xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/slab.h>
8 #include <linux/bitops.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
18 
19 /* NANDc reg offsets */
20 #define	NAND_FLASH_CMD			0x00
21 #define	NAND_ADDR0			0x04
22 #define	NAND_ADDR1			0x08
23 #define	NAND_FLASH_CHIP_SELECT		0x0c
24 #define	NAND_EXEC_CMD			0x10
25 #define	NAND_FLASH_STATUS		0x14
26 #define	NAND_BUFFER_STATUS		0x18
27 #define	NAND_DEV0_CFG0			0x20
28 #define	NAND_DEV0_CFG1			0x24
29 #define	NAND_DEV0_ECC_CFG		0x28
30 #define	NAND_AUTO_STATUS_EN		0x2c
31 #define	NAND_DEV1_CFG0			0x30
32 #define	NAND_DEV1_CFG1			0x34
33 #define	NAND_READ_ID			0x40
34 #define	NAND_READ_STATUS		0x44
35 #define	NAND_DEV_CMD0			0xa0
36 #define	NAND_DEV_CMD1			0xa4
37 #define	NAND_DEV_CMD2			0xa8
38 #define	NAND_DEV_CMD_VLD		0xac
39 #define	SFLASHC_BURST_CFG		0xe0
40 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
41 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
42 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
43 #define	FLASH_BUF_ACC			0x100
44 
45 #define	NAND_CTRL			0xf00
46 #define	NAND_VERSION			0xf08
47 #define	NAND_READ_LOCATION_0		0xf20
48 #define	NAND_READ_LOCATION_1		0xf24
49 #define	NAND_READ_LOCATION_2		0xf28
50 #define	NAND_READ_LOCATION_3		0xf2c
51 #define	NAND_READ_LOCATION_LAST_CW_0	0xf40
52 #define	NAND_READ_LOCATION_LAST_CW_1	0xf44
53 #define	NAND_READ_LOCATION_LAST_CW_2	0xf48
54 #define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
55 
56 /* dummy register offsets, used by write_reg_dma */
57 #define	NAND_DEV_CMD1_RESTORE		0xdead
58 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
59 
60 /* NAND_FLASH_CMD bits */
61 #define	PAGE_ACC			BIT(4)
62 #define	LAST_PAGE			BIT(5)
63 
64 /* NAND_FLASH_CHIP_SELECT bits */
65 #define	NAND_DEV_SEL			0
66 #define	DM_EN				BIT(2)
67 
68 /* NAND_FLASH_STATUS bits */
69 #define	FS_OP_ERR			BIT(4)
70 #define	FS_READY_BSY_N			BIT(5)
71 #define	FS_MPU_ERR			BIT(8)
72 #define	FS_DEVICE_STS_ERR		BIT(16)
73 #define	FS_DEVICE_WP			BIT(23)
74 
75 /* NAND_BUFFER_STATUS bits */
76 #define	BS_UNCORRECTABLE_BIT		BIT(8)
77 #define	BS_CORRECTABLE_ERR_MSK		0x1f
78 
79 /* NAND_DEVn_CFG0 bits */
80 #define	DISABLE_STATUS_AFTER_WRITE	4
81 #define	CW_PER_PAGE			6
82 #define	UD_SIZE_BYTES			9
83 #define	ECC_PARITY_SIZE_BYTES_RS	19
84 #define	SPARE_SIZE_BYTES		23
85 #define	NUM_ADDR_CYCLES			27
86 #define	STATUS_BFR_READ			30
87 #define	SET_RD_MODE_AFTER_STATUS	31
88 
89 /* NAND_DEVn_CFG0 bits */
90 #define	DEV0_CFG1_ECC_DISABLE		0
91 #define	WIDE_FLASH			1
92 #define	NAND_RECOVERY_CYCLES		2
93 #define	CS_ACTIVE_BSY			5
94 #define	BAD_BLOCK_BYTE_NUM		6
95 #define	BAD_BLOCK_IN_SPARE_AREA		16
96 #define	WR_RD_BSY_GAP			17
97 #define	ENABLE_BCH_ECC			27
98 
99 /* NAND_DEV0_ECC_CFG bits */
100 #define	ECC_CFG_ECC_DISABLE		0
101 #define	ECC_SW_RESET			1
102 #define	ECC_MODE			4
103 #define	ECC_PARITY_SIZE_BYTES_BCH	8
104 #define	ECC_NUM_DATA_BYTES		16
105 #define	ECC_FORCE_CLK_OPEN		30
106 
107 /* NAND_DEV_CMD1 bits */
108 #define	READ_ADDR			0
109 
110 /* NAND_DEV_CMD_VLD bits */
111 #define	READ_START_VLD			BIT(0)
112 #define	READ_STOP_VLD			BIT(1)
113 #define	WRITE_START_VLD			BIT(2)
114 #define	ERASE_START_VLD			BIT(3)
115 #define	SEQ_READ_START_VLD		BIT(4)
116 
117 /* NAND_EBI2_ECC_BUF_CFG bits */
118 #define	NUM_STEPS			0
119 
120 /* NAND_ERASED_CW_DETECT_CFG bits */
121 #define	ERASED_CW_ECC_MASK		1
122 #define	AUTO_DETECT_RES			0
123 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
124 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
125 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
126 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
127 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
128 
129 /* NAND_ERASED_CW_DETECT_STATUS bits */
130 #define	PAGE_ALL_ERASED			BIT(7)
131 #define	CODEWORD_ALL_ERASED		BIT(6)
