ_LOCATION_LAST_CW_2:
713 		return &regs->read_location_last2;
714 	case NAND_READ_LOCATION_LAST_CW_3:
715 		return &regs->read_location_last3;
716 	default:
717 		return NULL;
718 	}
719 }
720 
721 static void nandc_set_reg(struct nand_chip *chip, int offset,
722 			  u32 val)
723 {
724 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
725 	struct nandc_regs *regs = nandc->regs;
726 	__le32 *reg;
727 
728 	reg = offset_to_nandc_reg(regs, offset);
729 
730 	if (reg)
731 		*reg = cpu_to_le32(val);
732 }
733 
734 /* Helper to check the code word, whether it is last cw or not */
735 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
736 {
737 	return cw == (ecc->steps - 1);
738 }
739 
740 /* helper to configure location register values */
741 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
742 			       int cw_offset, int read_size, int is_last_read_loc)
743 {
744 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
745 	struct nand_ecc_ctrl *ecc = &chip->ecc;
746 	int reg_base = NAND_READ_LOCATION_0;
747 
748 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
749 		reg_base = NAND_READ_LOCATION_LAST_CW_0;
750 
751 	reg_base += reg * 4;
752 
753 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
754 		return nandc_set_read_loc_last(chip, reg_base, cw_offset,
755 				read_size, is_last_read_loc);
756 	else
757 		return nandc_set_read_loc_first(chip, reg_base, cw_offset,
758 				read_size, is_last_read_loc);
759 }
760 
761 /* helper to configure address register values */
762 static void set_address(struct qcom_nand_host *host, u16 column, int page)
763 {
764 	struct nand_chip *chip = &host->chip;
765 
766 	if (chip->options & NAND_BUSWIDTH_16)
767 		column >>= 1;
768 
769 	nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
770 	nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
771 }
772 
773 /*
774  * update_rw_regs:	set up read/write register values, these will be
775  *			written to the NAND controller registers via DMA
776  *
777  * @num_cw:		number of steps for the read/write operation
778  * @read:		read or write operation
779  * @cw	:		which code word
780  */
781 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
782 {
783 	struct nand_chip *chip = &host->chip;
784 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
785 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
786 
787 	if (read) {
788 		if (host->use_ecc)
789 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
790 		else
791 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
792 	} else {
793 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
794 	}
795 
796 	if (host->use_ecc) {
797 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
798 				(num_cw - 1) << CW_PER_PAGE;
799 
800 		cfg1 = host->cfg1;
801 		ecc_bch_cfg = host->ecc_bch_cfg;
802 	} else {
803 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
804 				(num_cw - 1) << CW_PER_PAGE;
805 
806 		cfg1 = host->cfg1_raw;
807 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
808 	}
809 
810 	nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
811 	nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
812 	nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
813 	nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
814 	if (!nandc->props->qpic_v2)
815 		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
816 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
817 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
818 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
819 
820 	if (read)
821 		nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
822 				   host->cw_data : host->cw_size, 1);
823 }
824 
825 /*
826  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
827  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
828  * which will be submitted to DMA engine.
829  */
830 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
831 				  struct dma_chan *chan,
832 				  unsigned long flags)
833 {
834 	struct desc_info *desc;
835 	struct scatterlist *sgl;
836 	unsigned int sgl_cnt;
837 	int ret;
838 	struct bam_transaction *bam_txn = nandc->bam_txn;
839 	enum dma_transfer_direction dir_eng;
840 	struct dma_async_tx_descriptor *dma_desc;
841 
842 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
843 	if (!desc)
844 		return -ENOMEM;
845 
846 	if (chan == nandc->cmd_chan) {
847 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
848 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
849 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
850 		dir_eng = DMA_MEM_TO_DEV;
851 		desc->dir = DMA_TO_DEVICE;
852 	} else if (chan == nandc->tx_chan) {
853 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
854 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
855 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
856 		dir_eng = DMA_MEM_TO_DEV;
857 		desc->dir = DMA_TO_DEVICE;
858 	} else {
859 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
860 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
861 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
862 		dir_eng = DMA_DEV_TO_MEM;
863 		desc->dir = DMA_FROM_DEVICE;
864 	}
865 
866 	sg_mark_end(sgl + sgl_cnt - 1);
867 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
868 	if (ret == 0) {
869 		dev_err(nandc->dev, "failure in mapping desc\n");
870 		kfree(desc);
871 		return -ENOMEM;
872 	}
873 
874 	desc->sgl_cnt = sgl_cnt;
875 	desc->bam_sgl = sgl;
876 
877 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
878 					   flags);
879 
880 	if (!dma_desc) {
881 		dev_err(nandc->dev, "failure in prep desc\n");
882 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
883 		kfree(desc);
884 		return -EINVAL;
885 	}
886 
887 	desc->dma_desc = dma_desc;
888 
889 	/* update last data/command descriptor */
890 	if (chan == nandc->cmd_chan)
891 		bam_txn->last_cmd_desc = dma_desc;
892 	else
893 		bam_txn->last_data_desc = dma_desc;
894 
895 	list_add_tail(&desc->node, &nandc->desc_list);
896 
897 	return 0;
898 }
899 
900 /*
901  * Prepares the command descriptor for BAM DMA which will be used for NAND
902  * register reads and writes. The command descriptor requires the command
903  * to be formed in command element type so this function uses the command
904  * element from bam transaction ce array and fills the same with required
905  * data. A single SGL can contain multiple command elements so
906  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
907  * after the current command element.
908  */
909 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
910 				 int reg_off, const void *vaddr,
911 				 int size, unsigned int flags)
912 {
913 	int bam_ce_size;
914 	int i, ret;
915 	struct bam_cmd_element *bam_ce_buffer;
916 	struct bam_transaction *bam_txn = nandc->bam_txn;
917 
918 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
919 
920 	/* fill the command desc */
921 	for (i = 0; i < size; i++) {
922 		if (read)
923 			bam_prep_ce(&bam_ce_buffer[i],
924 				    nandc_reg_phys(nandc, reg_off + 4 * i),
925 				    BAM_READ_COMMAND,
926 				    reg_buf_dma_addr(nandc,
927 						     (__le32 *)vaddr + i));
928 		else
929 			bam_prep_ce_le32(&bam_ce_buffer[i],
930 					 nandc_reg_phys(nandc, reg_off + 4 * i),
931 					 BAM_WRITE_COMMAND,
932 					 *((__le32 *)vaddr + i));
933 	}
934 
935 	bam_txn->bam_ce_pos += size;
936 
937 	/* use the separate sgl after this command */
938 	if (flags & NAND_BAM_NEXT_SGL) {
939 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
940 		bam_ce_size = (bam_txn->bam_ce_pos -
941 				bam_txn->bam_ce_start) *
942 				sizeof(struct bam_cmd_element);
943 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
944 			   bam_ce_buffer, bam_ce_size);
945 		bam_txn->cmd_sgl_pos++;
946 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
947 
948 		if (flags & NAND_BAM_NWD) {
949 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
950 						     DMA_PREP_FENCE |
951 						     DMA_PREP_CMD);
952 			if (ret)
953 				return ret;
954 		}
955 	}
956 
957 	return 0;
958 }
959 
960 /*
961  * Prepares the data descriptor for BAM DMA which will be used for NAND
962  * data reads and writes.
