xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
26 
27 /* NANDc reg offsets */
28 #define	NAND_FLASH_CMD			0x00
29 #define	NAND_ADDR0			0x04
30 #define	NAND_ADDR1			0x08
31 #define	NAND_FLASH_CHIP_SELECT		0x0c
32 #define	NAND_EXEC_CMD			0x10
33 #define	NAND_FLASH_STATUS		0x14
34 #define	NAND_BUFFER_STATUS		0x18
35 #define	NAND_DEV0_CFG0			0x20
36 #define	NAND_DEV0_CFG1			0x24
37 #define	NAND_DEV0_ECC_CFG		0x28
38 #define	NAND_DEV1_ECC_CFG		0x2c
39 #define	NAND_DEV1_CFG0			0x30
40 #define	NAND_DEV1_CFG1			0x34
41 #define	NAND_READ_ID			0x40
42 #define	NAND_READ_STATUS		0x44
43 #define	NAND_DEV_CMD0			0xa0
44 #define	NAND_DEV_CMD1			0xa4
45 #define	NAND_DEV_CMD2			0xa8
46 #define	NAND_DEV_CMD_VLD		0xac
47 #define	SFLASHC_BURST_CFG		0xe0
48 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
49 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
50 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
51 #define	FLASH_BUF_ACC			0x100
52 
53 #define	NAND_CTRL			0xf00
54 #define	NAND_VERSION			0xf08
55 #define	NAND_READ_LOCATION_0		0xf20
56 #define	NAND_READ_LOCATION_1		0xf24
57 #define	NAND_READ_LOCATION_2		0xf28
58 #define	NAND_READ_LOCATION_3		0xf2c
59 
60 /* dummy register offsets, used by write_reg_dma */
61 #define	NAND_DEV_CMD1_RESTORE		0xdead
62 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
63 
64 /* NAND_FLASH_CMD bits */
65 #define	PAGE_ACC			BIT(4)
66 #define	LAST_PAGE			BIT(5)
67 
68 /* NAND_FLASH_CHIP_SELECT bits */
69 #define	NAND_DEV_SEL			0
70 #define	DM_EN				BIT(2)
71 
72 /* NAND_FLASH_STATUS bits */
73 #define	FS_OP_ERR			BIT(4)
74 #define	FS_READY_BSY_N			BIT(5)
75 #define	FS_MPU_ERR			BIT(8)
76 #define	FS_DEVICE_STS_ERR		BIT(16)
77 #define	FS_DEVICE_WP			BIT(23)
78 
79 /* NAND_BUFFER_STATUS bits */
80 #define	BS_UNCORRECTABLE_BIT		BIT(8)
81 #define	BS_CORRECTABLE_ERR_MSK		0x1f
82 
83 /* NAND_DEVn_CFG0 bits */
84 #define	DISABLE_STATUS_AFTER_WRITE	4
85 #define	CW_PER_PAGE			6
86 #define	UD_SIZE_BYTES			9
87 #define	ECC_PARITY_SIZE_BYTES_RS	19
88 #define	SPARE_SIZE_BYTES		23
89 #define	NUM_ADDR_CYCLES			27
90 #define	STATUS_BFR_READ			30
91 #define	SET_RD_MODE_AFTER_STATUS	31
92 
93 /* NAND_DEVn_CFG0 bits */
94 #define	DEV0_CFG1_ECC_DISABLE		0
95 #define	WIDE_FLASH			1
96 #define	NAND_RECOVERY_CYCLES		2
97 #define	CS_ACTIVE_BSY			5
98 #define	BAD_BLOCK_BYTE_NUM		6
99 #define	BAD_BLOCK_IN_SPARE_AREA		16
100 #define	WR_RD_BSY_GAP			17
101 #define	ENABLE_BCH_ECC			27
102 
103 /* NAND_DEV0_ECC_CFG bits */
104 #define	ECC_CFG_ECC_DISABLE		0
105 #define	ECC_SW_RESET			1
106 #define	ECC_MODE			4
107 #define	ECC_PARITY_SIZE_BYTES_BCH	8
108 #define	ECC_NUM_DATA_BYTES		16
109 #define	ECC_FORCE_CLK_OPEN		30
110 
111 /* NAND_DEV_CMD1 bits */
112 #define	READ_ADDR			0
113 
114 /* NAND_DEV_CMD_VLD bits */
115 #define	READ_START_VLD			BIT(0)
116 #define	READ_STOP_VLD			BIT(1)
117 #define	WRITE_START_VLD			BIT(2)
118 #define	ERASE_START_VLD			BIT(3)
119 #define	SEQ_READ_START_VLD		BIT(4)
120 
121 /* NAND_EBI2_ECC_BUF_CFG bits */
122 #define	NUM_STEPS			0
123 
124 /* NAND_ERASED_CW_DETECT_CFG bits */
125 #define	ERASED_CW_ECC_MASK		1
126 #define	AUTO_DETECT_RES			0
127 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
128 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
129 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
130 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
131 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
132 
133 /* NAND_ERASED_CW_DETECT_STATUS bits */
134 #define	PAGE_ALL_ERASED			BIT(7)
135 #define	CODEWORD_ALL_ERASED		BIT(6)
136 #define	PAGE_ERASED			BIT(5)
137 #define	CODEWORD_ERASED			BIT(4)
138 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
139 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
140 
141 /* NAND_READ_LOCATION_n bits */
142 #define READ_LOCATION_OFFSET		0
143 #define READ_LOCATION_SIZE		16
144 #define READ_LOCATION_LAST		31
145 
146 /* Version Mask */
147 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
148 #define	NAND_VERSION_MAJOR_SHIFT	28
149 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
150 #define	NAND_VERSION_MINOR_SHIFT	16
151 
152 /* NAND OP_CMDs */
153 #define	OP_PAGE_READ			0x2
154 #define	OP_PAGE_READ_WITH_ECC		0x3
155 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
156 #define	OP_PROGRAM_PAGE			0x6
157 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
158 #define	OP_PROGRAM_PAGE_SPARE		0x9
159 #define	OP_BLOCK_ERASE			0xa
160 #define	OP_FETCH_ID			0xb
161 #define	OP_RESET_DEVICE			0xd
162 
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
165 					 ERASE_START_VLD | SEQ_READ_START_VLD)
166 
167 /* NAND_CTRL bits */
168 #define	BAM_MODE_EN			BIT(0)
169 
170 /*
171  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172  * the driver calls the chunks 'step' or 'codeword' interchangeably
173  */
174 #define	NANDC_STEP_SIZE			512
175 
176 /*
177  * the largest page size we support is 8K, this will have 16 steps/codewords
178  * of 512 bytes each
179  */
180 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
181 
182 /* we read at most 3 registers per codeword scan */
183 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
184 
185 /* ECC modes supported by the controller */
186 #define	ECC_NONE	BIT(0)
187 #define	ECC_RS_4BIT	BIT(1)
188 #define	ECC_BCH_4BIT	BIT(2)
189 #define	ECC_BCH_8BIT	BIT(3)
190 
191 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
192 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
193 	      ((offset) << READ_LOCATION_OFFSET) |		\
194 	      ((size) << READ_LOCATION_SIZE) |			\
195 	      ((is_last) << READ_LOCATION_LAST))
196 
197 /*
198  * Returns the actual register address for all NAND_DEV_ registers
199  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
200  */
201 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
202 
203 /* Returns the NAND register physical address */
204 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
205 
206 /* Returns the dma address for reg read buffer */
207 #define reg_buf_dma_addr(chip, vaddr) \
208 	((chip)->reg_read_dma + \
209 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
210 
211 #define QPIC_PER_CW_CMD_ELEMENTS	32
212 #define QPIC_PER_CW_CMD_SGL		32
213 #define QPIC_PER_CW_DATA_SGL		8
214 
215 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
216 
217 /*
218  * Flags used in DMA descriptor preparation helper functions
219  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
220  */
221 /* Don't set the EOT in current tx BAM sgl */
222 #define NAND_BAM_NO_EOT			BIT(0)
223 /* Set the NWD flag in current BAM sgl */
224 #define NAND_BAM_NWD			BIT(1)
225 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
226 #define NAND_BAM_NEXT_SGL		BIT(2)
227 /*
228  * Erased codeword status is being used two times in single transfer so this
229  * flag will determine the current value of erased codeword status register
230  */
231 #define NAND_ERASED_CW_SET		BIT(4)
232 
233 /*
234  * This data type corresponds to the BAM transaction which will be used for all
235  * NAND transfers.
236  * @bam_ce - the array of BAM command elements
237  * @cmd_sgl - sgl for NAND BAM command pipe
238  * @data_sgl - sgl for NAND BAM consumer/producer pipe
239  * @bam_ce_pos - the index in bam_ce which is available for next sgl
240  * @bam_ce_start - the index in bam_ce which marks the start position ce
241  *		   for current sgl. It will be used for size calculation
242  *		   for current sgl
243  * @cmd_sgl_pos - current index in command sgl.
244  * @cmd_sgl_start - start index in command sgl.
245  * @tx_sgl_pos - current index in data sgl for tx.
246  * @tx_sgl_start - start index in data sgl for tx.
247  * @rx_sgl_pos - current index in data sgl for rx.
248  * @rx_sgl_start - start index in data sgl for rx.
249  * @wait_second_completion - wait for second DMA desc completion before making
250  *			     the NAND transfer completion.
251  * @txn_done - completion for NAND transfer.
252  * @last_data_desc - last DMA desc in data channel (tx/rx).
253  * @last_cmd_desc - last DMA desc in command channel.
254  */
255 struct bam_transaction {
256 	struct bam_cmd_element *bam_ce;
257 	struct scatterlist *cmd_sgl;
258 	struct scatterlist *data_sgl;
259 	u32 bam_ce_pos;
260 	u32 bam_ce_start;
261 	u32 cmd_sgl_pos;
262 	u32 cmd_sgl_start;
263 	u32 tx_sgl_pos;
264 	u32 tx_sgl_start;
265 	u32 rx_sgl_pos;
266 	u32 rx_sgl_start;
267 	bool wait_second_completion;
268 	struct completion txn_done;
269 	struct dma_async_tx_descriptor *last_data_desc;
270 	struct dma_async_tx_descriptor *last_cmd_desc;
271 };
272 
273 /*
274  * This data type corresponds to the nand dma descriptor
275  * @list - list for desc_info
276  * @dir - DMA transfer direction
277  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
278  *	      ADM
279  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
280  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
281  * @dma_desc - low level DMA engine descriptor
282  */
283 struct desc_info {
284 	struct list_head node;
285 
286 	enum dma_data_direction dir;
287 	union {
288 		struct scatterlist adm_sgl;
289 		struct {
290 			struct scatterlist *bam_sgl;
291 			int sgl_cnt;
292 		};
293 	};
294 	struct dma_async_tx_descriptor *dma_desc;
295 };
296 
297 /*
298  * holds the current register values that we want to write. acts as a contiguous
299  * chunk of memory which we use to write the controller registers through DMA.