132 #define	PAGE_ERASED			BIT(5)
133 #define	CODEWORD_ERASED			BIT(4)
134 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
135 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
136 
137 /* NAND_READ_LOCATION_n bits */
138 #define READ_LOCATION_OFFSET		0
139 #define READ_LOCATION_SIZE		16
140 #define READ_LOCATION_LAST		31
141 
142 /* Version Mask */
143 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
144 #define	NAND_VERSION_MAJOR_SHIFT	28
145 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
146 #define	NAND_VERSION_MINOR_SHIFT	16
147 
148 /* NAND OP_CMDs */
149 #define	OP_PAGE_READ			0x2
150 #define	OP_PAGE_READ_WITH_ECC		0x3
151 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
152 #define	OP_PAGE_READ_ONFI_READ		0x5
153 #define	OP_PROGRAM_PAGE			0x6
154 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
155 #define	OP_PROGRAM_PAGE_SPARE		0x9
156 #define	OP_BLOCK_ERASE			0xa
157 #define	OP_FETCH_ID			0xb
158 #define	OP_RESET_DEVICE			0xd
159 
160 /* Default Value for NAND_DEV_CMD_VLD */
161 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
162 					 ERASE_START_VLD | SEQ_READ_START_VLD)
163 
164 /* NAND_CTRL bits */
165 #define	BAM_MODE_EN			BIT(0)
166 
167 /*
168  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
169  * the driver calls the chunks 'step' or 'codeword' interchangeably
170  */
171 #define	NANDC_STEP_SIZE			512
172 
173 /*
174  * the largest page size we support is 8K, this will have 16 steps/codewords
175  * of 512 bytes each
176  */
177 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
178 
179 /* we read at most 3 registers per codeword scan */
180 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
181 
182 /* ECC modes supported by the controller */
183 #define	ECC_NONE	BIT(0)
184 #define	ECC_RS_4BIT	BIT(1)
185 #define	ECC_BCH_4BIT	BIT(2)
186 #define	ECC_BCH_8BIT	BIT(3)
187 
188 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc)	\
189 nandc_set_reg(chip, reg,			\
190 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
191 	      ((read_size) << READ_LOCATION_SIZE) |			\
192 	      ((is_last_read_loc) << READ_LOCATION_LAST))
193 
194 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc)	\
195 nandc_set_reg(chip, reg,			\
196 	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
197 	      ((read_size) << READ_LOCATION_SIZE) |			\
198 	      ((is_last_read_loc) << READ_LOCATION_LAST))
199 /*
200  * Returns the actual register address for all NAND_DEV_ registers
201  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
202  */
203 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
204 
205 /* Returns the NAND register physical address */
206 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
207 
208 /* Returns the dma address for reg read buffer */
209 #define reg_buf_dma_addr(chip, vaddr) \
210 	((chip)->reg_read_dma + \
211 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
212 
213 #define QPIC_PER_CW_CMD_ELEMENTS	32
214 #define QPIC_PER_CW_CMD_SGL		32
215 #define QPIC_PER_CW_DATA_SGL		8
216 
217 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
218 
219 /*
220  * Flags used in DMA descriptor preparation helper functions
221  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
222  */
223 /* Don't set the EOT in current tx BAM sgl */
224 #define NAND_BAM_NO_EOT			BIT(0)
225 /* Set the NWD flag in current BAM sgl */
226 #define NAND_BAM_NWD			BIT(1)
227 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
228 #define NAND_BAM_NEXT_SGL		BIT(2)
229 /*
230  * Erased codeword status is being used two times in single transfer so this
231  * flag will determine the current value of erased codeword status register
232  */
233 #define NAND_ERASED_CW_SET		BIT(4)
234 
235 /*
236  * This data type corresponds to the BAM transaction which will be used for all
237  * NAND transfers.