963  */
964 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
965 				  const void *vaddr,
966 				  int size, unsigned int flags)
967 {
968 	int ret;
969 	struct bam_transaction *bam_txn = nandc->bam_txn;
970 
971 	if (read) {
972 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
973 			   vaddr, size);
974 		bam_txn->rx_sgl_pos++;
975 	} else {
976 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
977 			   vaddr, size);
978 		bam_txn->tx_sgl_pos++;
979 
980 		/*
981 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
982 		 * is not set, form the DMA descriptor
983 		 */
984 		if (!(flags & NAND_BAM_NO_EOT)) {
985 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
986 						     DMA_PREP_INTERRUPT);
987 			if (ret)
988 				return ret;
989 		}
990 	}
991 
992 	return 0;
993 }
994 
995 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
996 			     int reg_off, const void *vaddr, int size,
997 			     bool flow_control)
998 {
999 	struct desc_info *desc;
1000 	struct dma_async_tx_descriptor *dma_desc;
1001 	struct scatterlist *sgl;
1002 	struct dma_slave_config slave_conf;
1003 	struct qcom_adm_peripheral_config periph_conf = {};
1004 	enum dma_transfer_direction dir_eng;
1005 	int ret;
1006 
1007 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1008 	if (!desc)
1009 		return -ENOMEM;
1010 
1011 	sgl = &desc->adm_sgl;
1012 
1013 	sg_init_one(sgl, vaddr, size);
1014 
1015 	if (read) {
1016 		dir_eng = DMA_DEV_TO_MEM;
1017 		desc->dir = DMA_FROM_DEVICE;
1018 	} else {
1019 		dir_eng = DMA_MEM_TO_DEV;
1020 		desc->dir = DMA_TO_DEVICE;
1021 	}
1022 
1023 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
1024 	if (ret == 0) {
1025 		ret = -ENOMEM;
1026 		goto err;
1027 	}
1028 
1029 	memset(&slave_conf, 0x00, sizeof(slave_conf));
1030 
1031 	slave_conf.device_fc = flow_control;
1032 	if (read) {
1033 		slave_conf.src_maxburst = 16;
1034 		slave_conf.src_addr = nandc->base_dma + reg_off;
1035 		if (nandc->data_crci) {
1036 			periph_conf.crci = nandc->data_crci;
1037 			slave_conf.peripheral_config = &periph_conf;
1038 			slave_conf.peripheral_size = sizeof(periph_conf);
1039 		}
1040 	} else {
1041 		slave_conf.dst_maxburst = 16;
1042 		slave_conf.dst_addr = nandc->base_dma + reg_off;
1043 		if (nandc->cmd_crci) {
1044 			periph_conf.crci = nandc->cmd_crci;
1045 			slave_conf.peripheral_config = &periph_conf;
1046 			slave_conf.peripheral_size = sizeof(periph_conf);
1047 		}
1048 	}
1049 
1050 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
1051 	if (ret) {
1052 		dev_err(nandc->dev, "failed to configure dma channel\n");
1053 		goto err;
1054 	}
1055 
1056 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
1057 	if (!dma_desc) {
1058 		dev_err(nandc->dev, "failed to prepare desc\n");
1059 		ret = -EINVAL;
1060 		goto err;
1061 	}
1062 
1063 	desc->dma_desc = dma_desc;
1064 
1065 	list_add_tail(&desc->node, &nandc->desc_list);
1066 
1067 	return 0;
1068 err:
1069 	kfree(desc);
1070 
1071 	return ret;
1072 }
1073 
1074 /*
1075  * read_reg_dma:	prepares a descriptor to read a given number of
1076  *			contiguous registers to the reg_read_buf pointer
1077  *
1078  * @first:		offset of the first register in the contiguous block
1079  * @num_regs:		number of registers to read
1080  * @flags:		flags to control DMA descriptor preparation
1081  */
1082 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1083 			int num_regs, unsigned int flags)
1084 {
1085 	bool flow_control = false;
1086 	void *vaddr;
1087 
1088 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1089 	nandc->reg_read_pos += num_regs;
1090 
1091 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1092 		first = dev_cmd_reg_addr(nandc, first);
1093 
1094 	if (nandc->props->is_bam)
1095 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1096 					     num_regs, flags);
1097 
1098 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1099 		flow_control = true;
1100 
1101 	return prep_adm_dma_desc(nandc, true, first, vaddr,
1102 				 num_regs * sizeof(u32), flow_control);
1103 }
1104 
1105 /*
1106  * write_reg_dma:	prepares a descriptor to write a given number of
1107  *			contiguous registers
1108  *
1109  * @first:		offset of the first register in the contiguous block
1110  * @num_regs:		number of registers to write
1111  * @flags:		flags to control DMA descriptor preparation
1112  */
1113 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1114 			 int num_regs, unsigned int flags)
1115 {
1116 	bool flow_control = false;
1117 	struct nandc_regs *regs = nandc->regs;
1118 	void *vaddr;
1119 
1120 	vaddr = offset_to_nandc_reg(regs, first);
1121 
1122 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1123 		if (flags & NAND_ERASED_CW_SET)
1124 			vaddr = &regs->erased_cw_detect_cfg_set;
1125 		else
1126 			vaddr = &regs->erased_cw_detect_cfg_clr;
1127 	}
1128 
1129 	if (first == NAND_EXEC_CMD)
1130 		flags |= NAND_BAM_NWD;
1131 
1132 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1133 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1134 
1135 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1136 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1137 
1138 	if (nandc->props->is_bam)
1139 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1140 					     num_regs, flags);
1141 
1142 	if (first == NAND_FLASH_CMD)
1143 		flow_control = true;
1144 
1145 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1146 				 num_regs * sizeof(u32), flow_control);
1147 }
1148 
1149 /*
1150  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1151  *			controller's internal buffer to the buffer 'vaddr'
1152  *
1153  * @reg_off:		offset within the controller's data buffer
1154  * @vaddr:		virtual address of the buffer we want to write to
1155  * @size:		DMA transaction size in bytes
1156  * @flags:		flags to control DMA descriptor preparation
1157  */
1158 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1159 			 const u8 *vaddr, int size, unsigned int flags)
1160 {
1161 	if (nandc->props->is_bam)
1162 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1163 
1164 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1165 }
1166 
1167 /*
1168  * write_data_dma:	prepares a DMA descriptor to transfer data from
1169  *			'vaddr' to the controller's internal buffer
1170  *
1171  * @reg_off:		offset within the controller's data buffer
1172  * @vaddr:		virtual address of the buffer we want to read from
1173  * @size:		DMA transaction size in bytes
1174  * @flags:		flags to control DMA descriptor preparation
1175  */
1176 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1177 			  const u8 *vaddr, int size, unsigned int flags)
1178 {
1179 	if (nandc->props->is_bam)
1180 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1181 
1182 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1183 }
1184 
1185 /*
1186  * Helper to prepare DMA descriptors for configuring registers
1187  * before reading a NAND page.
1188  */
1189 static void config_nand_page_read(struct nand_chip *chip)
1190 {
1191 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1192 
1193 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1194 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1195 	if (!nandc->props->qpic_v2)
1196 		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1197 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1198 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1199 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1200 }
1201 
1202 /*
1203  * Helper to prepare DMA descriptors for configuring registers
1204  * before reading each codeword in NAND page.
1205  */
1206 static void
1207 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1208 {
1209 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1210 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1211 
1212 	int reg = NAND_READ_LOCATION_0;
1213 
1214 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1215 		reg = NAND_READ_LOCATION_LAST_CW_0;
1216 
1217 	if (nandc->props->is_bam)
1218 		write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1219 
1220 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1221 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1222 
1223 	if (use_ecc) {
1224 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1225 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1226 			     NAND_BAM_NEXT_SGL);
1227 	} else {
1228 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1229 	}
1230 }
1231 
1232 /*
1233  * Helper to prepare dma descriptors to configure registers needed for reading a
1234  * single codeword in page
1235  */
1236 static void
1237 config_nand_single_cw_page_read(struct nand_chip *chip,
1238 				bool use_ecc, int cw)
1239 {
1240 	config_nand_page_read(chip);
1241 	config_nand_cw_read(chip, use_ecc, cw);
1242 }
1243 
1244 /*
1245  * Helper to prepare DMA descriptors used to configure registers needed for
1246  * before writing a NAND page.
1247  */
1248 static void config_nand_page_write(struct nand_chip *chip)
1249 {
1250 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1251 
1252 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1253 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1254 	if (!nandc->props->qpic_v2)
1255 		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1256 			      NAND_BAM_NEXT_SGL);
1257 }
1258 
1259 /*
1260  * Helper to prepare DMA descriptors for configuring registers
1261  * before writing each codeword in NAND page.
1262  */
1263 static void config_nand_cw_write(struct nand_chip *chip)
1264 {
1265 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1266 
1267 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1268 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1269 
1270 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1271 
1272 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1273 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1274 }
1275 
1276 /*
1277  * the following functions are used within chip->legacy.cmdfunc() to
1278  * perform different NAND_CMD_* commands
1279  */
1280 
1281 /* sets up descriptors for NAND_CMD_PARAM */
1282 static int nandc_param(struct qcom_nand_host *host)
1283 {
1284 	struct nand_chip *chip = &host->chip;
1285 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1286 
1287 	/*
1288 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1289 	 * in use. we configure the controller to perform a raw read of 512
1290 	 * bytes to read onfi params
1291 	 */
1292 	if (nandc->props->qpic_v2)
1293 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ |
1294 			      PAGE_ACC | LAST_PAGE);
1295 	else
1296 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ |
1297 			      PAGE_ACC | LAST_PAGE);
1298 
1299 	nandc_set_reg(chip, NAND_ADDR0, 0);
1300 	nandc_set_reg(chip, NAND_ADDR1, 0);
1301 	nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1302 					| 512 << UD_SIZE_BYTES
1303 					| 5 << NUM_ADDR_CYCLES
1304 					| 0 << SPARE_SIZE_BYTES);
1305 	nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1306 					| 0 << CS_ACTIVE_BSY
1307 					| 17 << BAD_BLOCK_BYTE_NUM
1308 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1309 					| 2 << WR_RD_BSY_GAP
1310 					| 0 << WIDE_FLASH
1311 					| 1 << DEV0_CFG1_ECC_DISABLE);
1312 	if (!nandc->props->qpic_v2)
1313 		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1314 
1315 	/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1316 	if (!nandc->props->qpic_v2) {
1317 		nandc_set_reg(chip, NAND_DEV_CMD_VLD,
1318 			      (nandc->vld & ~READ_START_VLD));
1319 		nandc_set_reg(chip, NAND_DEV_CMD1,
1320 			      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1321 			      | NAND_CMD_PARAM << READ_ADDR);
1322 	}
1323 
1324 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1325 
1326 	if (!nandc->props->qpic_v2) {
1327 		nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1328 		nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1329 	}
1330 
1331 	nandc_set_read_loc(chip, 0, 0, 0, 512, 1);
1332 
1333 	if (!nandc->props->qpic_v2) {
1334 		write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1335 		write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1336 	}
1337 
1338 	nandc->buf_count = 512;
1339 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1340 
1341 	config_nand_single_cw_page_read(chip, false, 0);
1342 
1343 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1344 		      nandc->buf_count, 0);
1345 
1346 	/* restore CMD1 and VLD regs */
1347 	if (!nandc->props->qpic_v2) {
1348 		write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1349 		write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 /* sets up descriptors for NAND_CMD_ERASE1 */
1356 static int erase_block(struct qcom_nand_host *host, int page_addr)
1357 {
1358 	struct nand_chip *chip = &host->chip;
1359 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1360 
1361 	nandc_set_reg(chip, NAND_FLASH_CMD,
1362 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1363 	nandc_set_reg(chip, NAND_ADDR0, page_addr);
1364 	nandc_set_reg(chip, NAND_ADDR1, 0);
1365 	nandc_set_reg(chip, NAND_DEV0_CFG0,
1366 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1367 	nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
