1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/slab.h> 8 #include <linux/bitops.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma/qcom_bam_dma.h> 18 19 /* NANDc reg offsets */ 20 #define NAND_FLASH_CMD 0x00 21 #define NAND_ADDR0 0x04 22 #define NAND_ADDR1 0x08 23 #define NAND_FLASH_CHIP_SELECT 0x0c 24 #define NAND_EXEC_CMD 0x10 25 #define NAND_FLASH_STATUS 0x14 26 #define NAND_BUFFER_STATUS 0x18 27 #define NAND_DEV0_CFG0 0x20 28 #define NAND_DEV0_CFG1 0x24 29 #define NAND_DEV0_ECC_CFG 0x28 30 #define NAND_DEV1_ECC_CFG 0x2c 31 #define NAND_DEV1_CFG0 0x30 32 #define NAND_DEV1_CFG1 0x34 33 #define NAND_READ_ID 0x40 34 #define NAND_READ_STATUS 0x44 35 #define NAND_DEV_CMD0 0xa0 36 #define NAND_DEV_CMD1 0xa4 37 #define NAND_DEV_CMD2 0xa8 38 #define NAND_DEV_CMD_VLD 0xac 39 #define SFLASHC_BURST_CFG 0xe0 40 #define NAND_ERASED_CW_DETECT_CFG 0xe8 41 #define NAND_ERASED_CW_DETECT_STATUS 0xec 42 #define NAND_EBI2_ECC_BUF_CFG 0xf0 43 #define FLASH_BUF_ACC 0x100 44 45 #define NAND_CTRL 0xf00 46 #define NAND_VERSION 0xf08 47 #define NAND_READ_LOCATION_0 0xf20 48 #define NAND_READ_LOCATION_1 0xf24 49 #define NAND_READ_LOCATION_2 0xf28 50 #define NAND_READ_LOCATION_3 0xf2c 51 52 /* dummy register offsets, used by write_reg_dma */ 53 #define NAND_DEV_CMD1_RESTORE 0xdead 54 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef 55 56 /* NAND_FLASH_CMD bits */ 57 #define PAGE_ACC BIT(4) 58 #define LAST_PAGE BIT(5) 59 60 /* NAND_FLASH_CHIP_SELECT bits */ 61 #define NAND_DEV_SEL 0 62 #define DM_EN BIT(2) 63 64 /* NAND_FLASH_STATUS bits */ 65 #define FS_OP_ERR BIT(4) 66 #define FS_READY_BSY_N BIT(5) 67 #define FS_MPU_ERR BIT(8) 68 #define FS_DEVICE_STS_ERR BIT(16) 69 #define FS_DEVICE_WP BIT(23) 70 71 /* NAND_BUFFER_STATUS bits */ 72 #define BS_UNCORRECTABLE_BIT BIT(8) 73 #define BS_CORRECTABLE_ERR_MSK 0x1f 74 75 /* NAND_DEVn_CFG0 bits */ 76 #define DISABLE_STATUS_AFTER_WRITE 4 77 #define CW_PER_PAGE 6 78 #define UD_SIZE_BYTES 9 79 #define ECC_PARITY_SIZE_BYTES_RS 19 80 #define SPARE_SIZE_BYTES 23 81 #define NUM_ADDR_CYCLES 27 82 #define STATUS_BFR_READ 30 83 #define SET_RD_MODE_AFTER_STATUS 31 84 85 /* NAND_DEVn_CFG0 bits */ 86 #define DEV0_CFG1_ECC_DISABLE 0 87 #define WIDE_FLASH 1 88 #define NAND_RECOVERY_CYCLES 2 89 #define CS_ACTIVE_BSY 5 90 #define BAD_BLOCK_BYTE_NUM 6 91 #define BAD_BLOCK_IN_SPARE_AREA 16 92 #define WR_RD_BSY_GAP 17 93 #define ENABLE_BCH_ECC 27 94 95 /* NAND_DEV0_ECC_CFG bits */ 96 #define ECC_CFG_ECC_DISABLE 0 97 #define ECC_SW_RESET 1 98 #define ECC_MODE 4 99 #define ECC_PARITY_SIZE_BYTES_BCH 8 100 #define ECC_NUM_DATA_BYTES 16 101 #define ECC_FORCE_CLK_OPEN 30 102 103 /* NAND_DEV_CMD1 bits */ 104 #define READ_ADDR 0 105 106 /* NAND_DEV_CMD_VLD bits */ 107 #define READ_START_VLD BIT(0) 108 #define READ_STOP_VLD BIT(1) 109 #define WRITE_START_VLD BIT(2) 110 #define ERASE_START_VLD BIT(3) 111 #define SEQ_READ_START_VLD BIT(4) 112 113 /* NAND_EBI2_ECC_BUF_CFG bits */ 114 #define NUM_STEPS 0 115 116 /* NAND_ERASED_CW_DETECT_CFG bits */ 117 #define ERASED_CW_ECC_MASK 1 118 #define AUTO_DETECT_RES 0 119 #define MASK_ECC (1 << ERASED_CW_ECC_MASK) 120 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES) 121 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) 122 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) 123 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) 124 125 /* NAND_ERASED_CW_DETECT_STATUS bits */ 126 #define PAGE_ALL_ERASED BIT(7) 127 #define CODEWORD_ALL_ERASED BIT(6) 128 #define PAGE_ERASED BIT(5) 129 #define CODEWORD_ERASED BIT(4) 130 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) 131 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) 132 133 /* NAND_READ_LOCATION_n bits */ 134 #define READ_LOCATION_OFFSET 0 135 #define READ_LOCATION_SIZE 16 136 #define READ_LOCATION_LAST 31 137 138 /* Version Mask */ 139 #define NAND_VERSION_MAJOR_MASK 0xf0000000 140 #define NAND_VERSION_MAJOR_SHIFT 28 141 #define NAND_VERSION_MINOR_MASK 0x0fff0000 142 #define NAND_VERSION_MINOR_SHIFT 16 143 144 /* NAND OP_CMDs */ 145 #define OP_PAGE_READ 0x2 146 #define OP_PAGE_READ_WITH_ECC 0x3 147 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 148 #define OP_PROGRAM_PAGE 0x6 149 #define OP_PAGE_PROGRAM_WITH_ECC 0x7 150 #define OP_PROGRAM_PAGE_SPARE 0x9 151 #define OP_BLOCK_ERASE 0xa 152 #define OP_FETCH_ID 0xb 153 #define OP_RESET_DEVICE 0xd 154 155 /* Default Value for NAND_DEV_CMD_VLD */ 156 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ 157 ERASE_START_VLD | SEQ_READ_START_VLD) 158 159 /* NAND_CTRL bits */ 160 #define BAM_MODE_EN BIT(0) 161 162 /* 163 * the NAND controller performs reads/writes with ECC in 516 byte chunks. 164 * the driver calls the chunks 'step' or 'codeword' interchangeably 165 */ 166 #define NANDC_STEP_SIZE 512 167 168 /* 169 * the largest page size we support is 8K, this will have 16 steps/codewords 170 * of 512 bytes each 171 */ 172 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) 173 174 /* we read at most 3 registers per codeword scan */ 175 #define MAX_REG_RD (3 * MAX_NUM_STEPS) 176 177 /* ECC modes supported by the controller */ 178 #define ECC_NONE BIT(0) 179 #define ECC_RS_4BIT BIT(1) 180 #define ECC_BCH_4BIT BIT(2) 181 #define ECC_BCH_8BIT BIT(3) 182 183 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \ 184 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \ 185 ((offset) << READ_LOCATION_OFFSET) | \ 186 ((size) << READ_LOCATION_SIZE) | \ 187 ((is_last) << READ_LOCATION_LAST)) 188 189 /* 190 * Returns the actual register address for all NAND_DEV_ registers 191 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) 192 */ 193 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) 194 195 /* Returns the NAND register physical address */ 196 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) 197 198 /* Returns the dma address for reg read buffer */ 199 #define reg_buf_dma_addr(chip, vaddr) \ 200 ((chip)->reg_read_dma + \ 201 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) 202 203 #define QPIC_PER_CW_CMD_ELEMENTS 32 204 #define QPIC_PER_CW_CMD_SGL 32 205 #define QPIC_PER_CW_DATA_SGL 8 206 207 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) 208 209 /* 210 * Flags used in DMA descriptor preparation helper functions 211 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) 212 */ 213 /* Don't set the EOT in current tx BAM sgl */ 214 #define NAND_BAM_NO_EOT BIT(0) 215 /* Set the NWD flag in current BAM sgl */ 216 #define NAND_BAM_NWD BIT(1) 217 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ 218 #define NAND_BAM_NEXT_SGL BIT(2) 219 /* 220 * Erased codeword status is being used two times in single transfer so this 221 * flag will determine the current value of erased codeword status register 222 */ 223 #define NAND_ERASED_CW_SET BIT(4) 224 225 /* 226 * This data type corresponds to the BAM transaction which will be used for all 227 * NAND transfers. 228 * @bam_ce - the array of BAM command elements 229 * @cmd_sgl - sgl for NAND BAM command pipe 230 * @data_sgl - sgl for NAND BAM consumer/producer pipe 231 * @bam_ce_pos - the index in bam_ce which is available for next sgl 232 * @bam_ce_start - the index in bam_ce which marks the start position ce 233 * for current sgl. It will be used for size calculation 234 * for current sgl 235 * @cmd_sgl_pos - current index in command sgl. 236 * @cmd_sgl_start - start index in command sgl. 237 * @tx_sgl_pos - current index in data sgl for tx. 238 * @tx_sgl_start - start index in data sgl for tx. 239 * @rx_sgl_pos - current index in data sgl for rx. 240 * @rx_sgl_start - start index in data sgl for rx. 241 * @wait_second_completion - wait for second DMA desc completion before making 242 * the NAND transfer completion. 243 * @txn_done - completion for NAND transfer. 244 * @last_data_desc - last DMA desc in data channel (tx/rx). 245 * @last_cmd_desc - last DMA desc in command channel. 246 */ 247 struct bam_transaction { 248 struct bam_cmd_element *bam_ce; 249 struct scatterlist *cmd_sgl; 250 struct scatterlist *data_sgl; 251 u32 bam_ce_pos; 252 u32 bam_ce_start; 253 u32 cmd_sgl_pos; 254 u32 cmd_sgl_start; 255 u32 tx_sgl_pos; 256 u32 tx_sgl_start; 257 u32 rx_sgl_pos; 258 u32 rx_sgl_start; 259 bool wait_second_completion; 260 struct completion txn_done; 261 struct dma_async_tx_descriptor *last_data_desc; 262 struct dma_async_tx_descriptor *last_cmd_desc; 263 }; 264 265 /* 266 * This data type corresponds to the nand dma descriptor 267 * @list - list for desc_info 268 * @dir - DMA transfer direction 269 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by 270 * ADM 271 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM 272 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM 273 * @dma_desc - low level DMA engine descriptor 274 */ 275 struct desc_info { 276 struct list_head node; 277 278 enum dma_data_direction dir; 279 union { 280 struct scatterlist adm_sgl; 281 struct { 282 struct scatterlist *bam_sgl; 283 int sgl_cnt; 284 }; 285 }; 286 struct dma_async_tx_descriptor *dma_desc; 287 }; 288 289 /* 290 * holds the current register values that we want to write. acts as a contiguous 291 * chunk of memory which we use to write the controller registers through DMA. 292 */ 293 struct nandc_regs { 294 __le32 cmd; 295 __le32 addr0; 296 __le32 addr1; 297 __le32 chip_sel; 298 __le32 exec; 299 300 __le32 cfg0; 301 __le32 cfg1; 302 __le32 ecc_bch_cfg; 303 304 __le32 clrflashstatus; 305 __le32 clrreadstatus; 306 307 __le32 cmd1; 308 __le32 vld; 309 310 __le32 orig_cmd1; 311 __le32 orig_vld; 312 313 __le32 ecc_buf_cfg; 314 __le32 read_location0; 315 __le32 read_location1; 316 __le32 read_location2; 317 __le32 read_location3; 318 319 __le32 erased_cw_detect_cfg_clr; 320 __le32 erased_cw_detect_cfg_set; 321 }; 322 323 /* 324 * NAND controller data struct 325 * 326 * @controller: base controller structure 327 * @host_list: list containing all the chips attached to the 328 * controller 329 * @dev: parent device 330 * @base: MMIO base 331 * @base_phys: physical base address of controller registers 332 * @base_dma: dma base address of controller registers 333 * @core_clk: controller clock 334 * @aon_clk: another controller clock 335 * 336 * @chan: dma channel 337 * @cmd_crci: ADM DMA CRCI for command flow control 338 * @data_crci: ADM DMA CRCI for data flow control 339 * @desc_list: DMA descriptor list (list of desc_infos) 340 * 341 * @data_buffer: our local DMA buffer for page read/writes, 342 * used when we can't use the buffer provided 343 * by upper layers directly 344 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf 345 * functions 346 * @reg_read_buf: local buffer for reading back registers via DMA 347 * @reg_read_dma: contains dma address for register read buffer 348 * @reg_read_pos: marker for data read in reg_read_buf 349 * 350 * @regs: a contiguous chunk of memory for DMA register 351 * writes. contains the register values to be 352 * written to controller 353 * @cmd1/vld: some fixed controller register values 354 * @props: properties of current NAND controller, 355 * initialized via DT match data 356 * @max_cwperpage: maximum QPIC codewords required. calculated 357 * from all connected NAND devices pagesize 358 */ 359 struct qcom_nand_controller { 360 struct nand_controller controller; 361 struct list_head host_list; 362 363 struct device *dev; 364 365 void __iomem *base; 366 phys_addr_t base_phys; 367 dma_addr_t base_dma; 368 369 struct clk *core_clk; 370 struct