238  * @bam_ce - the array of BAM command elements
239  * @cmd_sgl - sgl for NAND BAM command pipe
240  * @data_sgl - sgl for NAND BAM consumer/producer pipe
241  * @bam_ce_pos - the index in bam_ce which is available for next sgl
242  * @bam_ce_start - the index in bam_ce which marks the start position ce
243  *		   for current sgl. It will be used for size calculation
244  *		   for current sgl
245  * @cmd_sgl_pos - current index in command sgl.
246  * @cmd_sgl_start - start index in command sgl.
247  * @tx_sgl_pos - current index in data sgl for tx.
248  * @tx_sgl_start - start index in data sgl for tx.
249  * @rx_sgl_pos - current index in data sgl for rx.
250  * @rx_sgl_start - start index in data sgl for rx.
251  * @wait_second_completion - wait for second DMA desc completion before making
252  *			     the NAND transfer completion.
253  * @txn_done - completion for NAND transfer.
254  * @last_data_desc - last DMA desc in data channel (tx/rx).
255  * @last_cmd_desc - last DMA desc in command channel.
256  */
257 struct bam_transaction {
258 	struct bam_cmd_element *bam_ce;
259 	struct scatterlist *cmd_sgl;
260 	struct scatterlist *data_sgl;
261 	u32 bam_ce_pos;
262 	u32 bam_ce_start;
263 	u32 cmd_sgl_pos;
264 	u32 cmd_sgl_start;
265 	u32 tx_sgl_pos;
266 	u32 tx_sgl_start;
267 	u32 rx_sgl_pos;
268 	u32 rx_sgl_start;
269 	bool wait_second_completion;
270 	struct completion txn_done;
271 	struct dma_async_tx_descriptor *last_data_desc;
272 	struct dma_async_tx_descriptor *last_cmd_desc;
273 };
274 
275 /*
276  * This data type corresponds to the nand dma descriptor
277  * @list - list for desc_info
278  * @dir - DMA transfer direction
279  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
280  *	      ADM
281  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
282  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
283  * @dma_desc - low level DMA engine descriptor
284  */
285 struct desc_info {
286 	struct list_head node;
287 
288 	enum dma_data_direction dir;
289 	union {
290 		struct scatterlist adm_sgl;
291 		struct {
292 			struct scatterlist *bam_sgl;
293 			int sgl_cnt;
294 		};
295 	};
296 	struct dma_async_tx_descriptor *dma_desc;
297 };
298 
299 /*
300  * holds the current register values that we want to write. acts as a contiguous
301  * chunk of memory which we use to write the controller registers through DMA.