1368 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1369 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
1370 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
1371 
1372 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1373 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1374 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1375 
1376 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1377 
1378 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1379 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1380 
1381 	return 0;
1382 }
1383 
1384 /* sets up descriptors for NAND_CMD_READID */
1385 static int read_id(struct qcom_nand_host *host, int column)
1386 {
1387 	struct nand_chip *chip = &host->chip;
1388 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1389 
1390 	if (column == -1)
1391 		return 0;
1392 
1393 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID);
1394 	nandc_set_reg(chip, NAND_ADDR0, column);
1395 	nandc_set_reg(chip, NAND_ADDR1, 0);
1396 	nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
1397 		      nandc->props->is_bam ? 0 : DM_EN);
1398 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1399 
1400 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1401 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1402 
1403 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1404 
1405 	return 0;
1406 }
1407 
1408 /* sets up descriptors for NAND_CMD_RESET */
1409 static int reset(struct qcom_nand_host *host)
1410 {
1411 	struct nand_chip *chip = &host->chip;
1412 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1413 
1414 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE);
1415 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1416 
1417 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1418 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1419 
1420 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1421 
1422 	return 0;
1423 }
1424 
1425 /* helpers to submit/free our list of dma descriptors */
1426 static int submit_descs(struct qcom_nand_controller *nandc)
1427 {
1428 	struct desc_info *desc;
1429 	dma_cookie_t cookie = 0;
1430 	struct bam_transaction *bam_txn = nandc->bam_txn;
1431 	int r;
1432 
1433 	if (nandc->props->is_bam) {
1434 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1435 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1436 			if (r)
1437 				return r;
1438 		}
1439 
1440 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1441 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1442 						   DMA_PREP_INTERRUPT);
1443 			if (r)
1444 				return r;
1445 		}
1446 
1447 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1448 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1449 						   DMA_PREP_CMD);
1450 			if (r)
1451 				return r;
1452 		}
1453 	}
1454 
1455 	list_for_each_entry(desc, &nandc->desc_list, node)
1456 		cookie = dmaengine_submit(desc->dma_desc);
1457 
1458 	if (nandc->props->is_bam) {
1459 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1460 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1461 		if (bam_txn->last_data_desc) {
1462 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1463 			bam_txn->last_data_desc->callback_param = bam_txn;
1464 			bam_txn->wait_second_completion = true;
1465 		}
1466 
1467 		dma_async_issue_pending(nandc->tx_chan);
1468 		dma_async_issue_pending(nandc->rx_chan);
1469 		dma_async_issue_pending(nandc->cmd_chan);
1470 
1471 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1472 						 QPIC_NAND_COMPLETION_TIMEOUT))
1473 			return -ETIMEDOUT;
1474 	} else {
1475 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1476 			return -ETIMEDOUT;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static void free_descs(struct qcom_nand_controller *nandc)
1483 {
1484 	struct desc_info *desc, *n;
1485 
1486 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1487 		list_del(&desc->node);
1488 
1489 		if (nandc->props->is_bam)
1490 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1491 				     desc->sgl_cnt, desc->dir);
1492 		else
1493 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1494 				     desc->dir);
1495 
1496 		kfree(desc);
1497 	}
1498 }
1499 
1500 /* reset the register read buffer for next NAND operation */
1501 static void clear_read_regs(struct qcom_nand_controller *nandc)
1502 {
1503 	nandc->reg_read_pos = 0;
1504 	nandc_read_buffer_sync(nandc, false);
1505 }
1506 
1507 static void pre_command(struct qcom_nand_host *host, int command)
1508 {
1509 	struct nand_chip *chip = &host->chip;
1510 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1511 
1512 	nandc->buf_count = 0;
1513 	nandc->buf_start = 0;
1514 	host->use_ecc = false;
1515 	host->last_command = command;
1516 
1517 	clear_read_regs(nandc);
1518 
1519 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1520 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1521 		clear_bam_transaction(nandc);
1522 }
1523 
1524 /*
1525  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1526  * privately maintained status byte, this status byte can be read after
1527  * NAND_CMD_STATUS is called
1528  */
1529 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1530 {
1531 	struct nand_chip *chip = &host->chip;
1532 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1533 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1534 	int num_cw;
1535 	int i;
1536 
1537 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1538 	nandc_read_buffer_sync(nandc, true);
1539 
1540 	for (i = 0; i < num_cw; i++) {
1541 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1542 
1543 		if (flash_status & FS_MPU_ERR)
1544 			host->status &= ~NAND_STATUS_WP;
1545 
1546 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1547 						 (flash_status &
1548 						  FS_DEVICE_STS_ERR)))
1549 			host->status |= NAND_STATUS_FAIL;
1550 	}
1551 }
1552 
1553 static void post_command(struct qcom_nand_host *host, int command)
1554 {
1555 	struct nand_chip *chip = &host->chip;
1556 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1557 
1558 	switch (command) {
1559 	case NAND_CMD_READID:
1560 		nandc_read_buffer_sync(nandc, true);
1561 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1562 		       nandc->buf_count);
1563 		break;
1564 	case NAND_CMD_PAGEPROG:
1565 	case NAND_CMD_ERASE1:
1566 		parse_erase_write_errors(host, command);
1567 		break;
1568 	default:
1569 		break;
1570 	}
1571 }
1572 
1573 /*
1574  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1575  * commands. The rest of the commands wouldn't be called by upper layers.
1576  * For example, NAND_CMD_READOOB would never be called because we have our own
1577  * versions of read_oob ops for nand_ecc_ctrl.
1578  */
1579 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1580 			       int column, int page_addr)
1581 {
1582 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1583 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1584 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1585 	bool wait = false;
1586 	int ret = 0;
1587 
1588 	pre_command(host, command);
1589 
1590 	switch (command) {
1591 	case NAND_CMD_RESET:
1592 		ret = reset(host);
1593 		wait = true;
1594 		break;
1595 
1596 	case NAND_CMD_READID:
1597 		nandc->buf_count = 4;
1598 		ret = read_id(host, column);
1599 		wait = true;
1600 		break;
1601 
1602 	case NAND_CMD_PARAM:
1603 		ret = nandc_param(host);
1604 		wait = true;
1605 		break;
1606 
1607 	case NAND_CMD_ERASE1:
1608 		ret = erase_block(host, page_addr);
1609 		wait = true;
1610 		break;
1611 
1612 	case NAND_CMD_READ0:
1613 		/* we read the entire page for now */
1614 		WARN_ON(column != 0);
1615 
1616 		host->use_ecc = true;
1617 		set_address(host, 0, page_addr);
1618 		update_rw_regs(host, ecc->steps, true, 0);
1619 		break;
1620 
1621 	case NAND_CMD_SEQIN:
1622 		WARN_ON(column != 0);
1623 		set_address(host, 0, page_addr);
1624 		break;
1625 
1626 	case NAND_CMD_PAGEPROG:
1627 	case NAND_CMD_STATUS:
1628 	case NAND_CMD_NONE:
1629 	default:
1630 		break;
1631 	}
1632 
1633 	if (ret) {
1634 		dev_err(nandc->dev, "failure executing command %d\n",
1635 			command);
1636 		free_descs(nandc);
1637 		return;
1638 	}
1639 
1640 	if (wait) {
1641 		ret = submit_descs(nandc);
1642 		if (ret)
1643 			dev_err(nandc->dev,
1644 				"failure submitting descs for command %d\n",
1645 				command);
1646 	}
1647 
1648 	free_descs(nandc);
1649 
1650 	post_command(host, command);
1651 }
1652 
1653 /*
1654  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1655  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1656  *
1657  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1658  * but it notifies that it is an erased CW by placing special characters at
1659  * certain offsets in the buffer.
1660  *
1661  * verify if the page is erased or not, and fix up the page for RS ECC by
1662  * replacing the special characters with 0xff.
1663  */
1664 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1665 {
1666 	u8 empty1, empty2;
1667 
1668 	/*
1669 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1670 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1671 	 * beginning of each codeword
1672 	 */
1673 
1674 	empty1 = data_buf[3];
1675 	empty2 = data_buf[175];
1676 
1677 	/*
1678 	 * if the erased codework markers, if they exist override them with
1679 	 * 0xffs
1680 	 */
1681 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1682 	    (empty1 == 0xff && empty2 == 0x54)) {
1683 		data_buf[3] = 0xff;
1684 		data_buf[175] = 0xff;
1685 	}
1686 
1687 	/*
1688 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1689 	 * restore the original values at the special offsets
1690 	 */
1691 	if (memchr_inv(data_buf, 0xff, data_len)) {
1692 		data_buf[3] = empty1;
1693 		data_buf[175] = empty2;
1694 
1695 		return false;
1696 	}
1697 
1698 	return true;
1699 }
1700 
1701 struct read_stats {
1702 	__le32 flash;
1703 	__le32 buffer;
1704 	__le32 erased_cw;
1705 };
1706 
1707 /* reads back FLASH_STATUS register set by the controller */
1708 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1709 {
1710 	struct nand_chip *chip = &host->chip;
1711 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1712 	int i;
1713 
1714 	nandc_read_buffer_sync(nandc, true);
1715 
1716 	for (i = 0; i < cw_cnt; i++) {
1717 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1718 
1719 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1720 			return -EIO;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 /* performs raw read for one codeword */
1727 static int
1728 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1729 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1730 {
1731 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1732 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1733 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1734 	int data_size1, data_size2, oob_size1, oob_size2;
1735 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1736 	int raw_cw = cw;
1737 
1738 	nand_read_page_op(chip, page, 0, NULL, 0);
1739 	host->use_ecc = false;
1740 
1741 	if (nandc->props->qpic_v2)
1742 		raw_cw = ecc->steps - 1;
1743 
1744 	clear_bam_transaction(nandc);
1745 	set_address(host, host->cw_size * cw, page);
1746 	update_rw_regs(host, 1, true, raw_cw);
1747 	config_nand_page_read(chip);
1748 
1749 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1750 	oob_size1 = host->bbm_size;
1751 
1752 	if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1753 		data_size2 = ecc->size - data_size1 -
1754 			     ((ecc->steps - 1) * 4);
1755 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1756 			    host->spare_bytes;
1757 	} else {
1758 		data_size2 = host->cw_data - data_size1;
1759 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1760 	}
1761 
1762 	if (nandc->props->is_bam) {
1763 		nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1764 		read_loc += data_size1;
1765 
1766 		nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1767 		read_loc += oob_size1;
1768 
1769 		nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1770 		read_loc += data_size2;
1771 
1772 		nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1773 	}
1774 
1775 	config_nand_cw_read(chip, false, raw_cw);
1776 
1777 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1778 	reg_off += data_size1;
1779 
1780 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1781 	reg_off += oob_size1;
1782 
1783 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1784 	reg_off += data_size2;
1785 
1786 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1787 
1788 	ret = submit_descs(nandc);
1789 	free_descs(nandc);
1790 	if (ret) {
1791 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1792 		return ret;
1793 	}
1794 
1795 	return check_flash_errors(host, 1);
1796 }
1797 
1798 /*
1799  * Bitflips can happen in erased codewords also so this function counts the
1800  * number of 0 in each CW for which ECC engine returns the uncorrectable
1801  * error. The page will be assumed as erased if this count is less than or
1802  * equal to the ecc->strength for each CW.