clk *aon_clk; 371 372 union { 373 /* will be used only by QPIC for BAM DMA */ 374 struct { 375 struct dma_chan *tx_chan; 376 struct dma_chan *rx_chan; 377 struct dma_chan *cmd_chan; 378 }; 379 380 /* will be used only by EBI2 for ADM DMA */ 381 struct { 382 struct dma_chan *chan; 383 unsigned int cmd_crci; 384 unsigned int data_crci; 385 }; 386 }; 387 388 struct list_head desc_list; 389 struct bam_transaction *bam_txn; 390 391 u8 *data_buffer; 392 int buf_size; 393 int buf_count; 394 int buf_start; 395 unsigned int max_cwperpage; 396 397 __le32 *reg_read_buf; 398 dma_addr_t reg_read_dma; 399 int reg_read_pos; 400 401 struct nandc_regs *regs; 402 403 u32 cmd1, vld; 404 const struct qcom_nandc_props *props; 405 }; 406 407 /* 408 * NAND chip structure 409 * 410 * @chip: base NAND chip structure 411 * @node: list node to add itself to host_list in 412 * qcom_nand_controller 413 * 414 * @cs: chip select value for this chip 415 * @cw_size: the number of bytes in a single step/codeword 416 * of a page, consisting of all data, ecc, spare 417 * and reserved bytes 418 * @cw_data: the number of bytes within a codeword protected 419 * by ECC 420 * @use_ecc: request the controller to use ECC for the 421 * upcoming read/write 422 * @bch_enabled: flag to tell whether BCH ECC mode is used 423 * @ecc_bytes_hw: ECC bytes used by controller hardware for this 424 * chip 425 * @status: value to be returned if NAND_CMD_STATUS command 426 * is executed 427 * @last_command: keeps track of last command on this chip. used 428 * for reading correct status 429 * 430 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for 431 * ecc/non-ecc mode for the current nand flash 432 * device 433 */ 434 struct qcom_nand_host { 435 struct nand_chip chip; 436 struct list_head node; 437 438 int cs; 439 int cw_size; 440 int cw_data; 441 bool use_ecc; 442 bool bch_enabled; 443 int ecc_bytes_hw; 444 int spare_bytes; 445 int bbm_size; 446 u8 status; 447 int last_command; 448 449 u32 cfg0, cfg1; 450 u32 cfg0_raw, cfg1_raw; 451 u32 ecc_buf_cfg; 452 u32 ecc_bch_cfg; 453 u32 clrflashstatus; 454 u32 clrreadstatus; 455 }; 456 457 /* 458 * This data type corresponds to the NAND controller properties which varies 459 * among different NAND controllers. 460 * @ecc_modes - ecc mode for NAND 461 * @is_bam - whether NAND controller is using BAM 462 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset 463 */ 464 struct qcom_nandc_props { 465 u32 ecc_modes; 466 bool is_bam; 467 u32 dev_cmd_reg_start; 468 }; 469 470 /* Frees the BAM transaction memory */ 471 static void free_bam_transaction(struct qcom_nand_controller *nandc) 472 { 473 struct bam_transaction *bam_txn = nandc->bam_txn; 474 475 devm_kfree(nandc->dev, bam_txn); 476 } 477 478 /* Allocates and Initializes the BAM transaction */ 479 static struct bam_transaction * 480 alloc_bam_transaction(struct qcom_nand_controller *nandc) 481 { 482 struct bam_transaction *bam_txn; 483 size_t bam_txn_size; 484 unsigned int num_cw = nandc->max_cwperpage; 485 void *bam_txn_buf; 486 487 bam_txn_size = 488 sizeof(*bam_txn) + num_cw * 489 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + 490 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + 491 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); 492 493 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); 494 if (!bam_txn_buf) 495 return NULL; 496 497 bam_txn = bam_txn_buf; 498 bam_txn_buf += sizeof(*bam_txn); 499 500 bam_txn->bam_ce = bam_txn_buf; 501 bam_txn_buf += 502 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; 503 504 bam_txn->cmd_sgl = bam_txn_buf; 505 bam_txn_buf += 506 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; 507 508 bam_txn->data_sgl = bam_txn_buf; 509 510 init_completion(&bam_txn->txn_done); 511 512 return bam_txn; 513 } 514 515 /* Clears the BAM transaction indexes */ 516 static void clear_bam_transaction(struct qcom_nand_controller *nandc) 517 { 518 struct bam_transaction *bam_txn = nandc->bam_txn; 519 520 if (!nandc->props->is_bam) 521 return; 522 523 bam_txn->bam_ce_pos = 0; 524 bam_txn->bam_ce_start = 0; 525 bam_txn->cmd_sgl_pos = 0; 526 bam_txn->cmd_sgl_start = 0; 527 bam_txn->tx_sgl_pos = 0; 528 bam_txn->tx_sgl_start = 0; 529 bam_txn->rx_sgl_pos = 0; 530 bam_txn->rx_sgl_start = 0; 531 bam_txn->last_data_desc = NULL; 532 bam_txn->wait_second_completion = false; 533 534 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * 535 QPIC_PER_CW_CMD_SGL); 536 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * 537 QPIC_PER_CW_DATA_SGL); 538 539 reinit_completion(&bam_txn->txn_done); 540 } 541 542 /* Callback for DMA descriptor completion */ 543 static void qpic_bam_dma_done(void *data) 544 { 545 struct bam_transaction *bam_txn = data; 546 547 /* 548 * In case of data transfer with NAND, 2 callbacks will be generated. 549 * One for command channel and another one for data channel. 550 * If current transaction has data descriptors 551 * (i.e. wait_second_completion is true), then set this to false 552 * and wait for second DMA descriptor completion. 553 */ 554 if (bam_txn->wait_second_completion) 555 bam_txn->wait_second_completion = false; 556 else 557 complete(&bam_txn->txn_done); 558 } 559 560 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) 561 { 562 return container_of(chip, struct qcom_nand_host, chip); 563 } 564 565 static inline struct qcom_nand_controller * 566 get_qcom_nand_controller(struct nand_chip *chip) 567 { 568 return container_of(chip->controller, struct qcom_nand_controller, 569 controller); 570 } 571 572 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) 573 { 574 return ioread32(nandc->base + offset); 575 } 576 577 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, 578 u32 val) 579 { 580 iowrite32(val, nandc->base + offset); 581 } 582 583 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, 584 bool is_cpu) 585 { 586 if (!nandc->props->is_bam) 587 return; 588 589 if (is_cpu) 590 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, 591 MAX_REG_RD * 592 sizeof(*nandc->reg_read_buf), 593 DMA_FROM_DEVICE); 594 else 595 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, 596 MAX_REG_RD * 597 sizeof(*nandc->reg_read_buf), 598 DMA_FROM_DEVICE); 599 } 600 601 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) 602 { 603 switch (offset) { 604 case NAND_FLASH_CMD: 605 return ®s->cmd; 606 case NAND_ADDR0: 607 return ®s->addr0; 608 case NAND_ADDR1: 609 return ®s->addr1; 610 case NAND_FLASH_CHIP_SELECT: 611 return ®s->chip_sel; 612 case NAND_EXEC_CMD: 613 return ®s->exec; 614 case NAND_FLASH_STATUS: 615 return ®s->clrflashstatus; 616 case NAND_DEV0_CFG0: 617 return ®s->cfg0; 618 case NAND_DEV0_CFG1: 619 return ®s->cfg1; 620 case NAND_DEV0_ECC_CFG: 621 return ®s->ecc_bch_cfg; 622 case NAND_READ_STATUS: 623 return ®s->clrreadstatus; 624 case NAND_DEV_CMD1: 625 return ®s->cmd1; 626 case NAND_DEV_CMD1_RESTORE: 627 return ®s->orig_cmd1; 628 case NAND_DEV_CMD_VLD: 629 return ®s->vld; 630 case NAND_DEV_CMD_VLD_RESTORE: 631 return ®s->orig_vld; 632 case NAND_EBI2_ECC_BUF_CFG: 633 return ®s->ecc_buf_cfg; 634 case NAND_READ_LOCATION_0: 635 return ®s->read_location0; 636 case NAND_READ_LOCATION_1: 637 return ®s->read_location1; 638 case NAND_READ_LOCATION_2: 639 return ®s->read_location2; 640 case NAND_READ_LOCATION_3: 641 return ®s->read_location3; 642 default: 643 return NULL; 644 } 645 } 646 647 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset, 648 u32 val) 649 { 650 struct nandc_regs *regs = nandc->regs; 651 __le32 *reg; 652 653 reg = offset_to_nandc_reg(regs, offset); 654 655 if (reg) 656 *reg = cpu_to_le32(val); 657 } 658 659 /* helper to configure address register values */ 660 static void set_address(struct qcom_nand_host *host, u16 column, int page) 661 { 662 struct nand_chip *chip = &host->chip; 663 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 664 665 if (chip->options & NAND_BUSWIDTH_16) 666 column >>= 1; 667 668 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column); 669 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff); 670 } 671 672 /* 673 * update_rw_regs: set up read/write register values, these will be 674 * written to the NAND controller registers via DMA 675 * 676 * @num_cw: number of steps for the read/write operation 677 * @read: read or write operation 678 */ 679 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read) 680 { 681 struct nand_chip *chip = &host->chip; 682 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 683 u32 cmd, cfg0, cfg1, ecc_bch_cfg; 684 685 if (read) { 686 if (host->use_ecc) 687 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; 688 else 689 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; 690 } else { 691 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; 692 } 693 694 if (host->use_ecc) { 695 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | 696 (num_cw - 1) << CW_PER_PAGE; 697 698 cfg1 = host->cfg1; 699 ecc_bch_cfg = host->ecc_bch_cfg; 700 } else { 701 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | 702 (num_cw - 1) << CW_PER_PAGE; 703 704 cfg1 = host->cfg1_raw; 705 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; 706 } 707 708 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd); 709 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0); 710 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1); 711 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg); 712 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); 713 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); 714 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); 715 nandc_set_reg(nandc, NAND_EXEC_CMD, 1); 716 717 if (read) 718 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ? 719 host->cw_data : host->cw_size, 1); 720 } 721 722 /* 723 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor 724 * for BAM. This descriptor will be added in the NAND DMA descriptor queue 725 * which will be submitted to DMA engine. 726 */ 727 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, 728 struct dma_chan *chan, 729 unsigned long flags) 730 { 731 struct desc_info *desc; 732 struct scatterlist *sgl; 733 unsigned int sgl_cnt; 734 int ret; 735 struct bam_transaction *bam_txn = nandc->bam_txn; 736 enum dma_transfer_direction dir_eng; 737 struct dma_async_tx_descriptor *dma_desc; 738 739 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 740 if (!desc) 741 return -ENOMEM; 742 743 if (chan == nandc->cmd_chan) { 744 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; 745 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; 746 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; 747 dir_eng = DMA_MEM_TO_DEV; 748 desc->dir = DMA_TO_DEVICE; 749 } else if (chan == nandc->tx_chan) { 750 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; 751 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; 752 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; 753 dir_eng = DMA_MEM_TO_DEV; 754 desc->dir = DMA_TO_DEVICE; 755 } else { 756 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; 757 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; 758 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; 759 dir_eng = DMA_DEV_TO_MEM; 760 desc->dir = DMA_FROM_DEVICE; 761 } 762 763 sg_mark_end(sgl + sgl_cnt - 1); 764 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 765 if (ret == 0) { 766 dev_err(nandc->dev, "failure in mapping desc\n"); 767 kfree(desc); 768 return -ENOMEM; 769 } 770 771 desc->sgl_cnt = sgl_cnt; 772 desc->bam_sgl = sgl; 773 774 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, 775 flags); 776 777 if (!dma_desc) { 778 dev_err(nandc->dev, "failure in prep desc\n"); 779 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 780 kfree(desc); 781 return -EINVAL; 782 } 783 784 desc->dma_desc = dma_desc; 785 786 /* update last data/command descriptor */ 787 if (chan == nandc->cmd_chan) 788 bam_txn->last_cmd_desc = dma_desc; 789 else 790 bam_txn->last_data_desc = dma_desc; 791 792 list_add_tail(&desc->node, &nandc->desc_list); 793 794 return 0; 795 } 796 797 /* 798 * Prepares the command descriptor for BAM DMA which will be used for NAND 799 * register reads and writes. The command descriptor requires the command 800 * to be formed in command element type so this function uses the command 801 * element from bam transaction ce array and fills the same with required 802 * data. A single SGL can contain multiple command elements so 803 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL 804 * after the current command element. 