300  */
301 struct nandc_regs {
302 	__le32 cmd;
303 	__le32 addr0;
304 	__le32 addr1;
305 	__le32 chip_sel;
306 	__le32 exec;
307 
308 	__le32 cfg0;
309 	__le32 cfg1;
310 	__le32 ecc_bch_cfg;
311 
312 	__le32 clrflashstatus;
313 	__le32 clrreadstatus;
314 
315 	__le32 cmd1;
316 	__le32 vld;
317 
318 	__le32 orig_cmd1;
319 	__le32 orig_vld;
320 
321 	__le32 ecc_buf_cfg;
322 	__le32 read_location0;
323 	__le32 read_location1;
324 	__le32 read_location2;
325 	__le32 read_location3;
326 
327 	__le32 erased_cw_detect_cfg_clr;
328 	__le32 erased_cw_detect_cfg_set;
329 };
330 
331 /*
332  * NAND controller data struct
333  *
334  * @controller:			base controller structure
335  * @host_list:			list containing all the chips attached to the
336  *				controller
337  * @dev:			parent device
338  * @base:			MMIO base
339  * @base_phys:			physical base address of controller registers
340  * @base_dma:			dma base address of controller registers
341  * @core_clk:			controller clock
342  * @aon_clk:			another controller clock
343  *
344  * @chan:			dma channel
345  * @cmd_crci:			ADM DMA CRCI for command flow control
346  * @data_crci:			ADM DMA CRCI for data flow control
347  * @desc_list:			DMA descriptor list (list of desc_infos)
348  *
349  * @data_buffer:		our local DMA buffer for page read/writes,
350  *				used when we can't use the buffer provided
351  *				by upper layers directly
352  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
353  *				functions
354  * @reg_read_buf:		local buffer for reading back registers via DMA
355  * @reg_read_dma:		contains dma address for register read buffer
356  * @reg_read_pos:		marker for data read in reg_read_buf
357  *
358  * @regs:			a contiguous chunk of memory for DMA register
359  *				writes. contains the register values to be
360  *				written to controller
361  * @cmd1/vld:			some fixed controller register values
362  * @props:			properties of current NAND controller,
363  *				initialized via DT match data
364  * @max_cwperpage:		maximum QPIC codewords required. calculated
365  *				from all connected NAND devices pagesize
366  */
367 struct qcom_nand_controller {
368 	struct nand_controller controller;
369 	struct list_head host_list;
370 
371 	struct device *dev;
372 
373 	void __iomem *base;
374 	phys_addr_t base_phys;
375 	dma_addr_t base_dma;
376 
377 	struct clk *core_clk;
378 	struct clk *aon_clk;
379 
380 	union {
381 		/* will be used only by QPIC for BAM DMA */
382 		struct {
383 			struct dma_chan *tx_chan;
384 			struct dma_chan *rx_chan;
385 			struct dma_chan *cmd_chan;
386 		};
387 
388 		/* will be used only by EBI2 for ADM DMA */
389 		struct {
390 			struct dma_chan *chan;
391 			unsigned int cmd_crci;
392 			unsigned int data_crci;
393 		};
394 	};
395 
396 	struct list_head desc_list;
397 	struct bam_transaction *bam_txn;
398 
399 	u8		*data_buffer;
400 	int		buf_size;
401 	int		buf_count;
402 	int		buf_start;
403 	unsigned int	max_cwperpage;
404 
405 	__le32 *reg_read_buf;
406 	dma_addr_t reg_read_dma;
407 	int reg_read_pos;
408 
409 	struct nandc_regs *regs;
410 
411 	u32 cmd1, vld;
412 	const struct qcom_nandc_props *props;
413 };
414 
415 /*
416  * NAND chip structure
417  *
418  * @chip:			base NAND chip structure
419  * @node:			list node to add itself to host_list in
420  *				qcom_nand_controller
421  *
422  * @cs:				chip select value for this chip
423  * @cw_size:			the number of bytes in a single step/codeword
424  *				of a page, consisting of all data, ecc, spare
425  *				and reserved bytes
426  * @cw_data:			the number of bytes within a codeword protected
427  *				by ECC
428  * @use_ecc:			request the controller to use ECC for the
429  *				upcoming read/write
430  * @bch_enabled:		flag to tell whether BCH ECC mode is used
431  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
432  *				chip
433  * @status:			value to be returned if NAND_CMD_STATUS command
434  *				is executed
435  * @last_command:		keeps track of last command on this chip. used
436  *				for reading correct status
437  *
438  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
439  *				ecc/non-ecc mode for the current nand flash
440  *				device
441  */
442 struct qcom_nand_host {
443 	struct nand_chip chip;
444 	struct list_head node;
445 
446 	int cs;
447 	int cw_size;
448 	int cw_data;
449 	bool use_ecc;
450 	bool bch_enabled;
451 	int ecc_bytes_hw;
452 	int spare_bytes;
453 	int bbm_size;
454 	u8 status;
455 	int last_command;
456 
457 	u32 cfg0, cfg1;
458 	u32 cfg0_raw, cfg1_raw;
459 	u32 ecc_buf_cfg;
460 	u32 ecc_bch_cfg;
461 	u32 clrflashstatus;
462 	u32 clrreadstatus;
463 };
464 
465 /*
466  * This data type corresponds to the NAND controller properties which varies
467  * among different NAND controllers.
468  * @ecc_modes - ecc mode for NAND
469  * @is_bam - whether NAND controller is using BAM
470  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
471  */
472 struct qcom_nandc_props {
473 	u32 ecc_modes;
474 	bool is_bam;
475 	u32 dev_cmd_reg_start;
476 };
477 
478 /* Frees the BAM transaction memory */
479 static void free_bam_transaction(struct qcom_nand_controller *nandc)
480 {
481 	struct bam_transaction *bam_txn = nandc->bam_txn;
482 
483 	devm_kfree(nandc->dev, bam_txn);
484 }
485 
486 /* Allocates and Initializes the BAM transaction */
487 static struct bam_transaction *
488 alloc_bam_transaction(struct qcom_nand_controller *nandc)
489 {
490 	struct bam_transaction *bam_txn;
491 	size_t bam_txn_size;
492 	unsigned int num_cw = nandc->max_cwperpage;
493 	void *bam_txn_buf;
494 
495 	bam_txn_size =
496 		sizeof(*bam_txn) + num_cw *
497 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
498 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
499 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
500 
501 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
502 	if (!bam_txn_buf)
503 		return NULL;
504 
505 	bam_txn = bam_txn_buf;
506 	bam_txn_buf += sizeof(*bam_txn);
507 
508 	bam_txn->bam_ce = bam_txn_buf;
509 	bam_txn_buf +=
510 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
511 
512 	bam_txn->cmd_sgl = bam_txn_buf;
513 	bam_txn_buf +=
514 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
515 
516 	bam_txn->data_sgl = bam_txn_buf;
517 
518 	init_completion(&bam_txn->txn_done);
519 
520 	return bam_txn;
521 }
522 
523 /* Clears the BAM transaction indexes */
524 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
525 {
526 	struct bam_transaction *bam_txn = nandc->bam_txn;
527 
528 	if (!nandc->props->is_bam)
529 		return;
530 
531 	bam_txn->bam_ce_pos = 0;
532 	bam_txn->bam_ce_start = 0;
533 	bam_txn->cmd_sgl_pos = 0;
534 	bam_txn->cmd_sgl_start = 0;
535 	bam_txn->tx_sgl_pos = 0;
536 	bam_txn->tx_sgl_start = 0;
537 	bam_txn->rx_sgl_pos = 0;
538 	bam_txn->rx_sgl_start = 0;
539 	bam_txn->last_data_desc = NULL;
540 	bam_txn->wait_second_completion = false;
541 
542 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
543 		      QPIC_PER_CW_CMD_SGL);
544 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
545 		      QPIC_PER_CW_DATA_SGL);
546 
547 	reinit_completion(&bam_txn->txn_done);
548 }
549 
550 /* Callback for DMA descriptor completion */
551 static void qpic_bam_dma_done(void *data)
552 {
553 	struct bam_transaction *bam_txn = data;
554 
555 	/*
556 	 * In case of data transfer with NAND, 2 callbacks will be generated.
557 	 * One for command channel and another one for data channel.
558 	 * If current transaction has data descriptors
559 	 * (i.e. wait_second_completion is true), then set this to false
560 	 * and wait for second DMA descriptor completion.
561 	 */
562 	if (bam_txn->wait_second_completion)
563 		bam_txn->wait_second_completion = false;
564 	else
565 		complete(&bam_txn->txn_done);
566 }
567 
568 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
569 {
570 	return container_of(chip, struct qcom_nand_host, chip);
571 }
572 
573 static inline struct qcom_nand_controller *
574 get_qcom_nand_controller(struct nand_chip *chip)
575 {
576 	return container_of(chip->controller, struct qcom_nand_controller,
577 			    controller);
578 }
579 
580 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
581 {
582 	return ioread32(nandc->base + offset);
583 }
584 
585 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
586 			       u32 val)
587 {
588 	iowrite32(val, nandc->base + offset);
589 }
590 
591 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
592 					  bool is_cpu)
593 {
594 	if (!nandc->props->is_bam)
595 		return;
596 
597 	if (is_cpu)
598 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
599 					MAX_REG_RD *
600 					sizeof(*nandc->reg_read_buf),
601 					DMA_FROM_DEVICE);
602 	else
603 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
604 					   MAX_REG_RD *
605 					   sizeof(*nandc->reg_read_buf),
606 					   DMA_FROM_DEVICE);
607 }
608 
609 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
610 {
611 	switch (offset) {
612 	case NAND_FLASH_CMD:
613 		return &regs->cmd;
614 	case NAND_ADDR0:
615 		return &regs->addr0;
616 	case NAND_ADDR1:
617 		return &regs->addr1;
618 	case NAND_FLASH_CHIP_SELECT:
619 		return &regs->chip_sel;
620 	case NAND_EXEC_CMD:
621 		return &regs->exec;
622 	case NAND_FLASH_STATUS:
623 		return &regs->clrflashstatus;
624 	case NAND_DEV0_CFG0:
625 		return &regs->cfg0;
626 	case NAND_DEV0_CFG1:
627 		return &regs->cfg1;
628 	case NAND_DEV0_ECC_CFG:
629 		return &regs->ecc_bch_cfg;
630 	case NAND_READ_STATUS:
631 		return &regs->clrreadstatus;
632 	case NAND_DEV_CMD1:
633 		return &regs->cmd1;
634 	case NAND_DEV_CMD1_RESTORE:
635 		return &regs->orig_cmd1;
636 	case NAND_DEV_CMD_VLD:
637 		return &regs->vld;
638 	case NAND_DEV_CMD_VLD_RESTORE:
639 		return &regs->orig_vld;
640 	case NAND_EBI2_ECC_BUF_CFG:
641 		return &regs->ecc_buf_cfg;
642 	case NAND_READ_LOCATION_0:
643 		return &regs->read_location0;
644 	case NAND_READ_LOCATION_1:
645 		return &regs->read_location1;
646 	case NAND_READ_LOCATION_2:
647 		return &regs->read_location2;
648 	case NAND_READ_LOCATION_3:
649 		return &regs->read_location3;
650 	default:
651 		return NULL;
652 	}
653 }
654 
655 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
656 			  u32 val)
657 {
658 	struct nandc_regs *regs = nandc->regs;
659 	__le32 *reg;
660 
661 	reg = offset_to_nandc_reg(regs, offset);
662 
663 	if (reg)
664 		*reg = cpu_to_le32(val);
665 }
666 
667 /* helper to configure address register values */
668 static void set_address(struct qcom_nand_host *host, u16 column, int page)
669 {
670 	struct nand_chip *chip = &host->chip;
671 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
672 
673 	if (chip->options & NAND_BUSWIDTH_16)
674 		column >>= 1;
675 
676 	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
677 	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
678 }
679 
680 /*
681  * update_rw_regs:	set up read/write register values, these will be
682  *			written to the NAND controller registers via DMA
683  *
684  * @num_cw:		number of steps for the read/write operation
685  * @read:		read or write operation
686  */
687 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
688 {
689 	struct nand_chip *chip = &host->chip;
690 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
691 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
692 
693 	if (read) {
694 		if (host->use_ecc)
695 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
696 		else
697 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
698 	} else {
699 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
700 	}
701 
702 	if (host->use_ecc) {
703 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
704 				(num_cw - 1) << CW_PER_PAGE;
705 
706 		cfg1 = host->cfg1;
707 		ecc_bch_cfg = host->ecc_bch_cfg;
708 	} else {
709 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
710 				(num_cw - 1) << CW_PER_PAGE;
711 
712 		cfg1 = host->cfg1_raw;
713 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
714 	}
715 
716 	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
717 	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
718 	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
719 	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
720 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
721 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
722 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
723 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
724 
725 	if (read)
726 		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
727 				   host->cw_data : host->cw_size, 1);
728 }
729 
730 /*
731  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
732  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
733  * which will be submitted to DMA engine.