1803  *
1804  * 1. Both DATA and OOB need to be checked for number of 0. The
1805  *    top-level API can be called with only data buf or OOB buf so use
1806  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1807  *    is null for copying the raw bytes.
1808  * 2. Perform raw read for all the CW which has uncorrectable errors.
1809  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1810  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1811  *    the number of bitflips in this area.
1812  */
1813 static int
1814 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1815 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1816 		      int page, unsigned int max_bitflips)
1817 {
1818 	struct nand_chip *chip = &host->chip;
1819 	struct mtd_info *mtd = nand_to_mtd(chip);
1820 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1821 	u8 *cw_data_buf, *cw_oob_buf;
1822 	int cw, data_size, oob_size, ret = 0;
1823 
1824 	if (!data_buf)
1825 		data_buf = nand_get_data_buf(chip);
1826 
1827 	if (!oob_buf) {
1828 		nand_get_data_buf(chip);
1829 		oob_buf = chip->oob_poi;
1830 	}
1831 
1832 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1833 		if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1834 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1835 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1836 		} else {
1837 			data_size = host->cw_data;
1838 			oob_size = host->ecc_bytes_hw;
1839 		}
1840 
1841 		/* determine starting buffer address for current CW */
1842 		cw_data_buf = data_buf + (cw * host->cw_data);
1843 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1844 
1845 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1846 					     cw_oob_buf, page, cw);
1847 		if (ret)
1848 			return ret;
1849 
1850 		/*
1851 		 * make sure it isn't an erased page reported
1852 		 * as not-erased by HW because of a few bitflips
1853 		 */
1854 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1855 						  cw_oob_buf + host->bbm_size,
1856 						  oob_size, NULL,
1857 						  0, ecc->strength);
1858 		if (ret < 0) {
1859 			mtd->ecc_stats.failed++;
1860 		} else {
1861 			mtd->ecc_stats.corrected += ret;
1862 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1863 		}
1864 	}
1865 
1866 	return max_bitflips;
1867 }
1868 
1869 /*
1870  * reads back status registers set by the controller to notify page read
1871  * errors. this is equivalent to what 'ecc->correct()' would do.
1872  */
1873 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1874 			     u8 *oob_buf, int page)
1875 {
1876 	struct nand_chip *chip = &host->chip;
1877 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1878 	struct mtd_info *mtd = nand_to_mtd(chip);
1879 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1880 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1881 	struct read_stats *buf;
1882 	bool flash_op_err = false, erased;
1883 	int i;
1884 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1885 
1886 	buf = (struct read_stats *)nandc->reg_read_buf;
1887 	nandc_read_buffer_sync(nandc, true);
1888 
1889 	for (i = 0; i < ecc->steps; i++, buf++) {
1890 		u32 flash, buffer, erased_cw;
1891 		int data_len, oob_len;
1892 
1893 		if (qcom_nandc_is_last_cw(ecc, i)) {
1894 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1895 			oob_len = ecc->steps << 2;
1896 		} else {
1897 			data_len = host->cw_data;
1898 			oob_len = 0;
1899 		}
1900 
1901 		flash = le32_to_cpu(buf->flash);
1902 		buffer = le32_to_cpu(buf->buffer);
1903 		erased_cw = le32_to_cpu(buf->erased_cw);
1904 
1905 		/*
1906 		 * Check ECC failure for each codeword. ECC failure can
1907 		 * happen in either of the following conditions
1908 		 * 1. If number of bitflips are greater than ECC engine
1909 		 *    capability.
1910 		 * 2. If this codeword contains all 0xff for which erased
1911 		 *    codeword detection check will be done.
1912 		 */
1913 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1914 			/*
1915 			 * For BCH ECC, ignore erased codeword errors, if
1916 			 * ERASED_CW bits are set.
1917 			 */
1918 			if (host->bch_enabled) {
1919 				erased = (erased_cw & ERASED_CW) == ERASED_CW;
1920 			/*
1921 			 * For RS ECC, HW reports the erased CW by placing
1922 			 * special characters at certain offsets in the buffer.
1923 			 * These special characters will be valid only if
1924 			 * complete page is read i.e. data_buf is not NULL.
1925 			 */
1926 			} else if (data_buf) {
1927 				erased = erased_chunk_check_and_fixup(data_buf,
1928 								      data_len);
1929 			} else {
1930 				erased = false;
1931 			}
1932 
1933 			if (!erased)
1934 				uncorrectable_cws |= BIT(i);
1935 		/*
1936 		 * Check if MPU or any other operational error (timeout,
1937 		 * device failure, etc.) happened for this codeword and
1938 		 * make flash_op_err true. If flash_op_err is set, then
1939 		 * EIO will be returned for page read.
1940 		 */
1941 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1942 			flash_op_err = true;
1943 		/*
1944 		 * No ECC or operational errors happened. Check the number of
1945 		 * bits corrected and update the ecc_stats.corrected.
1946 		 */
1947 		} else {
1948 			unsigned int stat;
1949 
1950 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1951 			mtd->ecc_stats.corrected += stat;
1952 			max_bitflips = max(max_bitflips, stat);
1953 		}
1954 
1955 		if (data_buf)
1956 			data_buf += data_len;
1957 		if (oob_buf)
1958 			oob_buf += oob_len + ecc->bytes;
1959 	}
1960 
1961 	if (flash_op_err)
1962 		return -EIO;
1963 
1964 	if (!uncorrectable_cws)
1965 		return max_bitflips;
1966 
1967 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1968 				     uncorrectable_cws, page,
1969 				     max_bitflips);
1970 }
1971 
1972 /*
1973  * helper to perform the actual page read operation, used by ecc->read_page(),
1974  * ecc->read_oob()
1975  */
1976 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1977 			 u8 *oob_buf, int page)
1978 {
1979 	struct nand_chip *chip = &host->chip;
1980 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1981 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1982 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1983 	int i, ret;
1984 
1985 	config_nand_page_read(chip);
1986 
1987 	/* queue cmd descs for each codeword */
1988 	for (i = 0; i < ecc->steps; i++) {
1989 		int data_size, oob_size;
1990 
1991 		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1992 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1993 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1994 				   host->spare_bytes;
1995 		} else {
1996 			data_size = host->cw_data;
1997 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1998 		}
1999 
2000 		if (nandc->props->is_bam) {
2001 			if (data_buf && oob_buf) {
2002 				nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
2003 				nandc_set_read_loc(chip, i, 1, data_size,
2004 						   oob_size, 1);
2005 			} else if (data_buf) {
2006 				nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
2007 			} else {
2008 				nandc_set_read_loc(chip, i, 0, data_size,
2009 						   oob_size, 1);
2010 			}
2011 		}
2012 
2013 		config_nand_cw_read(chip, true, i);
2014 
2015 		if (data_buf)
2016 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
2017 				      data_size, 0);
2018 
2019 		/*
2020 		 * when ecc is enabled, the controller doesn't read the real
2021 		 * or dummy bad block markers in each chunk. To maintain a
2022 		 * consistent layout across RAW and ECC reads, we just
2023 		 * leave the real/dummy BBM offsets empty (i.e, filled with
2024 		 * 0xffs)
2025 		 */
2026 		if (oob_buf) {
2027 			int j;
2028 
2029 			for (j = 0; j < host->bbm_size; j++)
2030 				*oob_buf++ = 0xff;
2031 
2032 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
2033 				      oob_buf, oob_size, 0);
2034 		}
2035 
2036 		if (data_buf)
2037 			data_buf += data_size;
2038 		if (oob_buf)
2039 			oob_buf += oob_size;
2040 	}
2041 
2042 	ret = submit_descs(nandc);
2043 	free_descs(nandc);
2044 
2045 	if (ret) {
2046 		dev_err(nandc->dev, "failure to read page/oob\n");
2047 		return ret;
2048 	}
2049 
2050 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
2051 }
2052 
2053 /*
2054  * a helper that copies the last step/codeword of a page (containing free oob)
2055  * into our local buffer
2056  */
2057 static int copy_last_cw(struct qcom_nand_host *host, int page)
2058 {
2059 	struct nand_chip *chip = &host->chip;
2060 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2061 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2062 	int size;
2063 	int ret;
2064 
2065 	clear_read_regs(nandc);
2066 
2067 	size = host->use_ecc ? host->cw_data : host->cw_size;
2068 
2069 	/* prepare a clean read buffer */
2070 	memset(nandc->data_buffer, 0xff, size);
2071 
2072 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2073 	update_rw_regs(host, 1, true, ecc->steps - 1);
2074 
2075 	config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
2076 
2077 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
2078 
2079 	ret = submit_descs(nandc);
2080 	if (ret)
2081 		dev_err(nandc->dev, "failed to copy last codeword\n");
2082 
2083 	free_descs(nandc);
2084 
2085 	return ret;
2086 }
2087 
2088 static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
2089 {
2090 	struct qcom_nand_boot_partition *boot_partition;
2091 	u32 start, end;
2092 	int i;
2093 
2094 	/*
2095 	 * Since the frequent access will be to the non-boot partitions like rootfs,
2096 	 * optimize the page check by:
2097 	 *
2098 	 * 1. Checking if the page lies after the last boot partition.
2099 	 * 2. Checking from the boot partition end.
