xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision aac28965)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 #include <linux/clk.h>
6 #include <linux/slab.h>
7 #include <linux/bitops.h>
8 #include <linux/dma/qcom_adm.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
18 
19 /* NANDc reg offsets */
20 #define	NAND_FLASH_CMD			0x00
21 #define	NAND_ADDR0			0x04
22 #define	NAND_ADDR1			0x08
23 #define	NAND_FLASH_CHIP_SELECT		0x0c
24 #define	NAND_EXEC_CMD			0x10
25 #define	NAND_FLASH_STATUS		0x14
26 #define	NAND_BUFFER_STATUS		0x18
27 #define	NAND_DEV0_CFG0			0x20
28 #define	NAND_DEV0_CFG1			0x24
29 #define	NAND_DEV0_ECC_CFG		0x28
30 #define	NAND_AUTO_STATUS_EN		0x2c
31 #define	NAND_DEV1_CFG0			0x30
32 #define	NAND_DEV1_CFG1			0x34
33 #define	NAND_READ_ID			0x40
34 #define	NAND_READ_STATUS		0x44
35 #define	NAND_DEV_CMD0			0xa0
36 #define	NAND_DEV_CMD1			0xa4
37 #define	NAND_DEV_CMD2			0xa8
38 #define	NAND_DEV_CMD_VLD		0xac
39 #define	SFLASHC_BURST_CFG		0xe0
40 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
41 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
42 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
43 #define	FLASH_BUF_ACC			0x100
44 
45 #define	NAND_CTRL			0xf00
46 #define	NAND_VERSION			0xf08
47 #define	NAND_READ_LOCATION_0		0xf20
48 #define	NAND_READ_LOCATION_1		0xf24
49 #define	NAND_READ_LOCATION_2		0xf28
50 #define	NAND_READ_LOCATION_3		0xf2c
51 #define	NAND_READ_LOCATION_LAST_CW_0	0xf40
52 #define	NAND_READ_LOCATION_LAST_CW_1	0xf44
53 #define	NAND_READ_LOCATION_LAST_CW_2	0xf48
54 #define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
55 
56 /* dummy register offsets, used by write_reg_dma */
57 #define	NAND_DEV_CMD1_RESTORE		0xdead
58 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
59 
60 /* NAND_FLASH_CMD bits */
61 #define	PAGE_ACC			BIT(4)
62 #define	LAST_PAGE			BIT(5)
63 
64 /* NAND_FLASH_CHIP_SELECT bits */
65 #define	NAND_DEV_SEL			0
66 #define	DM_EN				BIT(2)
67 
68 /* NAND_FLASH_STATUS bits */
69 #define	FS_OP_ERR			BIT(4)
70 #define	FS_READY_BSY_N			BIT(5)
71 #define	FS_MPU_ERR			BIT(8)
72 #define	FS_DEVICE_STS_ERR		BIT(16)
73 #define	FS_DEVICE_WP			BIT(23)
74 
75 /* NAND_BUFFER_STATUS bits */
76 #define	BS_UNCORRECTABLE_BIT		BIT(8)
77 #define	BS_CORRECTABLE_ERR_MSK		0x1f
78 
79 /* NAND_DEVn_CFG0 bits */
80 #define	DISABLE_STATUS_AFTER_WRITE	4
81 #define	CW_PER_PAGE			6
82 #define	UD_SIZE_BYTES			9
83 #define	ECC_PARITY_SIZE_BYTES_RS	19
84 #define	SPARE_SIZE_BYTES		23
85 #define	NUM_ADDR_CYCLES			27
86 #define	STATUS_BFR_READ			30
87 #define	SET_RD_MODE_AFTER_STATUS	31
88 
89 /* NAND_DEVn_CFG0 bits */
90 #define	DEV0_CFG1_ECC_DISABLE		0
91 #define	WIDE_FLASH			1
92 #define	NAND_RECOVERY_CYCLES		2
93 #define	CS_ACTIVE_BSY			5
94 #define	BAD_BLOCK_BYTE_NUM		6
95 #define	BAD_BLOCK_IN_SPARE_AREA		16
96 #define	WR_RD_BSY_GAP			17
97 #define	ENABLE_BCH_ECC			27
98 
99 /* NAND_DEV0_ECC_CFG bits */
100 #define	ECC_CFG_ECC_DISABLE		0
101 #define	ECC_SW_RESET			1
102 #define	ECC_MODE			4
103 #define	ECC_PARITY_SIZE_BYTES_BCH	8
104 #define	ECC_NUM_DATA_BYTES		16
105 #define	ECC_FORCE_CLK_OPEN		30
106 
107 /* NAND_DEV_CMD1 bits */
108 #define	READ_ADDR			0
109 
110 /* NAND_DEV_CMD_VLD bits */
111 #define	READ_START_VLD			BIT(0)
112 #define	READ_STOP_VLD			BIT(1)
113 #define	WRITE_START_VLD			BIT(2)
114 #define	ERASE_START_VLD			BIT(3)
115 #define	SEQ_READ_START_VLD		BIT(4)
116 
117 /* NAND_EBI2_ECC_BUF_CFG bits */
118 #define	NUM_STEPS			0
119 
120 /* NAND_ERASED_CW_DETECT_CFG bits */
121 #define	ERASED_CW_ECC_MASK		1
122 #define	AUTO_DETECT_RES			0
123 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
124 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
125 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
126 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
127 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
128 
129 /* NAND_ERASED_CW_DETECT_STATUS bits */
130 #define	PAGE_ALL_ERASED			BIT(7)
131 #define	CODEWORD_ALL_ERASED		BIT(6)
132 #define	PAGE_ERASED			BIT(5)
133 #define	CODEWORD_ERASED			BIT(4)
134 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
135 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
136 
137 /* NAND_READ_LOCATION_n bits */
138 #define READ_LOCATION_OFFSET		0
139 #define READ_LOCATION_SIZE		16
140 #define READ_LOCATION_LAST		31
141 
142 /* Version Mask */
143 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
144 #define	NAND_VERSION_MAJOR_SHIFT	28
145 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
146 #define	NAND_VERSION_MINOR_SHIFT	16
147 
148 /* NAND OP_CMDs */
149 #define	OP_PAGE_READ			0x2
150 #define	OP_PAGE_READ_WITH_ECC		0x3
151 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
152 #define	OP_PAGE_READ_ONFI_READ		0x5
153 #define	OP_PROGRAM_PAGE			0x6
154 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
155 #define	OP_PROGRAM_PAGE_SPARE		0x9
156 #define	OP_BLOCK_ERASE			0xa
157 #define	OP_FETCH_ID			0xb
158 #define	OP_RESET_DEVICE			0xd
159 
160 /* Default Value for NAND_DEV_CMD_VLD */
161 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
162 					 ERASE_START_VLD | SEQ_READ_START_VLD)
163 
164 /* NAND_CTRL bits */
165 #define	BAM_MODE_EN			BIT(0)
166 
167 /*
168  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
169  * the driver calls the chunks 'step' or 'codeword' interchangeably
170  */
171 #define	NANDC_STEP_SIZE			512
172 
173 /*
174  * the largest page size we support is 8K, this will have 16 steps/codewords
175  * of 512 bytes each
176  */
177 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
178 
179 /* we read at most 3 registers per codeword scan */
180 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
181 
182 /* ECC modes supported by the controller */
183 #define	ECC_NONE	BIT(0)
184 #define	ECC_RS_4BIT	BIT(1)
185 #define	ECC_BCH_4BIT	BIT(2)
186 #define	ECC_BCH_8BIT	BIT(3)
187 
188 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc)	\
189 nandc_set_reg(chip, reg,			\
190 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
191 	      ((read_size) << READ_LOCATION_SIZE) |			\
192 	      ((is_last_read_loc) << READ_LOCATION_LAST))
193 
194 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc)	\
195 nandc_set_reg(chip, reg,			\
196 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
197 	      ((read_size) << READ_LOCATION_SIZE) |			\
198 	      ((is_last_read_loc) << READ_LOCATION_LAST))
199 /*
200  * Returns the actual register address for all NAND_DEV_ registers
201  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
202  */
203 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
204 
205 /* Returns the NAND register physical address */
206 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
207 
208 /* Returns the dma address for reg read buffer */
209 #define reg_buf_dma_addr(chip, vaddr) \
210 	((chip)->reg_read_dma + \
211 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
212 
213 #define QPIC_PER_CW_CMD_ELEMENTS	32
214 #define QPIC_PER_CW_CMD_SGL		32
215 #define QPIC_PER_CW_DATA_SGL		8
216 
217 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
218 
219 /*
220  * Flags used in DMA descriptor preparation helper functions
221  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
222  */
223 /* Don't set the EOT in current tx BAM sgl */
224 #define NAND_BAM_NO_EOT			BIT(0)
225 /* Set the NWD flag in current BAM sgl */
226 #define NAND_BAM_NWD			BIT(1)
227 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
228 #define NAND_BAM_NEXT_SGL		BIT(2)
229 /*
230  * Erased codeword status is being used two times in single transfer so this
231  * flag will determine the current value of erased codeword status register
232  */
233 #define NAND_ERASED_CW_SET		BIT(4)
234 
235 /*
236  * This data type corresponds to the BAM transaction which will be used for all
237  * NAND transfers.
238  * @bam_ce - the array of BAM command elements
239  * @cmd_sgl - sgl for NAND BAM command pipe
240  * @data_sgl - sgl for NAND BAM consumer/producer pipe
241  * @bam_ce_pos - the index in bam_ce which is available for next sgl
242  * @bam_ce_start - the index in bam_ce which marks the start position ce
243  *		   for current sgl. It will be used for size calculation
244  *		   for current sgl
245  * @cmd_sgl_pos - current index in command sgl.
246  * @cmd_sgl_start - start index in command sgl.
247  * @tx_sgl_pos - current index in data sgl for tx.
248  * @tx_sgl_start - start index in data sgl for tx.
249  * @rx_sgl_pos - current index in data sgl for rx.
250  * @rx_sgl_start - start index in data sgl for rx.
251  * @wait_second_completion - wait for second DMA desc completion before making
252  *			     the NAND transfer completion.
253  * @txn_done - completion for NAND transfer.
254  * @last_data_desc - last DMA desc in data channel (tx/rx).
255  * @last_cmd_desc - last DMA desc in command channel.
256  */
257 struct bam_transaction {
258 	struct bam_cmd_element *bam_ce;
259 	struct scatterlist *cmd_sgl;
260 	struct scatterlist *data_sgl;
261 	u32 bam_ce_pos;
262 	u32 bam_ce_start;
263 	u32 cmd_sgl_pos;
264 	u32 cmd_sgl_start;
265 	u32 tx_sgl_pos;
266 	u32 tx_sgl_start;
267 	u32 rx_sgl_pos;
268 	u32 rx_sgl_start;
269 	bool wait_second_completion;
270 	struct completion txn_done;
271 	struct dma_async_tx_descriptor *last_data_desc;
272 	struct dma_async_tx_descriptor *last_cmd_desc;
273 };
274 
275 /*
276  * This data type corresponds to the nand dma descriptor
277  * @list - list for desc_info
278  * @dir - DMA transfer direction
279  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
280  *	      ADM
281  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
282  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
283  * @dma_desc - low level DMA engine descriptor
284  */
285 struct desc_info {
286 	struct list_head node;
287 
288 	enum dma_data_direction dir;
289 	union {
290 		struct scatterlist adm_sgl;
291 		struct {
292 			struct scatterlist *bam_sgl;
293 			int sgl_cnt;
294 		};
295 	};
296 	struct dma_async_tx_descriptor *dma_desc;
297 };
298 
299 /*
300  * holds the current register values that we want to write. acts as a contiguous
301  * chunk of memory which we use to write the controller registers through DMA.