805 */ 806 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, 807 int reg_off, const void *vaddr, 808 int size, unsigned int flags) 809 { 810 int bam_ce_size; 811 int i, ret; 812 struct bam_cmd_element *bam_ce_buffer; 813 struct bam_transaction *bam_txn = nandc->bam_txn; 814 815 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; 816 817 /* fill the command desc */ 818 for (i = 0; i < size; i++) { 819 if (read) 820 bam_prep_ce(&bam_ce_buffer[i], 821 nandc_reg_phys(nandc, reg_off + 4 * i), 822 BAM_READ_COMMAND, 823 reg_buf_dma_addr(nandc, 824 (__le32 *)vaddr + i)); 825 else 826 bam_prep_ce_le32(&bam_ce_buffer[i], 827 nandc_reg_phys(nandc, reg_off + 4 * i), 828 BAM_WRITE_COMMAND, 829 *((__le32 *)vaddr + i)); 830 } 831 832 bam_txn->bam_ce_pos += size; 833 834 /* use the separate sgl after this command */ 835 if (flags & NAND_BAM_NEXT_SGL) { 836 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; 837 bam_ce_size = (bam_txn->bam_ce_pos - 838 bam_txn->bam_ce_start) * 839 sizeof(struct bam_cmd_element); 840 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], 841 bam_ce_buffer, bam_ce_size); 842 bam_txn->cmd_sgl_pos++; 843 bam_txn->bam_ce_start = bam_txn->bam_ce_pos; 844 845 if (flags & NAND_BAM_NWD) { 846 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, 847 DMA_PREP_FENCE | 848 DMA_PREP_CMD); 849 if (ret) 850 return ret; 851 } 852 } 853 854 return 0; 855 } 856 857 /* 858 * Prepares the data descriptor for BAM DMA which will be used for NAND 859 * data reads and writes. 860 */ 861 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, 862 const void *vaddr, 863 int size, unsigned int flags) 864 { 865 int ret; 866 struct bam_transaction *bam_txn = nandc->bam_txn; 867 868 if (read) { 869 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], 870 vaddr, size); 871 bam_txn->rx_sgl_pos++; 872 } else { 873 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], 874 vaddr, size); 875 bam_txn->tx_sgl_pos++; 876 877 /* 878 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag 879 * is not set, form the DMA descriptor 880 */ 881 if (!(flags & NAND_BAM_NO_EOT)) { 882 ret = prepare_bam_async_desc(nandc, nandc->tx_chan, 883 DMA_PREP_INTERRUPT); 884 if (ret) 885 return ret; 886 } 887 } 888 889 return 0; 890 } 891 892 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, 893 int reg_off, const void *vaddr, int size, 894 bool flow_control) 895 { 896 struct desc_info *desc; 897 struct dma_async_tx_descriptor *dma_desc; 898 struct scatterlist *sgl; 899 struct dma_slave_config slave_conf; 900 enum dma_transfer_direction dir_eng; 901 int ret; 902 903 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 904 if (!desc) 905 return -ENOMEM; 906 907 sgl = &desc->adm_sgl; 908 909 sg_init_one(sgl, vaddr, size); 910 911 if (read) { 912 dir_eng = DMA_DEV_TO_MEM; 913 desc->dir = DMA_FROM_DEVICE; 914 } else { 915 dir_eng = DMA_MEM_TO_DEV; 916 desc->dir = DMA_TO_DEVICE; 917 } 918 919 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); 920 if (ret == 0) { 921 ret = -ENOMEM; 922 goto err; 923 } 924 925 memset(&slave_conf, 0x00, sizeof(slave_conf)); 926 927 slave_conf.device_fc = flow_control; 928 if (read) { 929 slave_conf.src_maxburst = 16; 930 slave_conf.src_addr = nandc->base_dma + reg_off; 931 slave_conf.slave_id = nandc->data_crci; 932 } else { 933 slave_conf.dst_maxburst = 16; 934 slave_conf.dst_addr = nandc->base_dma + reg_off; 935 slave_conf.slave_id = nandc->cmd_crci; 936 } 937 938 ret = dmaengine_slave_config(nandc->chan, &slave_conf); 939 if (ret) { 940 dev_err(nandc->dev, "failed to configure dma channel\n"); 941 goto err; 942 } 943 944 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); 945 if (!dma_desc) { 946 dev_err(nandc->dev, "failed to prepare desc\n"); 947 ret = -EINVAL; 948 goto err; 949 } 950 951 desc->dma_desc = dma_desc; 952 953 list_add_tail(&desc->node, &nandc->desc_list); 954 955 return 0; 956 err: 957 kfree(desc); 958 959 return ret; 960 } 961 962 /* 963 * read_reg_dma: prepares a descriptor to read a given number of 964 * contiguous registers to the reg_read_buf pointer 965 * 966 * @first: offset of the first register in the contiguous block 967 * @num_regs: number of registers to read 968 * @flags: flags to control DMA descriptor preparation 969 */ 970 static int read_reg_dma(struct qcom_nand_controller *nandc, int first, 971 int num_regs, unsigned int flags) 972 { 973 bool flow_control = false; 974 void *vaddr; 975 976 vaddr = nandc->reg_read_buf + nandc->reg_read_pos; 977 nandc->reg_read_pos += num_regs; 978 979 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) 980 first = dev_cmd_reg_addr(nandc, first); 981 982 if (nandc->props->is_bam) 983 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, 984 num_regs, flags); 985 986 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) 987 flow_control = true; 988 989 return prep_adm_dma_desc(nandc, true, first, vaddr, 990 num_regs * sizeof(u32), flow_control); 991 } 992 993 /* 994 * write_reg_dma: prepares a descriptor to write a given number of 995 * contiguous registers 996 * 997 * @first: offset of the first register in the contiguous block 998 * @num_regs: number of registers to write 999 * @flags: flags to control DMA descriptor preparation 1000 */ 1001 static int write_reg_dma(struct qcom_nand_controller *nandc, int first, 1002 int num_regs, unsigned int flags) 1003 { 1004 bool flow_control = false; 1005 struct nandc_regs *regs = nandc->regs; 1006 void *vaddr; 1007 1008 vaddr = offset_to_nandc_reg(regs, first); 1009 1010 if (first == NAND_ERASED_CW_DETECT_CFG) { 1011 if (flags & NAND_ERASED_CW_SET) 1012 vaddr = ®s->erased_cw_detect_cfg_set; 1013 else 1014 vaddr = ®s->erased_cw_detect_cfg_clr; 1015 } 1016 1017 if (first == NAND_EXEC_CMD) 1018 flags |= NAND_BAM_NWD; 1019 1020 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) 1021 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); 1022 1023 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) 1024 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); 1025 1026 if (nandc->props->is_bam) 1027 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, 1028 num_regs, flags); 1029 1030 if (first == NAND_FLASH_CMD) 1031 flow_control = true; 1032 1033 return prep_adm_dma_desc(nandc, false, first, vaddr, 1034 num_regs * sizeof(u32), flow_control); 1035 } 1036 1037 /* 1038 * read_data_dma: prepares a DMA descriptor to transfer data from the 1039 * controller's internal buffer to the buffer 'vaddr' 1040 * 1041 * @reg_off: offset within the controller's data buffer 1042 * @vaddr: virtual address of the buffer we want to write to 1043 * @size: DMA transaction size in bytes 1044 * @flags: flags to control DMA descriptor preparation 1045 */ 1046 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1047 const u8 *vaddr, int size, unsigned int flags) 1048 { 1049 if (nandc->props->is_bam) 1050 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); 1051 1052 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); 1053 } 1054 1055 /* 1056 * write_data_dma: prepares a DMA descriptor to transfer data from 1057 * 'vaddr' to the controller's internal buffer 1058 * 1059 * @reg_off: offset within the controller's data buffer 1060 * @vaddr: virtual address of the buffer we want to read from 1061 * @size: DMA transaction size in bytes 1062 * @flags: flags to control DMA descriptor preparation 1063 */ 1064 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1065 const u8 *vaddr, int size, unsigned int flags) 1066 { 1067 if (nandc->props->is_bam) 1068 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); 1069 1070 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); 1071 } 1072 1073 /* 1074 * Helper to prepare DMA descriptors for configuring registers 1075 * before reading a NAND page. 1076 */ 1077 static void config_nand_page_read(struct qcom_nand_controller *nandc) 1078 { 1079 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1080 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1081 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); 1082 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); 1083 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 1084 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); 1085 } 1086 1087 /* 1088 * Helper to prepare DMA descriptors for configuring registers 1089 * before reading each codeword in NAND page. 1090 */ 1091 static void 1092 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc) 1093 { 1094 if (nandc->props->is_bam) 1095 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4, 1096 NAND_BAM_NEXT_SGL); 1097 1098 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1099 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1100 1101 if (use_ecc) { 1102 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); 1103 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, 1104 NAND_BAM_NEXT_SGL); 1105 } else { 1106 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1107 } 1108 } 1109 1110 /* 1111 * Helper to prepare dma descriptors to configure registers needed for reading a 1112 * single codeword in page 1113 */ 1114 static void 1115 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc, 1116 bool use_ecc) 1117 { 1118 config_nand_page_read(nandc); 1119 config_nand_cw_read(nandc, use_ecc); 1120 } 1121 1122 /* 1123 * Helper to prepare DMA descriptors used to configure registers needed for 1124 * before writing a NAND page. 1125 */ 1126 static void config_nand_page_write(struct qcom_nand_controller *nandc) 1127 { 1128 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1129 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1130 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 1131 NAND_BAM_NEXT_SGL); 1132 } 1133 1134 /* 1135 * Helper to prepare DMA descriptors for configuring registers 1136 * before writing each codeword in NAND page. 1137 */ 1138 static void config_nand_cw_write(struct qcom_nand_controller *nandc) 1139 { 1140 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1141 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1142 1143 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1144 1145 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1146 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1147 } 1148 1149 /* 1150 * the following functions are used within chip->legacy.cmdfunc() to 1151 * perform different NAND_CMD_* commands 1152 */ 1153 1154 /* sets up descriptors for