2100 	 */
2101 
2102 	/* First check the last boot partition */
2103 	boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
2104 	start = boot_partition->page_offset;
2105 	end = start + boot_partition->page_size;
2106 
2107 	/* Page is after the last boot partition end. This is NOT a boot partition */
2108 	if (page > end)
2109 		return false;
2110 
2111 	/* Actually check if it's a boot partition */
2112 	if (page < end && page >= start)
2113 		return true;
2114 
2115 	/* Check the other boot partitions starting from the second-last partition */
2116 	for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
2117 		boot_partition = &host->boot_partitions[i];
2118 		start = boot_partition->page_offset;
2119 		end = start + boot_partition->page_size;
2120 
2121 		if (page < end && page >= start)
2122 			return true;
2123 	}
2124 
2125 	return false;
2126 }
2127 
2128 static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
2129 {
2130 	bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
2131 
2132 	/* Skip conf write if we are already in the correct mode */
2133 	if (codeword_fixup == host->codeword_fixup)
2134 		return;
2135 
2136 	host->codeword_fixup = codeword_fixup;
2137 
2138 	host->cw_data = codeword_fixup ? 512 : 516;
2139 	host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
2140 			    host->bbm_size - host->cw_data;
2141 
2142 	host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
2143 	host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES |
2144 		      host->cw_data << UD_SIZE_BYTES;
2145 
2146 	host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
2147 	host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES;
2148 	host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS;
2149 }
2150 
2151 /* implements ecc->read_page() */
2152 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
2153 				int oob_required, int page)
2154 {
2155 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2156 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2157 	u8 *data_buf, *oob_buf = NULL;
2158 
2159 	if (host->nr_boot_partitions)
2160 		qcom_nandc_codeword_fixup(host, page);
2161 
2162 	nand_read_page_op(chip, page, 0, NULL, 0);
2163 	data_buf = buf;
2164 	oob_buf = oob_required ? chip->oob_poi : NULL;
2165 
2166 	clear_bam_transaction(nandc);
2167 
2168 	return read_page_ecc(host, data_buf, oob_buf, page);
2169 }
2170 
2171 /* implements ecc->read_page_raw() */
2172 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2173 				    int oob_required, int page)
2174 {
2175 	struct mtd_info *mtd = nand_to_mtd(chip);
2176 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2177 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2178 	int cw, ret;
2179 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
2180 
2181 	if (host->nr_boot_partitions)
2182 		qcom_nandc_codeword_fixup(host, page);
2183 
2184 	for (cw = 0; cw < ecc->steps; cw++) {
2185 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
2186 					     page, cw);
2187 		if (ret)
2188 			return ret;
2189 
2190 		data_buf += host->cw_data;
2191 		oob_buf += ecc->bytes;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 /* implements ecc->read_oob() */
2198 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
2199 {
2200 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2201 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2202 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2203 
2204 	if (host->nr_boot_partitions)
2205 		qcom_nandc_codeword_fixup(host, page);
2206 
2207 	clear_read_regs(nandc);
2208 	clear_bam_transaction(nandc);
2209 
2210 	host->use_ecc = true;
2211 	set_address(host, 0, page);
2212 	update_rw_regs(host, ecc->steps, true, 0);
2213 
2214 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2215 }
2216 
2217 /* implements ecc->write_page() */
2218 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2219 				 int oob_required, int page)
2220 {
2221 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2222 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2223 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2224 	u8 *data_buf, *oob_buf;
2225 	int i, ret;
2226 
2227 	if (host->nr_boot_partitions)
2228 		qcom_nandc_codeword_fixup(host, page);
2229 
2230 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2231 
2232 	clear_read_regs(nandc);
2233 	clear_bam_transaction(nandc);
2234 
2235 	data_buf = (u8 *)buf;
2236 	oob_buf = chip->oob_poi;
2237 
2238 	host->use_ecc = true;
2239 	update_rw_regs(host, ecc->steps, false, 0);
2240 	config_nand_page_write(chip);
2241 
2242 	for (i = 0; i < ecc->steps; i++) {
2243 		int data_size, oob_size;
2244 
2245 		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
2246 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2247 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2248 				   host->spare_bytes;
2249 		} else {
2250 			data_size = host->cw_data;
2251 			oob_size = ecc->bytes;
2252 		}
2253 
2254 
2255 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2256 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2257 
2258 		/*
2259 		 * when ECC is enabled, we don't really need to write anything
2260 		 * to oob for the first n - 1 codewords since these oob regions
2261 		 * just contain ECC bytes that's written by the controller
2262 		 * itself. For the last codeword, we skip the bbm positions and
2263 		 * write to the free oob area.
2264 		 */
2265 		if (qcom_nandc_is_last_cw(ecc, i)) {
2266 			oob_buf += host->bbm_size;
2267 
2268 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2269 				       oob_buf, oob_size, 0);
2270 		}
2271 
2272 		config_nand_cw_write(chip);
2273 
2274 		data_buf += data_size;
2275 		oob_buf += oob_size;
2276 	}
2277 
2278 	ret = submit_descs(nandc);
2279 	if (ret)
2280 		dev_err(nandc->dev, "failure to write page\n");
2281 
2282 	free_descs(nandc);
2283 
2284 	if (!ret)
2285 		ret = nand_prog_page_end_op(chip);
2286 
2287 	return ret;
2288 }
2289 
2290 /* implements ecc->write_page_raw() */
2291 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2292 				     const uint8_t *buf, int oob_required,
2293 				     int page)
2294 {
2295 	struct mtd_info *mtd = nand_to_mtd(chip);
2296 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2297 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2298 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2299 	u8 *data_buf, *oob_buf;
2300 	int i, ret;
2301 
2302 	if (host->nr_boot_partitions)
2303 		qcom_nandc_codeword_fixup(host, page);
2304 
2305 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2306 	clear_read_regs(nandc);
2307 	clear_bam_transaction(nandc);
2308 
2309 	data_buf = (u8 *)buf;
2310 	oob_buf = chip->oob_poi;
2311 
2312 	host->use_ecc = false;
2313 	update_rw_regs(host, ecc->steps, false, 0);
2314 	config_nand_page_write(chip);
2315 
2316 	for (i = 0; i < ecc->steps; i++) {
2317 		int data_size1, data_size2, oob_size1, oob_size2;
2318 		int reg_off = FLASH_BUF_ACC;
2319 
2320 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2321 		oob_size1 = host->bbm_size;
2322 
2323 		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
2324 			data_size2 = ecc->size - data_size1 -
2325 				     ((ecc->steps - 1) << 2);
2326 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2327 				    host->spare_bytes;
2328 		} else {
2329 			data_size2 = host->cw_data - data_size1;
2330 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2331 		}
2332 
2333 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2334 			       NAND_BAM_NO_EOT);
2335 		reg_off += data_size1;
2336 		data_buf += data_size1;
2337 
2338 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2339 			       NAND_BAM_NO_EOT);
2340 		reg_off += oob_size1;
2341 		oob_buf += oob_size1;
2342 
2343 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2344 			       NAND_BAM_NO_EOT);
2345 		reg_off += data_size2;
2346 		data_buf += data_size2;
2347 
2348 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2349 		oob_buf += oob_size2;
2350 
2351 		config_nand_cw_write(chip);
2352 	}
2353 
2354 	ret = submit_descs(nandc);
2355 	if (ret)
2356 		dev_err(nandc->dev, "failure to write raw page\n");
2357 
2358 	free_descs(nandc);
2359 
2360 	if (!ret)
2361 		ret = nand_prog_page_end_op(chip);
2362 
2363 	return ret;
2364 }
2365 
2366 /*
2367  * implements ecc->write_oob()
2368  *
2369  * the NAND controller cannot write only data or only OOB within a codeword
2370  * since ECC is calculated for the combined codeword. So update the OOB from
2371  * chip->oob_poi, and pad the data area with OxFF before writing.