302  */
303 struct nandc_regs {
304 	__le32 cmd;
305 	__le32 addr0;
306 	__le32 addr1;
307 	__le32 chip_sel;
308 	__le32 exec;
309 
310 	__le32 cfg0;
311 	__le32 cfg1;
312 	__le32 ecc_bch_cfg;
313 
314 	__le32 clrflashstatus;
315 	__le32 clrreadstatus;
316 
317 	__le32 cmd1;
318 	__le32 vld;
319 
320 	__le32 orig_cmd1;
321 	__le32 orig_vld;
322 
323 	__le32 ecc_buf_cfg;
324 	__le32 read_location0;
325 	__le32 read_location1;
326 	__le32 read_location2;
327 	__le32 read_location3;
328 	__le32 read_location_last0;
329 	__le32 read_location_last1;
330 	__le32 read_location_last2;
331 	__le32 read_location_last3;
332 
333 	__le32 erased_cw_detect_cfg_clr;
334 	__le32 erased_cw_detect_cfg_set;
335 };
336 
337 /*
338  * NAND controller data struct
339  *
340  * @controller:			base controller structure
341  * @host_list:			list containing all the chips attached to the
342  *				controller
343  * @dev:			parent device
344  * @base:			MMIO base
345  * @base_phys:			physical base address of controller registers
346  * @base_dma:			dma base address of controller registers
347  * @core_clk:			controller clock
348  * @aon_clk:			another controller clock
349  *
350  * @chan:			dma channel
351  * @cmd_crci:			ADM DMA CRCI for command flow control
352  * @data_crci:			ADM DMA CRCI for data flow control
353  * @desc_list:			DMA descriptor list (list of desc_infos)
354  *
355  * @data_buffer:		our local DMA buffer for page read/writes,
356  *				used when we can't use the buffer provided
357  *				by upper layers directly
358  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
359  *				functions
360  * @reg_read_buf:		local buffer for reading back registers via DMA
361  * @reg_read_dma:		contains dma address for register read buffer
362  * @reg_read_pos:		marker for data read in reg_read_buf
363  *
364  * @regs:			a contiguous chunk of memory for DMA register
365  *				writes. contains the register values to be
366  *				written to controller
367  * @cmd1/vld:			some fixed controller register values
368  * @props:			properties of current NAND controller,
369  *				initialized via DT match data
370  * @max_cwperpage:		maximum QPIC codewords required. calculated
371  *				from all connected NAND devices pagesize
372  */
373 struct qcom_nand_controller {
374 	struct nand_controller controller;
375 	struct list_head host_list;
376 
377 	struct device *dev;
378 
379 	void __iomem *base;
380 	phys_addr_t base_phys;
381 	dma_addr_t base_dma;
382 
383 	struct clk *core_clk;
384 	struct clk *aon_clk;
385 
386 	union {
387 		/* will be used only by QPIC for BAM DMA */
388 		struct {
389 			struct dma_chan *tx_chan;
390 			struct dma_chan *rx_chan;
391 			struct dma_chan *cmd_chan;
392 		};
393 
394 		/* will be used only by EBI2 for ADM DMA */
395 		struct {
396 			struct dma_chan *chan;
397 			unsigned int cmd_crci;
398 			unsigned int data_crci;
399 		};
400 	};
401 
402 	struct list_head desc_list;
403 	struct bam_transaction *bam_txn;
404 
405 	u8		*data_buffer;
406 	int		buf_size;
407 	int		buf_count;
408 	int		buf_start;
409 	unsigned int	max_cwperpage;
410 
411 	__le32 *reg_read_buf;
412 	dma_addr_t reg_read_dma;
413 	int reg_read_pos;
414 
415 	struct nandc_regs *regs;
416 
417 	u32 cmd1, vld;
418 	const struct qcom_nandc_props *props;
419 };
420 
421 /*
422  * NAND chip structure
423  *
424  * @chip:			base NAND chip structure
425  * @node:			list node to add itself to host_list in
426  *				qcom_nand_controller
427  *
428  * @cs:				chip select value for this chip
429  * @cw_size:			the number of bytes in a single step/codeword
430  *				of a page, consisting of all data, ecc, spare
431  *				and reserved bytes
432  * @cw_data:			the number of bytes within a codeword protected
433  *				by ECC
434  * @use_ecc:			request the controller to use ECC for the
435  *				upcoming read/write
436  * @bch_enabled:		flag to tell whether BCH ECC mode is used
437  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
438  *				chip
439  * @status:			value to be returned if NAND_CMD_STATUS command
440  *				is executed
441  * @last_command:		keeps track of last command on this chip. used
442  *				for reading correct status
443  *
444  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
445  *				ecc/non-ecc mode for the current nand flash
446  *				device
447  */
448 struct qcom_nand_host {
449 	struct nand_chip chip;
450 	struct list_head node;
451 
452 	int cs;
453 	int cw_size;
454 	int cw_data;
455 	bool use_ecc;
456 	bool bch_enabled;
457 	int ecc_bytes_hw;
458 	int spare_bytes;
459 	int bbm_size;
460 	u8 status;
461 	int last_command;
462 
463 	u32 cfg0, cfg1;
464 	u32 cfg0_raw, cfg1_raw;
465 	u32 ecc_buf_cfg;
466 	u32 ecc_bch_cfg;
467 	u32 clrflashstatus;
468 	u32 clrreadstatus;
469 };
470 
471 /*
472  * This data type corresponds to the NAND controller properties which varies
473  * among different NAND controllers.
474  * @ecc_modes - ecc mode for NAND
475  * @is_bam - whether NAND controller is using BAM
476  * @is_qpic - whether NAND CTRL is part of qpic IP
477  * @qpic_v2 - flag to indicate QPIC IP version 2
478  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
479  */
480 struct qcom_nandc_props {
481 	u32 ecc_modes;
482 	bool is_bam;
483 	bool is_qpic;
484 	bool qpic_v2;
485 	u32 dev_cmd_reg_start;
486 };
487 
488 /* Frees the BAM transaction memory */
489 static void free_bam_transaction(struct qcom_nand_controller *nandc)
490 {
491 	struct bam_transaction *bam_txn = nandc->bam_txn;
492 
493 	devm_kfree(nandc->dev, bam_txn);
494 }
495 
496 /* Allocates and Initializes the BAM transaction */
497 static struct bam_transaction *
498 alloc_bam_transaction(struct qcom_nand_controller *nandc)
499 {
500 	struct bam_transaction *bam_txn;
501 	size_t bam_txn_size;
502 	unsigned int num_cw = nandc->max_cwperpage;
503 	void *bam_txn_buf;
504 
505 	bam_txn_size =
506 		sizeof(*bam_txn) + num_cw *
507 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
508 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
509 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
510 
511 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
512 	if (!bam_txn_buf)
513 		return NULL;
514 
515 	bam_txn = bam_txn_buf;
516 	bam_txn_buf += sizeof(*bam_txn);
517 
518 	bam_txn->bam_ce = bam_txn_buf;
519 	bam_txn_buf +=
520 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
521 
522 	bam_txn->cmd_sgl = bam_txn_buf;
523 	bam_txn_buf +=
524 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
525 
526 	bam_txn->data_sgl = bam_txn_buf;
527 
528 	init_completion(&bam_txn->txn_done);
529 
530 	return bam_txn;
531 }
532 
533 /* Clears the BAM transaction indexes */
534 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
535 {
536 	struct bam_transaction *bam_txn = nandc->bam_txn;
537 
538 	if (!nandc->props->is_bam)
539 		return;
540 
541 	bam_txn->bam_ce_pos = 0;
542 	bam_txn->bam_ce_start = 0;
543 	bam_txn->cmd_sgl_pos = 0;
544 	bam_txn->cmd_sgl_start = 0;
545 	bam_txn->tx_sgl_pos = 0;
546 	bam_txn->tx_sgl_start = 0;
547 	bam_txn->rx_sgl_pos = 0;
548 	bam_txn->rx_sgl_start = 0;
549 	bam_txn->last_data_desc = NULL;
550 	bam_txn->wait_second_completion = false;
551 
552 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
553 		      QPIC_PER_CW_CMD_SGL);
554 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
555 		      QPIC_PER_CW_DATA_SGL);
556 
557 	reinit_completion(&bam_txn->txn_done);
558 }
559 
560 /* Callback for DMA descriptor completion */
561 static void qpic_bam_dma_done(void *data)
562 {
563 	struct bam_transaction *bam_txn = data;
564 
565 	/*
566 	 * In case of data transfer with NAND, 2 callbacks will be generated.
567 	 * One for command channel and another one for data channel.
568 	 * If current transaction has data descriptors
569 	 * (i.e. wait_second_completion is true), then set this to false
570 	 * and wait for second DMA descriptor completion.
571 	 */
572 	if (bam_txn->wait_second_completion)
573 		bam_txn->wait_second_completion = false;
574 	else
575 		complete(&bam_txn->txn_done);
576 }
577 
578 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
579 {
580 	return container_of(chip, struct qcom_nand_host, chip);
581 }
582 
583 static inline struct qcom_nand_controller *
584 get_qcom_nand_controller(struct nand_chip *chip)
585 {
586 	return container_of(chip->controller, struct qcom_nand_controller,
587 			    controller);
588 }
589 
590 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
591 {
592 	return ioread32(nandc->base + offset);
593 }
594 
595 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
596 			       u32 val)
597 {
598 	iowrite32(val, nandc->base + offset);
599 }
600 
601 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
602 					  bool is_cpu)
603 {
604 	if (!nandc->props->is_bam)
605 		return;
606 
607 	if (is_cpu)
608 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
609 					MAX_REG_RD *
610 					sizeof(*nandc->reg_read_buf),
611 					DMA_FROM_DEVICE);
612 	else
613 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
614 					   MAX_REG_RD *
615 					   sizeof(*nandc->reg_read_buf),
616 					   DMA_FROM_DEVICE);
617 }
618 
619 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
620 {
621 	switch (offset) {
622 	case NAND_FLASH_CMD:
623 		return &regs->cmd;
624 	case NAND_ADDR0:
625 		return &regs->addr0;
626 	case NAND_ADDR1:
627 		return &regs->addr1;
628 	case NAND_FLASH_CHIP_SELECT:
629 		return &regs->chip_sel;
630 	case NAND_EXEC_CMD:
631 		return &regs->exec;
632 	case NAND_FLASH_STATUS:
633 		return &regs->clrflashstatus;
634 	case NAND_DEV0_CFG0:
635 		return &regs->cfg0;
636 	case NAND_DEV0_CFG1:
637 		return &regs->cfg1;
638 	case NAND_DEV0_ECC_CFG:
639 		return &regs->ecc_bch_cfg;
640 	case NAND_READ_STATUS:
641 		return &regs->clrreadstatus;
642 	case NAND_DEV_CMD1:
643 		return &regs->cmd1;
644 	case NAND_DEV_CMD1_RESTORE:
645 		return &regs->orig_cmd1;
646 	case NAND_DEV_CMD_VLD:
647 		return &regs->vld;
648 	case NAND_DEV_CMD_VLD_RESTORE:
649 		return &regs->orig_vld;
650 	case NAND_EBI2_ECC_BUF_CFG:
651 		return &regs->ecc_buf_cfg;
652 	case NAND_READ_LOCATION_0:
653 		return &regs->read_location0;
654 	case NAND_READ_LOCATION_1:
655 		return &regs->read_location1;
656 	case NAND_READ_LOCATION_2:
657 		return &regs->read_location2;
658 	case NAND_READ_LOCATION_3:
659 		return &regs->read_location3;
660 	case NAND_READ_LOCATION_LAST_CW_0:
661 		return &regs->read_location_last0;
662 	case NAND_READ_LOCATION_LAST_CW_1:
663 		return &regs->read_location_last1;
664 	case NAND_READ_LOCATION_LAST_CW_2:
665 		return &regs->read_location_last2;
666 	case NAND_READ_LOCATION_LAST_CW_3:
667 		return &regs->read_location_last3;
668 	default:
669 		return NULL;
670 	}
671 }
672 
673 static void nandc_set_reg(struct nand_chip *chip, int offset,
674 			  u32 val)
675 {
676 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
677 	struct nandc_regs *regs = nandc->regs;
678 	__le32 *reg;
679 
680 	reg = offset_to_nandc_reg(regs, offset);
681 
682 	if (reg)
683 		*reg = cpu_to_le32(val);
684 }
685 
686 /* Helper to check the code word, whether it is last cw or not */
687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
688 {
689 	return cw == (ecc->steps - 1);
690 }
691 
692 /* helper to configure location register values */
693 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
694 			       int cw_offset, int read_size, int is_last_read_loc)
695 {
696 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
697 	struct nand_ecc_ctrl *ecc = &chip->ecc;
698 	int reg_base = NAND_READ_LOCATION_0;
699 
700 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
701 		reg_base = NAND_READ_LOCATION_LAST_CW_0;
702 
703 	reg_base += reg * 4;
704 
705 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
706 		return nandc_set_read_loc_last(chip, reg_base, cw_offset,
707 				read_size, is_last_read_loc);
708 	else
709 		return nandc_set_read_loc_first(chip, reg_base, cw_offset,
710 				read_size, is_last_read_loc);
711 }
712 
713 /* helper to configure address register values */
714 static void set_address(struct qcom_nand_host *host, u16 column, int page)
715 {
716 	struct nand_chip *chip = &host->chip;
717 
718 	if (chip->options & NAND_BUSWIDTH_16)
719 		column >>= 1;
720 
721 	nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
722 	nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
723 }
724 
725 /*
726  * update_rw_regs:	set up read/write register values, these will be
727  *			written to the NAND controller registers via DMA
728  *
729  * @num_cw:		number of steps for the read/write operation
730  * @read:		read or write operation
731  * @cw	:		which code word
732  */
733 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
734 {
735 	struct nand_chip *chip = &host->chip;
736 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
737 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
738 
739 	if (read) {
740 		if (host->use_ecc)
741 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
742 		else
743 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
744 	} else {
745 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
746 	}
747 
748 	if (host->use_ecc) {
749 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
750 				(num_cw - 1) << CW_PER_PAGE;
751 
752 		cfg1 = host->cfg1;
753 		ecc_bch_cfg = host->ecc_bch_cfg;
754 	} else {
755 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
756 				(num_cw - 1) << CW_PER_PAGE;
757 
758 		cfg1 = host->cfg1_raw;
759 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
760 	}
761 
762 	nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
763 	nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
764 	nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
765 	nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
766 	if (!nandc->props->qpic_v2)
767 		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
768 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
769 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
770 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
771 
772 	if (read)
773 		nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
774 				   host->cw_data : host->cw_size, 1);
775 }
776 
777 /*
778  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
779  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
780  * which will be submitted to DMA engine.