NAND_CMD_PARAM */ 1155 static int nandc_param(struct qcom_nand_host *host) 1156 { 1157 struct nand_chip *chip = &host->chip; 1158 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1159 1160 /* 1161 * NAND_CMD_PARAM is called before we know much about the FLASH chip 1162 * in use. we configure the controller to perform a raw read of 512 1163 * bytes to read onfi params 1164 */ 1165 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE); 1166 nandc_set_reg(nandc, NAND_ADDR0, 0); 1167 nandc_set_reg(nandc, NAND_ADDR1, 0); 1168 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE 1169 | 512 << UD_SIZE_BYTES 1170 | 5 << NUM_ADDR_CYCLES 1171 | 0 << SPARE_SIZE_BYTES); 1172 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES 1173 | 0 << CS_ACTIVE_BSY 1174 | 17 << BAD_BLOCK_BYTE_NUM 1175 | 1 << BAD_BLOCK_IN_SPARE_AREA 1176 | 2 << WR_RD_BSY_GAP 1177 | 0 << WIDE_FLASH 1178 | 1 << DEV0_CFG1_ECC_DISABLE); 1179 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); 1180 1181 /* configure CMD1 and VLD for ONFI param probing */ 1182 nandc_set_reg(nandc, NAND_DEV_CMD_VLD, 1183 (nandc->vld & ~READ_START_VLD)); 1184 nandc_set_reg(nandc, NAND_DEV_CMD1, 1185 (nandc->cmd1 & ~(0xFF << READ_ADDR)) 1186 | NAND_CMD_PARAM << READ_ADDR); 1187 1188 nandc_set_reg(nandc, NAND_EXEC_CMD, 1); 1189 1190 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1); 1191 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); 1192 nandc_set_read_loc(nandc, 0, 0, 512, 1); 1193 1194 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); 1195 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); 1196 1197 nandc->buf_count = 512; 1198 memset(nandc->data_buffer, 0xff, nandc->buf_count); 1199 1200 config_nand_single_cw_page_read(nandc, false); 1201 1202 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, 1203 nandc->buf_count, 0); 1204 1205 /* restore CMD1 and VLD regs */ 1206 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); 1207 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); 1208 1209 return 0; 1210 } 1211 1212 /* sets up descriptors for NAND_CMD_ERASE1 */ 1213 static int erase_block(struct qcom_nand_host *host, int page_addr) 1214 { 1215 struct nand_chip *chip = &host->chip; 1216 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1217 1218 nandc_set_reg(nandc, NAND_FLASH_CMD, 1219 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE); 1220 nandc_set_reg(nandc, NAND_ADDR0, page_addr); 1221 nandc_set_reg(nandc, NAND_ADDR1, 0); 1222 nandc_set_reg(nandc, NAND_DEV0_CFG0, 1223 host->cfg0_raw & ~(7 << CW_PER_PAGE)); 1224 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw); 1225 nandc_set_reg(nandc, NAND_EXEC_CMD, 1); 1226 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); 1227 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); 1228 1229 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); 1230 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); 1231 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1232 1233 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1234 1235 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1236 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1237 1238 return 0; 1239 } 1240 1241 /* sets up descriptors for NAND_CMD_READID */ 1242 static int read_id(struct qcom_nand_host *host, int column) 1243 { 1244 struct nand_chip *chip = &host->chip; 1245 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1246 1247 if (column == -1) 1248 return 0; 1249 1250 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID); 1251 nandc_set_reg(nandc, NAND_ADDR0, column); 1252 nandc_set_reg(nandc, NAND_ADDR1, 0); 1253 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, 1254 nandc->props->is_bam ? 0 : DM_EN); 1255 nandc_set_reg(nandc, NAND_EXEC_CMD, 1); 1256 1257 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); 1258 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1259 1260 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); 1261 1262 return 0; 1263 } 1264 1265 /* sets up descriptors for NAND_CMD_RESET */ 1266 static int reset(struct qcom_nand_host *host) 1267 { 1268 struct nand_chip *chip = &host->chip; 1269 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1270 1271 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE); 1272 nandc_set_reg(nandc, NAND_EXEC_CMD, 1); 1273 1274 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1275 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1276 1277 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1278 1279 return 0; 1280 } 1281 1282 /* helpers to submit/free our list of dma descriptors */ 1283 static int submit_descs(struct qcom_nand_controller *nandc) 1284 { 1285 struct desc_info *desc; 1286 dma_cookie_t cookie = 0; 1287 struct bam_transaction *bam_txn = nandc->bam_txn; 1288 int r; 1289 1290 if (nandc->props->is_bam) { 1291 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { 1292 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); 1293 if (r) 1294 return r; 1295 } 1296 1297 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { 1298 r = prepare_bam_async_desc(nandc, nandc->tx_chan, 1299 DMA_PREP_INTERRUPT); 1300 if (r) 1301 return r; 1302 } 1303 1304 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { 1305 r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 1306 DMA_PREP_CMD); 1307 if (r) 1308 return r; 1309 } 1310 } 1311 1312 list_for_each_entry(desc, &nandc->desc_list, node) 1313 cookie = dmaengine_submit(desc->dma_desc); 1314 1315 if (nandc->props->is_bam) { 1316 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; 1317 bam_txn->last_cmd_desc->callback_param = bam_txn; 1318 if (bam_txn->last_data_desc) { 1319 bam_txn->last_data_desc->callback = qpic_bam_dma_done; 1320 bam_txn->last_data_desc->callback_param = bam_txn; 1321 bam_txn->wait_second_completion = true; 1322 } 1323 1324 dma_async_issue_pending(nandc->tx_chan); 1325 dma_async_issue_pending(nandc->rx_chan); 1326 dma_async_issue_pending(nandc->cmd_chan); 1327 1328 if (!wait_for_completion_timeout(&bam_txn->txn_done, 1329 QPIC_NAND_COMPLETION_TIMEOUT)) 1330 return -ETIMEDOUT; 1331 } else { 1332 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) 1333 return -ETIMEDOUT; 1334 } 1335 1336 return 0; 1337 } 1338 1339 static void free_descs(struct qcom_nand_controller *nandc) 1340 { 1341 struct desc_info *desc, *n; 1342 1343 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { 1344 list_del(&desc->node); 1345 1346 if (nandc->props->is_bam) 1347 dma_unmap_sg(nandc->dev, desc->bam_sgl, 1348 desc->sgl_cnt, desc->dir); 1349 else 1350 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, 1351 desc->dir); 1352 1353 kfree(desc); 1354 } 1355 } 1356 1357 /* reset the register read buffer for next NAND operation */ 1358 static void clear_read_regs(struct qcom_nand_controller *nandc) 1359 { 1360 nandc->reg_read_pos = 0; 1361 nandc_read_buffer_sync(nandc, false); 1362 } 1363 1364 static void pre_command(struct qcom_nand_host *host, int command) 1365 { 1366 struct nand_chip *chip = &host->chip; 1367 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1368 1369 nandc->buf_count = 0; 1370 nandc->buf_start = 0; 1371 host->use_ecc = false; 1372 host->last_command = command; 1373 1374 clear_read_regs(nandc); 1375 1376 if (command == NAND_CMD_RESET || command == NAND_CMD_READID || 1377 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) 1378 clear_bam_transaction(nandc); 1379 } 1380 1381 /* 1382 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our 1383 * privately maintained status byte, this status byte can be read after 1384 * NAND_CMD_STATUS is called 1385 */ 1386 static void parse_erase_write_errors(struct qcom_nand_host *host, int command) 1387 { 1388 struct nand_chip *chip = &host->chip; 1389 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1390 struct nand_ecc_ctrl *ecc = &chip->ecc; 1391 int num_cw; 1392 int i; 1393 1394 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; 1395 nandc_read_buffer_sync(nandc, true); 1396 1397 for (i = 0; i < num_cw; i++) { 1398 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); 1399 1400 if (flash_status & FS_MPU_ERR) 1401 host->status &= ~NAND_STATUS_WP; 1402 1403 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && 1404 (flash_status & 1405 FS_DEVICE_STS_ERR))) 1406 host->status |= NAND_STATUS_FAIL; 1407 } 1408 } 1409 1410 static void post_command(struct qcom_nand_host *host, int command) 1411 { 1412 struct nand_chip *chip = &host->chip; 1413 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1414 1415 switch (command) { 1416 case NAND_CMD_READID: 1417 nandc_read_buffer_sync(nandc, true); 1418 memcpy(nandc->data_buffer, nandc->reg_read_buf, 1419 nandc->buf_count); 1420 break; 1421 case NAND_CMD_PAGEPROG: 1422 case NAND_CMD_ERASE1: 1423 parse_erase_write_errors(host, command); 1424 break; 1425 default: 1426 break; 1427 } 1428 } 1429 1430 /* 1431 * Implements chip->legacy.cmdfunc. It's only used for a limited set of 1432 * commands. The rest of the commands wouldn't be called by upper layers. 1433 * For example, NAND_CMD_READOOB would never be called because we have our own 1434 * versions of read_oob ops for nand_ecc_ctrl. 1435 */ 1436 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command, 1437 int column, int page_addr) 1438 { 1439 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1440 struct nand_ecc_ctrl *ecc = &chip->ecc; 1441 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1442 bool wait = false; 1443 int ret = 0; 1444 1445 pre_command(host, command); 1446 1447 switch (command) { 1448 case NAND_CMD_RESET: 1449 ret = reset(host); 1450 wait = true; 1451 break; 1452 1453 case NAND_CMD_READID: 1454 nandc->buf_count = 4; 1455 ret = read_id(host, column); 1456 wait = true; 1457 break; 1458 1459 case NAND_CMD_PARAM: 1460 ret = nandc_param(host); 1461 wait = true; 1462 break; 1463 1464 case NAND_CMD_ERASE1: 1465 ret = erase_block(host, page_addr); 1466 wait = true; 1467 break; 1468 1469 case NAND_CMD_READ0: 1470 /* we read the entire page for now */ 1471 WARN_ON(column != 0); 1472 1473 host->use_ecc = true; 1474 set_address(host, 0, page_addr); 1475 update_rw_regs(host, ecc->steps, true); 1476 break; 1477 1478 case NAND_CMD_SEQIN: 1479 WARN_ON(column != 0); 1480 set_address(host, 0, page_addr); 1481 break; 1482 1483 case NAND_CMD_PAGEPROG: 1484 case NAND_CMD_STATUS: 1485 case NAND_CMD_NONE: 1486 default: 1487 break; 1488 } 1489 1490 if (ret) { 1491 dev_err(nandc->dev, "failure executing command %d\n", 1492 command); 1493 free_descs(nandc); 1494 return; 1495 } 1496 1497 if (wait) { 1498 ret = submit_descs(nandc); 1499 if (ret) 1500 dev_err(nandc->dev, 1501 "failure submitting descs for command %d\n", 1502 command); 1503 } 1504 1505 free_descs(nandc); 1506 1507 post_command(host, command); 1508 } 1509 1510 /* 1511 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read 1512 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. 1513 * 1514 * when using RS ECC, the HW reports the same erros when reading an erased CW, 1515 * but it notifies that it is an erased CW by placing special characters at 1516 * certain offsets in the buffer. 