2372  */
2373 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2374 {
2375 	struct mtd_info *mtd = nand_to_mtd(chip);
2376 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2377 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2378 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2379 	u8 *oob = chip->oob_poi;
2380 	int data_size, oob_size;
2381 	int ret;
2382 
2383 	if (host->nr_boot_partitions)
2384 		qcom_nandc_codeword_fixup(host, page);
2385 
2386 	host->use_ecc = true;
2387 	clear_bam_transaction(nandc);
2388 
2389 	/* calculate the data and oob size for the last codeword/step */
2390 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2391 	oob_size = mtd->oobavail;
2392 
2393 	memset(nandc->data_buffer, 0xff, host->cw_data);
2394 	/* override new oob content to last codeword */
2395 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2396 				    0, mtd->oobavail);
2397 
2398 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2399 	update_rw_regs(host, 1, false, 0);
2400 
2401 	config_nand_page_write(chip);
2402 	write_data_dma(nandc, FLASH_BUF_ACC,
2403 		       nandc->data_buffer, data_size + oob_size, 0);
2404 	config_nand_cw_write(chip);
2405 
2406 	ret = submit_descs(nandc);
2407 
2408 	free_descs(nandc);
2409 
2410 	if (ret) {
2411 		dev_err(nandc->dev, "failure to write oob\n");
2412 		return -EIO;
2413 	}
2414 
2415 	return nand_prog_page_end_op(chip);
2416 }
2417 
2418 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2419 {
2420 	struct mtd_info *mtd = nand_to_mtd(chip);
2421 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2422 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2423 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2424 	int page, ret, bbpos, bad = 0;
2425 
2426 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2427 
2428 	/*
2429 	 * configure registers for a raw sub page read, the address is set to
2430 	 * the beginning of the last codeword, we don't care about reading ecc
2431 	 * portion of oob. we just want the first few bytes from this codeword
2432 	 * that contains the BBM
2433 	 */
2434 	host->use_ecc = false;
2435 
2436 	clear_bam_transaction(nandc);
2437 	ret = copy_last_cw(host, page);
2438 	if (ret)
2439 		goto err;
2440 
2441 	if (check_flash_errors(host, 1)) {
2442 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2443 		goto err;
2444 	}
2445 
2446 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2447 
2448 	bad = nandc->data_buffer[bbpos] != 0xff;
2449 
2450 	if (chip->options & NAND_BUSWIDTH_16)
2451 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2452 err:
2453 	return bad;
2454 }
2455 
2456 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2457 {
2458 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2459 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2460 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2461 	int page, ret;
2462 
2463 	clear_read_regs(nandc);
2464 	clear_bam_transaction(nandc);
2465 
2466 	/*
2467 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2468 	 * we don't care about the rest of the content in the codeword since
2469 	 * we aren't going to use this block again
2470 	 */
2471 	memset(nandc->data_buffer, 0x00, host->cw_size);
2472 
2473 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2474 
2475 	/* prepare write */
2476 	host->use_ecc = false;
2477 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2478 	update_rw_regs(host, 1, false, ecc->steps - 1);
2479 
2480 	config_nand_page_write(chip);
2481 	write_data_dma(nandc, FLASH_BUF_ACC,
2482 		       nandc->data_buffer, host->cw_size, 0);
2483 	config_nand_cw_write(chip);
2484 
2485 	ret = submit_descs(nandc);
2486 
2487 	free_descs(nandc);
2488 
2489 	if (ret) {
2490 		dev_err(nandc->dev, "failure to update BBM\n");
2491 		return -EIO;
2492 	}
2493 
2494 	return nand_prog_page_end_op(chip);
2495 }
2496 
2497 /*
2498  * the three functions below implement chip->legacy.read_byte(),
2499  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2500  * aren't used for reading/writing page data, they are used for smaller data
2501  * like reading	id, status etc
2502  */
2503 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2504 {
2505 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2506 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2507 	u8 *buf = nandc->data_buffer;
2508 	u8 ret = 0x0;
2509 
2510 	if (host->last_command == NAND_CMD_STATUS) {
2511 		ret = host->status;
2512 
2513 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2514 
2515 		return ret;
2516 	}
2517 
2518 	if (nandc->buf_start < nandc->buf_count)
2519 		ret = buf[nandc->buf_start++];
2520 
2521 	return ret;
2522 }
2523 
2524 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2525 {
2526 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2527 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2528 
2529 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2530 	nandc->buf_start += real_len;
2531 }
2532 
2533 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2534 				 int len)
2535 {
2536 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2537 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2538 
2539 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2540 
2541 	nandc->buf_start += real_len;
2542 }
2543 
2544 /* we support only one external chip for now */
2545 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2546 {
2547 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2548 
2549 	if (chipnr <= 0)
2550 		return;
2551 
2552 	dev_warn(nandc->dev, "invalid chip select\n");
2553 }
2554 
2555 /*
2556  * NAND controller page layout info
2557  *
2558  * Layout with ECC enabled:
2559  *
2560  * |----------------------|  |---------------------------------|
2561  * |           xx.......yy|  |             *********xx.......yy|
2562  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2563  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2564  * |           xx.......yy|  |             *********xx.......yy|
2565  * |----------------------|  |---------------------------------|
2566  *     codeword 1,2..n-1                  codeword n
2567  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2568  *
2569  * n = Number of codewords in the page
2570  * . = ECC bytes
2571  * * = Spare/free bytes
2572  * x = Unused byte(s)
2573  * y = Reserved byte(s)
2574  *
2575  * 2K page: n = 4, spare = 16 bytes
2576  * 4K page: n = 8, spare = 32 bytes
2577  * 8K page: n = 16, spare = 64 bytes
2578  *
2579  * the qcom nand controller operates at a sub page/codeword level. each
2580  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2581  * the number of ECC bytes vary based on the ECC strength and the bus width.
2582  *
2583  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2584  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2585  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2586  *
2587  * When we access a page with ECC enabled, the reserved bytes(s) are not
2588  * accessible at all. When reading, we fill up these unreadable positions
2589  * with 0xffs. When writing, the controller skips writing the inaccessible
2590  * bytes.
2591  *
2592  * Layout with ECC disabled:
2593  *
2594  * |------------------------------|  |---------------------------------------|
2595  * |         yy          xx.......|  |         bb          *********xx.......|
2596  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2597  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2598  * |         yy          xx.......|  |         bb          *********xx.......|
2599  * |------------------------------|  |---------------------------------------|
2600  *         codeword 1,2..n-1                        codeword n
2601  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2602  *
2603  * n = Number of codewords in the page
2604  * . = ECC bytes
2605  * * = Spare/free bytes
2606  * x = Unused byte(s)
2607  * y = Dummy Bad Bock byte(s)
2608  * b = Real Bad Block byte(s)
2609  * size1/size2 = function of codeword size and 'n'
2610  *
2611  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2612  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2613  * Block Markers. In the last codeword, this position contains the real BBM
2614  *
2615  * In order to have a consistent layout between RAW and ECC modes, we assume
2616  * the following OOB layout arrangement:
2617  *
2618  * |-----------|  |--------------------|
2619  * |yyxx.......|  |bb*********xx.......|
2620  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2621  * |yyxx.......|  |bb*********xx.......|
2622  * |yyxx.......|  |bb*********xx.......|
2623  * |-----------|  |--------------------|
2624  *  first n - 1       nth OOB region
2625  *  OOB regions
2626  *
2627  * n = Number of codewords in the page
2628  * . = ECC bytes
2629  * * = FREE OOB bytes
2630  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2631  * x = Unused byte(s)
2632  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2633  *
2634  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2635  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2636  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2637  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2638  * the sum of the three).
2639  */
2640 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2641 				   struct mtd_oob_region *oobregion)
2642 {
2643 	struct nand_chip *chip = mtd_to_nand(mtd);
2644 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2645 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2646 
2647 	if (section > 1)
2648 		return -ERANGE;
2649 
2650 	if (!section) {
2651 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2652 				    host->bbm_size;
2653 		oobregion->offset = 0;
2654 	} else {
2655 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2656 		oobregion->offset = mtd->oobsize - oobregion->length;
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2663 				     struct mtd_oob_region *oobregion)
2664 {
2665 	struct nand_chip *chip = mtd_to_nand(mtd);
2666 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2667 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2668 
2669 	if (section)
2670 		return -ERANGE;
2671 
2672 	oobregion->length = ecc->steps * 4;
2673 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2674 
2675 	return 0;
2676 }
2677 
2678 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2679 	.ecc = qcom_nand_ooblayout_ecc,
2680 	.free = qcom_nand_ooblayout_free,
2681 };
2682 
2683 static int
2684 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2685 {
2686 	return strength == 4 ? 12 : 16;
2687 }
2688 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2689 		     NANDC_STEP_SIZE, 4, 8);
2690 
2691 static int qcom_nand_attach_chip(struct nand_chip *chip)
2692 {
2693 	struct mtd_info *mtd = nand_to_mtd(chip);
2694 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2695 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2696 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2697 	int cwperpage, bad_block_byte, ret;