781  */
782 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
783 				  struct dma_chan *chan,
784 				  unsigned long flags)
785 {
786 	struct desc_info *desc;
787 	struct scatterlist *sgl;
788 	unsigned int sgl_cnt;
789 	int ret;
790 	struct bam_transaction *bam_txn = nandc->bam_txn;
791 	enum dma_transfer_direction dir_eng;
792 	struct dma_async_tx_descriptor *dma_desc;
793 
794 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
795 	if (!desc)
796 		return -ENOMEM;
797 
798 	if (chan == nandc->cmd_chan) {
799 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
800 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
801 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
802 		dir_eng = DMA_MEM_TO_DEV;
803 		desc->dir = DMA_TO_DEVICE;
804 	} else if (chan == nandc->tx_chan) {
805 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
806 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
807 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
808 		dir_eng = DMA_MEM_TO_DEV;
809 		desc->dir = DMA_TO_DEVICE;
810 	} else {
811 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
812 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
813 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
814 		dir_eng = DMA_DEV_TO_MEM;
815 		desc->dir = DMA_FROM_DEVICE;
816 	}
817 
818 	sg_mark_end(sgl + sgl_cnt - 1);
819 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
820 	if (ret == 0) {
821 		dev_err(nandc->dev, "failure in mapping desc\n");
822 		kfree(desc);
823 		return -ENOMEM;
824 	}
825 
826 	desc->sgl_cnt = sgl_cnt;
827 	desc->bam_sgl = sgl;
828 
829 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
830 					   flags);
831 
832 	if (!dma_desc) {
833 		dev_err(nandc->dev, "failure in prep desc\n");
834 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
835 		kfree(desc);
836 		return -EINVAL;
837 	}
838 
839 	desc->dma_desc = dma_desc;
840 
841 	/* update last data/command descriptor */
842 	if (chan == nandc->cmd_chan)
843 		bam_txn->last_cmd_desc = dma_desc;
844 	else
845 		bam_txn->last_data_desc = dma_desc;
846 
847 	list_add_tail(&desc->node, &nandc->desc_list);
848 
849 	return 0;
850 }
851 
852 /*
853  * Prepares the command descriptor for BAM DMA which will be used for NAND
854  * register reads and writes. The command descriptor requires the command
855  * to be formed in command element type so this function uses the command
856  * element from bam transaction ce array and fills the same with required
857  * data. A single SGL can contain multiple command elements so
858  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
859  * after the current command element.
860  */
861 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
862 				 int reg_off, const void *vaddr,
863 				 int size, unsigned int flags)
864 {
865 	int bam_ce_size;
866 	int i, ret;
867 	struct bam_cmd_element *bam_ce_buffer;
868 	struct bam_transaction *bam_txn = nandc->bam_txn;
869 
870 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
871 
872 	/* fill the command desc */
873 	for (i = 0; i < size; i++) {
874 		if (read)
875 			bam_prep_ce(&bam_ce_buffer[i],
876 				    nandc_reg_phys(nandc, reg_off + 4 * i),
877 				    BAM_READ_COMMAND,
878 				    reg_buf_dma_addr(nandc,
879 						     (__le32 *)vaddr + i));
880 		else
881 			bam_prep_ce_le32(&bam_ce_buffer[i],
882 					 nandc_reg_phys(nandc, reg_off + 4 * i),
883 					 BAM_WRITE_COMMAND,
884 					 *((__le32 *)vaddr + i));
885 	}
886 
887 	bam_txn->bam_ce_pos += size;
888 
889 	/* use the separate sgl after this command */
890 	if (flags & NAND_BAM_NEXT_SGL) {
891 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
892 		bam_ce_size = (bam_txn->bam_ce_pos -
893 				bam_txn->bam_ce_start) *
894 				sizeof(struct bam_cmd_element);
895 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
896 			   bam_ce_buffer, bam_ce_size);
897 		bam_txn->cmd_sgl_pos++;
898 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
899 
900 		if (flags & NAND_BAM_NWD) {
901 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
902 						     DMA_PREP_FENCE |
903 						     DMA_PREP_CMD);
904 			if (ret)
905 				return ret;
906 		}
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * Prepares the data descriptor for BAM DMA which will be used for NAND
914  * data reads and writes.
915  */
916 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
917 				  const void *vaddr,
918 				  int size, unsigned int flags)
919 {
920 	int ret;
921 	struct bam_transaction *bam_txn = nandc->bam_txn;
922 
923 	if (read) {
924 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
925 			   vaddr, size);
926 		bam_txn->rx_sgl_pos++;
927 	} else {
928 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
929 			   vaddr, size);
930 		bam_txn->tx_sgl_pos++;
931 
932 		/*
933 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
934 		 * is not set, form the DMA descriptor
935 		 */
936 		if (!(flags & NAND_BAM_NO_EOT)) {
937 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
938 						     DMA_PREP_INTERRUPT);
939 			if (ret)
940 				return ret;
941 		}
942 	}
943 
944 	return 0;
945 }
946 
947 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
948 			     int reg_off, const void *vaddr, int size,
949 			     bool flow_control)
950 {
951 	struct desc_info *desc;
952 	struct dma_async_tx_descriptor *dma_desc;
953 	struct scatterlist *sgl;
954 	struct dma_slave_config slave_conf;
955 	struct qcom_adm_peripheral_config periph_conf = {};
956 	enum dma_transfer_direction dir_eng;
957 	int ret;
958 
959 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
960 	if (!desc)
961 		return -ENOMEM;
962 
963 	sgl = &desc->adm_sgl;
964 
965 	sg_init_one(sgl, vaddr, size);
966 
967 	if (read) {
968 		dir_eng = DMA_DEV_TO_MEM;
969 		desc->dir = DMA_FROM_DEVICE;
970 	} else {
971 		dir_eng = DMA_MEM_TO_DEV;
972 		desc->dir = DMA_TO_DEVICE;
973 	}
974 
975 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
976 	if (ret == 0) {
977 		ret = -ENOMEM;
978 		goto err;
979 	}
980 
981 	memset(&slave_conf, 0x00, sizeof(slave_conf));
982 
983 	slave_conf.device_fc = flow_control;
984 	if (read) {
985 		slave_conf.src_maxburst = 16;
986 		slave_conf.src_addr = nandc->base_dma + reg_off;
987 		if (nandc->data_crci) {
988 			periph_conf.crci = nandc->data_crci;
989 			slave_conf.peripheral_config = &periph_conf;
990 			slave_conf.peripheral_size = sizeof(periph_conf);
991 		}
992 	} else {
993 		slave_conf.dst_maxburst = 16;
994 		slave_conf.dst_addr = nandc->base_dma + reg_off;
995 		if (nandc->cmd_crci) {
996 			periph_conf.crci = nandc->cmd_crci;
997 			slave_conf.peripheral_config = &periph_conf;
998 			slave_conf.peripheral_size = sizeof(periph_conf);
999 		}
1000 	}
1001 
1002 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
1003 	if (ret) {
1004 		dev_err(nandc->dev, "failed to configure dma channel\n");
1005 		goto err;
1006 	}
1007 
1008 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
1009 	if (!dma_desc) {
1010 		dev_err(nandc->dev, "failed to prepare desc\n");
1011 		ret = -EINVAL;
1012 		goto err;
1013 	}
1014 
1015 	desc->dma_desc = dma_desc;
1016 
1017 	list_add_tail(&desc->node, &nandc->desc_list);
1018 
1019 	return 0;
1020 err:
1021 	kfree(desc);
1022 
1023 	return ret;
1024 }
1025 
1026 /*
1027  * read_reg_dma:	prepares a descriptor to read a given number of
1028  *			contiguous registers to the reg_read_buf pointer
1029  *
1030  * @first:		offset of the first register in the contiguous block
1031  * @num_regs:		number of registers to read
1032  * @flags:		flags to control DMA descriptor preparation
1033  */
1034 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1035 			int num_regs, unsigned int flags)
1036 {
1037 	bool flow_control = false;
1038 	void *vaddr;
1039 
1040 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1041 	nandc->reg_read_pos += num_regs;
1042 
1043 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1044 		first = dev_cmd_reg_addr(nandc, first);
1045 
1046 	if (nandc->props->is_bam)
1047 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1048 					     num_regs, flags);
1049 
1050 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1051 		flow_control = true;
1052 
1053 	return prep_adm_dma_desc(nandc, true, first, vaddr,
1054 				 num_regs * sizeof(u32), flow_control);
1055 }
1056 
1057 /*
1058  * write_reg_dma:	prepares a descriptor to write a given number of
1059  *			contiguous registers
1060  *
1061  * @first:		offset of the first register in the contiguous block
1062  * @num_regs:		number of registers to write
1063  * @flags:		flags to control DMA descriptor preparation
1064  */
1065 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1066 			 int num_regs, unsigned int flags)
1067 {
1068 	bool flow_control = false;
1069 	struct nandc_regs *regs = nandc->regs;
1070 	void *vaddr;
1071 
1072 	vaddr = offset_to_nandc_reg(regs, first);
1073 
1074 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1075 		if (flags & NAND_ERASED_CW_SET)
1076 			vaddr = &regs->erased_cw_detect_cfg_set;
1077 		else
1078 			vaddr = &regs->erased_cw_detect_cfg_clr;
1079 	}
1080 
1081 	if (first == NAND_EXEC_CMD)
1082 		flags |= NAND_BAM_NWD;
1083 
1084 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1085 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1086 
1087 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1088 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1089 
1090 	if (nandc->props->is_bam)
1091 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1092 					     num_regs, flags);
1093 
1094 	if (first == NAND_FLASH_CMD)
1095 		flow_control = true;
1096 
1097 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1098 				 num_regs * sizeof(u32), flow_control);
1099 }
1100 
1101 /*
1102  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1103  *			controller's internal buffer to the buffer 'vaddr'
1104  *
1105  * @reg_off:		offset within the controller's data buffer
1106  * @vaddr:		virtual address of the buffer we want to write to
1107  * @size:		DMA transaction size in bytes
1108  * @flags:		flags to control DMA descriptor preparation
1109  */
1110 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1111 			 const u8 *vaddr, int size, unsigned int flags)
1112 {
1113 	if (nandc->props->is_bam)
1114 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1115 
1116 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1117 }
1118 
1119 /*
1120  * write_data_dma:	prepares a DMA descriptor to transfer data from
1121  *			'vaddr' to the controller's internal buffer
1122  *
1123  * @reg_off:		offset within the controller's data buffer
1124  * @vaddr:		virtual address of the buffer we want to read from
1125  * @size:		DMA transaction size in bytes
1126  * @flags:		flags to control DMA descriptor preparation
1127  */
1128 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1129 			  const u8 *vaddr, int size, unsigned int flags)
1130 {
1131 	if (nandc->props->is_bam)
1132 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1133 
1134 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1135 }
1136 
1137 /*
1138  * Helper to prepare DMA descriptors for configuring registers
1139  * before reading a NAND page.