734  */
735 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
736 				  struct dma_chan *chan,
737 				  unsigned long flags)
738 {
739 	struct desc_info *desc;
740 	struct scatterlist *sgl;
741 	unsigned int sgl_cnt;
742 	int ret;
743 	struct bam_transaction *bam_txn = nandc->bam_txn;
744 	enum dma_transfer_direction dir_eng;
745 	struct dma_async_tx_descriptor *dma_desc;
746 
747 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
748 	if (!desc)
749 		return -ENOMEM;
750 
751 	if (chan == nandc->cmd_chan) {
752 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
753 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
754 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
755 		dir_eng = DMA_MEM_TO_DEV;
756 		desc->dir = DMA_TO_DEVICE;
757 	} else if (chan == nandc->tx_chan) {
758 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
759 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
760 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
761 		dir_eng = DMA_MEM_TO_DEV;
762 		desc->dir = DMA_TO_DEVICE;
763 	} else {
764 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
765 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
766 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
767 		dir_eng = DMA_DEV_TO_MEM;
768 		desc->dir = DMA_FROM_DEVICE;
769 	}
770 
771 	sg_mark_end(sgl + sgl_cnt - 1);
772 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
773 	if (ret == 0) {
774 		dev_err(nandc->dev, "failure in mapping desc\n");
775 		kfree(desc);
776 		return -ENOMEM;
777 	}
778 
779 	desc->sgl_cnt = sgl_cnt;
780 	desc->bam_sgl = sgl;
781 
782 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
783 					   flags);
784 
785 	if (!dma_desc) {
786 		dev_err(nandc->dev, "failure in prep desc\n");
787 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
788 		kfree(desc);
789 		return -EINVAL;
790 	}
791 
792 	desc->dma_desc = dma_desc;
793 
794 	/* update last data/command descriptor */
795 	if (chan == nandc->cmd_chan)
796 		bam_txn->last_cmd_desc = dma_desc;
797 	else
798 		bam_txn->last_data_desc = dma_desc;
799 
800 	list_add_tail(&desc->node, &nandc->desc_list);
801 
802 	return 0;
803 }
804 
805 /*
806  * Prepares the command descriptor for BAM DMA which will be used for NAND
807  * register reads and writes. The command descriptor requires the command
808  * to be formed in command element type so this function uses the command
809  * element from bam transaction ce array and fills the same with required
810  * data. A single SGL can contain multiple command elements so
811  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
812  * after the current command element.
813  */
814 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
815 				 int reg_off, const void *vaddr,
816 				 int size, unsigned int flags)
817 {
818 	int bam_ce_size;
819 	int i, ret;
820 	struct bam_cmd_element *bam_ce_buffer;
821 	struct bam_transaction *bam_txn = nandc->bam_txn;
822 
823 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
824 
825 	/* fill the command desc */
826 	for (i = 0; i < size; i++) {
827 		if (read)
828 			bam_prep_ce(&bam_ce_buffer[i],
829 				    nandc_reg_phys(nandc, reg_off + 4 * i),
830 				    BAM_READ_COMMAND,
831 				    reg_buf_dma_addr(nandc,
832 						     (__le32 *)vaddr + i));
833 		else
834 			bam_prep_ce_le32(&bam_ce_buffer[i],
835 					 nandc_reg_phys(nandc, reg_off + 4 * i),
836 					 BAM_WRITE_COMMAND,
837 					 *((__le32 *)vaddr + i));
838 	}
839 
840 	bam_txn->bam_ce_pos += size;
841 
842 	/* use the separate sgl after this command */
843 	if (flags & NAND_BAM_NEXT_SGL) {
844 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
845 		bam_ce_size = (bam_txn->bam_ce_pos -
846 				bam_txn->bam_ce_start) *
847 				sizeof(struct bam_cmd_element);
848 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
849 			   bam_ce_buffer, bam_ce_size);
850 		bam_txn->cmd_sgl_pos++;
851 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
852 
853 		if (flags & NAND_BAM_NWD) {
854 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
855 						     DMA_PREP_FENCE |
856 						     DMA_PREP_CMD);
857 			if (ret)
858 				return ret;
859 		}
860 	}
861 
862 	return 0;
863 }
864 
865 /*
866  * Prepares the data descriptor for BAM DMA which will be used for NAND
867  * data reads and writes.
868  */
869 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
870 				  const void *vaddr,
871 				  int size, unsigned int flags)
872 {
873 	int ret;
874 	struct bam_transaction *bam_txn = nandc->bam_txn;
875 
876 	if (read) {
877 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
878 			   vaddr, size);
879 		bam_txn->rx_sgl_pos++;
880 	} else {
881 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
882 			   vaddr, size);
883 		bam_txn->tx_sgl_pos++;
884 
885 		/*
886 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
887 		 * is not set, form the DMA descriptor
888 		 */
889 		if (!(flags & NAND_BAM_NO_EOT)) {
890 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
891 						     DMA_PREP_INTERRUPT);
892 			if (ret)
893 				return ret;
894 		}
895 	}
896 
897 	return 0;
898 }
899 
900 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
901 			     int reg_off, const void *vaddr, int size,
902 			     bool flow_control)
903 {
904 	struct desc_info *desc;
905 	struct dma_async_tx_descriptor *dma_desc;
906 	struct scatterlist *sgl;
907 	struct dma_slave_config slave_conf;
908 	enum dma_transfer_direction dir_eng;
909 	int ret;
910 
911 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
912 	if (!desc)
913 		return -ENOMEM;
914 
915 	sgl = &desc->adm_sgl;
916 
917 	sg_init_one(sgl, vaddr, size);
918 
919 	if (read) {
920 		dir_eng = DMA_DEV_TO_MEM;
921 		desc->dir = DMA_FROM_DEVICE;
922 	} else {
923 		dir_eng = DMA_MEM_TO_DEV;
924 		desc->dir = DMA_TO_DEVICE;
925 	}
926 
927 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
928 	if (ret == 0) {
929 		ret = -ENOMEM;
930 		goto err;
931 	}
932 
933 	memset(&slave_conf, 0x00, sizeof(slave_conf));
934 
935 	slave_conf.device_fc = flow_control;
936 	if (read) {
937 		slave_conf.src_maxburst = 16;
938 		slave_conf.src_addr = nandc->base_dma + reg_off;
939 		slave_conf.slave_id = nandc->data_crci;
940 	} else {
941 		slave_conf.dst_maxburst = 16;
942 		slave_conf.dst_addr = nandc->base_dma + reg_off;
943 		slave_conf.slave_id = nandc->cmd_crci;
944 	}
945 
946 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
947 	if (ret) {
948 		dev_err(nandc->dev, "failed to configure dma channel\n");
949 		goto err;
950 	}
951 
952 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
953 	if (!dma_desc) {
954 		dev_err(nandc->dev, "failed to prepare desc\n");
955 		ret = -EINVAL;
956 		goto err;
957 	}
958 
959 	desc->dma_desc = dma_desc;
960 
961 	list_add_tail(&desc->node, &nandc->desc_list);
962 
963 	return 0;
964 err:
965 	kfree(desc);
966 
967 	return ret;
968 }
969 
970 /*
971  * read_reg_dma:	prepares a descriptor to read a given number of
972  *			contiguous registers to the reg_read_buf pointer
973  *
974  * @first:		offset of the first register in the contiguous block
975  * @num_regs:		number of registers to read
976  * @flags:		flags to control DMA descriptor preparation
977  */
978 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
979 			int num_regs, unsigned int flags)
980 {
981 	bool flow_control = false;
982 	void *vaddr;
983 
984 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
985 	nandc->reg_read_pos += num_regs;
986 
987 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
988 		first = dev_cmd_reg_addr(nandc, first);
989 
990 	if (nandc->props->is_bam)
991 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
992 					     num_regs, flags);
993 
994 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
995 		flow_control = true;
996 
997 	return prep_adm_dma_desc(nandc, true, first, vaddr,
998 				 num_regs * sizeof(u32), flow_control);
999 }
1000 
1001 /*
1002  * write_reg_dma:	prepares a descriptor to write a given number of
1003  *			contiguous registers
1004  *
1005  * @first:		offset of the first register in the contiguous block
1006  * @num_regs:		number of registers to write
1007  * @flags:		flags to control DMA descriptor preparation
1008  */
1009 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1010 			 int num_regs, unsigned int flags)
1011 {
1012 	bool flow_control = false;
1013 	struct nandc_regs *regs = nandc->regs;
1014 	void *vaddr;
1015 
1016 	vaddr = offset_to_nandc_reg(regs, first);
1017 
1018 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1019 		if (flags & NAND_ERASED_CW_SET)
1020 			vaddr = &regs->erased_cw_detect_cfg_set;
1021 		else
1022 			vaddr = &regs->erased_cw_detect_cfg_clr;
1023 	}
1024 
1025 	if (first == NAND_EXEC_CMD)
1026 		flags |= NAND_BAM_NWD;
1027 
1028 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1029 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1030 
1031 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1032 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1033 
1034 	if (nandc->props->is_bam)
1035 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1036 					     num_regs, flags);
1037 
1038 	if (first == NAND_FLASH_CMD)
1039 		flow_control = true;
1040 
1041 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1042 				 num_regs * sizeof(u32), flow_control);
1043 }
1044 
1045 /*
1046  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1047  *			controller's internal buffer to the buffer 'vaddr'
1048  *
1049  * @reg_off:		offset within the controller's data buffer
1050  * @vaddr:		virtual address of the buffer we want to write to
1051  * @size:		DMA transaction size in bytes
1052  * @flags:		flags to control DMA descriptor preparation
1053  */
1054 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1055 			 const u8 *vaddr, int size, unsigned int flags)
1056 {
1057 	if (nandc->props->is_bam)
1058 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1059 
1060 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1061 }
1062 
1063 /*
1064  * write_data_dma:	prepares a DMA descriptor to transfer data from
1065  *			'vaddr' to the controller's internal buffer
1066  *
1067  * @reg_off:		offset within the controller's data buffer
1068  * @vaddr:		virtual address of the buffer we want to read from
1069  * @size:		DMA transaction size in bytes
1070  * @flags:		flags to control DMA descriptor preparation
1071  */
1072 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1073 			  const u8 *vaddr, int size, unsigned int flags)
1074 {
1075 	if (nandc->props->is_bam)
1076 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1077 
1078 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1079 }
1080 
1081 /*
1082  * Helper to prepare DMA descriptors for configuring registers
1083  * before reading a NAND page.