1517 * 1518 * verify if the page is erased or not, and fix up the page for RS ECC by 1519 * replacing the special characters with 0xff. 1520 */ 1521 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) 1522 { 1523 u8 empty1, empty2; 1524 1525 /* 1526 * an erased page flags an error in NAND_FLASH_STATUS, check if the page 1527 * is erased by looking for 0x54s at offsets 3 and 175 from the 1528 * beginning of each codeword 1529 */ 1530 1531 empty1 = data_buf[3]; 1532 empty2 = data_buf[175]; 1533 1534 /* 1535 * if the erased codework markers, if they exist override them with 1536 * 0xffs 1537 */ 1538 if ((empty1 == 0x54 && empty2 == 0xff) || 1539 (empty1 == 0xff && empty2 == 0x54)) { 1540 data_buf[3] = 0xff; 1541 data_buf[175] = 0xff; 1542 } 1543 1544 /* 1545 * check if the entire chunk contains 0xffs or not. if it doesn't, then 1546 * restore the original values at the special offsets 1547 */ 1548 if (memchr_inv(data_buf, 0xff, data_len)) { 1549 data_buf[3] = empty1; 1550 data_buf[175] = empty2; 1551 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 struct read_stats { 1559 __le32 flash; 1560 __le32 buffer; 1561 __le32 erased_cw; 1562 }; 1563 1564 /* reads back FLASH_STATUS register set by the controller */ 1565 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) 1566 { 1567 struct nand_chip *chip = &host->chip; 1568 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1569 int i; 1570 1571 for (i = 0; i < cw_cnt; i++) { 1572 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); 1573 1574 if (flash & (FS_OP_ERR | FS_MPU_ERR)) 1575 return -EIO; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* performs raw read for one codeword */ 1582 static int 1583 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, 1584 u8 *data_buf, u8 *oob_buf, int page, int cw) 1585 { 1586 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1587 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1588 struct nand_ecc_ctrl *ecc = &chip->ecc; 1589 int data_size1, data_size2, oob_size1, oob_size2; 1590 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; 1591 1592 nand_read_page_op(chip, page, 0, NULL, 0); 1593 host->use_ecc = false; 1594 1595 clear_bam_transaction(nandc); 1596 set_address(host, host->cw_size * cw, page); 1597 update_rw_regs(host, 1, true); 1598 config_nand_page_read(nandc); 1599 1600 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 1601 oob_size1 = host->bbm_size; 1602 1603 if (cw == (ecc->steps - 1)) { 1604 data_size2 = ecc->size - data_size1 - 1605 ((ecc->steps - 1) * 4); 1606 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + 1607 host->spare_bytes; 1608 } else { 1609 data_size2 = host->cw_data - data_size1; 1610 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 1611 } 1612 1613 if (nandc->props->is_bam) { 1614 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0); 1615 read_loc += data_size1; 1616 1617 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0); 1618 read_loc += oob_size1; 1619 1620 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0); 1621 read_loc += data_size2; 1622 1623 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1); 1624 } 1625 1626 config_nand_cw_read(nandc, false); 1627 1628 read_data_dma(nandc, reg_off, data_buf, data_size1, 0); 1629 reg_off += data_size1; 1630 1631 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); 1632 reg_off += oob_size1; 1633 1634 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); 1635 reg_off += data_size2; 1636 1637 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); 1638 1639 ret = submit_descs(nandc); 1640 free_descs(nandc); 1641 if (ret) { 1642 dev_err(nandc->dev, "failure to read raw cw %d\n", cw); 1643 return ret; 1644 } 1645 1646 return check_flash_errors(host, 1); 1647 } 1648 1649 /* 1650 * Bitflips can happen in erased codewords also so this function counts the 1651 * number of 0 in each CW for which ECC engine returns the uncorrectable 1652 * error. The page will be assumed as erased if this count is less than or 1653 * equal to the ecc->strength for each CW. 1654 * 1655 * 1. Both DATA and OOB need to be checked for number of 0. The 1656 * top-level API can be called with only data buf or OOB buf so use 1657 * chip->data_buf if data buf is null and chip->oob_poi if oob buf 1658 * is null for copying the raw bytes. 1659 * 2. Perform raw read for all the CW which has uncorrectable errors. 1660 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. 1661 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check 1662 * the number of bitflips in this area. 1663 */ 1664 static int 1665 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, 1666 u8 *oob_buf, unsigned long uncorrectable_cws, 1667 int page, unsigned int max_bitflips) 1668 { 1669 struct nand_chip *chip = &host->chip; 1670 struct mtd_info *mtd = nand_to_mtd(chip); 1671 struct nand_ecc_ctrl *ecc = &chip->ecc; 1672 u8 *cw_data_buf, *cw_oob_buf; 1673 int cw, data_size, oob_size, ret = 0; 1674 1675 if (!data_buf) 1676 data_buf = nand_get_data_buf(chip); 1677 1678 if (!oob_buf) { 1679 nand_get_data_buf(chip); 1680 oob_buf = chip->oob_poi; 1681 } 1682 1683 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { 1684 if (cw == (ecc->steps - 1)) { 1685 data_size = ecc->size - ((ecc->steps - 1) * 4); 1686 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; 1687 } else { 1688 data_size = host->cw_data; 1689 oob_size = host->ecc_bytes_hw; 1690 } 1691 1692 /* determine starting buffer address for current CW */ 1693 cw_data_buf = data_buf + (cw * host->cw_data); 1694 cw_oob_buf = oob_buf + (cw * ecc->bytes); 1695 1696 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, 1697 cw_oob_buf, page, cw); 1698 if (ret) 1699 return ret; 1700 1701 /* 1702 * make sure it isn't an erased page reported 1703 * as not-erased by HW because of a few bitflips 1704 */ 1705 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, 1706 cw_oob_buf + host->bbm_size, 1707 oob_size, NULL, 1708 0, ecc->strength); 1709 if (ret < 0) { 1710 mtd->ecc_stats.failed++; 1711 } else { 1712 mtd->ecc_stats.corrected += ret; 1713 max_bitflips = max_t(unsigned int, max_bitflips, ret); 1714 } 1715 } 1716 1717 return max_bitflips; 1718 } 1719 1720 /* 1721 * reads back status registers set by the controller to notify page read 1722 * errors. this is equivalent to what 'ecc->correct()' would do. 1723 */ 1724 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, 1725 u8 *oob_buf, int page) 1726 { 1727 struct nand_chip *chip = &host->chip; 1728 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1729 struct mtd_info *mtd = nand_to_mtd(chip); 1730 struct nand_ecc_ctrl *ecc = &chip->ecc; 1731 unsigned int max_bitflips = 0, uncorrectable_cws = 0; 1732 struct read_stats *buf; 1733 bool flash_op_err = false, erased; 1734 int i; 1735 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1736 1737 buf = (struct read_stats *)nandc->reg_read_buf; 1738 nandc_read_buffer_sync(nandc, true); 1739 1740 for (i = 0; i < ecc->steps; i++, buf++) { 1741 u32 flash, buffer, erased_cw; 1742 int data_len, oob_len; 1743 1744 if (i == (ecc->steps - 1)) { 1745 data_len = ecc->size - ((ecc->steps - 1) << 2); 1746 oob_len = ecc->steps << 2; 1747 } else { 1748 data_len = host->cw_data; 1749 oob_len = 0; 1750 } 1751 1752 flash = le32_to_cpu(buf->flash); 1753 buffer = le32_to_cpu(buf->buffer); 1754 erased_cw = le32_to_cpu(buf->erased_cw); 1755 1756 /* 1757 * Check ECC failure for each codeword. ECC failure can 1758 * happen in either of the following conditions 1759 * 1. If number of bitflips are greater than ECC engine 1760 * capability. 1761 * 2. If this codeword contains all 0xff for which erased 1762 * codeword detection check will be done. 1763 */ 1764 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { 1765 /* 1766 * For BCH ECC, ignore erased codeword errors, if 1767 * ERASED_CW bits are set. 1768 */ 1769 if (host->bch_enabled) { 1770 erased = (erased_cw & ERASED_CW) == ERASED_CW ? 1771 true : false; 1772 /* 1773 * For RS ECC, HW reports the erased CW by placing 1774 * special characters at certain offsets in the buffer. 1775 * These special characters will be valid only if 1776 * complete page is read i.e. data_buf is not NULL. 1777 */ 1778 } else if (data_buf) { 1779 erased = erased_chunk_check_and_fixup(data_buf, 1780 data_len); 1781 } else { 1782 erased = false; 1783 } 1784 1785 if (!erased) 1786 uncorrectable_cws |= BIT(i); 1787 /* 1788 * Check if MPU or any other operational error (timeout, 1789 * device failure, etc.) happened for this codeword and 1790 * make flash_op_err true. If flash_op_err is set, then 1791 * EIO will be returned for page read. 1792 */ 1793 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { 1794 flash_op_err = true; 1795 /* 1796 * No ECC or operational errors happened. Check the number of 1797 * bits corrected and update the ecc_stats.corrected. 1798 */ 1799 } else { 1800 unsigned int stat; 1801 1802 stat = buffer & BS_CORRECTABLE_ERR_MSK; 1803 mtd->ecc_stats.corrected += stat; 1804 max_bitflips = max(max_bitflips, stat); 1805 } 1806 1807 if (data_buf) 1808 data_buf += data_len; 1809 if (oob_buf) 1810 oob_buf += oob_len + ecc->bytes; 1811 } 1812 1813 if (flash_op_err) 1814 return -EIO; 1815 1816 if (!uncorrectable_cws) 1817 return max_bitflips; 1818 1819 return check_for_erased_page(host, data_buf_start, oob_buf_start, 1820 uncorrectable_cws, page, 1821 max_bitflips); 1822 } 1823 1824 /* 1825 * helper to perform the actual page read operation, used by ecc->read_page(), 1826 * ecc->read_oob() 1827 */ 1828 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, 1829 u8 *oob_buf, int page) 1830 { 1831 struct nand_chip *chip = &host->chip; 1832 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1833 struct nand_ecc_ctrl *ecc = &chip->ecc; 1834 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1835 int i, ret; 1836 1837 config_nand_page_read(nandc); 1838 1839 /* queue cmd descs for each codeword */ 1840 for (i = 0; i < ecc->steps; i++) { 1841 int data_size, oob_size; 1842 1843 if (i == (ecc->steps - 1)) { 1844 data_size = ecc->size - ((ecc->steps - 1) << 2); 1845 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 1846 host->spare_bytes; 1847 } else { 1848 data_size = host->cw_data; 1849 oob_size = host->ecc_bytes_hw + host->spare_bytes; 1850 } 1851 1852 if (nandc->props->is_bam) { 1853 if (data_buf && oob_buf) { 1854 nandc_set_read_loc(nandc, 0, 0, data_size, 0); 1855 nandc_set_read_loc(nandc, 1, data_size, 1856 oob_size, 1); 1857 } else if (data_buf) { 1858 nandc_set_read_loc(nandc, 0, 0, data_size, 1); 1859 } else { 1860 nandc_set_read_loc(nandc, 0, data_size, 1861 oob_size, 1); 1862 } 1863 } 1864 1865 config_nand_cw_read(nandc, true); 1866 1867 if (data_buf) 1868 read_data_dma(nandc, FLASH_BUF_ACC, data_buf, 1869 data_size, 0); 1870 1871 /* 1872 * when ecc is enabled, the controller doesn't read the real 1873 * or dummy bad block markers in each chunk. To maintain a 1874 * consistent layout across RAW and ECC reads, we just 1875 * leave the real/dummy BBM offsets empty (i.e, filled with 1876 * 0xffs) 1877 */ 1878 if (oob_buf) { 1879 int j; 1880 1881 for (j = 0; j < host->bbm_size; j++) 1882 *oob_buf++ = 0xff; 1883 1884 read_data_dma(nandc, FLASH_BUF_ACC + data_size, 1885 oob_buf, oob_size, 0); 1886 } 1887 1888 if (data_buf) 1889 data_buf += data_size; 1890 if (oob_buf) 1891 oob_buf += oob_size; 1892 } 1893 1894 ret = submit_descs(nandc); 1895 free_descs(nandc); 1896 1897 if (ret) { 1898 dev_err(nandc->dev, "failure to read page/oob\n"); 1899 return ret; 1900 } 1901 1902 return parse_read_errors(host, data_buf_start, oob_buf_start, page); 1903 } 1904 1905 /* 1906 * a helper that copies the last step/codeword of a page (containing free oob) 1907 * into our local buffer 1908 */ 1909 static int copy_last_cw(struct qcom_nand_host *host, int page) 1910 { 1911 struct nand_chip *chip = &host->chip; 1912 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1913 struct nand_ecc_ctrl *ecc = &chip->ecc; 1914 int size; 1915 int ret; 1916 1917 clear_read_regs(nandc); 1918 1919 size = host->use_ecc ? host->cw_data : host->cw_size; 1920 1921 /* prepare a clean read buffer */ 1922 memset(nandc->data_buffer, 0xff, size); 1923 1924 set_address(host, host->cw_size * (ecc->steps - 1), page); 1925 update_rw_regs(host, 1, true); 1926 1927 config_nand_single_cw_page_read(nandc, host->use_ecc); 1928 1929 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); 1930 1931 ret = submit_descs(nandc); 1932 if (ret) 1933 dev_err(nandc->dev, "failed to copy last codeword\n"); 1934 1935 free_descs(nandc); 1936 1937 return ret; 1938 } 1939 1940 /* implements ecc->read_page() */ 1941 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf, 1942 int oob_required, int page) 1943 { 1944 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1945 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1946 u8 *data_buf, *oob_buf = NULL; 1947 1948 nand_read_page_op(chip, page, 0, NULL, 0); 1949 data_buf = buf; 1950 oob_buf = oob_required ? chip->oob_poi : NULL; 1951 1952 clear_bam_transaction(nandc); 1953 1954 return read_page_ecc(host, data_buf, oob_buf, page); 1955 } 1956 1957 /* implements ecc->read_page_raw() */ 1958 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1959 int oob_required, int page) 1960 { 1961 struct mtd_info *mtd = nand_to_mtd(chip); 1962 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1963 struct nand_ecc_ctrl *ecc = &chip->ecc; 1964 int cw, ret; 1965 u8 *data_buf = buf, *oob_buf = chip->oob_poi; 1966 1967 for (cw = 0; cw < ecc->steps; cw++) { 1968 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, 1969 page, cw); 1970 if (ret) 1971 return ret; 1972 1973 data_buf += host->cw_data; 1974 oob_buf += ecc->bytes; 1975 } 1976 1977 return 0; 1978 } 1979 1980 /* implements ecc->read_oob() */ 1981 static int qcom_nandc_read_oob(struct nand_chip *chip, int page) 1982 { 1983 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1984 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1985 struct nand_ecc_ctrl *ecc = &chip->ecc; 1986 1987 clear_read_regs(nandc); 1988 clear_bam_transaction(nandc); 1989 1990 host->use_ecc = true; 1991 set_address(host, 0, page); 1992 update_rw_regs(host, ecc->steps, true); 1993 1994 return read_page_ecc(host, NULL, chip->oob_poi, page); 1995 } 1996 1997 /* implements ecc->write_page() */ 1998 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf, 1999 int oob_required, int page) 2000 { 2001 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2002 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2003 struct nand_ecc_ctrl *ecc = &chip->ecc; 2004 u8 *data_buf, *oob_buf; 2005 int i, ret; 2006 2007 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2008 2009 clear_read_regs(nandc); 2010 clear_bam_transaction(nandc); 2011 2012 data_buf = (u8 *)buf; 2013 oob_buf = chip->oob_poi; 2014 2015 host->use_ecc = true; 2016 update_rw_regs(host, ecc->steps, false); 2017 config_nand_page_write(nandc); 2018 2019 for (i = 0; i < ecc->steps; i++) { 2020 int data_size, oob_size; 2021 2022 if (i == (ecc->steps - 1)) { 2023 data_size = ecc->size - ((ecc->steps - 1) << 2); 2024 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 2025 host->spare_bytes; 2026 } else { 2027 data_size = host->cw_data; 2028 oob_size = ecc->bytes; 2029 } 2030 2031 2032 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, 2033 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); 2034 2035 /* 2036 * when ECC is enabled, we don't really need to write anything 2037 * to oob for the first n - 1 codewords since these oob regions 2038 * just contain ECC bytes that's written by the controller 2039 * itself. For the last codeword, we skip the bbm positions and 2040 * write to the free oob area. 2041 */ 2042 if (i == (ecc->steps - 1)) { 2043 oob_buf += host->bbm_size; 2044 2045 write_data_dma(nandc, FLASH_BUF_ACC + data_size, 2046 oob_buf, oob_size, 0); 2047 } 2048 2049 config_nand_cw_write(nandc); 2050 2051 data_buf += data_size; 2052 oob_buf += oob_size; 2053 } 2054 2055 ret = submit_descs(nandc); 2056 if (ret) 2057 dev_err(nandc->dev, "failure to write page\n"); 2058 2059 free_descs(nandc); 2060 2061 if (!ret) 2062 ret = nand_prog_page_end_op(chip); 2063 2064 return ret; 2065 } 2066 2067 /* implements ecc->write_page_raw() */ 2068 static int qcom_nandc_write_page_raw(struct nand_chip *chip, 2069 const uint8_t *buf, int oob_required, 2070 int page) 2071 { 2072 struct mtd_info *mtd = nand_to_mtd(chip); 2073 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2074 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2075 struct nand_ecc_ctrl *ecc = &chip->ecc; 2076 u8 *data_buf, *oob_buf; 2077 int i, ret; 2078 2079 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2080 clear_read_regs(nandc); 2081 clear_bam_transaction(nandc); 2082 2083 data_buf = (u8 *)buf; 2084 oob_buf = chip->oob_poi; 2085 2086 host->use_ecc = false; 2087 update_rw_regs(host, ecc->steps, false); 2088 config_nand_page_write(nandc); 2089 2090 for (i = 0; i < ecc->steps; i++) { 2091 int data_size1, data_size2, oob_size1, oob_size2; 2092 int reg_off = FLASH_BUF_ACC; 2093 2094 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 2095 oob_size1 = host->bbm_size; 2096 2097 if (i == (ecc->steps - 1)) { 2098 data_size2 = ecc->size - data_size1 - 2099 ((ecc->steps - 1) << 2); 2100 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + 2101 host->spare_bytes; 2102 } else { 2103 data_size2 = host->cw_data - data_size1; 2104 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 2105 } 2106 2107 write_data_dma(nandc, reg_off, data_buf, data_size1, 2108 NAND_BAM_NO_EOT); 2109 reg_off += data_size1; 2110 data_buf += data_size1; 2111 2112 write_data_dma(nandc, reg_off, oob_buf, oob_size1, 2113 NAND_BAM_NO_EOT); 2114 reg_off += oob_size1; 2115 oob_buf += oob_size1; 2116 2117 write_data_dma(nandc, reg_off, data_buf, data_size2, 2118 NAND_BAM_NO_EOT); 2119 reg_off += data_size2; 2120 data_buf += data_size2; 2121 2122 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); 2123 oob_buf += oob_size2; 2124 2125 config_nand_cw_write(nandc); 2126 } 2127 2128 ret = submit_descs(nandc); 2129 if (ret) 2130 dev_err(nandc->dev, "failure to write raw page\n"); 2131 2132 free_descs(nandc); 2133 2134 if (!ret) 2135 ret = nand_prog_page_end_op(chip); 2136 2137 return ret; 2138 } 2139 2140 /* 2141 * implements ecc->write_oob() 2142 * 2143 * the NAND controller cannot write only data or only OOB within a codeword 2144 * since ECC is calculated for the combined codeword. So update the OOB from 2145 * chip->oob_poi, and pad the data area with OxFF before writing. 2146 */ 2147 static int qcom_nandc_write_oob(struct nand_chip *chip, int page) 2148 { 2149 struct mtd_info *mtd = nand_to_mtd(chip); 2150 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2151 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2152 struct nand_ecc_ctrl *ecc = &chip->ecc; 2153 u8 *oob = chip->oob_poi; 2154 int data_size, oob_size; 2155 int ret; 2156 2157 host->use_ecc = true; 2158 clear_bam_transaction(nandc); 2159 2160 /* calculate the data and oob size for the last codeword/step */ 2161 data_size = ecc->size - ((ecc->steps - 1) << 2); 2162 oob_size = mtd->oobavail; 2163 2164 memset(nandc->data_buffer, 0xff, host->cw_data); 2165 /* override new oob content to last codeword */ 2166 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 2167 0, mtd->oobavail); 2168 2169 set_address(host, host->cw_size * (ecc->steps - 1), page); 2170 update_rw_regs(host, 1, false); 2171 2172 config_nand_page_write(nandc); 2173 write_data_dma(nandc, FLASH_BUF_ACC, 2174 nandc->data_buffer, data_size + oob_size, 0); 2175 config_nand_cw_write(nandc); 2176 2177 ret = submit_descs(nandc); 2178 2179 free_descs(nandc); 2180 2181 if (ret) { 2182 dev_err(nandc->dev, "failure to write oob\n"); 2183 return -EIO; 2184 } 2185 2186 return nand_prog_page_end_op(chip); 2187 } 2188 2189 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) 2190 { 2191 struct mtd_info *mtd = nand_to_mtd(chip); 2192 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2193 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2194 struct nand_ecc_ctrl *ecc = &chip->ecc; 2195 int page, ret, bbpos, bad = 0; 2196 2197 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2198 2199 /* 2200 * configure registers for a raw sub page read, the address is set to 2201 * the beginning of the last codeword, we don't care about reading ecc 2202 * portion of oob. we just want the first few bytes from this codeword 2203 * that contains the BBM 2204 */ 2205 host->use_ecc = false; 2206 2207 clear_bam_transaction(nandc); 2208 ret = copy_last_cw(host, page); 2209 if (ret) 2210 goto err; 2211 2212 if (check_flash_errors(host, 1)) { 2213 dev_warn(nandc->dev, "error when trying to read BBM\n"); 2214 goto err; 2215 } 2216 2217 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); 2218 2219 bad = nandc->data_buffer[bbpos] != 0xff; 2220 2221 if (chip->options & NAND_BUSWIDTH_16) 2222 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); 2223 err: 2224 return bad; 2225 } 2226 2227 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) 2228 { 2229 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2230 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2231 struct nand_ecc_ctrl *ecc = &chip->ecc; 2232 int page, ret; 2233 2234 clear_read_regs(nandc); 2235 clear_bam_transaction(nandc); 2236 2237 /* 2238 * to mark the BBM as bad, we flash the entire last codeword with 0s. 2239 * we don't care about the rest of the content in the codeword since 2240 * we aren't going to use this block again 2241 */ 2242 memset(nandc->data_buffer, 0x00, host->cw_size); 2243 2244 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2245 2246 /* prepare write */ 2247 host->use_ecc = false; 2248 set_address(host, host->cw_size * (ecc->steps - 1), page); 2249 update_rw_regs(host, 1, false); 2250 2251 config_nand_page_write(nandc); 2252 write_data_dma(nandc, FLASH_BUF_ACC, 2253 nandc->data_buffer, host->cw_size, 0); 2254 config_nand_cw_write(nandc); 2255 2256 ret = submit_descs(nandc); 2257 2258 free_descs(nandc); 2259 2260 if (ret) { 2261 dev_err(nandc->dev, "failure to update BBM\n"); 2262 return -EIO; 2263 } 2264 2265 return nand_prog_page_end_op(chip); 2266 } 2267 2268 /* 2269 * the three functions below implement chip->legacy.read_byte(), 2270 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these 2271 * aren't used for reading/writing page data, they are used for smaller data 2272 * like reading id, status etc 2273 */ 2274 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip) 2275 { 2276 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2277 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2278 u8 *buf = nandc->data_buffer; 2279 u8 ret = 0x0; 2280 2281 if (host->last_command == NAND_CMD_STATUS) { 2282 ret = host->status; 2283 2284 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2285 2286 return ret; 2287 } 2288 2289 if (nandc->buf_start < nandc->buf_count) 2290 ret = buf[nandc->buf_start++]; 2291 2292 return ret; 2293 } 2294 2295 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 2296 { 2297 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2298 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2299 2300 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); 2301 nandc->buf_start += real_len; 2302 } 2303 2304 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf, 2305 int len) 2306 { 2307 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2308 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2309 2310 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); 2311 2312 nandc->buf_start += real_len; 2313 } 2314 2315 /* we support only one external chip for now */ 2316 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr) 2317 { 2318 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2319 2320 if (chipnr <= 0) 2321 return; 2322 2323 dev_warn(nandc->dev, "invalid chip select\n"); 2324 } 2325 2326 /* 2327 * NAND controller page layout info 2328 * 2329 * Layout with ECC enabled: 2330 * 2331 * |----------------------| |---------------------------------| 2332 * | xx.......yy| | *********xx.......yy| 2333 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| 2334 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| 2335 * | xx.......yy| | *********xx.......yy| 2336 * |----------------------| |---------------------------------| 2337 * codeword 1,2..n-1 codeword n 2338 * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> 2339 * 2340 * n = Number of codewords in the page 2341 * . = ECC bytes 2342 * * = Spare/free bytes 2343 * x = Unused byte(s) 2344 * y = Reserved byte(s) 2345 * 2346 * 2K page: n = 4, spare = 16 bytes 2347 * 4K page: n = 8, spare = 32 bytes 2348 * 8K page: n = 16, spare = 64 bytes 2349 * 2350 * the qcom nand controller operates at a sub page/codeword level. each 2351 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. 