1140  */
1141 static void config_nand_page_read(struct nand_chip *chip)
1142 {
1143 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1144 
1145 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1146 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1147 	if (!nandc->props->qpic_v2)
1148 		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1149 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1150 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1151 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1152 }
1153 
1154 /*
1155  * Helper to prepare DMA descriptors for configuring registers
1156  * before reading each codeword in NAND page.
1157  */
1158 static void
1159 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1160 {
1161 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1162 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1163 
1164 	int reg = NAND_READ_LOCATION_0;
1165 
1166 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1167 		reg = NAND_READ_LOCATION_LAST_CW_0;
1168 
1169 	if (nandc->props->is_bam)
1170 		write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1171 
1172 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1173 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1174 
1175 	if (use_ecc) {
1176 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1177 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1178 			     NAND_BAM_NEXT_SGL);
1179 	} else {
1180 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1181 	}
1182 }
1183 
1184 /*
1185  * Helper to prepare dma descriptors to configure registers needed for reading a
1186  * single codeword in page
1187  */
1188 static void
1189 config_nand_single_cw_page_read(struct nand_chip *chip,
1190 				bool use_ecc, int cw)
1191 {
1192 	config_nand_page_read(chip);
1193 	config_nand_cw_read(chip, use_ecc, cw);
1194 }
1195 
1196 /*
1197  * Helper to prepare DMA descriptors used to configure registers needed for
1198  * before writing a NAND page.
1199  */
1200 static void config_nand_page_write(struct nand_chip *chip)
1201 {
1202 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1203 
1204 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1205 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1206 	if (!nandc->props->qpic_v2)
1207 		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1208 			      NAND_BAM_NEXT_SGL);
1209 }
1210 
1211 /*
1212  * Helper to prepare DMA descriptors for configuring registers
1213  * before writing each codeword in NAND page.
1214  */
1215 static void config_nand_cw_write(struct nand_chip *chip)
1216 {
1217 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1218 
1219 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1220 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1221 
1222 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1223 
1224 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1225 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1226 }
1227 
1228 /*
1229  * the following functions are used within chip->legacy.cmdfunc() to
1230  * perform different NAND_CMD_* commands
1231  */
1232 
1233 /* sets up descriptors for NAND_CMD_PARAM */
1234 static int nandc_param(struct qcom_nand_host *host)
1235 {
1236 	struct nand_chip *chip = &host->chip;
1237 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1238 
1239 	/*
1240 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1241 	 * in use. we configure the controller to perform a raw read of 512
1242 	 * bytes to read onfi params
1243 	 */
1244 	if (nandc->props->qpic_v2)
1245 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ |
1246 			      PAGE_ACC | LAST_PAGE);
1247 	else
1248 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ |
1249 			      PAGE_ACC | LAST_PAGE);
1250 
1251 	nandc_set_reg(chip, NAND_ADDR0, 0);
1252 	nandc_set_reg(chip, NAND_ADDR1, 0);
1253 	nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1254 					| 512 << UD_SIZE_BYTES
1255 					| 5 << NUM_ADDR_CYCLES
1256 					| 0 << SPARE_SIZE_BYTES);
1257 	nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1258 					| 0 << CS_ACTIVE_BSY
1259 					| 17 << BAD_BLOCK_BYTE_NUM
1260 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1261 					| 2 << WR_RD_BSY_GAP
1262 					| 0 << WIDE_FLASH
1263 					| 1 << DEV0_CFG1_ECC_DISABLE);
1264 	if (!nandc->props->qpic_v2)
1265 		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1266 
1267 	/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1268 	if (!nandc->props->qpic_v2) {
1269 		nandc_set_reg(chip, NAND_DEV_CMD_VLD,
1270 			      (nandc->vld & ~READ_START_VLD));
1271 		nandc_set_reg(chip, NAND_DEV_CMD1,
1272 			      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1273 			      | NAND_CMD_PARAM << READ_ADDR);
1274 	}
1275 
1276 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1277 
1278 	if (!nandc->props->qpic_v2) {
1279 		nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1280 		nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1281 	}
1282 
1283 	nandc_set_read_loc(chip, 0, 0, 0, 512, 1);
1284 
1285 	if (!nandc->props->qpic_v2) {
1286 		write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1287 		write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1288 	}
1289 
1290 	nandc->buf_count = 512;
1291 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1292 
1293 	config_nand_single_cw_page_read(chip, false, 0);
1294 
1295 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1296 		      nandc->buf_count, 0);
1297 
1298 	/* restore CMD1 and VLD regs */
1299 	if (!nandc->props->qpic_v2) {
1300 		write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1301 		write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /* sets up descriptors for NAND_CMD_ERASE1 */
1308 static int erase_block(struct qcom_nand_host *host, int page_addr)
1309 {
1310 	struct nand_chip *chip = &host->chip;
1311 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1312 
1313 	nandc_set_reg(chip, NAND_FLASH_CMD,
1314 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1315 	nandc_set_reg(chip, NAND_ADDR0, page_addr);
1316 	nandc_set_reg(chip, NAND_ADDR1, 0);
1317 	nandc_set_reg(chip, NAND_DEV0_CFG0,
1318 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1319 	nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
1320 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1321 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
1322 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
1323 
1324 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1325 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1326 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1327 
1328 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1329 
1330 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1331 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1332 
1333 	return 0;
1334 }
1335 
1336 /* sets up descriptors for NAND_CMD_READID */
1337 static int read_id(struct qcom_nand_host *host, int column)
1338 {
1339 	struct nand_chip *chip = &host->chip;
1340 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1341 
1342 	if (column == -1)
1343 		return 0;
1344 
1345 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID);
1346 	nandc_set_reg(chip, NAND_ADDR0, column);
1347 	nandc_set_reg(chip, NAND_ADDR1, 0);
1348 	nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
1349 		      nandc->props->is_bam ? 0 : DM_EN);
1350 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1351 
1352 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1353 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1354 
1355 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1356 
1357 	return 0;
1358 }
1359 
1360 /* sets up descriptors for NAND_CMD_RESET */
1361 static int reset(struct qcom_nand_host *host)
1362 {
1363 	struct nand_chip *chip = &host->chip;
1364 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1365 
1366 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE);
1367 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1368 
1369 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1370 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1371 
1372 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1373 
1374 	return 0;
1375 }
1376 
1377 /* helpers to submit/free our list of dma descriptors */
1378 static int submit_descs(struct qcom_nand_controller *nandc)
1379 {
1380 	struct desc_info *desc;
1381 	dma_cookie_t cookie = 0;
1382 	struct bam_transaction *bam_txn = nandc->bam_txn;
1383 	int r;
1384 
1385 	if (nandc->props->is_bam) {
1386 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1387 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1388 			if (r)
1389 				return r;
1390 		}
1391 
1392 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1393 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1394 						   DMA_PREP_INTERRUPT);
1395 			if (r)
1396 				return r;
1397 		}
1398 
1399 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1400 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1401 						   DMA_PREP_CMD);
1402 			if (r)
1403 				return r;
1404 		}
1405 	}
1406 
1407 	list_for_each_entry(desc, &nandc->desc_list, node)
1408 		cookie = dmaengine_submit(desc->dma_desc);
1409 
1410 	if (nandc->props->is_bam) {
1411 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1412 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1413 		if (bam_txn->last_data_desc) {
1414 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1415 			bam_txn->last_data_desc->callback_param = bam_txn;
1416 			bam_txn->wait_second_completion = true;
1417 		}
1418 
1419 		dma_async_issue_pending(nandc->tx_chan);
1420 		dma_async_issue_pending(nandc->rx_chan);
1421 		dma_async_issue_pending(nandc->cmd_chan);
1422 
1423 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1424 						 QPIC_NAND_COMPLETION_TIMEOUT))
1425 			return -ETIMEDOUT;
1426 	} else {
1427 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1428 			return -ETIMEDOUT;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 static void free_descs(struct qcom_nand_controller *nandc)
1435 {
1436 	struct desc_info *desc, *n;
1437 
1438 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1439 		list_del(&desc->node);
1440 
1441 		if (nandc->props->is_bam)
1442 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1443 				     desc->sgl_cnt, desc->dir);
1444 		else
1445 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1446 				     desc->dir);
1447 
1448 		kfree(desc);
1449 	}
1450 }
1451 
1452 /* reset the register read buffer for next NAND operation */
1453 static void clear_read_regs(struct qcom_nand_controller *nandc)
1454 {
1455 	nandc->reg_read_pos = 0;
1456 	nandc_read_buffer_sync(nandc, false);
1457 }
1458 
1459 static void pre_command(struct qcom_nand_host *host, int command)
1460 {
1461 	struct nand_chip *chip = &host->chip;
1462 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1463 
1464 	nandc->buf_count = 0;
1465 	nandc->buf_start = 0;
1466 	host->use_ecc = false;
1467 	host->last_command = command;
1468 
1469 	clear_read_regs(nandc);
1470 
1471 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1472 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1473 		clear_bam_transaction(nandc);
1474 }
1475 
1476 /*
1477  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1478  * privately maintained status byte, this status byte can be read after
1479  * NAND_CMD_STATUS is called
1480  */
1481 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1482 {
1483 	struct nand_chip *chip = &host->chip;
1484 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1485 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1486 	int num_cw;
1487 	int i;
1488 
1489 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1490 	nandc_read_buffer_sync(nandc, true);
1491 
1492 	for (i = 0; i < num_cw; i++) {
1493 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1494 
1495 		if (flash_status & FS_MPU_ERR)
1496 			host->status &= ~NAND_STATUS_WP;
1497 
1498 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1499 						 (flash_status &
1500 						  FS_DEVICE_STS_ERR)))
1501 			host->status |= NAND_STATUS_FAIL;
1502 	}
1503 }
1504 
1505 static void post_command(struct qcom_nand_host *host, int command)
1506 {
1507 	struct nand_chip *chip = &host->chip;
1508 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1509 
1510 	switch (command) {
1511 	case NAND_CMD_READID:
1512 		nandc_read_buffer_sync(nandc, true);
1513 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1514 		       nandc->buf_count);
1515 		break;
1516 	case NAND_CMD_PAGEPROG:
1517 	case NAND_CMD_ERASE1:
1518 		parse_erase_write_errors(host, command);
1519 		break;
1520 	default:
1521 		break;
1522 	}
1523 }
1524 
1525 /*
1526  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1527  * commands. The rest of the commands wouldn't be called by upper layers.
1528  * For example, NAND_CMD_READOOB would never be called because we have our own
1529  * versions of read_oob ops for nand_ecc_ctrl.
1530  */
1531 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1532 			       int column, int page_addr)
1533 {
1534 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1535 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1536 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1537 	bool wait = false;
1538 	int ret = 0;
1539 
1540 	pre_command(host, command);
1541 
1542 	switch (command) {
1543 	case NAND_CMD_RESET:
1544 		ret = reset(host);
1545 		wait = true;
1546 		break;
1547 
1548 	case NAND_CMD_READID:
1549 		nandc->buf_count = 4;
1550 		ret = read_id(host, column);
1551 		wait = true;
1552 		break;
1553 
1554 	case NAND_CMD_PARAM:
1555 		ret = nandc_param(host);
1556 		wait = true;
1557 		break;
1558 
1559 	case NAND_CMD_ERASE1:
1560 		ret = erase_block(host, page_addr);
1561 		wait = true;
1562 		break;
1563 
1564 	case NAND_CMD_READ0:
1565 		/* we read the entire page for now */
1566 		WARN_ON(column != 0);
1567 
1568 		host->use_ecc = true;
1569 		set_address(host, 0, page_addr);
1570 		update_rw_regs(host, ecc->steps, true, 0);
1571 		break;
1572 
1573 	case NAND_CMD_SEQIN:
1574 		WARN_ON(column != 0);
1575 		set_address(host, 0, page_addr);
1576 		break;
1577 
1578 	case NAND_CMD_PAGEPROG:
1579 	case NAND_CMD_STATUS:
1580 	case NAND_CMD_NONE:
1581 	default:
1582 		break;
1583 	}
1584 
1585 	if (ret) {
1586 		dev_err(nandc->dev, "failure executing command %d\n",
1587 			command);
1588 		free_descs(nandc);
1589 		return;
1590 	}
1591 
1592 	if (wait) {
1593 		ret = submit_descs(nandc);
1594 		if (ret)
1595 			dev_err(nandc->dev,
1596 				"failure submitting descs for command %d\n",
1597 				command);
1598 	}
1599 
1600 	free_descs(nandc);
1601 
1602 	post_command(host, command);
1603 }
1604 
1605 /*
1606  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1607  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1608  *
1609  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1610  * but it notifies that it is an erased CW by placing special characters at
1611  * certain offsets in the buffer.