1084  */
1085 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1086 {
1087 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1088 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1089 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1090 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1091 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1092 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1093 }
1094 
1095 /*
1096  * Helper to prepare DMA descriptors for configuring registers
1097  * before reading each codeword in NAND page.
1098  */
1099 static void
1100 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1101 {
1102 	if (nandc->props->is_bam)
1103 		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1104 			      NAND_BAM_NEXT_SGL);
1105 
1106 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1107 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1108 
1109 	if (use_ecc) {
1110 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1111 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1112 			     NAND_BAM_NEXT_SGL);
1113 	} else {
1114 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1115 	}
1116 }
1117 
1118 /*
1119  * Helper to prepare dma descriptors to configure registers needed for reading a
1120  * single codeword in page
1121  */
1122 static void
1123 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1124 				bool use_ecc)
1125 {
1126 	config_nand_page_read(nandc);
1127 	config_nand_cw_read(nandc, use_ecc);
1128 }
1129 
1130 /*
1131  * Helper to prepare DMA descriptors used to configure registers needed for
1132  * before writing a NAND page.
1133  */
1134 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1135 {
1136 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1137 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1138 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1139 		      NAND_BAM_NEXT_SGL);
1140 }
1141 
1142 /*
1143  * Helper to prepare DMA descriptors for configuring registers
1144  * before writing each codeword in NAND page.
1145  */
1146 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1147 {
1148 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1149 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1150 
1151 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1152 
1153 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1154 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1155 }
1156 
1157 /*
1158  * the following functions are used within chip->legacy.cmdfunc() to
1159  * perform different NAND_CMD_* commands
1160  */
1161 
1162 /* sets up descriptors for NAND_CMD_PARAM */
1163 static int nandc_param(struct qcom_nand_host *host)
1164 {
1165 	struct nand_chip *chip = &host->chip;
1166 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1167 
1168 	/*
1169 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1170 	 * in use. we configure the controller to perform a raw read of 512
1171 	 * bytes to read onfi params
1172 	 */
1173 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1174 	nandc_set_reg(nandc, NAND_ADDR0, 0);
1175 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1176 	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1177 					| 512 << UD_SIZE_BYTES
1178 					| 5 << NUM_ADDR_CYCLES
1179 					| 0 << SPARE_SIZE_BYTES);
1180 	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1181 					| 0 << CS_ACTIVE_BSY
1182 					| 17 << BAD_BLOCK_BYTE_NUM
1183 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1184 					| 2 << WR_RD_BSY_GAP
1185 					| 0 << WIDE_FLASH
1186 					| 1 << DEV0_CFG1_ECC_DISABLE);
1187 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1188 
1189 	/* configure CMD1 and VLD for ONFI param probing */
1190 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1191 		      (nandc->vld & ~READ_START_VLD));
1192 	nandc_set_reg(nandc, NAND_DEV_CMD1,
1193 		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1194 		      | NAND_CMD_PARAM << READ_ADDR);
1195 
1196 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1197 
1198 	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1199 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1200 	nandc_set_read_loc(nandc, 0, 0, 512, 1);
1201 
1202 	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1203 	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1204 
1205 	nandc->buf_count = 512;
1206 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1207 
1208 	config_nand_single_cw_page_read(nandc, false);
1209 
1210 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1211 		      nandc->buf_count, 0);
1212 
1213 	/* restore CMD1 and VLD regs */
1214 	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1215 	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1216 
1217 	return 0;
1218 }
1219 
1220 /* sets up descriptors for NAND_CMD_ERASE1 */
1221 static int erase_block(struct qcom_nand_host *host, int page_addr)
1222 {
1223 	struct nand_chip *chip = &host->chip;
1224 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225 
1226 	nandc_set_reg(nandc, NAND_FLASH_CMD,
1227 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1228 	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1229 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1230 	nandc_set_reg(nandc, NAND_DEV0_CFG0,
1231 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1232 	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1233 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1234 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1235 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1236 
1237 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1238 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1239 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1240 
1241 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1242 
1243 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1244 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1245 
1246 	return 0;
1247 }
1248 
1249 /* sets up descriptors for NAND_CMD_READID */
1250 static int read_id(struct qcom_nand_host *host, int column)
1251 {
1252 	struct nand_chip *chip = &host->chip;
1253 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1254 
1255 	if (column == -1)
1256 		return 0;
1257 
1258 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1259 	nandc_set_reg(nandc, NAND_ADDR0, column);
1260 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1261 	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1262 		      nandc->props->is_bam ? 0 : DM_EN);
1263 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1264 
1265 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1266 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1267 
1268 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1269 
1270 	return 0;
1271 }
1272 
1273 /* sets up descriptors for NAND_CMD_RESET */
1274 static int reset(struct qcom_nand_host *host)
1275 {
1276 	struct nand_chip *chip = &host->chip;
1277 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1278 
1279 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1280 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1281 
1282 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1283 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1284 
1285 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1286 
1287 	return 0;
1288 }
1289 
1290 /* helpers to submit/free our list of dma descriptors */
1291 static int submit_descs(struct qcom_nand_controller *nandc)
1292 {
1293 	struct desc_info *desc;
1294 	dma_cookie_t cookie = 0;
1295 	struct bam_transaction *bam_txn = nandc->bam_txn;
1296 	int r;
1297 
1298 	if (nandc->props->is_bam) {
1299 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1300 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1301 			if (r)
1302 				return r;
1303 		}
1304 
1305 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1306 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1307 						   DMA_PREP_INTERRUPT);
1308 			if (r)
1309 				return r;
1310 		}
1311 
1312 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1313 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1314 						   DMA_PREP_CMD);
1315 			if (r)
1316 				return r;
1317 		}
1318 	}
1319 
1320 	list_for_each_entry(desc, &nandc->desc_list, node)
1321 		cookie = dmaengine_submit(desc->dma_desc);
1322 
1323 	if (nandc->props->is_bam) {
1324 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1325 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1326 		if (bam_txn->last_data_desc) {
1327 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1328 			bam_txn->last_data_desc->callback_param = bam_txn;
1329 			bam_txn->wait_second_completion = true;
1330 		}
1331 
1332 		dma_async_issue_pending(nandc->tx_chan);
1333 		dma_async_issue_pending(nandc->rx_chan);
1334 		dma_async_issue_pending(nandc->cmd_chan);
1335 
1336 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1337 						 QPIC_NAND_COMPLETION_TIMEOUT))
1338 			return -ETIMEDOUT;
1339 	} else {
1340 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1341 			return -ETIMEDOUT;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static void free_descs(struct qcom_nand_controller *nandc)
1348 {
1349 	struct desc_info *desc, *n;
1350 
1351 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1352 		list_del(&desc->node);
1353 
1354 		if (nandc->props->is_bam)
1355 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1356 				     desc->sgl_cnt, desc->dir);
1357 		else
1358 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1359 				     desc->dir);
1360 
1361 		kfree(desc);
1362 	}
1363 }
1364 
1365 /* reset the register read buffer for next NAND operation */
1366 static void clear_read_regs(struct qcom_nand_controller *nandc)
1367 {
1368 	nandc->reg_read_pos = 0;
1369 	nandc_read_buffer_sync(nandc, false);
1370 }
1371 
1372 static void pre_command(struct qcom_nand_host *host, int command)
1373 {
1374 	struct nand_chip *chip = &host->chip;
1375 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1376 
1377 	nandc->buf_count = 0;
1378 	nandc->buf_start = 0;
1379 	host->use_ecc = false;
1380 	host->last_command = command;
1381 
1382 	clear_read_regs(nandc);
1383 
1384 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1385 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1386 		clear_bam_transaction(nandc);
1387 }
1388 
1389 /*
1390  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1391  * privately maintained status byte, this status byte can be read after
1392  * NAND_CMD_STATUS is called
1393  */
1394 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1395 {
1396 	struct nand_chip *chip = &host->chip;
1397 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1398 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1399 	int num_cw;
1400 	int i;
1401 
1402 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1403 	nandc_read_buffer_sync(nandc, true);
1404 
1405 	for (i = 0; i < num_cw; i++) {
1406 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1407 
1408 		if (flash_status & FS_MPU_ERR)
1409 			host->status &= ~NAND_STATUS_WP;
1410 
1411 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1412 						 (flash_status &
1413 						  FS_DEVICE_STS_ERR)))
1414 			host->status |= NAND_STATUS_FAIL;
1415 	}
1416 }
1417 
1418 static void post_command(struct qcom_nand_host *host, int command)
1419 {
1420 	struct nand_chip *chip = &host->chip;
1421 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1422 
1423 	switch (command) {
1424 	case NAND_CMD_READID:
1425 		nandc_read_buffer_sync(nandc, true);
1426 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1427 		       nandc->buf_count);
1428 		break;
1429 	case NAND_CMD_PAGEPROG:
1430 	case NAND_CMD_ERASE1:
1431 		parse_erase_write_errors(host, command);
1432 		break;
1433 	default:
1434 		break;
1435 	}
1436 }
1437 
1438 /*
1439  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1440  * commands. The rest of the commands wouldn't be called by upper layers.
1441  * For example, NAND_CMD_READOOB would never be called because we have our own
1442  * versions of read_oob ops for nand_ecc_ctrl.
1443  */
1444 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1445 			       int column, int page_addr)
1446 {
1447 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1448 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1449 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1450 	bool wait = false;
1451 	int ret = 0;
1452 
1453 	pre_command(host, command);
1454 
1455 	switch (command) {
1456 	case NAND_CMD_RESET:
1457 		ret = reset(host);
1458 		wait = true;
1459 		break;
1460 
1461 	case NAND_CMD_READID:
1462 		nandc->buf_count = 4;
1463 		ret = read_id(host, column);
1464 		wait = true;
1465 		break;
1466 
1467 	case NAND_CMD_PARAM:
1468 		ret = nandc_param(host);
1469 		wait = true;
1470 		break;
1471 
1472 	case NAND_CMD_ERASE1:
1473 		ret = erase_block(host, page_addr);
1474 		wait = true;
1475 		break;
1476 
1477 	case NAND_CMD_READ0:
1478 		/* we read the entire page for now */
1479 		WARN_ON(column != 0);
1480 
1481 		host->use_ecc = true;
1482 		set_address(host, 0, page_addr);
1483 		update_rw_regs(host, ecc->steps, true);
1484 		break;
1485 
1486 	case NAND_CMD_SEQIN:
1487 		WARN_ON(column != 0);
1488 		set_address(host, 0, page_addr);
1489 		break;
1490 
1491 	case NAND_CMD_PAGEPROG:
1492 	case NAND_CMD_STATUS:
1493 	case NAND_CMD_NONE:
1494 	default:
1495 		break;
1496 	}
1497 
1498 	if (ret) {
1499 		dev_err(nandc->dev, "failure executing command %d\n",
1500 			command);
1501 		free_descs(nandc);
1502 		return;
1503 	}
1504 
1505 	if (wait) {
1506 		ret = submit_descs(nandc);
1507 		if (ret)
1508 			dev_err(nandc->dev,
1509 				"failure submitting descs for command %d\n",
1510 				command);
1511 	}
1512 
1513 	free_descs(nandc);
1514 
1515 	post_command(host, command);
1516 }
1517 
1518 /*
1519  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1520  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1521  *
1522  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1523  * but it notifies that it is an erased CW by placing special characters at
1524  * certain offsets in the buffer.