2352 * the number of ECC bytes vary based on the ECC strength and the bus width. 2353 * 2354 * the first n - 1 codewords contains 516 bytes of user data, the remaining 2355 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains 2356 * both user data and spare(oobavail) bytes that sum up to 516 bytes. 2357 * 2358 * When we access a page with ECC enabled, the reserved bytes(s) are not 2359 * accessible at all. When reading, we fill up these unreadable positions 2360 * with 0xffs. When writing, the controller skips writing the inaccessible 2361 * bytes. 2362 * 2363 * Layout with ECC disabled: 2364 * 2365 * |------------------------------| |---------------------------------------| 2366 * | yy xx.......| | bb *********xx.......| 2367 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| 2368 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| 2369 * | yy xx.......| | bb *********xx.......| 2370 * |------------------------------| |---------------------------------------| 2371 * codeword 1,2..n-1 codeword n 2372 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> 2373 * 2374 * n = Number of codewords in the page 2375 * . = ECC bytes 2376 * * = Spare/free bytes 2377 * x = Unused byte(s) 2378 * y = Dummy Bad Bock byte(s) 2379 * b = Real Bad Block byte(s) 2380 * size1/size2 = function of codeword size and 'n' 2381 * 2382 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus 2383 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad 2384 * Block Markers. In the last codeword, this position contains the real BBM 2385 * 2386 * In order to have a consistent layout between RAW and ECC modes, we assume 2387 * the following OOB layout arrangement: 2388 * 2389 * |-----------| |--------------------| 2390 * |yyxx.......| |bb*********xx.......| 2391 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| 2392 * |yyxx.......| |bb*********xx.......| 2393 * |yyxx.......| |bb*********xx.......| 2394 * |-----------| |--------------------| 2395 * first n - 1 nth OOB region 2396 * OOB regions 2397 * 2398 * n = Number of codewords in the page 2399 * . = ECC bytes 2400 * * = FREE OOB bytes 2401 * y = Dummy bad block byte(s) (inaccessible when ECC enabled) 2402 * x = Unused byte(s) 2403 * b = Real bad block byte(s) (inaccessible when ECC enabled) 2404 * 2405 * This layout is read as is when ECC is disabled. When ECC is enabled, the 2406 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, 2407 * and assumed as 0xffs when we read a page/oob. The ECC, unused and 2408 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is 2409 * the sum of the three). 2410 */ 2411 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2412 struct mtd_oob_region *oobregion) 2413 { 2414 struct nand_chip *chip = mtd_to_nand(mtd); 2415 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2416 struct nand_ecc_ctrl *ecc = &chip->ecc; 2417 2418 if (section > 1) 2419 return -ERANGE; 2420 2421 if (!section) { 2422 oobregion->length = (ecc->bytes * (ecc->steps - 1)) + 2423 host->bbm_size; 2424 oobregion->offset = 0; 2425 } else { 2426 oobregion->length = host->ecc_bytes_hw + host->spare_bytes; 2427 oobregion->offset = mtd->oobsize - oobregion->length; 2428 } 2429 2430 return 0; 2431 } 2432 2433 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, 2434 struct mtd_oob_region *oobregion) 2435 { 2436 struct nand_chip *chip = mtd_to_nand(mtd); 2437 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2438 struct nand_ecc_ctrl *ecc = &chip->ecc; 2439 2440 if (section) 2441 return -ERANGE; 2442 2443 oobregion->length = ecc->steps * 4; 2444 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; 2445 2446 return 0; 2447 } 2448 2449 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { 2450 .ecc = qcom_nand_ooblayout_ecc, 2451 .free = qcom_nand_ooblayout_free, 2452 }; 2453 2454 static int 2455 qcom_nandc_calc_ecc_bytes(int step_size, int strength) 2456 { 2457 return strength == 4 ? 12 : 16; 2458 } 2459 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, 2460 NANDC_STEP_SIZE, 4, 8); 2461 2462 static int qcom_nand_attach_chip(struct nand_chip *chip) 2463 { 2464 struct mtd_info *mtd = nand_to_mtd(chip); 2465 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2466 struct nand_ecc_ctrl *ecc = &chip->ecc; 2467 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2468 int cwperpage, bad_block_byte, ret; 2469 bool wide_bus; 2470 int ecc_mode = 1; 2471 2472 /* controller only supports 512 bytes data steps */ 2473 ecc->size = NANDC_STEP_SIZE; 2474 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; 2475 cwperpage = mtd->writesize / NANDC_STEP_SIZE; 2476 2477 /* 2478 * Each CW has 4 available OOB bytes which will be protected with ECC 2479 * so remaining bytes can be used for ECC. 2480 */ 2481 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, 2482 mtd->oobsize - (cwperpage * 4)); 2483 if (ret) { 2484 dev_err(nandc->dev, "No valid ECC settings possible\n"); 2485 return ret; 2486 } 2487 2488 if (ecc->strength >= 8) { 2489 /* 8 bit ECC defaults to BCH ECC on all platforms */ 2490 host->bch_enabled = true; 2491 ecc_mode = 1; 2492 2493 if (wide_bus) { 2494 host->ecc_bytes_hw = 14; 2495 host->spare_bytes = 0; 2496 host->bbm_size = 2; 2497 } else { 2498 host->ecc_bytes_hw = 13; 2499 host->spare_bytes = 2; 2500 host->bbm_size = 1; 2501 } 2502 } else { 2503 /* 2504 * if the controller supports BCH for 4 bit ECC, the controller 2505 * uses lesser bytes for ECC. If RS is used, the ECC bytes is 2506 * always 10 bytes 2507 */ 2508 if (nandc->props->ecc_modes & ECC_BCH_4BIT) { 2509 /* BCH */ 2510 host->bch_enabled = true; 2511 ecc_mode = 0; 2512 2513 if (wide_bus) { 2514 host->ecc_bytes_hw = 8; 2515 host->spare_bytes = 2; 2516 host->bbm_size = 2; 2517 } else { 2518 host->ecc_bytes_hw = 7; 2519 host->spare_bytes = 4; 2520 host->bbm_size = 1; 2521 } 2522 } else { 2523 /* RS */ 2524 host->ecc_bytes_hw = 10; 2525 2526 if (wide_bus) { 2527 host->spare_bytes = 0; 2528 host->bbm_size = 2; 2529 } else { 2530 host->spare_bytes = 1; 2531 host->bbm_size = 1; 2532 } 2533 } 2534 } 2535 2536 /* 2537 * we consider ecc->bytes as the sum of all the non-data content in a 2538 * step. It gives us a clean representation of the oob area (even if 2539 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit 2540 * ECC and 12 bytes for 4 bit ECC 2541 */ 2542 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; 2543 2544 ecc->read_page = qcom_nandc_read_page; 2545 ecc->read_page_raw = qcom_nandc_read_page_raw; 2546 ecc->read_oob = qcom_nandc_read_oob; 2547 ecc->write_page = qcom_nandc_write_page; 2548 ecc->write_page_raw = qcom_nandc_write_page_raw; 2549 ecc->write_oob = qcom_nandc_write_oob; 2550 2551 ecc->mode = NAND_ECC_HW; 2552 2553 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); 2554 2555 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, 2556 cwperpage); 2557 2558 /* 2559 * DATA_UD_BYTES varies based on whether the read/write command protects 2560 * spare data with ECC too. We protect spare data by default, so we set 2561 * it to main + spare data, which are 512 and 4 bytes respectively. 2562 */ 2563 host->cw_data = 516; 2564 2565 /* 2566 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes 2567 * for 8 bit ECC 2568 */ 2569 host->cw_size = host->cw_data + ecc->bytes; 2570 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; 2571 2572 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE 2573 | host->cw_data << UD_SIZE_BYTES 2574 | 0 << DISABLE_STATUS_AFTER_WRITE 2575 | 5 << NUM_ADDR_CYCLES 2576 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS 2577 | 0 << STATUS_BFR_READ 2578 | 1 << SET_RD_MODE_AFTER_STATUS 2579 | host->spare_bytes << SPARE_SIZE_BYTES; 2580 2581 host->cfg1 = 7 << NAND_RECOVERY_CYCLES 2582 | 0 << CS_ACTIVE_BSY 2583 | bad_block_byte << BAD_BLOCK_BYTE_NUM 2584 | 0 << BAD_BLOCK_IN_SPARE_AREA 2585 | 2 << WR_RD_BSY_GAP 2586 | wide_bus << WIDE_FLASH 2587 | host->bch_enabled << ENABLE_BCH_ECC; 2588 2589 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE 2590 | host->cw_size << UD_SIZE_BYTES 2591 | 5 << NUM_ADDR_CYCLES 2592 | 0 << SPARE_SIZE_BYTES; 2593 2594 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES 2595 | 0 << CS_ACTIVE_BSY 2596 | 17 << BAD_BLOCK_BYTE_NUM 2597 | 1 << BAD_BLOCK_IN_SPARE_AREA 2598 | 2 << WR_RD_BSY_GAP 2599 | wide_bus << WIDE_FLASH 2600 | 1 << DEV0_CFG1_ECC_DISABLE; 2601 2602 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE 2603 | 0 << ECC_SW_RESET 2604 | host->cw_data << ECC_NUM_DATA_BYTES 2605 | 1 << ECC_FORCE_CLK_OPEN 2606 | ecc_mode << ECC_MODE 2607 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; 2608 2609 host->ecc_buf_cfg = 0x203 << NUM_STEPS; 2610 2611 host->clrflashstatus = FS_READY_BSY_N; 2612 host->clrreadstatus = 0xc0; 2613 nandc->regs->erased_cw_detect_cfg_clr = 2614 cpu_to_le32(CLR_ERASED_PAGE_DET); 2615 nandc->regs->erased_cw_detect_cfg_set = 2616 cpu_to_le32(SET_ERASED_PAGE_DET); 2617 2618 dev_dbg(nandc->dev, 2619 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", 2620 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, 2621 host->cw_size, host->cw_data, ecc->strength, ecc->bytes, 2622 cwperpage); 2623 2624 return 0; 2625 } 2626 2627 static const struct nand_controller_ops qcom_nandc_ops = { 2628 .attach_chip = qcom_nand_attach_chip, 2629 }; 2630 2631 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) 2632 { 2633 int ret; 2634 2635 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); 2636 if (ret) { 2637 dev_err(nandc->dev, "failed to set DMA mask\n"); 2638 return ret; 2639 } 2640 2641 /* 2642 * we use the internal buffer for reading ONFI params, reading small 2643 * data like ID and status, and preforming read-copy-write operations 2644 * when writing to a codeword partially. 