1612  *
1613  * verify if the page is erased or not, and fix up the page for RS ECC by
1614  * replacing the special characters with 0xff.
1615  */
1616 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1617 {
1618 	u8 empty1, empty2;
1619 
1620 	/*
1621 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1622 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1623 	 * beginning of each codeword
1624 	 */
1625 
1626 	empty1 = data_buf[3];
1627 	empty2 = data_buf[175];
1628 
1629 	/*
1630 	 * if the erased codework markers, if they exist override them with
1631 	 * 0xffs
1632 	 */
1633 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1634 	    (empty1 == 0xff && empty2 == 0x54)) {
1635 		data_buf[3] = 0xff;
1636 		data_buf[175] = 0xff;
1637 	}
1638 
1639 	/*
1640 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1641 	 * restore the original values at the special offsets
1642 	 */
1643 	if (memchr_inv(data_buf, 0xff, data_len)) {
1644 		data_buf[3] = empty1;
1645 		data_buf[175] = empty2;
1646 
1647 		return false;
1648 	}
1649 
1650 	return true;
1651 }
1652 
1653 struct read_stats {
1654 	__le32 flash;
1655 	__le32 buffer;
1656 	__le32 erased_cw;
1657 };
1658 
1659 /* reads back FLASH_STATUS register set by the controller */
1660 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1661 {
1662 	struct nand_chip *chip = &host->chip;
1663 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1664 	int i;
1665 
1666 	nandc_read_buffer_sync(nandc, true);
1667 
1668 	for (i = 0; i < cw_cnt; i++) {
1669 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1670 
1671 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1672 			return -EIO;
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 /* performs raw read for one codeword */
1679 static int
1680 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1681 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1682 {
1683 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1684 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1685 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1686 	int data_size1, data_size2, oob_size1, oob_size2;
1687 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1688 	int raw_cw = cw;
1689 
1690 	nand_read_page_op(chip, page, 0, NULL, 0);
1691 	host->use_ecc = false;
1692 
1693 	if (nandc->props->qpic_v2)
1694 		raw_cw = ecc->steps - 1;
1695 
1696 	clear_bam_transaction(nandc);
1697 	set_address(host, host->cw_size * cw, page);
1698 	update_rw_regs(host, 1, true, raw_cw);
1699 	config_nand_page_read(chip);
1700 
1701 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1702 	oob_size1 = host->bbm_size;
1703 
1704 	if (qcom_nandc_is_last_cw(ecc, cw)) {
1705 		data_size2 = ecc->size - data_size1 -
1706 			     ((ecc->steps - 1) * 4);
1707 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1708 			    host->spare_bytes;
1709 	} else {
1710 		data_size2 = host->cw_data - data_size1;
1711 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1712 	}
1713 
1714 	if (nandc->props->is_bam) {
1715 		nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1716 		read_loc += data_size1;
1717 
1718 		nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1719 		read_loc += oob_size1;
1720 
1721 		nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1722 		read_loc += data_size2;
1723 
1724 		nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1725 	}
1726 
1727 	config_nand_cw_read(chip, false, raw_cw);
1728 
1729 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1730 	reg_off += data_size1;
1731 
1732 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1733 	reg_off += oob_size1;
1734 
1735 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1736 	reg_off += data_size2;
1737 
1738 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1739 
1740 	ret = submit_descs(nandc);
1741 	free_descs(nandc);
1742 	if (ret) {
1743 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1744 		return ret;
1745 	}
1746 
1747 	return check_flash_errors(host, 1);
1748 }
1749 
1750 /*
1751  * Bitflips can happen in erased codewords also so this function counts the
1752  * number of 0 in each CW for which ECC engine returns the uncorrectable
1753  * error. The page will be assumed as erased if this count is less than or
1754  * equal to the ecc->strength for each CW.
1755  *
1756  * 1. Both DATA and OOB need to be checked for number of 0. The
1757  *    top-level API can be called with only data buf or OOB buf so use
1758  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1759  *    is null for copying the raw bytes.
1760  * 2. Perform raw read for all the CW which has uncorrectable errors.
1761  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1762  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1763  *    the number of bitflips in this area.
1764  */
1765 static int
1766 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1767 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1768 		      int page, unsigned int max_bitflips)
1769 {
1770 	struct nand_chip *chip = &host->chip;
1771 	struct mtd_info *mtd = nand_to_mtd(chip);
1772 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1773 	u8 *cw_data_buf, *cw_oob_buf;
1774 	int cw, data_size, oob_size, ret = 0;
1775 
1776 	if (!data_buf)
1777 		data_buf = nand_get_data_buf(chip);
1778 
1779 	if (!oob_buf) {
1780 		nand_get_data_buf(chip);
1781 		oob_buf = chip->oob_poi;
1782 	}
1783 
1784 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1785 		if (qcom_nandc_is_last_cw(ecc, cw)) {
1786 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1787 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1788 		} else {
1789 			data_size = host->cw_data;
1790 			oob_size = host->ecc_bytes_hw;
1791 		}
1792 
1793 		/* determine starting buffer address for current CW */
1794 		cw_data_buf = data_buf + (cw * host->cw_data);
1795 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1796 
1797 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1798 					     cw_oob_buf, page, cw);
1799 		if (ret)
1800 			return ret;
1801 
1802 		/*
1803 		 * make sure it isn't an erased page reported
1804 		 * as not-erased by HW because of a few bitflips
1805 		 */
1806 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1807 						  cw_oob_buf + host->bbm_size,
1808 						  oob_size, NULL,
1809 						  0, ecc->strength);
1810 		if (ret < 0) {
1811 			mtd->ecc_stats.failed++;
1812 		} else {
1813 			mtd->ecc_stats.corrected += ret;
1814 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1815 		}
1816 	}
1817 
1818 	return max_bitflips;
1819 }
1820 
1821 /*
1822  * reads back status registers set by the controller to notify page read
1823  * errors. this is equivalent to what 'ecc->correct()' would do.
1824  */
1825 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1826 			     u8 *oob_buf, int page)
1827 {
1828 	struct nand_chip *chip = &host->chip;
1829 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1830 	struct mtd_info *mtd = nand_to_mtd(chip);
1831 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1832 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1833 	struct read_stats *buf;
1834 	bool flash_op_err = false, erased;
1835 	int i;
1836 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1837 
1838 	buf = (struct read_stats *)nandc->reg_read_buf;
1839 	nandc_read_buffer_sync(nandc, true);
1840 
1841 	for (i = 0; i < ecc->steps; i++, buf++) {
1842 		u32 flash, buffer, erased_cw;
1843 		int data_len, oob_len;
1844 
1845 		if (qcom_nandc_is_last_cw(ecc, i)) {
1846 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1847 			oob_len = ecc->steps << 2;
1848 		} else {
1849 			data_len = host->cw_data;
1850 			oob_len = 0;
1851 		}
1852 
1853 		flash = le32_to_cpu(buf->flash);
1854 		buffer = le32_to_cpu(buf->buffer);
1855 		erased_cw = le32_to_cpu(buf->erased_cw);
1856 
1857 		/*
1858 		 * Check ECC failure for each codeword. ECC failure can
1859 		 * happen in either of the following conditions
1860 		 * 1. If number of bitflips are greater than ECC engine
1861 		 *    capability.
1862 		 * 2. If this codeword contains all 0xff for which erased
1863 		 *    codeword detection check will be done.
1864 		 */
1865 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1866 			/*
1867 			 * For BCH ECC, ignore erased codeword errors, if
1868 			 * ERASED_CW bits are set.
1869 			 */
1870 			if (host->bch_enabled) {
1871 				erased = (erased_cw & ERASED_CW) == ERASED_CW;
1872 			/*
1873 			 * For RS ECC, HW reports the erased CW by placing
1874 			 * special characters at certain offsets in the buffer.
1875 			 * These special characters will be valid only if
1876 			 * complete page is read i.e. data_buf is not NULL.
1877 			 */
1878 			} else if (data_buf) {
1879 				erased = erased_chunk_check_and_fixup(data_buf,
1880 								      data_len);
1881 			} else {
1882 				erased = false;
1883 			}
1884 
1885 			if (!erased)
1886 				uncorrectable_cws |= BIT(i);
1887 		/*
1888 		 * Check if MPU or any other operational error (timeout,
1889 		 * device failure, etc.) happened for this codeword and
1890 		 * make flash_op_err true. If flash_op_err is set, then
1891 		 * EIO will be returned for page read.
1892 		 */
1893 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1894 			flash_op_err = true;
1895 		/*
1896 		 * No ECC or operational errors happened. Check the number of
1897 		 * bits corrected and update the ecc_stats.corrected.