1525  *
1526  * verify if the page is erased or not, and fix up the page for RS ECC by
1527  * replacing the special characters with 0xff.
1528  */
1529 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1530 {
1531 	u8 empty1, empty2;
1532 
1533 	/*
1534 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1535 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1536 	 * beginning of each codeword
1537 	 */
1538 
1539 	empty1 = data_buf[3];
1540 	empty2 = data_buf[175];
1541 
1542 	/*
1543 	 * if the erased codework markers, if they exist override them with
1544 	 * 0xffs
1545 	 */
1546 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1547 	    (empty1 == 0xff && empty2 == 0x54)) {
1548 		data_buf[3] = 0xff;
1549 		data_buf[175] = 0xff;
1550 	}
1551 
1552 	/*
1553 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1554 	 * restore the original values at the special offsets
1555 	 */
1556 	if (memchr_inv(data_buf, 0xff, data_len)) {
1557 		data_buf[3] = empty1;
1558 		data_buf[175] = empty2;
1559 
1560 		return false;
1561 	}
1562 
1563 	return true;
1564 }
1565 
1566 struct read_stats {
1567 	__le32 flash;
1568 	__le32 buffer;
1569 	__le32 erased_cw;
1570 };
1571 
1572 /* reads back FLASH_STATUS register set by the controller */
1573 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1574 {
1575 	struct nand_chip *chip = &host->chip;
1576 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1577 	int i;
1578 
1579 	for (i = 0; i < cw_cnt; i++) {
1580 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1581 
1582 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1583 			return -EIO;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 /* performs raw read for one codeword */
1590 static int
1591 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1592 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1593 {
1594 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1595 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1596 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1597 	int data_size1, data_size2, oob_size1, oob_size2;
1598 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1599 
1600 	nand_read_page_op(chip, page, 0, NULL, 0);
1601 	host->use_ecc = false;
1602 
1603 	clear_bam_transaction(nandc);
1604 	set_address(host, host->cw_size * cw, page);
1605 	update_rw_regs(host, 1, true);
1606 	config_nand_page_read(nandc);
1607 
1608 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1609 	oob_size1 = host->bbm_size;
1610 
1611 	if (cw == (ecc->steps - 1)) {
1612 		data_size2 = ecc->size - data_size1 -
1613 			     ((ecc->steps - 1) * 4);
1614 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1615 			    host->spare_bytes;
1616 	} else {
1617 		data_size2 = host->cw_data - data_size1;
1618 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1619 	}
1620 
1621 	if (nandc->props->is_bam) {
1622 		nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1623 		read_loc += data_size1;
1624 
1625 		nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1626 		read_loc += oob_size1;
1627 
1628 		nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1629 		read_loc += data_size2;
1630 
1631 		nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1632 	}
1633 
1634 	config_nand_cw_read(nandc, false);
1635 
1636 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1637 	reg_off += data_size1;
1638 
1639 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1640 	reg_off += oob_size1;
1641 
1642 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1643 	reg_off += data_size2;
1644 
1645 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1646 
1647 	ret = submit_descs(nandc);
1648 	free_descs(nandc);
1649 	if (ret) {
1650 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1651 		return ret;
1652 	}
1653 
1654 	return check_flash_errors(host, 1);
1655 }
1656 
1657 /*
1658  * Bitflips can happen in erased codewords also so this function counts the
1659  * number of 0 in each CW for which ECC engine returns the uncorrectable
1660  * error. The page will be assumed as erased if this count is less than or
1661  * equal to the ecc->strength for each CW.
1662  *
1663  * 1. Both DATA and OOB need to be checked for number of 0. The
1664  *    top-level API can be called with only data buf or OOB buf so use
1665  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1666  *    is null for copying the raw bytes.
1667  * 2. Perform raw read for all the CW which has uncorrectable errors.
1668  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1669  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1670  *    the number of bitflips in this area.
1671  */
1672 static int
1673 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1674 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1675 		      int page, unsigned int max_bitflips)
1676 {
1677 	struct nand_chip *chip = &host->chip;
1678 	struct mtd_info *mtd = nand_to_mtd(chip);
1679 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1680 	u8 *cw_data_buf, *cw_oob_buf;
1681 	int cw, data_size, oob_size, ret = 0;
1682 
1683 	if (!data_buf) {
1684 		data_buf = chip->data_buf;
1685 		chip->pagebuf = -1;
1686 	}
1687 
1688 	if (!oob_buf) {
1689 		oob_buf = chip->oob_poi;
1690 		chip->pagebuf = -1;
1691 	}
1692 
1693 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1694 		if (cw == (ecc->steps - 1)) {
1695 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1696 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1697 		} else {
1698 			data_size = host->cw_data;
1699 			oob_size = host->ecc_bytes_hw;
1700 		}
1701 
1702 		/* determine starting buffer address for current CW */
1703 		cw_data_buf = data_buf + (cw * host->cw_data);
1704 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1705 
1706 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1707 					     cw_oob_buf, page, cw);
1708 		if (ret)
1709 			return ret;
1710 
1711 		/*
1712 		 * make sure it isn't an erased page reported
1713 		 * as not-erased by HW because of a few bitflips
1714 		 */
1715 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1716 						  cw_oob_buf + host->bbm_size,
1717 						  oob_size, NULL,
1718 						  0, ecc->strength);
1719 		if (ret < 0) {
1720 			mtd->ecc_stats.failed++;
1721 		} else {
1722 			mtd->ecc_stats.corrected += ret;
1723 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1724 		}
1725 	}
1726 
1727 	return max_bitflips;
1728 }
1729 
1730 /*
1731  * reads back status registers set by the controller to notify page read
1732  * errors. this is equivalent to what 'ecc->correct()' would do.
1733  */
1734 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1735 			     u8 *oob_buf, int page)
1736 {
1737 	struct nand_chip *chip = &host->chip;
1738 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1739 	struct mtd_info *mtd = nand_to_mtd(chip);
1740 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1741 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1742 	struct read_stats *buf;
1743 	bool flash_op_err = false, erased;
1744 	int i;
1745 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1746 
1747 	buf = (struct read_stats *)nandc->reg_read_buf;
1748 	nandc_read_buffer_sync(nandc, true);
1749 
1750 	for (i = 0; i < ecc->steps; i++, buf++) {
1751 		u32 flash, buffer, erased_cw;
1752 		int data_len, oob_len;
1753 
1754 		if (i == (ecc->steps - 1)) {
1755 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1756 			oob_len = ecc->steps << 2;
1757 		} else {
1758 			data_len = host->cw_data;
1759 			oob_len = 0;
1760 		}
1761 
1762 		flash = le32_to_cpu(buf->flash);
1763 		buffer = le32_to_cpu(buf->buffer);
1764 		erased_cw = le32_to_cpu(buf->erased_cw);
1765 
1766 		/*
1767 		 * Check ECC failure for each codeword. ECC failure can
1768 		 * happen in either of the following conditions
1769 		 * 1. If number of bitflips are greater than ECC engine
1770 		 *    capability.
1771 		 * 2. If this codeword contains all 0xff for which erased
1772 		 *    codeword detection check will be done.
1773 		 */
1774 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1775 			/*
1776 			 * For BCH ECC, ignore erased codeword errors, if
1777 			 * ERASED_CW bits are set.
1778 			 */
1779 			if (host->bch_enabled) {
1780 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1781 					 true : false;
1782 			/*
1783 			 * For RS ECC, HW reports the erased CW by placing
1784 			 * special characters at certain offsets in the buffer.
1785 			 * These special characters will be valid only if
1786 			 * complete page is read i.e. data_buf is not NULL.
1787 			 */
1788 			} else if (data_buf) {
1789 				erased = erased_chunk_check_and_fixup(data_buf,
1790 								      data_len);
1791 			} else {
1792 				erased = false;
1793 			}
1794 
1795 			if (!erased)
1796 				uncorrectable_cws |= BIT(i);
1797 		/*
1798 		 * Check if MPU or any other operational error (timeout,
1799 		 * device failure, etc.) happened for this codeword and
1800 		 * make flash_op_err true. If flash_op_err is set, then
1801 		 * EIO will be returned for page read.
1802 		 */
1803 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1804 			flash_op_err = true;
1805 		/*
1806 		 * No ECC or operational errors happened. Check the number of
1807 		 * bits corrected and update the ecc_stats.corrected.