302  */
303 struct nandc_regs {
304 	__le32 cmd;
305 	__le32 addr0;
306 	__le32 addr1;
307 	__le32 chip_sel;
308 	__le32 exec;
309 
310 	__le32 cfg0;
311 	__le32 cfg1;
312 	__le32 ecc_bch_cfg;
313 
314 	__le32 clrflashstatus;
315 	__le32 clrreadstatus;
316 
317 	__le32 cmd1;
318 	__le32 vld;
319 
320 	__le32 orig_cmd1;
321 	__le32 orig_vld;
322 
323 	__le32 ecc_buf_cfg;
324 	__le32 read_location0;
325 	__le32 read_location1;
326 	__le32 read_location2;
327 	__le32 read_location3;
328 	__le32 read_location_last0;
329 	__le32 read_location_last1;
330 	__le32 read_location_last2;
331 	__le32 read_location_last3;
332 
333 	__le32 erased_cw_detect_cfg_clr;
334 	__le32 erased_cw_detect_cfg_set;
335 };
336 
337 /*
338  * NAND controller data struct
339  *
340  * @controller:			base controller structure
341  * @host_list:			list containing all the chips attached to the
342  *				controller
343  * @dev:			parent device
344  * @base:			MMIO base
345  * @base_phys:			physical base address of controller registers
346  * @base_dma:			dma base address of controller registers
347  * @core_clk:			controller clock
348  * @aon_clk:			another controller clock
349  *
350  * @chan:			dma channel
351  * @cmd_crci:			ADM DMA CRCI for command flow control
352  * @data_crci:			ADM DMA CRCI for data flow control
353  * @desc_list:			DMA descriptor list (list of desc_infos)
354  *
355  * @data_buffer:		our local DMA buffer for page read/writes,
356  *				used when we can't use the buffer provided
357  *				by upper layers directly
358  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
359  *				functions
360  * @reg_read_buf:		local buffer for reading back registers via DMA
361  * @reg_read_dma:		contains dma address for register read buffer
362  * @reg_read_pos:		marker for data read in reg_read_buf
363  *
364  * @regs:			a contiguous chunk of memory for DMA register
365  *				writes. contains the register values to be
366  *				written to controller
367  * @cmd1/vld:			some fixed controller register values
368  * @props:			properties of current NAND controller,
369  *				initialized via DT match data
370  * @max_cwperpage:		maximum QPIC codewords required. calculated
371  *				from all connected NAND devices pagesize
372  */
373 struct qcom_nand_controller {
374 	struct nand_controller controller;
375 	struct list_head host_list;
376 
377 	struct device *dev;
378 
379 	void __iomem *base;
380 	phys_addr_t base_phys;
381 	dma_addr_t base_dma;
382 
383 	struct clk *core_clk;
384 	struct clk *aon_clk;
385 
386 	union {
387 		/* will be used only by QPIC for BAM DMA */
388 		struct {
389 			struct dma_chan *tx_chan;
390 			struct dma_chan *rx_chan;
391 			struct dma_chan *cmd_chan;
392 		};
393 
394 		/* will be used only by EBI2 for ADM DMA */
395 		struct {
396 			struct dma_chan *chan;
397 			unsigned int cmd_crci;
398 			unsigned int data_crci;
399 		};
400 	};
401 
402 	struct list_head desc_list;
403 	struct bam_transaction *bam_txn;
404 
405 	u8		*data_buffer;
406 	int		buf_size;
407 	int		buf_count;
408 	int		buf_start;
409 	unsigned int	max_cwperpage;
410 
411 	__le32 *reg_read_buf;
412 	dma_addr_t reg_read_dma;
413 	int reg_read_pos;
414 
415 	struct nandc_regs *regs;
416 
417 	u32 cmd1, vld;
418 	const struct qcom_nandc_props *props;
419 };
420 
421 /*
422  * NAND chip structure
423  *
424  * @chip:			base NAND chip structure
425  * @node:			list node to add itself to host_list in
426  *				qcom_nand_controller
427  *
428  * @cs:				chip select value for this chip
429  * @cw_size:			the number of bytes in a single step/codeword
430  *				of a page, consisting of all data, ecc, spare
431  *				and reserved bytes
432  * @cw_data:			the number of bytes within a codeword protected
433  *				by ECC
434  * @use_ecc:			request the controller to use ECC for the
435  *				upcoming read/write
436  * @bch_enabled:		flag to tell whether BCH ECC mode is used
437  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
438  *				chip
439  * @status:			value to be returned if NAND_CMD_STATUS command
440  *				is executed
441  * @last_command:		keeps track of last command on this chip. used
442  *				for reading correct status
443  *
444  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
445  *				ecc/non-ecc mode for the current nand flash
446  *				device
447  */
448 struct qcom_nand_host {
449 	struct nand_chip chip;
450 	struct list_head node;
451 
452 	int cs;
453 	int cw_size;
454 	int cw_data;
455 	bool use_ecc;
456 	bool bch_enabled;
457 	int ecc_bytes_hw;
458 	int spare_bytes;
459 	int bbm_size;
460 	u8 status;
461 	int last_command;
462 
463 	u32 cfg0, cfg1;
464 	u32 cfg0_raw, cfg1_raw;
465 	u32 ecc_buf_cfg;
466 	u32 ecc_bch_cfg;
467 	u32 clrflashstatus;
468 	u32 clrreadstatus;
469 };
470 
471 /*
472  * This data type corresponds to the NAND controller properties which varies
473  * among different NAND controllers.