1898 		 */
1899 		} else {
1900 			unsigned int stat;
1901 
1902 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1903 			mtd->ecc_stats.corrected += stat;
1904 			max_bitflips = max(max_bitflips, stat);
1905 		}
1906 
1907 		if (data_buf)
1908 			data_buf += data_len;
1909 		if (oob_buf)
1910 			oob_buf += oob_len + ecc->bytes;
1911 	}
1912 
1913 	if (flash_op_err)
1914 		return -EIO;
1915 
1916 	if (!uncorrectable_cws)
1917 		return max_bitflips;
1918 
1919 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1920 				     uncorrectable_cws, page,
1921 				     max_bitflips);
1922 }
1923 
1924 /*
1925  * helper to perform the actual page read operation, used by ecc->read_page(),
1926  * ecc->read_oob()
1927  */
1928 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1929 			 u8 *oob_buf, int page)
1930 {
1931 	struct nand_chip *chip = &host->chip;
1932 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1933 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1934 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1935 	int i, ret;
1936 
1937 	config_nand_page_read(chip);
1938 
1939 	/* queue cmd descs for each codeword */
1940 	for (i = 0; i < ecc->steps; i++) {
1941 		int data_size, oob_size;
1942 
1943 		if (qcom_nandc_is_last_cw(ecc, i)) {
1944 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1945 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1946 				   host->spare_bytes;
1947 		} else {
1948 			data_size = host->cw_data;
1949 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1950 		}
1951 
1952 		if (nandc->props->is_bam) {
1953 			if (data_buf && oob_buf) {
1954 				nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
1955 				nandc_set_read_loc(chip, i, 1, data_size,
1956 						   oob_size, 1);
1957 			} else if (data_buf) {
1958 				nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
1959 			} else {
1960 				nandc_set_read_loc(chip, i, 0, data_size,
1961 						   oob_size, 1);
1962 			}
1963 		}
1964 
1965 		config_nand_cw_read(chip, true, i);
1966 
1967 		if (data_buf)
1968 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1969 				      data_size, 0);
1970 
1971 		/*
1972 		 * when ecc is enabled, the controller doesn't read the real
1973 		 * or dummy bad block markers in each chunk. To maintain a
1974 		 * consistent layout across RAW and ECC reads, we just
1975 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1976 		 * 0xffs)
1977 		 */
1978 		if (oob_buf) {
1979 			int j;
1980 
1981 			for (j = 0; j < host->bbm_size; j++)
1982 				*oob_buf++ = 0xff;
1983 
1984 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1985 				      oob_buf, oob_size, 0);
1986 		}
1987 
1988 		if (data_buf)
1989 			data_buf += data_size;
1990 		if (oob_buf)
1991 			oob_buf += oob_size;
1992 	}
1993 
1994 	ret = submit_descs(nandc);
1995 	free_descs(nandc);
1996 
1997 	if (ret) {
1998 		dev_err(nandc->dev, "failure to read page/oob\n");
1999 		return ret;
2000 	}
2001 
2002 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
2003 }
2004 
2005 /*
2006  * a helper that copies the last step/codeword of a page (containing free oob)
2007  * into our local buffer
2008  */
2009 static int copy_last_cw(struct qcom_nand_host *host, int page)
2010 {
2011 	struct nand_chip *chip = &host->chip;
2012 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2013 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2014 	int size;
2015 	int ret;
2016 
2017 	clear_read_regs(nandc);
2018 
2019 	size = host->use_ecc ? host->cw_data : host->cw_size;
2020 
2021 	/* prepare a clean read buffer */
2022 	memset(nandc->data_buffer, 0xff, size);
2023 
2024 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2025 	update_rw_regs(host, 1, true, ecc->steps - 1);
2026 
2027 	config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
2028 
2029 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
2030 
2031 	ret = submit_descs(nandc);
2032 	if (ret)
2033 		dev_err(nandc->dev, "failed to copy last codeword\n");
2034 
2035 	free_descs(nandc);
2036 
2037 	return ret;
2038 }
2039 
2040 /* implements ecc->read_page() */
2041 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
2042 				int oob_required, int page)
2043 {
2044 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2045 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2046 	u8 *data_buf, *oob_buf = NULL;
2047 
2048 	nand_read_page_op(chip, page, 0, NULL, 0);
2049 	data_buf = buf;
2050 	oob_buf = oob_required ? chip->oob_poi : NULL;
2051 
2052 	clear_bam_transaction(nandc);
2053 
2054 	return read_page_ecc(host, data_buf, oob_buf, page);
2055 }
2056 
2057 /* implements ecc->read_page_raw() */
2058 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2059 				    int oob_required, int page)
2060 {
2061 	struct mtd_info *mtd = nand_to_mtd(chip);
2062 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2063 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2064 	int cw, ret;
2065 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
2066 
2067 	for (cw = 0; cw < ecc->steps; cw++) {
2068 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
2069 					     page, cw);
2070 		if (ret)
2071 			return ret;
2072 
2073 		data_buf += host->cw_data;
2074 		oob_buf += ecc->bytes;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 /* implements ecc->read_oob() */
2081 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
2082 {
2083 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2084 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2085 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2086 
2087 	clear_read_regs(nandc);
2088 	clear_bam_transaction(nandc);
2089 
2090 	host->use_ecc = true;
2091 	set_address(host, 0, page);
2092 	update_rw_regs(host, ecc->steps, true, 0);
2093 
2094 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2095 }
2096 
2097 /* implements ecc->write_page() */
2098 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2099 				 int oob_required, int page)
2100 {
2101 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2102 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2103 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2104 	u8 *data_buf, *oob_buf;
2105 	int i, ret;
2106 
2107 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2108 
2109 	clear_read_regs(nandc);
2110 	clear_bam_transaction(nandc);
2111 
2112 	data_buf = (u8 *)buf;
2113 	oob_buf = chip->oob_poi;
2114 
2115 	host->use_ecc = true;
2116 	update_rw_regs(host, ecc->steps, false, 0);
2117 	config_nand_page_write(chip);
2118 
2119 	for (i = 0; i < ecc->steps; i++) {
2120 		int data_size, oob_size;
2121 
2122 		if (qcom_nandc_is_last_cw(ecc, i)) {
2123 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2124 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2125 				   host->spare_bytes;
2126 		} else {
2127 			data_size = host->cw_data;
2128 			oob_size = ecc->bytes;
2129 		}
2130 
2131 
2132 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2133 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2134 
2135 		/*
2136 		 * when ECC is enabled, we don't really need to write anything
2137 		 * to oob for the first n - 1 codewords since these oob regions
2138 		 * just contain ECC bytes that's written by the controller
2139 		 * itself. For the last codeword, we skip the bbm positions and
2140 		 * write to the free oob area.
2141 		 */
2142 		if (qcom_nandc_is_last_cw(ecc, i)) {
2143 			oob_buf += host->bbm_size;
2144 
2145 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2146 				       oob_buf, oob_size, 0);
2147 		}
2148 
2149 		config_nand_cw_write(chip);
2150 
2151 		data_buf += data_size;
2152 		oob_buf += oob_size;
2153 	}
2154 
2155 	ret = submit_descs(nandc);
2156 	if (ret)
2157 		dev_err(nandc->dev, "failure to write page\n");
2158 
2159 	free_descs(nandc);
2160 
2161 	if (!ret)
2162 		ret = nand_prog_page_end_op(chip);
2163 
2164 	return ret;
2165 }
2166 
2167 /* implements ecc->write_page_raw() */
2168 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2169 				     const uint8_t *buf, int oob_required,
2170 				     int page)
2171 {
2172 	struct mtd_info *mtd = nand_to_mtd(chip);
2173 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2174 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2175 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2176 	u8 *data_buf, *oob_buf;
2177 	int i, ret;
2178 
2179 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2180 	clear_read_regs(nandc);
2181 	clear_bam_transaction(nandc);
2182 
2183 	data_buf = (u8 *)buf;
2184 	oob_buf = chip->oob_poi;
2185 
2186 	host->use_ecc = false;
2187 	update_rw_regs(host, ecc->steps, false, 0);
2188 	config_nand_page_write(chip);
2189 
2190 	for (i = 0; i < ecc->steps; i++) {
2191 		int data_size1, data_size2, oob_size1, oob_size2;
2192 		int reg_off = FLASH_BUF_ACC;
2193 
2194 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2195 		oob_size1 = host->bbm_size;
2196 
2197 		if (qcom_nandc_is_last_cw(ecc, i)) {
2198 			data_size2 = ecc->size - data_size1 -
2199 				     ((ecc->steps - 1) << 2);
2200 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2201 				    host->spare_bytes;
2202 		} else {
2203 			data_size2 = host->cw_data - data_size1;
2204 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2205 		}
2206 
2207 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2208 			       NAND_BAM_NO_EOT);
2209 		reg_off += data_size1;
2210 		data_buf += data_size1;
2211 
2212 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2213 			       NAND_BAM_NO_EOT);
2214 		reg_off += oob_size1;
2215 		oob_buf += oob_size1;
2216 
2217 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2218 			       NAND_BAM_NO_EOT);
2219 		reg_off += data_size2;
2220 		data_buf += data_size2;
2221 
2222 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2223 		oob_buf += oob_size2;
2224 
2225 		config_nand_cw_write(chip);
2226 	}
2227 
2228 	ret = submit_descs(nandc);
2229 	if (ret)
2230 		dev_err(nandc->dev, "failure to write raw page\n");
2231 
2232 	free_descs(nandc);
2233 
2234 	if (!ret)
2235 		ret = nand_prog_page_end_op(chip);
2236 
2237 	return ret;
2238 }
2239 
2240 /*
2241  * implements ecc->write_oob()
2242  *
2243  * the NAND controller cannot write only data or only OOB within a codeword
2244  * since ECC is calculated for the combined codeword. So update the OOB from
2245  * chip->oob_poi, and pad the data area with OxFF before writing.
2246  */
2247 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2248 {
2249 	struct mtd_info *mtd = nand_to_mtd(chip);
2250 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2251 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2252 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2253 	u8 *oob = chip->oob_poi;
2254 	int data_size, oob_size;
2255 	int ret;
2256 
2257 	host->use_ecc = true;
2258 	clear_bam_transaction(nandc);
2259 
2260 	/* calculate the data and oob size for the last codeword/step */
2261 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2262 	oob_size = mtd->oobavail;
2263 
2264 	memset(nandc->data_buffer, 0xff, host->cw_data);
2265 	/* override new oob content to last codeword */
2266 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2267 				    0, mtd->oobavail);
2268 
2269 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2270 	update_rw_regs(host, 1, false, 0);
2271 
2272 	config_nand_page_write(chip);
2273 	write_data_dma(nandc, FLASH_BUF_ACC,
2274 		       nandc->data_buffer, data_size + oob_size, 0);
2275 	config_nand_cw_write(chip);
2276 
2277 	ret = submit_descs(nandc);
2278 
2279 	free_descs(nandc);
2280 
2281 	if (ret) {
2282 		dev_err(nandc->dev, "failure to write oob\n");
2283 		return -EIO;
2284 	}
2285 
2286 	return nand_prog_page_end_op(chip);
2287 }
2288 
2289 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2290 {
2291 	struct mtd_info *mtd = nand_to_mtd(chip);
2292 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2293 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2294 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2295 	int page, ret, bbpos, bad = 0;
2296 
2297 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2298 
2299 	/*
2300 	 * configure registers for a raw sub page read, the address is set to
2301 	 * the beginning of the last codeword, we don't care about reading ecc
2302 	 * portion of oob. we just want the first few bytes from this codeword
2303 	 * that contains the BBM
2304 	 */
2305 	host->use_ecc = false;
2306 
2307 	clear_bam_transaction(nandc);
2308 	ret = copy_last_cw(host, page);
2309 	if (ret)
2310 		goto err;
2311 
2312 	if (check_flash_errors(host, 1)) {
2313 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2314 		goto err;
2315 	}
2316 
2317 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2318 
2319 	bad = nandc->data_buffer[bbpos] != 0xff;
2320 
2321 	if (chip->options & NAND_BUSWIDTH_16)
2322 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2323 err:
2324 	return bad;
2325 }
2326 
2327 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2328 {
2329 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2330 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2331 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2332 	int page, ret;
2333 
2334 	clear_read_regs(nandc);
2335 	clear_bam_transaction(nandc);
2336 
2337 	/*
2338 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2339 	 * we don't care about the rest of the content in the codeword since
2340 	 * we aren't going to use this block again
2341 	 */
2342 	memset(nandc->data_buffer, 0x00, host->cw_size);
2343 
2344 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2345 
2346 	/* prepare write */
2347 	host->use_ecc = false;
2348 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2349 	update_rw_regs(host, 1, false, ecc->steps - 1);
2350 
2351 	config_nand_page_write(chip);
2352 	write_data_dma(nandc, FLASH_BUF_ACC,
2353 		       nandc->data_buffer, host->cw_size, 0);
2354 	config_nand_cw_write(chip);
2355 
2356 	ret = submit_descs(nandc);
2357 
2358 	free_descs(nandc);
2359 
2360 	if (ret) {
2361 		dev_err(nandc->dev, "failure to update BBM\n");
2362 		return -EIO;
2363 	}
2364 
2365 	return nand_prog_page_end_op(chip);
2366 }
2367 
2368 /*
2369  * the three functions below implement chip->legacy.read_byte(),
2370  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2371  * aren't used for reading/writing page data, they are used for smaller data
2372  * like reading	id, status etc
2373  */
2374 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2375 {
2376 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2377 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2378 	u8 *buf = nandc->data_buffer;
2379 	u8 ret = 0x0;
2380 
2381 	if (host->last_command == NAND_CMD_STATUS) {
2382 		ret = host->status;
2383 
2384 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2385 
2386 		return ret;
2387 	}
2388 
2389 	if (nandc->buf_start < nandc->buf_count)
2390 		ret = buf[nandc->buf_start++];
2391 
2392 	return ret;
2393 }
2394 
2395 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2396 {
2397 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2398 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2399 
2400 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2401 	nandc->buf_start += real_len;
2402 }
2403 
2404 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2405 				 int len)
2406 {
2407 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2408 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2409 
2410 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2411 
2412 	nandc->buf_start += real_len;
2413 }
2414 
2415 /* we support only one external chip for now */
2416 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2417 {
2418 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2419 
2420 	if (chipnr <= 0)
2421 		return;
2422 
2423 	dev_warn(nandc->dev, "invalid chip select\n");
2424 }
2425 
2426 /*
2427  * NAND controller page layout info
2428  *
2429  * Layout with ECC enabled:
2430  *
2431  * |----------------------|  |---------------------------------|
2432  * |           xx.......yy|  |             *********xx.......yy|
2433  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2434  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2435  * |           xx.......yy|  |             *********xx.......yy|
2436  * |----------------------|  |---------------------------------|
2437  *     codeword 1,2..n-1                  codeword n
2438  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2439  *
2440  * n = Number of codewords in the page
2441  * . = ECC bytes
2442  * * = Spare/free bytes
2443  * x = Unused byte(s)
2444  * y = Reserved byte(s)
2445  *
2446  * 2K page: n = 4, spare = 16 bytes
2447  * 4K page: n = 8, spare = 32 bytes
2448  * 8K page: n = 16, spare = 64 bytes
2449  *
2450  * the qcom nand controller operates at a sub page/codeword level. each
2451  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2452  * the number of ECC bytes vary based on the ECC strength and the bus width.