1808 		 */
1809 		} else {
1810 			unsigned int stat;
1811 
1812 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1813 			mtd->ecc_stats.corrected += stat;
1814 			max_bitflips = max(max_bitflips, stat);
1815 		}
1816 
1817 		if (data_buf)
1818 			data_buf += data_len;
1819 		if (oob_buf)
1820 			oob_buf += oob_len + ecc->bytes;
1821 	}
1822 
1823 	if (flash_op_err)
1824 		return -EIO;
1825 
1826 	if (!uncorrectable_cws)
1827 		return max_bitflips;
1828 
1829 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1830 				     uncorrectable_cws, page,
1831 				     max_bitflips);
1832 }
1833 
1834 /*
1835  * helper to perform the actual page read operation, used by ecc->read_page(),
1836  * ecc->read_oob()
1837  */
1838 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1839 			 u8 *oob_buf, int page)
1840 {
1841 	struct nand_chip *chip = &host->chip;
1842 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1843 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1844 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1845 	int i, ret;
1846 
1847 	config_nand_page_read(nandc);
1848 
1849 	/* queue cmd descs for each codeword */
1850 	for (i = 0; i < ecc->steps; i++) {
1851 		int data_size, oob_size;
1852 
1853 		if (i == (ecc->steps - 1)) {
1854 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1855 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1856 				   host->spare_bytes;
1857 		} else {
1858 			data_size = host->cw_data;
1859 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1860 		}
1861 
1862 		if (nandc->props->is_bam) {
1863 			if (data_buf && oob_buf) {
1864 				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1865 				nandc_set_read_loc(nandc, 1, data_size,
1866 						   oob_size, 1);
1867 			} else if (data_buf) {
1868 				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1869 			} else {
1870 				nandc_set_read_loc(nandc, 0, data_size,
1871 						   oob_size, 1);
1872 			}
1873 		}
1874 
1875 		config_nand_cw_read(nandc, true);
1876 
1877 		if (data_buf)
1878 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1879 				      data_size, 0);
1880 
1881 		/*
1882 		 * when ecc is enabled, the controller doesn't read the real
1883 		 * or dummy bad block markers in each chunk. To maintain a
1884 		 * consistent layout across RAW and ECC reads, we just
1885 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1886 		 * 0xffs)
1887 		 */
1888 		if (oob_buf) {
1889 			int j;
1890 
1891 			for (j = 0; j < host->bbm_size; j++)
1892 				*oob_buf++ = 0xff;
1893 
1894 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1895 				      oob_buf, oob_size, 0);
1896 		}
1897 
1898 		if (data_buf)
1899 			data_buf += data_size;
1900 		if (oob_buf)
1901 			oob_buf += oob_size;
1902 	}
1903 
1904 	ret = submit_descs(nandc);
1905 	free_descs(nandc);
1906 
1907 	if (ret) {
1908 		dev_err(nandc->dev, "failure to read page/oob\n");
1909 		return ret;
1910 	}
1911 
1912 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1913 }
1914 
1915 /*
1916  * a helper that copies the last step/codeword of a page (containing free oob)
1917  * into our local buffer
1918  */
1919 static int copy_last_cw(struct qcom_nand_host *host, int page)
1920 {
1921 	struct nand_chip *chip = &host->chip;
1922 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1923 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1924 	int size;
1925 	int ret;
1926 
1927 	clear_read_regs(nandc);
1928 
1929 	size = host->use_ecc ? host->cw_data : host->cw_size;
1930 
1931 	/* prepare a clean read buffer */
1932 	memset(nandc->data_buffer, 0xff, size);
1933 
1934 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1935 	update_rw_regs(host, 1, true);
1936 
1937 	config_nand_single_cw_page_read(nandc, host->use_ecc);
1938 
1939 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1940 
1941 	ret = submit_descs(nandc);
1942 	if (ret)
1943 		dev_err(nandc->dev, "failed to copy last codeword\n");
1944 
1945 	free_descs(nandc);
1946 
1947 	return ret;
1948 }
1949 
1950 /* implements ecc->read_page() */
1951 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1952 				int oob_required, int page)
1953 {
1954 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1955 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1956 	u8 *data_buf, *oob_buf = NULL;
1957 
1958 	nand_read_page_op(chip, page, 0, NULL, 0);
1959 	data_buf = buf;
1960 	oob_buf = oob_required ? chip->oob_poi : NULL;
1961 
1962 	clear_bam_transaction(nandc);
1963 
1964 	return read_page_ecc(host, data_buf, oob_buf, page);
1965 }
1966 
1967 /* implements ecc->read_page_raw() */
1968 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1969 				    int oob_required, int page)
1970 {
1971 	struct mtd_info *mtd = nand_to_mtd(chip);
1972 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1973 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1974 	int cw, ret;
1975 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1976 
1977 	for (cw = 0; cw < ecc->steps; cw++) {
1978 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1979 					     page, cw);
1980 		if (ret)
1981 			return ret;
1982 
1983 		data_buf += host->cw_data;
1984 		oob_buf += ecc->bytes;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 /* implements ecc->read_oob() */
1991 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1992 {
1993 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1994 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1995 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1996 
1997 	clear_read_regs(nandc);
1998 	clear_bam_transaction(nandc);
1999 
2000 	host->use_ecc = true;
2001 	set_address(host, 0, page);
2002 	update_rw_regs(host, ecc->steps, true);
2003 
2004 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2005 }
2006 
2007 /* implements ecc->write_page() */
2008 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2009 				 int oob_required, int page)
2010 {
2011 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2012 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2013 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2014 	u8 *data_buf, *oob_buf;
2015 	int i, ret;
2016 
2017 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2018 
2019 	clear_read_regs(nandc);
2020 	clear_bam_transaction(nandc);
2021 
2022 	data_buf = (u8 *)buf;
2023 	oob_buf = chip->oob_poi;
2024 
2025 	host->use_ecc = true;
2026 	update_rw_regs(host, ecc->steps, false);
2027 	config_nand_page_write(nandc);
2028 
2029 	for (i = 0; i < ecc->steps; i++) {
2030 		int data_size, oob_size;
2031 
2032 		if (i == (ecc->steps - 1)) {
2033 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2034 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2035 				   host->spare_bytes;
2036 		} else {
2037 			data_size = host->cw_data;
2038 			oob_size = ecc->bytes;
2039 		}
2040 
2041 
2042 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2043 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2044 
2045 		/*
2046 		 * when ECC is enabled, we don't really need to write anything
2047 		 * to oob for the first n - 1 codewords since these oob regions
2048 		 * just contain ECC bytes that's written by the controller
2049 		 * itself. For the last codeword, we skip the bbm positions and
2050 		 * write to the free oob area.
2051 		 */
2052 		if (i == (ecc->steps - 1)) {
2053 			oob_buf += host->bbm_size;
2054 
2055 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2056 				       oob_buf, oob_size, 0);
2057 		}
2058 
2059 		config_nand_cw_write(nandc);
2060 
2061 		data_buf += data_size;
2062 		oob_buf += oob_size;
2063 	}
2064 
2065 	ret = submit_descs(nandc);
2066 	if (ret)
2067 		dev_err(nandc->dev, "failure to write page\n");
2068 
2069 	free_descs(nandc);
2070 
2071 	if (!ret)
2072 		ret = nand_prog_page_end_op(chip);
2073 
2074 	return ret;
2075 }
2076 
2077 /* implements ecc->write_page_raw() */
2078 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2079 				     const uint8_t *buf, int oob_required,
2080 				     int page)
2081 {
2082 	struct mtd_info *mtd = nand_to_mtd(chip);
2083 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2084 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2085 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2086 	u8 *data_buf, *oob_buf;
2087 	int i, ret;
2088 
2089 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2090 	clear_read_regs(nandc);
2091 	clear_bam_transaction(nandc);
2092 
2093 	data_buf = (u8 *)buf;
2094 	oob_buf = chip->oob_poi;
2095 
2096 	host->use_ecc = false;
2097 	update_rw_regs(host, ecc->steps, false);
2098 	config_nand_page_write(nandc);
2099 
2100 	for (i = 0; i < ecc->steps; i++) {
2101 		int data_size1, data_size2, oob_size1, oob_size2;
2102 		int reg_off = FLASH_BUF_ACC;
2103 
2104 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2105 		oob_size1 = host->bbm_size;
2106 
2107 		if (i == (ecc->steps - 1)) {
2108 			data_size2 = ecc->size - data_size1 -
2109 				     ((ecc->steps - 1) << 2);
2110 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2111 				    host->spare_bytes;
2112 		} else {
2113 			data_size2 = host->cw_data - data_size1;
2114 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2115 		}
2116 
2117 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2118 			       NAND_BAM_NO_EOT);
2119 		reg_off += data_size1;
2120 		data_buf += data_size1;
2121 
2122 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2123 			       NAND_BAM_NO_EOT);
2124 		reg_off += oob_size1;
2125 		oob_buf += oob_size1;
2126 
2127 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2128 			       NAND_BAM_NO_EOT);
2129 		reg_off += data_size2;
2130 		data_buf += data_size2;
2131 
2132 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2133 		oob_buf += oob_size2;
2134 
2135 		config_nand_cw_write(nandc);
2136 	}
2137 
2138 	ret = submit_descs(nandc);
2139 	if (ret)
2140 		dev_err(nandc->dev, "failure to write raw page\n");
2141 
2142 	free_descs(nandc);
2143 
2144 	if (!ret)
2145 		ret = nand_prog_page_end_op(chip);
2146 
2147 	return ret;
2148 }
2149 
2150 /*
2151  * implements ecc->write_oob()
2152  *
2153  * the NAND controller cannot write only data or only OOB within a codeword
2154  * since ECC is calculated for the combined codeword. So update the OOB from
2155  * chip->oob_poi, and pad the data area with OxFF before writing.
2156  */
2157 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2158 {
2159 	struct mtd_info *mtd = nand_to_mtd(chip);
2160 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2161 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2162 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2163 	u8 *oob = chip->oob_poi;
2164 	int data_size, oob_size;
2165 	int ret;
2166 
2167 	host->use_ecc = true;
2168 	clear_bam_transaction(nandc);
2169 
2170 	/* calculate the data and oob size for the last codeword/step */
2171 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2172 	oob_size = mtd->oobavail;
2173 
2174 	memset(nandc->data_buffer, 0xff, host->cw_data);
2175 	/* override new oob content to last codeword */
2176 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2177 				    0, mtd->oobavail);
2178 
2179 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2180 	update_rw_regs(host, 1, false);
2181 
2182 	config_nand_page_write(nandc);
2183 	write_data_dma(nandc, FLASH_BUF_ACC,
2184 		       nandc->data_buffer, data_size + oob_size, 0);
2185 	config_nand_cw_write(nandc);
2186 
2187 	ret = submit_descs(nandc);
2188 
2189 	free_descs(nandc);
2190 
2191 	if (ret) {
2192 		dev_err(nandc->dev, "failure to write oob\n");
2193 		return -EIO;
2194 	}
2195 
2196 	return nand_prog_page_end_op(chip);
2197 }
2198 
2199 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2200 {
2201 	struct mtd_info *mtd = nand_to_mtd(chip);
2202 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2203 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2204 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2205 	int page, ret, bbpos, bad = 0;
2206 
2207 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2208 
2209 	/*
2210 	 * configure registers for a raw sub page read, the address is set to
2211 	 * the beginning of the last codeword, we don't care about reading ecc
2212 	 * portion of oob. we just want the first few bytes from this codeword
2213 	 * that contains the BBM
2214 	 */
2215 	host->use_ecc = false;
2216 
2217 	clear_bam_transaction(nandc);
2218 	ret = copy_last_cw(host, page);
2219 	if (ret)
2220 		goto err;
2221 
2222 	if (check_flash_errors(host, 1)) {
2223 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2224 		goto err;
2225 	}
2226 
2227 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2228 
2229 	bad = nandc->data_buffer[bbpos] != 0xff;
2230 
2231 	if (chip->options & NAND_BUSWIDTH_16)
2232 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2233 err:
2234 	return bad;
2235 }
2236 
2237 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2238 {
2239 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2240 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2241 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2242 	int page, ret;
2243 
2244 	clear_read_regs(nandc);
2245 	clear_bam_transaction(nandc);
2246 
2247 	/*
2248 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2249 	 * we don't care about the rest of the content in the codeword since
2250 	 * we aren't going to use this block again
2251 	 */
2252 	memset(nandc->data_buffer, 0x00, host->cw_size);
2253 
2254 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2255 
2256 	/* prepare write */
2257 	host->use_ecc = false;
2258 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2259 	update_rw_regs(host, 1, false);
2260 
2261 	config_nand_page_write(nandc);
2262 	write_data_dma(nandc, FLASH_BUF_ACC,
2263 		       nandc->data_buffer, host->cw_size, 0);
2264 	config_nand_cw_write(nandc);
2265 
2266 	ret = submit_descs(nandc);
2267 
2268 	free_descs(nandc);
2269 
2270 	if (ret) {
2271 		dev_err(nandc->dev, "failure to update BBM\n");
2272 		return -EIO;
2273 	}
2274 
2275 	return nand_prog_page_end_op(chip);
2276 }
2277 
2278 /*
2279  * the three functions below implement chip->legacy.read_byte(),
2280  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2281  * aren't used for reading/writing page data, they are used for smaller data
2282  * like reading	id, status etc
2283  */
2284 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2285 {
2286 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2287 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2288 	u8 *buf = nandc->data_buffer;
2289 	u8 ret = 0x0;
2290 
2291 	if (host->last_command == NAND_CMD_STATUS) {
2292 		ret = host->status;
2293 
2294 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2295 
2296 		return ret;
2297 	}
2298 
2299 	if (nandc->buf_start < nandc->buf_count)
2300 		ret = buf[nandc->buf_start++];
2301 
2302 	return ret;
2303 }
2304 
2305 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2306 {
2307 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2308 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2309 
2310 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2311 	nandc->buf_start += real_len;
2312 }
2313 
2314 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2315 				 int len)
2316 {
2317 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2318 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2319 
2320 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2321 
2322 	nandc->buf_start += real_len;
2323 }
2324 
2325 /* we support only one external chip for now */
2326 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2327 {
2328 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2329 
2330 	if (chipnr <= 0)
2331 		return;
2332 
2333 	dev_warn(nandc->dev, "invalid chip select\n");
2334 }
2335 
2336 /*
2337  * NAND controller page layout info
2338  *
2339  * Layout with ECC enabled:
2340  *
2341  * |----------------------|  |---------------------------------|
2342  * |           xx.......yy|  |             *********xx.......yy|
2343  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2344  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2345  * |           xx.......yy|  |             *********xx.......yy|
2346  * |----------------------|  |---------------------------------|
2347  *     codeword 1,2..n-1                  codeword n
2348  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2349  *
2350  * n = Number of codewords in the page
2351  * . = ECC bytes
2352  * * = Spare/free bytes
2353  * x = Unused byte(s)
2354  * y = Reserved byte(s)
2355  *
2356  * 2K page: n = 4, spare = 16 bytes
2357  * 4K page: n = 8, spare = 32 bytes
2358  * 8K page: n = 16, spare = 64 bytes
2359  *
2360  * the qcom nand controller operates at a sub page/codeword level. each
2361  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2362  * the number of ECC bytes vary based on the ECC strength and the bus width.