474  * @ecc_modes - ecc mode for NAND
475  * @is_bam - whether NAND controller is using BAM
476  * @is_qpic - whether NAND CTRL is part of qpic IP
477  * @qpic_v2 - flag to indicate QPIC IP version 2
478  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
479  */
480 struct qcom_nandc_props {
481 	u32 ecc_modes;
482 	bool is_bam;
483 	bool is_qpic;
484 	bool qpic_v2;
485 	u32 dev_cmd_reg_start;
486 };
487 
488 /* Frees the BAM transaction memory */
489 static void free_bam_transaction(struct qcom_nand_controller *nandc)
490 {
491 	struct bam_transaction *bam_txn = nandc->bam_txn;
492 
493 	devm_kfree(nandc->dev, bam_txn);
494 }
495 
496 /* Allocates and Initializes the BAM transaction */
497 static struct bam_transaction *
498 alloc_bam_transaction(struct qcom_nand_controller *nandc)
499 {
500 	struct bam_transaction *bam_txn;
501 	size_t bam_txn_size;
502 	unsigned int num_cw = nandc->max_cwperpage;
503 	void *bam_txn_buf;
504 
505 	bam_txn_size =
506 		sizeof(*bam_txn) + num_cw *
507 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
508 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
509 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
510 
511 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
512 	if (!bam_txn_buf)
513 		return NULL;
514 
515 	bam_txn = bam_txn_buf;
516 	bam_txn_buf += sizeof(*bam_txn);
517 
518 	bam_txn->bam_ce = bam_txn_buf;
519 	bam_txn_buf +=
520 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
521 
522 	bam_txn->cmd_sgl = bam_txn_buf;
523 	bam_txn_buf +=
524 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
525 
526 	bam_txn->data_sgl = bam_txn_buf;
527 
528 	init_completion(&bam_txn->txn_done);
529 
530 	return bam_txn;
531 }
532 
533 /* Clears the BAM transaction indexes */
534 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
535 {
536 	struct bam_transaction *bam_txn = nandc->bam_txn;
537 
538 	if (!nandc->props->is_bam)
539 		return;
540 
541 	bam_txn->bam_ce_pos = 0;
542 	bam_txn->bam_ce_start = 0;
543 	bam_txn->cmd_sgl_pos = 0;
544 	bam_txn->cmd_sgl_start = 0;
545 	bam_txn->tx_sgl_pos = 0;
546 	bam_txn->tx_sgl_start = 0;
547 	bam_txn->rx_sgl_pos = 0;
548 	bam_txn->rx_sgl_start = 0;
549 	bam_txn->last_data_desc = NULL;
550 	bam_txn->wait_second_completion = false;
551 
552 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
553 		      QPIC_PER_CW_CMD_SGL);
554 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
555 		      QPIC_PER_CW_DATA_SGL);
556 
557 	reinit_completion(&bam_txn->txn_done);
558 }
559 
560 /* Callback for DMA descriptor completion */
561 static void qpic_bam_dma_done(void *data)
562 {
563 	struct bam_transaction *bam_txn = data;
564 
565 	/*
566 	 * In case of data transfer with NAND, 2 callbacks will be generated.
567 	 * One for command channel and another one for data channel.
568 	 * If current transaction has data descriptors
569 	 * (i.e. wait_second_completion is true), then set this to false
570 	 * and wait for second DMA descriptor completion.