532 is the maximum possible 2645 * size of a codeword for our nand controller 2646 */ 2647 nandc->buf_size = 532; 2648 2649 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, 2650 GFP_KERNEL); 2651 if (!nandc->data_buffer) 2652 return -ENOMEM; 2653 2654 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), 2655 GFP_KERNEL); 2656 if (!nandc->regs) 2657 return -ENOMEM; 2658 2659 nandc->reg_read_buf = devm_kcalloc(nandc->dev, 2660 MAX_REG_RD, sizeof(*nandc->reg_read_buf), 2661 GFP_KERNEL); 2662 if (!nandc->reg_read_buf) 2663 return -ENOMEM; 2664 2665 if (nandc->props->is_bam) { 2666 nandc->reg_read_dma = 2667 dma_map_single(nandc->dev, nandc->reg_read_buf, 2668 MAX_REG_RD * 2669 sizeof(*nandc->reg_read_buf), 2670 DMA_FROM_DEVICE); 2671 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { 2672 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); 2673 return -EIO; 2674 } 2675 2676 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx"); 2677 if (!nandc->tx_chan) { 2678 dev_err(nandc->dev, "failed to request tx channel\n"); 2679 return -ENODEV; 2680 } 2681 2682 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx"); 2683 if (!nandc->rx_chan) { 2684 dev_err(nandc->dev, "failed to request rx channel\n"); 2685 return -ENODEV; 2686 } 2687 2688 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd"); 2689 if (!nandc->cmd_chan) { 2690 dev_err(nandc->dev, "failed to request cmd channel\n"); 2691 return -ENODEV; 2692 } 2693 2694 /* 2695 * Initially allocate BAM transaction to read ONFI param page. 2696 * After detecting all the devices, this BAM transaction will 2697 * be freed and the next BAM tranasction will be allocated with 2698 * maximum codeword size 2699 */ 2700 nandc->max_cwperpage = 1; 2701 nandc->bam_txn = alloc_bam_transaction(nandc); 2702 if (!nandc->bam_txn) { 2703 dev_err(nandc->dev, 2704 "failed to allocate bam transaction\n"); 2705 return -ENOMEM; 2706 } 2707 } else { 2708 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx"); 2709 if (!nandc->chan) { 2710 dev_err(nandc->dev, 2711 "failed to request slave channel\n"); 2712 return -ENODEV; 2713 } 2714 } 2715 2716 INIT_LIST_HEAD(&nandc->desc_list); 2717 INIT_LIST_HEAD(&nandc->host_list); 2718 2719 nand_controller_init(&nandc->controller); 2720 nandc->controller.ops = &qcom_nandc_ops; 2721 2722 return 0; 2723 } 2724 2725 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) 2726 { 2727 if (nandc->props->is_bam) { 2728 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) 2729 dma_unmap_single(nandc->dev, nandc->reg_read_dma, 2730 MAX_REG_RD * 2731 sizeof(*nandc->reg_read_buf), 2732 DMA_FROM_DEVICE); 2733 2734 if (nandc->tx_chan) 2735 dma_release_channel(nandc->tx_chan); 2736 2737 if (nandc->rx_chan) 2738 dma_release_channel(nandc->rx_chan); 2739 2740 if (nandc->cmd_chan) 2741 dma_release_channel(nandc->cmd_chan); 2742 } else { 2743 if (nandc->chan) 2744 dma_release_channel(nandc->chan); 2745 } 2746 } 2747 2748 /* one time setup of a few nand controller registers */ 2749 static int qcom_nandc_setup(struct qcom_nand_controller *nandc) 2750 { 2751 u32 nand_ctrl; 2752 2753 /* kill onenand */ 2754 nandc_write(nandc, SFLASHC_BURST_CFG, 0); 2755 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), 2756 NAND_DEV_CMD_VLD_VAL); 2757 2758 /* enable ADM or BAM DMA */ 2759 if (nandc->props->is_bam) { 2760 nand_ctrl = nandc_read(nandc, NAND_CTRL); 2761 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); 2762 } else { 2763 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); 2764 } 2765 2766 /* save the original values of these registers */ 2767 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); 2768 nandc->vld = NAND_DEV_CMD_VLD_VAL; 2769 2770 return 0; 2771 } 2772 2773 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, 2774 struct qcom_nand_host *host, 2775 struct device_node *dn) 2776 { 2777 struct nand_chip *chip = &host->chip; 2778 struct mtd_info *mtd = nand_to_mtd(chip); 2779 struct device *dev = nandc->dev; 2780 int ret; 2781 2782 ret = of_property_read_u32(dn, "reg", &host->cs); 2783 if (ret) { 2784 dev_err(dev, "can't get chip-select\n"); 2785 return -ENXIO; 2786 } 2787 2788 nand_set_flash_node(chip, dn); 2789 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); 2790 if (!mtd->name) 2791 return -ENOMEM; 2792 2793 mtd->owner = THIS_MODULE; 2794 mtd->dev.parent = dev; 2795 2796 chip->legacy.cmdfunc = qcom_nandc_command; 2797 chip->legacy.select_chip = qcom_nandc_select_chip; 2798 chip->legacy.read_byte = qcom_nandc_read_byte; 2799 chip->legacy.read_buf = qcom_nandc_read_buf; 2800 chip->legacy.write_buf = qcom_nandc_write_buf; 2801 chip->legacy.set_features = nand_get_set_features_notsupp; 2802 chip->legacy.get_features = nand_get_set_features_notsupp; 2803 2804 /* 2805 * the bad block marker is readable only when we read the last codeword 2806 * of a page with ECC disabled. currently, the nand_base and nand_bbt 2807 * helpers don't allow us to read BB from a nand chip with ECC 2808 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad 2809 * and block_markbad helpers until we permanently switch to using 2810 * MTD_OPS_RAW for all drivers (with the help of badblockbits) 2811 */ 2812 chip->legacy.block_bad = qcom_nandc_block_bad; 2813 chip->legacy.block_markbad = qcom_nandc_block_markbad; 2814 2815 chip->controller = &nandc->controller; 2816 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER | 2817 NAND_SKIP_BBTSCAN; 2818 2819 /* set up initial status value */ 2820 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2821 2822 ret = nand_scan(chip, 1); 2823 if (ret) 2824 return ret; 2825 2826 if (nandc->props->is_bam) { 2827 free_bam_transaction(nandc); 2828 nandc->bam_txn = alloc_bam_transaction(nandc); 2829 if (!nandc->bam_txn) { 2830 dev_err(nandc->dev, 2831 "failed to allocate bam transaction\n"); 2832 return -ENOMEM; 2833 } 2834 } 2835 2836 ret = mtd_device_register(mtd, NULL, 0); 2837 if (ret) 2838 nand_cleanup(chip); 2839 2840 return ret; 2841 } 2842 2843 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) 2844 { 2845 struct device *dev = nandc->dev; 2846 struct device_node *dn = dev->of_node, *child; 2847 struct qcom_nand_host *host; 2848 int ret; 2849 2850 for_each_available_child_of_node(dn, child) { 2851 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 2852 if (!host) { 2853 of_node_put(child); 2854 return -ENOMEM; 2855 } 2856 2857 ret = qcom_nand_host_init_and_register(nandc, host, child); 2858 if (ret) { 2859 devm_kfree(dev, host); 2860 continue; 2861 } 2862 2863 list_add_tail(&host->node, &nandc->host_list); 2864 } 2865 2866 if (list_empty(&nandc->host_list)) 2867 return -ENODEV; 2868 2869 return 0; 2870 } 2871 2872 /* parse custom DT properties here */ 2873 static int qcom_nandc_parse_dt(struct platform_device *pdev) 2874 { 2875 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 2876 struct device_node *np = nandc->dev->of_node; 2877 int ret; 2878 2879 if (!nandc->props->is_bam) { 2880 ret = of_property_read_u32(np, "qcom,cmd-crci", 2881 &nandc->cmd_crci); 2882 if (ret) { 2883 dev_err(nandc->dev, "command CRCI unspecified\n"); 2884 return ret; 2885 } 2886 2887 ret = of_property_read_u32(np, "qcom,data-crci", 2888 &nandc->data_crci); 2889 if (ret) { 2890 dev_err(nandc->dev, "data CRCI unspecified\n"); 2891 return ret; 2892 } 2893 } 2894 2895 return 0; 2896 } 2897 2898 static int qcom_nandc_probe(struct platform_device *pdev) 2899 { 2900 struct qcom_nand_controller *nandc; 2901 const void *dev_data; 2902 struct device *dev = &pdev->dev; 2903 struct resource *res; 2904 int ret; 2905 2906 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); 2907 if (!nandc) 2908 return -ENOMEM; 2909 2910 platform_set_drvdata(pdev, nandc); 2911 nandc->dev = dev; 2912 2913 dev_data = of_device_get_match_data(dev); 2914 if (!dev_data) { 2915 dev_err(&pdev->dev, "failed to get device data\n"); 2916 return -ENODEV; 2917 } 2918 2919 nandc->props = dev_data; 2920 2921 nandc->core_clk = devm_clk_get(dev, "core"); 2922 if (IS_ERR(nandc->core_clk)) 2923 return PTR_ERR(nandc->core_clk); 2924 2925 nandc->aon_clk = devm_clk_get(dev, "aon"); 2926 if (IS_ERR(nandc->aon_clk)) 2927 return PTR_ERR(nandc->aon_clk); 2928 2929 ret = qcom_nandc_parse_dt(pdev); 2930 if (ret) 2931 return ret; 2932 2933 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2934 nandc->base = devm_ioremap_resource(dev, res); 2935 if (IS_ERR(nandc->base)) 2936 return PTR_ERR(nandc->base); 2937 2938 nandc->base_phys = res->start; 2939 nandc->base_dma = dma_map_resource(dev, res->start, 2940 resource_size(res), 2941 DMA_BIDIRECTIONAL, 0); 2942 if (!nandc->base_dma) 2943 return -ENXIO; 2944 2945 ret = qcom_nandc_alloc(nandc); 2946 if (ret) 2947 goto err_nandc_alloc; 2948 2949 ret = clk_prepare_enable(nandc->core_clk); 2950 if (ret) 2951 goto err_core_clk; 2952 2953 ret = clk_prepare_enable(nandc->aon_clk); 2954 if (ret) 2955 goto err_aon_clk; 2956 2957 ret = qcom_nandc_setup(nandc); 2958 if (ret) 2959 goto err_setup; 2960 2961 ret = qcom_probe_nand_devices(nandc); 2962 if (ret) 2963 goto err_setup; 2964 2965 return 0; 2966 2967 err_setup: 2968 clk_disable_unprepare(nandc->aon_clk); 2969 err_aon_clk: 2970 clk_disable_unprepare(nandc->core_clk); 2971 err_core_clk: 2972 qcom_nandc_unalloc(nandc); 2973 err_nandc_alloc: 2974 dma_unmap_resource(dev, res->start, resource_size(res), 2975 DMA_BIDIRECTIONAL, 0); 2976 2977 return ret; 2978 } 2979 2980 static int qcom_nandc_remove(struct platform_device *pdev) 2981 { 2982 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 2983 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2984 struct qcom_nand_host *host; 2985 2986 list_for_each_entry(host, &nandc->host_list, node) 2987 nand_release(&host->chip); 2988 2989 2990 qcom_nandc_unalloc(nandc); 2991 2992 clk_disable_unprepare(nandc->aon_clk); 2993 clk_disable_unprepare(nandc->core_clk); 2994 2995 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), 2996 DMA_BIDIRECTIONAL, 0); 2997 2998 return 0; 2999 } 3000 3001 static const struct qcom_nandc_props ipq806x_nandc_props = { 3002 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), 3003 .is_bam = false, 3004 .dev_cmd_reg_start = 0x0, 3005 }; 3006 3007 static const struct qcom_nandc_props ipq4019_nandc_props = { 3008 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3009 .is_bam = true, 3010 .dev_cmd_reg_start = 0x0, 3011 }; 3012 3013 static const struct qcom_nandc_props ipq8074_nandc_props = { 3014 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3015 .is_bam = true, 3016 .dev_cmd_reg_start = 0x7000, 3017 }; 3018 3019 /* 3020 * data will hold a struct pointer containing more differences once we support 3021 * more controller variants 3022 */ 3023 static const struct of_device_id qcom_nandc_of_match[] = { 3024 { 3025 .compatible = "qcom,ipq806x-nand", 3026 .data = &ipq806x_nandc_props, 3027 }, 3028 { 3029 .compatible = "qcom,ipq4019-nand", 3030 .data = &ipq4019_nandc_props, 3031 }, 3032 { 3033 .compatible = "qcom,ipq8074-nand", 3034 .data = &ipq8074_nandc_props, 3035 }, 3036 {} 3037 }; 3038 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); 3039 3040 static struct platform_driver qcom_nandc_driver = { 3041 .driver = { 3042 .name = "qcom-nandc", 3043 .of_match_table = qcom_nandc_of_match, 3044 }, 3045 .probe = qcom_nandc_probe, 3046 .remove = qcom_nandc_remove, 3047 }; 3048 module_platform_driver(qcom_nandc_driver); 3049 3050 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); 3051 MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); 3052 MODULE_LICENSE("GPL v2"); 3053