2363  *
2364  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2365  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2366  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2367  *
2368  * When we access a page with ECC enabled, the reserved bytes(s) are not
2369  * accessible at all. When reading, we fill up these unreadable positions
2370  * with 0xffs. When writing, the controller skips writing the inaccessible
2371  * bytes.
2372  *
2373  * Layout with ECC disabled:
2374  *
2375  * |------------------------------|  |---------------------------------------|
2376  * |         yy          xx.......|  |         bb          *********xx.......|
2377  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2378  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2379  * |         yy          xx.......|  |         bb          *********xx.......|
2380  * |------------------------------|  |---------------------------------------|
2381  *         codeword 1,2..n-1                        codeword n
2382  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2383  *
2384  * n = Number of codewords in the page
2385  * . = ECC bytes
2386  * * = Spare/free bytes
2387  * x = Unused byte(s)
2388  * y = Dummy Bad Bock byte(s)
2389  * b = Real Bad Block byte(s)
2390  * size1/size2 = function of codeword size and 'n'
2391  *
2392  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2393  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2394  * Block Markers. In the last codeword, this position contains the real BBM
2395  *
2396  * In order to have a consistent layout between RAW and ECC modes, we assume
2397  * the following OOB layout arrangement:
2398  *
2399  * |-----------|  |--------------------|
2400  * |yyxx.......|  |bb*********xx.......|
2401  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2402  * |yyxx.......|  |bb*********xx.......|
2403  * |yyxx.......|  |bb*********xx.......|
2404  * |-----------|  |--------------------|
2405  *  first n - 1       nth OOB region
2406  *  OOB regions
2407  *
2408  * n = Number of codewords in the page
2409  * . = ECC bytes
2410  * * = FREE OOB bytes
2411  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2412  * x = Unused byte(s)
2413  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2414  *
2415  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2416  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2417  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2418  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2419  * the sum of the three).
2420  */
2421 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2422 				   struct mtd_oob_region *oobregion)
2423 {
2424 	struct nand_chip *chip = mtd_to_nand(mtd);
2425 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2426 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2427 
2428 	if (section > 1)
2429 		return -ERANGE;
2430 
2431 	if (!section) {
2432 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2433 				    host->bbm_size;
2434 		oobregion->offset = 0;
2435 	} else {
2436 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2437 		oobregion->offset = mtd->oobsize - oobregion->length;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2444 				     struct mtd_oob_region *oobregion)
2445 {
2446 	struct nand_chip *chip = mtd_to_nand(mtd);
2447 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2448 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2449 
2450 	if (section)
2451 		return -ERANGE;
2452 
2453 	oobregion->length = ecc->steps * 4;
2454 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2455 
2456 	return 0;
2457 }
2458 
2459 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2460 	.ecc = qcom_nand_ooblayout_ecc,
2461 	.free = qcom_nand_ooblayout_free,
2462 };
2463 
2464 static int
2465 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2466 {
2467 	return strength == 4 ? 12 : 16;
2468 }
2469 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2470 		     NANDC_STEP_SIZE, 4, 8);
2471 
2472 static int qcom_nand_attach_chip(struct nand_chip *chip)
2473 {
2474 	struct mtd_info *mtd = nand_to_mtd(chip);
2475 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2476 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2477 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2478 	int cwperpage, bad_block_byte, ret;
2479 	bool wide_bus;
2480 	int ecc_mode = 1;
2481 
2482 	/* controller only supports 512 bytes data steps */
2483 	ecc->size = NANDC_STEP_SIZE;
2484 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2485 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2486 
2487 	/*
2488 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2489 	 * so remaining bytes can be used for ECC.
2490 	 */
2491 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2492 				   mtd->oobsize - (cwperpage * 4));
2493 	if (ret) {
2494 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2495 		return ret;
2496 	}
2497 
2498 	if (ecc->strength >= 8) {
2499 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2500 		host->bch_enabled = true;
2501 		ecc_mode = 1;
2502 
2503 		if (wide_bus) {
2504 			host->ecc_bytes_hw = 14;
2505 			host->spare_bytes = 0;
2506 			host->bbm_size = 2;
2507 		} else {
2508 			host->ecc_bytes_hw = 13;
2509 			host->spare_bytes = 2;
2510 			host->bbm_size = 1;
2511 		}
2512 	} else {
2513 		/*
2514 		 * if the controller supports BCH for 4 bit ECC, the controller
2515 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2516 		 * always 10 bytes
2517 		 */
2518 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2519 			/* BCH */
2520 			host->bch_enabled = true;
2521 			ecc_mode = 0;
2522 
2523 			if (wide_bus) {
2524 				host->ecc_bytes_hw = 8;
2525 				host->spare_bytes = 2;
2526 				host->bbm_size = 2;
2527 			} else {
2528 				host->ecc_bytes_hw = 7;
2529 				host->spare_bytes = 4;
2530 				host->bbm_size = 1;
2531 			}
2532 		} else {
2533 			/* RS */
2534 			host->ecc_bytes_hw = 10;
2535 
2536 			if (wide_bus) {
2537 				host->spare_bytes = 0;
2538 				host->bbm_size = 2;
2539 			} else {
2540 				host->spare_bytes = 1;
2541 				host->bbm_size = 1;
2542 			}
2543 		}
2544 	}
2545 
2546 	/*
2547 	 * we consider ecc->bytes as the sum of all the non-data content in a
2548 	 * step. It gives us a clean representation of the oob area (even if
2549 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2550 	 * ECC and 12 bytes for 4 bit ECC
2551 	 */
2552 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2553 
2554 	ecc->read_page		= qcom_nandc_read_page;
2555 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2556 	ecc->read_oob		= qcom_nandc_read_oob;
2557 	ecc->write_page		= qcom_nandc_write_page;
2558 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2559 	ecc->write_oob		= qcom_nandc_write_oob;
2560 
2561 	ecc->mode = NAND_ECC_HW;
2562 
2563 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2564 
2565 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2566 				     cwperpage);
2567 
2568 	/*
2569 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2570 	 * spare data with ECC too. We protect spare data by default, so we set
2571 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2572 	 */
2573 	host->cw_data = 516;
2574 
2575 	/*
2576 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2577 	 * for 8 bit ECC
2578 	 */
2579 	host->cw_size = host->cw_data + ecc->bytes;
2580 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2581 
2582 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2583 				| host->cw_data << UD_SIZE_BYTES
2584 				| 0 << DISABLE_STATUS_AFTER_WRITE
2585 				| 5 << NUM_ADDR_CYCLES
2586 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2587 				| 0 << STATUS_BFR_READ
2588 				| 1 << SET_RD_MODE_AFTER_STATUS
2589 				| host->spare_bytes << SPARE_SIZE_BYTES;
2590 
2591 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2592 				| 0 <<  CS_ACTIVE_BSY
2593 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2594 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2595 				| 2 << WR_RD_BSY_GAP
2596 				| wide_bus << WIDE_FLASH
2597 				| host->bch_enabled << ENABLE_BCH_ECC;
2598 
2599 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2600 				| host->cw_size << UD_SIZE_BYTES
2601 				| 5 << NUM_ADDR_CYCLES
2602 				| 0 << SPARE_SIZE_BYTES;
2603 
2604 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2605 				| 0 << CS_ACTIVE_BSY
2606 				| 17 << BAD_BLOCK_BYTE_NUM
2607 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2608 				| 2 << WR_RD_BSY_GAP
2609 				| wide_bus << WIDE_FLASH
2610 				| 1 << DEV0_CFG1_ECC_DISABLE;
2611 
2612 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2613 				| 0 << ECC_SW_RESET
2614 				| host->cw_data << ECC_NUM_DATA_BYTES
2615 				| 1 << ECC_FORCE_CLK_OPEN
2616 				| ecc_mode << ECC_MODE
2617 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2618 
2619 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2620 
2621 	host->clrflashstatus = FS_READY_BSY_N;
2622 	host->clrreadstatus = 0xc0;
2623 	nandc->regs->erased_cw_detect_cfg_clr =
2624 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2625 	nandc->regs->erased_cw_detect_cfg_set =
2626 		cpu_to_le32(SET_ERASED_PAGE_DET);
2627 
2628 	dev_dbg(nandc->dev,
2629 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2630 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2631 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2632 		cwperpage);
2633 
2634 	return 0;
2635 }
2636 
2637 static const struct nand_controller_ops qcom_nandc_ops = {
2638 	.attach_chip = qcom_nand_attach_chip,
2639 };
2640 
2641 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2642 {
2643 	int ret;
2644 
2645 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2646 	if (ret) {
2647 		dev_err(nandc->dev, "failed to set DMA mask\n");
2648 		return ret;
2649 	}
2650 
2651 	/*
2652 	 * we use the internal buffer for reading ONFI params, reading small
2653 	 * data like ID and status, and preforming read-copy-write operations
2654 	 * when writing to a codeword partially. 532 is the maximum possible
2655 	 * size of a codeword for our nand controller
2656 	 */
2657 	nandc->buf_size = 532;
2658 
2659 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2660 					GFP_KERNEL);
2661 	if (!nandc->data_buffer)
2662 		return -ENOMEM;
2663 
2664 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2665 					GFP_KERNEL);
2666 	if (!nandc->regs)
2667 		return -ENOMEM;
2668 
2669 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2670 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2671 				GFP_KERNEL);
2672 	if (!nandc->reg_read_buf)
2673 		return -ENOMEM;
2674 
2675 	if (nandc->props->is_bam) {
2676 		nandc->reg_read_dma =
2677 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2678 				       MAX_REG_RD *
2679 				       sizeof(*nandc->reg_read_buf),
2680 				       DMA_FROM_DEVICE);
2681 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2682 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2683 			return -EIO;
2684 		}
2685 
2686 		nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2687 		if (!nandc->tx_chan) {
2688 			dev_err(nandc->dev, "failed to request tx channel\n");
2689 			return -ENODEV;
2690 		}
2691 
2692 		nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2693 		if (!nandc->rx_chan) {
2694 			dev_err(nandc->dev, "failed to request rx channel\n");
2695 			return -ENODEV;
2696 		}
2697 
2698 		nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2699 		if (!nandc->cmd_chan) {
2700 			dev_err(nandc->dev, "failed to request cmd channel\n");
2701 			return -ENODEV;
2702 		}
2703 
2704 		/*
2705 		 * Initially allocate BAM transaction to read ONFI param page.