2453  *
2454  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2455  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2456  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2457  *
2458  * When we access a page with ECC enabled, the reserved bytes(s) are not
2459  * accessible at all. When reading, we fill up these unreadable positions
2460  * with 0xffs. When writing, the controller skips writing the inaccessible
2461  * bytes.
2462  *
2463  * Layout with ECC disabled:
2464  *
2465  * |------------------------------|  |---------------------------------------|
2466  * |         yy          xx.......|  |         bb          *********xx.......|
2467  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2468  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2469  * |         yy          xx.......|  |         bb          *********xx.......|
2470  * |------------------------------|  |---------------------------------------|
2471  *         codeword 1,2..n-1                        codeword n
2472  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2473  *
2474  * n = Number of codewords in the page
2475  * . = ECC bytes
2476  * * = Spare/free bytes
2477  * x = Unused byte(s)
2478  * y = Dummy Bad Bock byte(s)
2479  * b = Real Bad Block byte(s)
2480  * size1/size2 = function of codeword size and 'n'
2481  *
2482  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2483  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2484  * Block Markers. In the last codeword, this position contains the real BBM
2485  *
2486  * In order to have a consistent layout between RAW and ECC modes, we assume
2487  * the following OOB layout arrangement:
2488  *
2489  * |-----------|  |--------------------|
2490  * |yyxx.......|  |bb*********xx.......|
2491  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2492  * |yyxx.......|  |bb*********xx.......|
2493  * |yyxx.......|  |bb*********xx.......|
2494  * |-----------|  |--------------------|
2495  *  first n - 1       nth OOB region
2496  *  OOB regions
2497  *
2498  * n = Number of codewords in the page
2499  * . = ECC bytes
2500  * * = FREE OOB bytes
2501  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2502  * x = Unused byte(s)
2503  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2504  *
2505  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2506  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2507  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2508  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2509  * the sum of the three).
2510  */
2511 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2512 				   struct mtd_oob_region *oobregion)
2513 {
2514 	struct nand_chip *chip = mtd_to_nand(mtd);
2515 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2516 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2517 
2518 	if (section > 1)
2519 		return -ERANGE;
2520 
2521 	if (!section) {
2522 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2523 				    host->bbm_size;
2524 		oobregion->offset = 0;
2525 	} else {
2526 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2527 		oobregion->offset = mtd->oobsize - oobregion->length;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2534 				     struct mtd_oob_region *oobregion)
2535 {
2536 	struct nand_chip *chip = mtd_to_nand(mtd);
2537 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2538 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2539 
2540 	if (section)
2541 		return -ERANGE;
2542 
2543 	oobregion->length = ecc->steps * 4;
2544 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2545 
2546 	return 0;
2547 }
2548 
2549 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2550 	.ecc = qcom_nand_ooblayout_ecc,
2551 	.free = qcom_nand_ooblayout_free,
2552 };
2553 
2554 static int
2555 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2556 {
2557 	return strength == 4 ? 12 : 16;
2558 }
2559 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2560 		     NANDC_STEP_SIZE, 4, 8);
2561 
2562 static int qcom_nand_attach_chip(struct nand_chip *chip)
2563 {
2564 	struct mtd_info *mtd = nand_to_mtd(chip);
2565 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2566 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2567 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2568 	int cwperpage, bad_block_byte, ret;
2569 	bool wide_bus;
2570 	int ecc_mode = 1;
2571 
2572 	/* controller only supports 512 bytes data steps */
2573 	ecc->size = NANDC_STEP_SIZE;
2574 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2575 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2576 
2577 	/*
2578 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2579 	 * so remaining bytes can be used for ECC.
2580 	 */
2581 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2582 				   mtd->oobsize - (cwperpage * 4));
2583 	if (ret) {
2584 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2585 		return ret;
2586 	}
2587 
2588 	if (ecc->strength >= 8) {
2589 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2590 		host->bch_enabled = true;
2591 		ecc_mode = 1;
2592 
2593 		if (wide_bus) {
2594 			host->ecc_bytes_hw = 14;
2595 			host->spare_bytes = 0;
2596 			host->bbm_size = 2;
2597 		} else {
2598 			host->ecc_bytes_hw = 13;
2599 			host->spare_bytes = 2;
2600 			host->bbm_size = 1;
2601 		}
2602 	} else {
2603 		/*
2604 		 * if the controller supports BCH for 4 bit ECC, the controller
2605 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2606 		 * always 10 bytes
2607 		 */
2608 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2609 			/* BCH */
2610 			host->bch_enabled = true;
2611 			ecc_mode = 0;
2612 
2613 			if (wide_bus) {
2614 				host->ecc_bytes_hw = 8;
2615 				host->spare_bytes = 2;
2616 				host->bbm_size = 2;
2617 			} else {
2618 				host->ecc_bytes_hw = 7;
2619 				host->spare_bytes = 4;
2620 				host->bbm_size = 1;
2621 			}
2622 		} else {
2623 			/* RS */
2624 			host->ecc_bytes_hw = 10;
2625 
2626 			if (wide_bus) {
2627 				host->spare_bytes = 0;
2628 				host->bbm_size = 2;
2629 			} else {
2630 				host->spare_bytes = 1;
2631 				host->bbm_size = 1;
2632 			}
2633 		}
2634 	}
2635 
2636 	/*
2637 	 * we consider ecc->bytes as the sum of all the non-data content in a
2638 	 * step. It gives us a clean representation of the oob area (even if
2639 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2640 	 * ECC and 12 bytes for 4 bit ECC
2641 	 */
2642 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2643 
2644 	ecc->read_page		= qcom_nandc_read_page;
2645 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2646 	ecc->read_oob		= qcom_nandc_read_oob;
2647 	ecc->write_page		= qcom_nandc_write_page;
2648 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2649 	ecc->write_oob		= qcom_nandc_write_oob;
2650 
2651 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2652 
2653 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2654 	/* Free the initially allocated BAM transaction for reading the ONFI params */
2655 	if (nandc->props->is_bam)
2656 		free_bam_transaction(nandc);
2657 
2658 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2659 				     cwperpage);
2660 
2661 	/* Now allocate the BAM transaction based on updated max_cwperpage */
2662 	if (nandc->props->is_bam) {
2663 		nandc->bam_txn = alloc_bam_transaction(nandc);
2664 		if (!nandc->bam_txn) {
2665 			dev_err(nandc->dev,
2666 				"failed to allocate bam transaction\n");
2667 			return -ENOMEM;
2668 		}
2669 	}
2670 
2671 	/*
2672 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2673 	 * spare data with ECC too. We protect spare data by default, so we set
2674 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2675 	 */
2676 	host->cw_data = 516;
2677 
2678 	/*
2679 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2680 	 * for 8 bit ECC
2681 	 */
2682 	host->cw_size = host->cw_data + ecc->bytes;
2683 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2684 
2685 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2686 				| host->cw_data << UD_SIZE_BYTES
2687 				| 0 << DISABLE_STATUS_AFTER_WRITE
2688 				| 5 << NUM_ADDR_CYCLES
2689 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2690 				| 0 << STATUS_BFR_READ
2691 				| 1 << SET_RD_MODE_AFTER_STATUS
2692 				| host->spare_bytes << SPARE_SIZE_BYTES;
2693 
2694 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2695 				| 0 <<  CS_ACTIVE_BSY
2696 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2697 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2698 				| 2 << WR_RD_BSY_GAP
2699 				| wide_bus << WIDE_FLASH
2700 				| host->bch_enabled << ENABLE_BCH_ECC;
2701 
2702 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2703 				| host->cw_size << UD_SIZE_BYTES
2704 				| 5 << NUM_ADDR_CYCLES
2705 				| 0 << SPARE_SIZE_BYTES;
2706 
2707 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2708 				| 0 << CS_ACTIVE_BSY
2709 				| 17 << BAD_BLOCK_BYTE_NUM
2710 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2711 				| 2 << WR_RD_BSY_GAP
2712 				| wide_bus << WIDE_FLASH
2713 				| 1 << DEV0_CFG1_ECC_DISABLE;
2714 
2715 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2716 				| 0 << ECC_SW_RESET
2717 				| host->cw_data << ECC_NUM_DATA_BYTES
2718 				| 1 << ECC_FORCE_CLK_OPEN
2719 				| ecc_mode << ECC_MODE
2720 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2721 
2722 	if (!nandc->props->qpic_v2)
2723 		host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2724 
2725 	host->clrflashstatus = FS_READY_BSY_N;
2726 	host->clrreadstatus = 0xc0;
2727 	nandc->regs->erased_cw_detect_cfg_clr =
2728 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2729 	nandc->regs->erased_cw_detect_cfg_set =
2730 		cpu_to_le32(SET_ERASED_PAGE_DET);
2731 
2732 	dev_dbg(nandc->dev,
2733 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2734 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2735 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2736 		cwperpage);
2737 
2738 	return 0;
2739 }
2740 
2741 static const struct nand_controller_ops qcom_nandc_ops = {
2742 	.attach_chip = qcom_nand_attach_chip,
2743 };
2744 
2745 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2746 {
2747 	if (nandc->props->is_bam) {
2748 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2749 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2750 					 MAX_REG_RD *
2751 					 sizeof(*nandc->reg_read_buf),
2752 					 DMA_FROM_DEVICE);
2753 
2754 		if (nandc->tx_chan)
2755 			dma_release_channel(nandc->tx_chan);
2756 
2757 		if (nandc->rx_chan)
2758 			dma_release_channel(nandc->rx_chan);
2759 
2760 		if (nandc->cmd_chan)
2761 			dma_release_channel(nandc->cmd_chan);
2762 	} else {
2763 		if (nandc->chan)
2764 			dma_release_channel(nandc->chan);
2765 	}
2766 }
2767 
2768 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2769 {
2770 	int ret;
2771 
2772 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2773 	if (ret) {
2774 		dev_err(nandc->dev, "failed to set DMA mask\n");
2775 		return ret;
2776 	}
2777 
2778 	/*
2779 	 * we use the internal buffer for reading ONFI params, reading small
2780 	 * data like ID and status, and preforming read-copy-write operations
2781 	 * when writing to a codeword partially. 532 is the maximum possible
2782 	 * size of a codeword for our nand controller
2783 	 */
2784 	nandc->buf_size = 532;
2785 
2786 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2787 					GFP_KERNEL);
2788 	if (!nandc->data_buffer)
2789 		return -ENOMEM;
2790 
2791 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2792 					GFP_KERNEL);
2793 	if (!nandc->regs)
2794 		return -ENOMEM;
2795 
2796 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2797 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2798 				GFP_KERNEL);
2799 	if (!nandc->reg_read_buf)
2800 		return -ENOMEM;
2801 
2802 	if (nandc->props->is_bam) {
2803 		nandc->reg_read_dma =
2804 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2805 				       MAX_REG_RD *
2806 				       sizeof(*nandc->reg_read_buf),
2807 				       DMA_FROM_DEVICE);
2808 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2809 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2810 			return -EIO;
2811 		}
2812 
2813 		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2814 		if (IS_ERR(nandc->tx_chan)) {
2815 			ret = PTR_ERR(nandc->tx_chan);
2816 			nandc->tx_chan = NULL;
2817 			dev_err_probe(nandc->dev, ret,
2818 				      "tx DMA channel request failed\n");
2819 			goto unalloc;
2820 		}
2821 
2822 		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2823 		if (IS_ERR(nandc->rx_chan)) {
2824 			ret = PTR_ERR(nandc->rx_chan);
2825 			nandc->rx_chan = NULL;
2826 			dev_err_probe(nandc->dev, ret,
2827 				      "rx DMA channel request failed\n");
2828 			goto unalloc;
2829 		}
2830 
2831 		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2832 		if (IS_ERR(nandc->cmd_chan)) {
2833 			ret = PTR_ERR(nandc->cmd_chan);
2834 			nandc->cmd_chan = NULL;
2835 			dev_err_probe(nandc->dev, ret,
2836 				      "cmd DMA channel request failed\n");
2837 			goto unalloc;
2838 		}
2839 
2840 		/*
2841 		 * Initially allocate BAM transaction to read ONFI param page.