2698 	bool wide_bus;
2699 	int ecc_mode = 1;
2700 
2701 	/* controller only supports 512 bytes data steps */
2702 	ecc->size = NANDC_STEP_SIZE;
2703 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2704 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2705 
2706 	/*
2707 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2708 	 * so remaining bytes can be used for ECC.
2709 	 */
2710 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2711 				   mtd->oobsize - (cwperpage * 4));
2712 	if (ret) {
2713 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2714 		return ret;
2715 	}
2716 
2717 	if (ecc->strength >= 8) {
2718 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2719 		host->bch_enabled = true;
2720 		ecc_mode = 1;
2721 
2722 		if (wide_bus) {
2723 			host->ecc_bytes_hw = 14;
2724 			host->spare_bytes = 0;
2725 			host->bbm_size = 2;
2726 		} else {
2727 			host->ecc_bytes_hw = 13;
2728 			host->spare_bytes = 2;
2729 			host->bbm_size = 1;
2730 		}
2731 	} else {
2732 		/*
2733 		 * if the controller supports BCH for 4 bit ECC, the controller
2734 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2735 		 * always 10 bytes
2736 		 */
2737 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2738 			/* BCH */
2739 			host->bch_enabled = true;
2740 			ecc_mode = 0;
2741 
2742 			if (wide_bus) {
2743 				host->ecc_bytes_hw = 8;
2744 				host->spare_bytes = 2;
2745 				host->bbm_size = 2;
2746 			} else {
2747 				host->ecc_bytes_hw = 7;
2748 				host->spare_bytes = 4;
2749 				host->bbm_size = 1;
2750 			}
2751 		} else {
2752 			/* RS */
2753 			host->ecc_bytes_hw = 10;
2754 
2755 			if (wide_bus) {
2756 				host->spare_bytes = 0;
2757 				host->bbm_size = 2;
2758 			} else {
2759 				host->spare_bytes = 1;
2760 				host->bbm_size = 1;
2761 			}
2762 		}
2763 	}
2764 
2765 	/*
2766 	 * we consider ecc->bytes as the sum of all the non-data content in a
2767 	 * step. It gives us a clean representation of the oob area (even if
2768 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2769 	 * ECC and 12 bytes for 4 bit ECC
2770 	 */
2771 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2772 
2773 	ecc->read_page		= qcom_nandc_read_page;
2774 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2775 	ecc->read_oob		= qcom_nandc_read_oob;
2776 	ecc->write_page		= qcom_nandc_write_page;
2777 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2778 	ecc->write_oob		= qcom_nandc_write_oob;
2779 
2780 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2781 
2782 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2783 	/* Free the initially allocated BAM transaction for reading the ONFI params */
2784 	if (nandc->props->is_bam)
2785 		free_bam_transaction(nandc);
2786 
2787 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2788 				     cwperpage);
2789 
2790 	/* Now allocate the BAM transaction based on updated max_cwperpage */
2791 	if (nandc->props->is_bam) {
2792 		nandc->bam_txn = alloc_bam_transaction(nandc);
2793 		if (!nandc->bam_txn) {
2794 			dev_err(nandc->dev,
2795 				"failed to allocate bam transaction\n");
2796 			return -ENOMEM;
2797 		}
2798 	}
2799 
2800 	/*
2801 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2802 	 * spare data with ECC too. We protect spare data by default, so we set
2803 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2804 	 */
2805 	host->cw_data = 516;
2806 
2807 	/*
2808 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2809 	 * for 8 bit ECC
2810 	 */
2811 	host->cw_size = host->cw_data + ecc->bytes;
2812 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2813 
2814 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2815 				| host->cw_data << UD_SIZE_BYTES
2816 				| 0 << DISABLE_STATUS_AFTER_WRITE
2817 				| 5 << NUM_ADDR_CYCLES
2818 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2819 				| 0 << STATUS_BFR_READ
2820 				| 1 << SET_RD_MODE_AFTER_STATUS
2821 				| host->spare_bytes << SPARE_SIZE_BYTES;
2822 
2823 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2824 				| 0 <<  CS_ACTIVE_BSY
2825 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2826 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2827 				| 2 << WR_RD_BSY_GAP
2828 				| wide_bus << WIDE_FLASH
2829 				| host->bch_enabled << ENABLE_BCH_ECC;
2830 
2831 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2832 				| host->cw_size << UD_SIZE_BYTES
2833 				| 5 << NUM_ADDR_CYCLES
2834 				| 0 << SPARE_SIZE_BYTES;
2835 
2836 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2837 				| 0 << CS_ACTIVE_BSY
2838 				| 17 << BAD_BLOCK_BYTE_NUM
2839 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2840 				| 2 << WR_RD_BSY_GAP
2841 				| wide_bus << WIDE_FLASH
2842 				| 1 << DEV0_CFG1_ECC_DISABLE;
2843 
2844 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2845 				| 0 << ECC_SW_RESET
2846 				| host->cw_data << ECC_NUM_DATA_BYTES
2847 				| 1 << ECC_FORCE_CLK_OPEN
2848 				| ecc_mode << ECC_MODE
2849 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2850 
2851 	if (!nandc->props->qpic_v2)
2852 		host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2853 
2854 	host->clrflashstatus = FS_READY_BSY_N;
2855 	host->clrreadstatus = 0xc0;
2856 	nandc->regs->erased_cw_detect_cfg_clr =
2857 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2858 	nandc->regs->erased_cw_detect_cfg_set =
2859 		cpu_to_le32(SET_ERASED_PAGE_DET);
2860 
2861 	dev_dbg(nandc->dev,
2862 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2863 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2864 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2865 		cwperpage);
2866 
2867 	return 0;
2868 }
2869 
2870 static const struct nand_controller_ops qcom_nandc_ops = {
2871 	.attach_chip = qcom_nand_attach_chip,
2872 };
2873 
2874 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2875 {
2876 	if (nandc->props->is_bam) {
2877 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2878 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2879 					 MAX_REG_RD *
2880 					 sizeof(*nandc->reg_read_buf),
2881 					 DMA_FROM_DEVICE);
2882 
2883 		if (nandc->tx_chan)
2884 			dma_release_channel(nandc->tx_chan);
2885 
2886 		if (nandc->rx_chan)
2887 			dma_release_channel(nandc->rx_chan);
2888 
2889 		if (nandc->cmd_chan)
2890 			dma_release_channel(nandc->cmd_chan);
2891 	} else {
2892 		if (nandc->chan)
2893 			dma_release_channel(nandc->chan);
2894 	}
2895 }
2896 
2897 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2898 {
2899 	int ret;
2900 
2901 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2902 	if (ret) {
2903 		dev_err(nandc->dev, "failed to set DMA mask\n");
2904 		return ret;
2905 	}
2906 
2907 	/*
2908 	 * we use the internal buffer for reading ONFI params, reading small
2909 	 * data like ID and status, and preforming read-copy-write operations
2910 	 * when writing to a codeword partially. 532 is the maximum possible
2911 	 * size of a codeword for our nand controller
2912 	 */
2913 	nandc->buf_size = 532;
2914 
2915 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2916 					GFP_KERNEL);
2917 	if (!nandc->data_buffer)
2918 		return -ENOMEM;
2919 
2920 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2921 					GFP_KERNEL);
2922 	if (!nandc->regs)
2923 		return -ENOMEM;
2924 
2925 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2926 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2927 				GFP_KERNEL);
2928 	if (!nandc->reg_read_buf)
2929 		return -ENOMEM;
2930 
2931 	if (nandc->props->is_bam) {
2932 		nandc->reg_read_dma =
2933 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2934 				       MAX_REG_RD *
2935 				       sizeof(*nandc->reg_read_buf),
2936 				       DMA_FROM_DEVICE);
2937 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2938 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2939 			return -EIO;
2940 		}
2941 
2942 		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2943 		if (IS_ERR(nandc->tx_chan)) {
2944 			ret = PTR_ERR(nandc->tx_chan);
2945 			nandc->tx_chan = NULL;
2946 			dev_err_probe(nandc->dev, ret,
2947 				      "tx DMA channel request failed\n");
2948 			goto unalloc;
2949 		}
2950 
2951 		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2952 		if (IS_ERR(nandc->rx_chan)) {
2953 			ret = PTR_ERR(nandc->rx_chan);
2954 			nandc->rx_chan = NULL;
2955 			dev_err_probe(nandc->dev, ret,
2956 				      "rx DMA channel request failed\n");
2957 			goto unalloc;
2958 		}
2959 
2960 		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2961 		if (IS_ERR(nandc->cmd_chan)) {
2962 			ret = PTR_ERR(nandc->cmd_chan);
2963 			nandc->cmd_chan = NULL;
2964 			dev_err_probe(nandc->dev, ret,
2965 				      "cmd DMA channel request failed\n");
2966 			goto unalloc;
2967 		}
2968 
2969 		/*
2970 		 * Initially allocate BAM transaction to read ONFI param page.
2971 		 * After detecting all the devices, this BAM transaction will
2972 		 * be freed and the next BAM tranasction will be allocated with
2973 		 * maximum codeword size
2974 		 */
2975 		nandc->max_cwperpage = 1;
2976 		nandc->bam_txn = alloc_bam_transaction(nandc);
2977 		if (!nandc->bam_txn) {
2978 			dev_err(nandc->dev,
2979 				"failed to allocate bam transaction\n");
2980 			ret = -ENOMEM;
2981 			goto unalloc;
2982 		}
2983 	} else {
2984 		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2985 		if (IS_ERR(nandc->chan)) {
2986 			ret = PTR_ERR(nandc->chan);
2987 			nandc->chan = NULL;
2988 			dev_err_probe(nandc->dev, ret,
2989 				      "rxtx DMA channel request failed\n");
2990 			return ret;
2991 		}
2992 	}
2993 
2994 	INIT_LIST_HEAD(&nandc->desc_list);
2995 	INIT_LIST_HEAD(&nandc->host_list);
2996 
2997 	nand_controller_init(&nandc->controller);
2998 	nandc->controller.ops = &qcom_nandc_ops;
2999 
3000 	return 0;
3001 unalloc:
3002 	qcom_nandc_unalloc(nandc);
3003 	return ret;
3004 }
3005 
3006 /* one time setup of a few nand controller registers */
3007 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
3008 {
3009 	u32 nand_ctrl;
3010 
3011 	/* kill onenand */
3012 	if (!nandc->props->is_qpic)
3013 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
3014 
3015 	if (!nandc->props->qpic_v2)
3016 		nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
3017 			    NAND_DEV_CMD_VLD_VAL);
3018 
3019 	/* enable ADM or BAM DMA */
3020 	if (nandc->props->is_bam) {
3021 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
3022 
3023 		/*
3024 		 *NAND_CTRL is an operational registers, and CPU
3025 		 * access to operational registers are read only
3026 		 * in BAM mode. So update the NAND_CTRL register
3027 		 * only if it is not in BAM mode. In most cases BAM
3028 		 * mode will be enabled in bootloader
3029 		 */
3030 		if (!(nand_ctrl & BAM_MODE_EN))
3031 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
3032 	} else {
3033 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
3034 	}
3035 
3036 	/* save the original values of these registers */
3037 	if (!nandc->props->qpic_v2) {