2706 		 * After detecting all the devices, this BAM transaction will
2707 		 * be freed and the next BAM tranasction will be allocated with
2708 		 * maximum codeword size
2709 		 */
2710 		nandc->max_cwperpage = 1;
2711 		nandc->bam_txn = alloc_bam_transaction(nandc);
2712 		if (!nandc->bam_txn) {
2713 			dev_err(nandc->dev,
2714 				"failed to allocate bam transaction\n");
2715 			return -ENOMEM;
2716 		}
2717 	} else {
2718 		nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2719 		if (!nandc->chan) {
2720 			dev_err(nandc->dev,
2721 				"failed to request slave channel\n");
2722 			return -ENODEV;
2723 		}
2724 	}
2725 
2726 	INIT_LIST_HEAD(&nandc->desc_list);
2727 	INIT_LIST_HEAD(&nandc->host_list);
2728 
2729 	nand_controller_init(&nandc->controller);
2730 	nandc->controller.ops = &qcom_nandc_ops;
2731 
2732 	return 0;
2733 }
2734 
2735 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2736 {
2737 	if (nandc->props->is_bam) {
2738 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2739 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2740 					 MAX_REG_RD *
2741 					 sizeof(*nandc->reg_read_buf),
2742 					 DMA_FROM_DEVICE);
2743 
2744 		if (nandc->tx_chan)
2745 			dma_release_channel(nandc->tx_chan);
2746 
2747 		if (nandc->rx_chan)
2748 			dma_release_channel(nandc->rx_chan);
2749 
2750 		if (nandc->cmd_chan)
2751 			dma_release_channel(nandc->cmd_chan);
2752 	} else {
2753 		if (nandc->chan)
2754 			dma_release_channel(nandc->chan);
2755 	}
2756 }
2757 
2758 /* one time setup of a few nand controller registers */
2759 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2760 {
2761 	u32 nand_ctrl;
2762 
2763 	/* kill onenand */
2764 	nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2765 	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2766 		    NAND_DEV_CMD_VLD_VAL);
2767 
2768 	/* enable ADM or BAM DMA */
2769 	if (nandc->props->is_bam) {
2770 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2771 		nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2772 	} else {
2773 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2774 	}
2775 
2776 	/* save the original values of these registers */
2777 	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2778 	nandc->vld = NAND_DEV_CMD_VLD_VAL;
2779 
2780 	return 0;
2781 }
2782 
2783 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2784 					    struct qcom_nand_host *host,
2785 					    struct device_node *dn)
2786 {
2787 	struct nand_chip *chip = &host->chip;
2788 	struct mtd_info *mtd = nand_to_mtd(chip);
2789 	struct device *dev = nandc->dev;
2790 	int ret;
2791 
2792 	ret = of_property_read_u32(dn, "reg", &host->cs);
2793 	if (ret) {
2794 		dev_err(dev, "can't get chip-select\n");
2795 		return -ENXIO;
2796 	}
2797 
2798 	nand_set_flash_node(chip, dn);
2799 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2800 	if (!mtd->name)
2801 		return -ENOMEM;
2802 
2803 	mtd->owner = THIS_MODULE;
2804 	mtd->dev.parent = dev;
2805 
2806 	chip->legacy.cmdfunc	= qcom_nandc_command;
2807 	chip->legacy.select_chip	= qcom_nandc_select_chip;
2808 	chip->legacy.read_byte	= qcom_nandc_read_byte;
2809 	chip->legacy.read_buf	= qcom_nandc_read_buf;
2810 	chip->legacy.write_buf	= qcom_nandc_write_buf;
2811 	chip->legacy.set_features	= nand_get_set_features_notsupp;
2812 	chip->legacy.get_features	= nand_get_set_features_notsupp;
2813 
2814 	/*
2815 	 * the bad block marker is readable only when we read the last codeword
2816 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2817 	 * helpers don't allow us to read BB from a nand chip with ECC
2818 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2819 	 * and block_markbad helpers until we permanently switch to using
2820 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2821 	 */
2822 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2823 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2824 
2825 	chip->controller = &nandc->controller;
2826 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2827 			 NAND_SKIP_BBTSCAN;
2828 
2829 	/* set up initial status value */
2830 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2831 
2832 	ret = nand_scan(chip, 1);
2833 	if (ret)
2834 		return ret;
2835 
2836 	if (nandc->props->is_bam) {
2837 		free_bam_transaction(nandc);
2838 		nandc->bam_txn = alloc_bam_transaction(nandc);
2839 		if (!nandc->bam_txn) {
2840 			dev_err(nandc->dev,
2841 				"failed to allocate bam transaction\n");
2842 			return -ENOMEM;
2843 		}
2844 	}
2845 
2846 	ret = mtd_device_register(mtd, NULL, 0);
2847 	if (ret)
2848 		nand_cleanup(chip);
2849 
2850 	return ret;
2851 }
2852 
2853 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2854 {
2855 	struct device *dev = nandc->dev;
2856 	struct device_node *dn = dev->of_node, *child;
2857 	struct qcom_nand_host *host;
2858 	int ret;
2859 
2860 	for_each_available_child_of_node(dn, child) {
2861 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2862 		if (!host) {
2863 			of_node_put(child);
2864 			return -ENOMEM;
2865 		}
2866 
2867 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2868 		if (ret) {
2869 			devm_kfree(dev, host);
2870 			continue;
2871 		}
2872 
2873 		list_add_tail(&host->node, &nandc->host_list);
2874 	}
2875 
2876 	if (list_empty(&nandc->host_list))
2877 		return -ENODEV;
2878 
2879 	return 0;
2880 }
2881 
2882 /* parse custom DT properties here */
2883 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2884 {
2885 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2886 	struct device_node *np = nandc->dev->of_node;
2887 	int ret;
2888 
2889 	if (!nandc->props->is_bam) {
2890 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2891 					   &nandc->cmd_crci);
2892 		if (ret) {
2893 			dev_err(nandc->dev, "command CRCI unspecified\n");
2894 			return ret;
2895 		}
2896 
2897 		ret = of_property_read_u32(np, "qcom,data-crci",
2898 					   &nandc->data_crci);
2899 		if (ret) {
2900 			dev_err(nandc->dev, "data CRCI unspecified\n");
2901 			return ret;
2902 		}
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 static int qcom_nandc_probe(struct platform_device *pdev)
2909 {
2910 	struct qcom_nand_controller *nandc;
2911 	const void *dev_data;
2912 	struct device *dev = &pdev->dev;
2913 	struct resource *res;
2914 	int ret;
2915 
2916 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2917 	if (!nandc)
2918 		return -ENOMEM;
2919 
2920 	platform_set_drvdata(pdev, nandc);
2921 	nandc->dev = dev;
2922 
2923 	dev_data = of_device_get_match_data(dev);
2924 	if (!dev_data) {
2925 		dev_err(&pdev->dev, "failed to get device data\n");
2926 		return -ENODEV;
2927 	}
2928 
2929 	nandc->props = dev_data;
2930 
2931 	nandc->core_clk = devm_clk_get(dev, "core");
2932 	if (IS_ERR(nandc->core_clk))
2933 		return PTR_ERR(nandc->core_clk);
2934 
2935 	nandc->aon_clk = devm_clk_get(dev, "aon");
2936 	if (IS_ERR(nandc->aon_clk))
2937 		return PTR_ERR(nandc->aon_clk);
2938 
2939 	ret = qcom_nandc_parse_dt(pdev);
2940 	if (ret)
2941 		return ret;
2942 
2943 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2944 	nandc->base = devm_ioremap_resource(dev, res);
2945 	if (IS_ERR(nandc->base))
2946 		return PTR_ERR(nandc->base);
2947 
2948 	nandc->base_phys = res->start;
2949 	nandc->base_dma = dma_map_resource(dev, res->start,
2950 					   resource_size(res),
2951 					   DMA_BIDIRECTIONAL, 0);
2952 	if (!nandc->base_dma)
2953 		return -ENXIO;
2954 
2955 	ret = qcom_nandc_alloc(nandc);
2956 	if (ret)
2957 		goto err_nandc_alloc;
2958 
2959 	ret = clk_prepare_enable(nandc->core_clk);
2960 	if (ret)
2961 		goto err_core_clk;
2962 
2963 	ret = clk_prepare_enable(nandc->aon_clk);
2964 	if (ret)
2965 		goto err_aon_clk;
2966 
2967 	ret = qcom_nandc_setup(nandc);
2968 	if (ret)
2969 		goto err_setup;
2970 
2971 	ret = qcom_probe_nand_devices(nandc);
2972 	if (ret)
2973 		goto err_setup;
2974 
2975 	return 0;
2976 
2977 err_setup:
2978 	clk_disable_unprepare(nandc->aon_clk);
2979 err_aon_clk:
2980 	clk_disable_unprepare(nandc->core_clk);
2981 err_core_clk:
2982 	qcom_nandc_unalloc(nandc);
2983 err_nandc_alloc:
2984 	dma_unmap_resource(dev, res->start, resource_size(res),
2985 			   DMA_BIDIRECTIONAL, 0);
2986 
2987 	return ret;
2988 }
2989 
2990 static int qcom_nandc_remove(struct platform_device *pdev)
2991 {
2992 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2993 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2994 	struct qcom_nand_host *host;
2995 
2996 	list_for_each_entry(host, &nandc->host_list, node)
2997 		nand_release(&host->chip);
2998 
2999 
3000 	qcom_nandc_unalloc(nandc);
3001 
3002 	clk_disable_unprepare(nandc->aon_clk);
3003 	clk_disable_unprepare(nandc->core_clk);
3004 
3005 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3006 			   DMA_BIDIRECTIONAL, 0);
3007 
3008 	return 0;
3009 }
3010 
3011 static const struct qcom_nandc_props ipq806x_nandc_props = {
3012 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3013 	.is_bam = false,
3014 	.dev_cmd_reg_start = 0x0,
3015 };
3016 
3017 static const struct qcom_nandc_props ipq4019_nandc_props = {
3018 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3019 	.is_bam = true,
3020 	.dev_cmd_reg_start = 0x0,
3021 };
3022 
3023 static const struct qcom_nandc_props ipq8074_nandc_props = {
3024 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3025 	.is_bam = true,
3026 	.dev_cmd_reg_start = 0x7000,
3027 };
3028 
3029 /*
3030  * data will hold a struct pointer containing more differences once we support
3031  * more controller variants
3032  */
3033 static const struct of_device_id qcom_nandc_of_match[] = {
3034 	{
3035 		.compatible = "qcom,ipq806x-nand",
3036 		.data = &ipq806x_nandc_props,
3037 	},
3038 	{
3039 		.compatible = "qcom,ipq4019-nand",
3040 		.data = &ipq4019_nandc_props,
3041 	},
3042 	{
3043 		.compatible = "qcom,ipq8074-nand",
3044 		.data = &ipq8074_nandc_props,
3045 	},
3046 	{}
3047 };
3048 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3049 
3050 static struct platform_driver qcom_nandc_driver = {
3051 	.driver = {
3052 		.name = "qcom-nandc",
3053 		.of_match_table = qcom_nandc_of_match,
3054 	},
3055 	.probe   = qcom_nandc_probe,
3056 	.remove  = qcom_nandc_remove,
3057 };
3058 module_platform_driver(qcom_nandc_driver);
3059 
3060 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3061 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3062 MODULE_LICENSE("GPL v2");
3063