2842 		 * After detecting all the devices, this BAM transaction will
2843 		 * be freed and the next BAM tranasction will be allocated with
2844 		 * maximum codeword size
2845 		 */
2846 		nandc->max_cwperpage = 1;
2847 		nandc->bam_txn = alloc_bam_transaction(nandc);
2848 		if (!nandc->bam_txn) {
2849 			dev_err(nandc->dev,
2850 				"failed to allocate bam transaction\n");
2851 			ret = -ENOMEM;
2852 			goto unalloc;
2853 		}
2854 	} else {
2855 		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2856 		if (IS_ERR(nandc->chan)) {
2857 			ret = PTR_ERR(nandc->chan);
2858 			nandc->chan = NULL;
2859 			dev_err_probe(nandc->dev, ret,
2860 				      "rxtx DMA channel request failed\n");
2861 			return ret;
2862 		}
2863 	}
2864 
2865 	INIT_LIST_HEAD(&nandc->desc_list);
2866 	INIT_LIST_HEAD(&nandc->host_list);
2867 
2868 	nand_controller_init(&nandc->controller);
2869 	nandc->controller.ops = &qcom_nandc_ops;
2870 
2871 	return 0;
2872 unalloc:
2873 	qcom_nandc_unalloc(nandc);
2874 	return ret;
2875 }
2876 
2877 /* one time setup of a few nand controller registers */
2878 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2879 {
2880 	u32 nand_ctrl;
2881 
2882 	/* kill onenand */
2883 	if (!nandc->props->is_qpic)
2884 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2885 
2886 	if (!nandc->props->qpic_v2)
2887 		nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2888 			    NAND_DEV_CMD_VLD_VAL);
2889 
2890 	/* enable ADM or BAM DMA */
2891 	if (nandc->props->is_bam) {
2892 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2893 
2894 		/*
2895 		 *NAND_CTRL is an operational registers, and CPU
2896 		 * access to operational registers are read only
2897 		 * in BAM mode. So update the NAND_CTRL register
2898 		 * only if it is not in BAM mode. In most cases BAM
2899 		 * mode will be enabled in bootloader
2900 		 */
2901 		if (!(nand_ctrl & BAM_MODE_EN))
2902 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2903 	} else {
2904 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2905 	}
2906 
2907 	/* save the original values of these registers */
2908 	if (!nandc->props->qpic_v2) {
2909 		nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2910 		nandc->vld = NAND_DEV_CMD_VLD_VAL;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
2917 
2918 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2919 					    struct qcom_nand_host *host,
2920 					    struct device_node *dn)
2921 {
2922 	struct nand_chip *chip = &host->chip;
2923 	struct mtd_info *mtd = nand_to_mtd(chip);
2924 	struct device *dev = nandc->dev;
2925 	int ret;
2926 
2927 	ret = of_property_read_u32(dn, "reg", &host->cs);
2928 	if (ret) {
2929 		dev_err(dev, "can't get chip-select\n");
2930 		return -ENXIO;
2931 	}
2932 
2933 	nand_set_flash_node(chip, dn);
2934 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2935 	if (!mtd->name)
2936 		return -ENOMEM;
2937 
2938 	mtd->owner = THIS_MODULE;
2939 	mtd->dev.parent = dev;
2940 
2941 	chip->legacy.cmdfunc	= qcom_nandc_command;
2942 	chip->legacy.select_chip	= qcom_nandc_select_chip;
2943 	chip->legacy.read_byte	= qcom_nandc_read_byte;
2944 	chip->legacy.read_buf	= qcom_nandc_read_buf;
2945 	chip->legacy.write_buf	= qcom_nandc_write_buf;
2946 	chip->legacy.set_features	= nand_get_set_features_notsupp;
2947 	chip->legacy.get_features	= nand_get_set_features_notsupp;
2948 
2949 	/*
2950 	 * the bad block marker is readable only when we read the last codeword
2951 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2952 	 * helpers don't allow us to read BB from a nand chip with ECC
2953 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2954 	 * and block_markbad helpers until we permanently switch to using
2955 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2956 	 */
2957 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2958 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2959 
2960 	chip->controller = &nandc->controller;
2961 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2962 			 NAND_SKIP_BBTSCAN;
2963 
2964 	/* set up initial status value */
2965 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2966 
2967 	ret = nand_scan(chip, 1);
2968 	if (ret)
2969 		return ret;
2970 
2971 	ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
2972 	if (ret)
2973 		nand_cleanup(chip);
2974 
2975 	return ret;
2976 }
2977 
2978 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2979 {
2980 	struct device *dev = nandc->dev;
2981 	struct device_node *dn = dev->of_node, *child;
2982 	struct qcom_nand_host *host;
2983 	int ret = -ENODEV;
2984 
2985 	for_each_available_child_of_node(dn, child) {
2986 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2987 		if (!host) {
2988 			of_node_put(child);
2989 			return -ENOMEM;
2990 		}
2991 
2992 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2993 		if (ret) {
2994 			devm_kfree(dev, host);
2995 			continue;
2996 		}
2997 
2998 		list_add_tail(&host->node, &nandc->host_list);
2999 	}
3000 
3001 	return ret;
3002 }
3003 
3004 /* parse custom DT properties here */
3005 static int qcom_nandc_parse_dt(struct platform_device *pdev)
3006 {
3007 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3008 	struct device_node *np = nandc->dev->of_node;
3009 	int ret;
3010 
3011 	if (!nandc->props->is_bam) {
3012 		ret = of_property_read_u32(np, "qcom,cmd-crci",
3013 					   &nandc->cmd_crci);
3014 		if (ret) {
3015 			dev_err(nandc->dev, "command CRCI unspecified\n");
3016 			return ret;
3017 		}
3018 
3019 		ret = of_property_read_u32(np, "qcom,data-crci",
3020 					   &nandc->data_crci);
3021 		if (ret) {
3022 			dev_err(nandc->dev, "data CRCI unspecified\n");
3023 			return ret;
3024 		}
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 static int qcom_nandc_probe(struct platform_device *pdev)
3031 {
3032 	struct qcom_nand_controller *nandc;
3033 	const void *dev_data;
3034 	struct device *dev = &pdev->dev;
3035 	struct resource *res;
3036 	int ret;
3037 
3038 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3039 	if (!nandc)
3040 		return -ENOMEM;
3041 
3042 	platform_set_drvdata(pdev, nandc);
3043 	nandc->dev = dev;
3044 
3045 	dev_data = of_device_get_match_data(dev);
3046 	if (!dev_data) {
3047 		dev_err(&pdev->dev, "failed to get device data\n");
3048 		return -ENODEV;
3049 	}
3050 
3051 	nandc->props = dev_data;
3052 
3053 	nandc->core_clk = devm_clk_get(dev, "core");
3054 	if (IS_ERR(nandc->core_clk))
3055 		return PTR_ERR(nandc->core_clk);
3056 
3057 	nandc->aon_clk = devm_clk_get(dev, "aon");
3058 	if (IS_ERR(nandc->aon_clk))
3059 		return PTR_ERR(nandc->aon_clk);
3060 
3061 	ret = qcom_nandc_parse_dt(pdev);
3062 	if (ret)
3063 		return ret;
3064 
3065 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3066 	nandc->base = devm_ioremap_resource(dev, res);
3067 	if (IS_ERR(nandc->base))
3068 		return PTR_ERR(nandc->base);
3069 
3070 	nandc->base_phys = res->start;
3071 	nandc->base_dma = dma_map_resource(dev, res->start,
3072 					   resource_size(res),
3073 					   DMA_BIDIRECTIONAL, 0);
3074 	if (dma_mapping_error(dev, nandc->base_dma))
3075 		return -ENXIO;
3076 
3077 	ret = clk_prepare_enable(nandc->core_clk);
3078 	if (ret)
3079 		goto err_core_clk;
3080 
3081 	ret = clk_prepare_enable(nandc->aon_clk);
3082 	if (ret)
3083 		goto err_aon_clk;
3084 
3085 	ret = qcom_nandc_alloc(nandc);
3086 	if (ret)
3087 		goto err_nandc_alloc;
3088 
3089 	ret = qcom_nandc_setup(nandc);
3090 	if (ret)
3091 		goto err_setup;
3092 
3093 	ret = qcom_probe_nand_devices(nandc);
3094 	if (ret)
3095 		goto err_setup;
3096 
3097 	return 0;
3098 
3099 err_setup:
3100 	qcom_nandc_unalloc(nandc);
3101 err_nandc_alloc:
3102 	clk_disable_unprepare(nandc->aon_clk);
3103 err_aon_clk:
3104 	clk_disable_unprepare(nandc->core_clk);
3105 err_core_clk:
3106 	dma_unmap_resource(dev, res->start, resource_size(res),
3107 			   DMA_BIDIRECTIONAL, 0);
3108 	return ret;
3109 }
3110 
3111 static int qcom_nandc_remove(struct platform_device *pdev)
3112 {
3113 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3114 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3115 	struct qcom_nand_host *host;
3116 	struct nand_chip *chip;
3117 	int ret;
3118 
3119 	list_for_each_entry(host, &nandc->host_list, node) {
3120 		chip = &host->chip;
3121 		ret = mtd_device_unregister(nand_to_mtd(chip));
3122 		WARN_ON(ret);
3123 		nand_cleanup(chip);
3124 	}
3125 
3126 	qcom_nandc_unalloc(nandc);
3127 
3128 	clk_disable_unprepare(nandc->aon_clk);
3129 	clk_disable_unprepare(nandc->core_clk);
3130 
3131 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3132 			   DMA_BIDIRECTIONAL, 0);
3133 
3134 	return 0;
3135 }
3136 
3137 static const struct qcom_nandc_props ipq806x_nandc_props = {
3138 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3139 	.is_bam = false,
3140 	.dev_cmd_reg_start = 0x0,
3141 };
3142 
3143 static const struct qcom_nandc_props ipq4019_nandc_props = {
3144 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3145 	.is_bam = true,
3146 	.is_qpic = true,
3147 	.dev_cmd_reg_start = 0x0,
3148 };
3149 
3150 static const struct qcom_nandc_props ipq8074_nandc_props = {
3151 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3152 	.is_bam = true,
3153 	.is_qpic = true,
3154 	.dev_cmd_reg_start = 0x7000,
3155 };
3156 
3157 static const struct qcom_nandc_props sdx55_nandc_props = {
3158 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3159 	.is_bam = true,
3160 	.is_qpic = true,
3161 	.qpic_v2 = true,
3162 	.dev_cmd_reg_start = 0x7000,
3163 };
3164 
3165 /*
3166  * data will hold a struct pointer containing more differences once we support
3167  * more controller variants
3168  */
3169 static const struct of_device_id qcom_nandc_of_match[] = {
3170 	{
3171 		.compatible = "qcom,ipq806x-nand",
3172 		.data = &ipq806x_nandc_props,
3173 	},
3174 	{
3175 		.compatible = "qcom,ipq4019-nand",
3176 		.data = &ipq4019_nandc_props,
3177 	},
3178 	{
3179 		.compatible = "qcom,ipq6018-nand",
3180 		.data = &ipq8074_nandc_props,
3181 	},
3182 	{
3183 		.compatible = "qcom,ipq8074-nand",
3184 		.data = &ipq8074_nandc_props,
3185 	},
3186 	{
3187 		.compatible = "qcom,sdx55-nand",
3188 		.data = &sdx55_nandc_props,
3189 	},
3190 	{}
3191 };
3192 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3193 
3194 static struct platform_driver qcom_nandc_driver = {
3195 	.driver = {
3196 		.name = "qcom-nandc",
3197 		.of_match_table = qcom_nandc_of_match,
3198 	},
3199 	.probe   = qcom_nandc_probe,
3200 	.remove  = qcom_nandc_remove,
3201 };
3202 module_platform_driver(qcom_nandc_driver);
3203 
3204 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3205 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3206 MODULE_LICENSE("GPL v2");
3207