3038 		nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
3039 		nandc->vld = NAND_DEV_CMD_VLD_VAL;
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
3046 
3047 static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
3048 						struct qcom_nand_host *host,
3049 						struct device_node *dn)
3050 {
3051 	struct nand_chip *chip = &host->chip;
3052 	struct mtd_info *mtd = nand_to_mtd(chip);
3053 	struct qcom_nand_boot_partition *boot_partition;
3054 	struct device *dev = nandc->dev;
3055 	int partitions_count, i, j, ret;
3056 
3057 	if (!of_find_property(dn, "qcom,boot-partitions", NULL))
3058 		return 0;
3059 
3060 	partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions");
3061 	if (partitions_count <= 0) {
3062 		dev_err(dev, "Error parsing boot partition\n");
3063 		return partitions_count ? partitions_count : -EINVAL;
3064 	}
3065 
3066 	host->nr_boot_partitions = partitions_count / 2;
3067 	host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions,
3068 					     sizeof(*host->boot_partitions), GFP_KERNEL);
3069 	if (!host->boot_partitions) {
3070 		host->nr_boot_partitions = 0;
3071 		return -ENOMEM;
3072 	}
3073 
3074 	for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
3075 		boot_partition = &host->boot_partitions[i];
3076 
3077 		ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j,
3078 						 &boot_partition->page_offset);
3079 		if (ret) {
3080 			dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
3081 			host->nr_boot_partitions = 0;
3082 			return ret;
3083 		}
3084 
3085 		if (boot_partition->page_offset % mtd->writesize) {
3086 			dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
3087 				i);
3088 			host->nr_boot_partitions = 0;
3089 			return -EINVAL;
3090 		}
3091 		/* Convert offset to nand pages */
3092 		boot_partition->page_offset /= mtd->writesize;
3093 
3094 		ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1,
3095 						 &boot_partition->page_size);
3096 		if (ret) {
3097 			dev_err(dev, "Error parsing boot partition size at index %d\n", i);
3098 			host->nr_boot_partitions = 0;
3099 			return ret;
3100 		}
3101 
3102 		if (boot_partition->page_size % mtd->writesize) {
3103 			dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
3104 				i);
3105 			host->nr_boot_partitions = 0;
3106 			return -EINVAL;
3107 		}
3108 		/* Convert size to nand pages */
3109 		boot_partition->page_size /= mtd->writesize;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
3116 					    struct qcom_nand_host *host,
3117 					    struct device_node *dn)
3118 {
3119 	struct nand_chip *chip = &host->chip;
3120 	struct mtd_info *mtd = nand_to_mtd(chip);
3121 	struct device *dev = nandc->dev;
3122 	int ret;
3123 
3124 	ret = of_property_read_u32(dn, "reg", &host->cs);
3125 	if (ret) {
3126 		dev_err(dev, "can't get chip-select\n");
3127 		return -ENXIO;
3128 	}
3129 
3130 	nand_set_flash_node(chip, dn);
3131 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
3132 	if (!mtd->name)
3133 		return -ENOMEM;
3134 
3135 	mtd->owner = THIS_MODULE;
3136 	mtd->dev.parent = dev;
3137 
3138 	chip->legacy.cmdfunc	= qcom_nandc_command;
3139 	chip->legacy.select_chip	= qcom_nandc_select_chip;
3140 	chip->legacy.read_byte	= qcom_nandc_read_byte;
3141 	chip->legacy.read_buf	= qcom_nandc_read_buf;
3142 	chip->legacy.write_buf	= qcom_nandc_write_buf;
3143 	chip->legacy.set_features	= nand_get_set_features_notsupp;
3144 	chip->legacy.get_features	= nand_get_set_features_notsupp;
3145 
3146 	/*
3147 	 * the bad block marker is readable only when we read the last codeword
3148 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
3149 	 * helpers don't allow us to read BB from a nand chip with ECC
3150 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
3151 	 * and block_markbad helpers until we permanently switch to using
3152 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
3153 	 */
3154 	chip->legacy.block_bad		= qcom_nandc_block_bad;
3155 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
3156 
3157 	chip->controller = &nandc->controller;
3158 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
3159 			 NAND_SKIP_BBTSCAN;
3160 
3161 	/* set up initial status value */
3162 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
3163 
3164 	ret = nand_scan(chip, 1);
3165 	if (ret)
3166 		return ret;
3167 
3168 	ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
3169 	if (ret)
3170 		goto err;
3171 
3172 	if (nandc->props->use_codeword_fixup) {
3173 		ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
3174 		if (ret)
3175 			goto err;
3176 	}
3177 
3178 	return 0;
3179 
3180 err:
3181 	nand_cleanup(chip);
3182 	return ret;
3183 }
3184 
3185 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
3186 {
3187 	struct device *dev = nandc->dev;
3188 	struct device_node *dn = dev->of_node, *child;
3189 	struct qcom_nand_host *host;
3190 	int ret = -ENODEV;
3191 
3192 	for_each_available_child_of_node(dn, child) {
3193 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3194 		if (!host) {
3195 			of_node_put(child);
3196 			return -ENOMEM;
3197 		}
3198 
3199 		ret = qcom_nand_host_init_and_register(nandc, host, child);
3200 		if (ret) {
3201 			devm_kfree(dev, host);
3202 			continue;
3203 		}
3204 
3205 		list_add_tail(&host->node, &nandc->host_list);
3206 	}
3207 
3208 	return ret;
3209 }
3210 
3211 /* parse custom DT properties here */
3212 static int qcom_nandc_parse_dt(struct platform_device *pdev)
3213 {
3214 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3215 	struct device_node *np = nandc->dev->of_node;
3216 	int ret;
3217 
3218 	if (!nandc->props->is_bam) {
3219 		ret = of_property_read_u32(np, "qcom,cmd-crci",
3220 					   &nandc->cmd_crci);
3221 		if (ret) {
3222 			dev_err(nandc->dev, "command CRCI unspecified\n");
3223 			return ret;
3224 		}
3225 
3226 		ret = of_property_read_u32(np, "qcom,data-crci",
3227 					   &nandc->data_crci);
3228 		if (ret) {
3229 			dev_err(nandc->dev, "data CRCI unspecified\n");
3230 			return ret;
3231 		}
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static int qcom_nandc_probe(struct platform_device *pdev)
3238 {
3239 	struct qcom_nand_controller *nandc;
3240 	const void *dev_data;
3241 	struct device *dev = &pdev->dev;
3242 	struct resource *res;
3243 	int ret;
3244 
3245 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3246 	if (!nandc)
3247 		return -ENOMEM;
3248 
3249 	platform_set_drvdata(pdev, nandc);
3250 	nandc->dev = dev;
3251 
3252 	dev_data = of_device_get_match_data(dev);
3253 	if (!dev_data) {
3254 		dev_err(&pdev->dev, "failed to get device data\n");
3255 		return -ENODEV;
3256 	}
3257 
3258 	nandc->props = dev_data;
3259 
3260 	nandc->core_clk = devm_clk_get(dev, "core");
3261 	if (IS_ERR(nandc->core_clk))
3262 		return PTR_ERR(nandc->core_clk);
3263 
3264 	nandc->aon_clk = devm_clk_get(dev, "aon");
3265 	if (IS_ERR(nandc->aon_clk))
3266 		return PTR_ERR(nandc->aon_clk);
3267 
3268 	ret = qcom_nandc_parse_dt(pdev);
3269 	if (ret)
3270 		return ret;
3271 
3272 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3273 	nandc->base = devm_ioremap_resource(dev, res);
3274 	if (IS_ERR(nandc->base))
3275 		return PTR_ERR(nandc->base);
3276 
3277 	nandc->base_phys = res->start;
3278 	nandc->base_dma = dma_map_resource(dev, res->start,
3279 					   resource_size(res),
3280 					   DMA_BIDIRECTIONAL, 0);
3281 	if (dma_mapping_error(dev, nandc->base_dma))
3282 		return -ENXIO;
3283 
3284 	ret = clk_prepare_enable(nandc->core_clk);
3285 	if (ret)
3286 		goto err_core_clk;
3287 
3288 	ret = clk_prepare_enable(nandc->aon_clk);
3289 	if (ret)
3290 		goto err_aon_clk;
3291 
3292 	ret = qcom_nandc_alloc(nandc);
3293 	if (ret)
3294 		goto err_nandc_alloc;
3295 
3296 	ret = qcom_nandc_setup(nandc);
3297 	if (ret)
3298 		goto err_setup;
3299 
3300 	ret = qcom_probe_nand_devices(nandc);
3301 	if (ret)
3302 		goto err_setup;
3303 
3304 	return 0;
3305 
3306 err_setup:
3307 	qcom_nandc_unalloc(nandc);
3308 err_nandc_alloc:
3309 	clk_disable_unprepare(nandc->aon_clk);
3310 err_aon_clk:
3311 	clk_disable_unprepare(nandc->core_clk);
3312 err_core_clk:
3313 	dma_unmap_resource(dev, res->start, resource_size(res),
3314 			   DMA_BIDIRECTIONAL, 0);
3315 	return ret;
3316 }
3317 
3318 static int qcom_nandc_remove(struct platform_device *pdev)
3319 {
3320 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3321 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3322 	struct qcom_nand_host *host;
3323 	struct nand_chip *chip;
3324 	int ret;
3325 
3326 	list_for_each_entry(host, &nandc->host_list, node) {
3327 		chip = &host->chip;
3328 		ret = mtd_device_unregister(nand_to_mtd(chip));
3329 		WARN_ON(ret);
3330 		nand_cleanup(chip);
3331 	}
3332 
3333 	qcom_nandc_unalloc(nandc);
3334 
3335 	clk_disable_unprepare(nandc->aon_clk);
3336 	clk_disable_unprepare(nandc->core_clk);
3337 
3338 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3339 			   DMA_BIDIRECTIONAL, 0);
3340 
3341 	return 0;
3342 }
3343 
3344 static const struct qcom_nandc_props ipq806x_nandc_props = {
3345 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3346 	.is_bam = false,
3347 	.use_codeword_fixup = true,
3348 	.dev_cmd_reg_start = 0x0,
3349 };
3350 
3351 static const struct qcom_nandc_props ipq4019_nandc_props = {
3352 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3353 	.is_bam = true,
3354 	.is_qpic = true,
3355 	.dev_cmd_reg_start = 0x0,
3356 };
3357 
3358 static const struct qcom_nandc_props ipq8074_nandc_props = {
3359 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3360 	.is_bam = true,
3361 	.is_qpic = true,
3362 	.dev_cmd_reg_start = 0x7000,
3363 };
3364 
3365 static const struct qcom_nandc_props sdx55_nandc_props = {
3366 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3367 	.is_bam = true,
3368 	.is_qpic = true,
3369 	.qpic_v2 = true,
3370 	.dev_cmd_reg_start = 0x7000,
3371 };
3372 
3373 /*
3374  * data will hold a struct pointer containing more differences once we support
3375  * more controller variants
3376  */
3377 static const struct of_device_id qcom_nandc_of_match[] = {
3378 	{
3379 		.compatible = "qcom,ipq806x-nand",
3380 		.data = &ipq806x_nandc_props,
3381 	},
3382 	{
3383 		.compatible = "qcom,ipq4019-nand",
3384 		.data = &ipq4019_nandc_props,
3385 	},
3386 	{
3387 		.compatible = "qcom,ipq6018-nand",
3388 		.data = &ipq8074_nandc_props,
3389 	},
3390 	{
3391 		.compatible = "qcom,ipq8074-nand",
3392 		.data = &ipq8074_nandc_props,
3393 	},
3394 	{
3395 		.compatible = "qcom,sdx55-nand",
3396 		.data = &sdx55_nandc_props,
3397 	},
3398 	{}
3399 };
3400 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3401 
3402 static struct platform_driver qcom_nandc_driver = {
3403 	.driver = {
3404 		.name = "qcom-nandc",
3405 		.of_match_table = qcom_nandc_of_match,
3406 	},
3407 	.probe   = qcom_nandc_probe,
3408 	.remove  = qcom_nandc_remove,
3409 };
3410 module_platform_driver(qcom_nandc_driver);
3411 
3412 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3413 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3414 MODULE_LICENSE("GPL v2");
3415