571 	 */
572 	if (bam_txn->wait_second_completion)
573 		bam_txn->wait_second_completion = false;
574 	else
575 		complete(&bam_txn->txn_done);
576 }
577 
578 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
579 {
580 	return container_of(chip, struct qcom_nand_host, chip);
581 }
582 
583 static inline struct qcom_nand_controller *
584 get_qcom_nand_controller(struct nand_chip *chip)
585 {
586 	return container_of(chip->controller, struct qcom_nand_controller,
587 			    controller);
588 }
589 
590 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
591 {
592 	return ioread32(nandc->base + offset);
593 }
594 
595 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
596 			       u32 val)
597 {
598 	iowrite32(val, nandc->base + offset);
599 }
600 
601 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
602 					  bool is_cpu)
603 {
604 	if (!nandc->props->is_bam)
605 		return;
606 
607 	if (is_cpu)
608 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
609 					MAX_REG_RD *
610 					sizeof(*nandc->reg_read_buf),
611 					DMA_FROM_DEVICE);
612 	else
613 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
614 					   MAX_REG_RD *
615 					   sizeof(*nandc->reg_read_buf),
616 					   DMA_FROM_DEVICE);
617 }
618 
619 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
620 {
621 	switch (offset) {
622 	case NAND_FLASH_CMD:
623 		return &regs->cmd;
624 	case NAND_ADDR0:
625 		return &regs->addr0;
626 	case NAND_ADDR1:
627 		return &regs->addr1;
628 	case NAND_FLASH_CHIP_SELECT:
629 		return &regs->chip_sel;
630 	case NAND_EXEC_CMD:
631 		return &regs->exec;
632 	case NAND_FLASH_STATUS:
633 		return &regs->clrflashstatus;
634 	case NAND_DEV0_CFG0:
635 		return &regs->cfg0;
636 	case NAND_DEV0_CFG1:
637 		return &regs->cfg1;
638 	case NAND_DEV0_ECC_CFG:
639 		return &regs->ecc_bch_cfg;
640 	case NAND_READ_STATUS:
641 		return &regs->clrreadstatus;
642 	case NAND_DEV_CMD1:
643 		return &regs->cmd1;
644 	case NAND_DEV_CMD1_RESTORE:
645 		return &regs->orig_cmd1;
646 	case NAND_DEV_CMD_VLD:
647 		return &regs->vld;
648 	case NAND_DEV_CMD_VLD_RESTORE:
649 		return &regs->orig_vld;
650 	case NAND_EBI2_ECC_BUF_CFG:
651 		return &regs->ecc_buf_cfg;
652 	case NAND_READ_LOCATION_0:
653 		return &regs->read_location0;
654 	case NAND_READ_LOCATION_1:
655 		return &regs->read_location1;
656 	case NAND_READ_LOCATION_2:
657 		return &regs->read_location2;
658 	case NAND_READ_LOCATION_3:
659 		return &regs->read_location3;
660 	case NAND_READ_LOCATION_LAST_CW_0:
661 		return &regs->read_location_last0;
662 	case NAND_READ_LOCATION_LAST_CW_1:
663 		return &regs->read_location_last1;
664 	case NAND_READ_LOCATION_LAST_CW_2:
665 		return &regs->read_location_last2;
666 	case NAND_READ_LOCATION_LAST_CW_3:
667 		return &regs->read_location_last3;
668 	default:
669 		return NULL;
670 	}
671 }
672 
673 static void nandc_set_reg(struct nand_chip *chip, int offset,
674 			  u32 val)
675 {
676 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
677 	struct nandc_regs *regs = nandc->regs;
678 	__le32 *reg;
679 
680 	reg = offset_to_nandc_reg(regs, offset);
681 
682 	if (reg)
683 		*reg = cpu_to_le32(val);
684 }
685 
686 /* Helper to check the code word, whether it is last cw or not */
687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
688 {
689 	return cw == (ecc->steps - 1);
690 }
691 
692 /* helper to configure location register values */
693 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
694 			       int cw_offset, int read_size, int is_last_read_loc)
695 {
696 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
697 	struct nand_ecc_ctrl *ecc = &chip->ecc;
698 	int reg_base = NAND_READ_LOCATION_0;
699 
700 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
701 		reg_base = NAND_READ_LOCATION_LAST_CW_0;
702 
703 	reg_base += reg * 4;
704 
705 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
706 		return nandc_set_read_loc_last(chip, reg_base, cw_offset,
707 				read_size, is_last_read_loc);
708 	else
709 		return nandc_set_read_loc_first(chip, reg_base, cw_offset,
710 				read_size, is_last_read_loc);
711 }
712 
713 /* helper to configure address register values */
714 static void set_address(struct qcom_nand_host *host, u16 column, int page)
715 {
716 	struct nand_chip *chip = &host->chip;
717 
718 	if (chip->options & NAND_BUSWIDTH_16)
719 		column >>= 1;
720 
721 	nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
722 	nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
723 }
724 
725 /*
726  * update_rw_regs:	set up read/write register values, these will be
727  *			written to the NAND controller registers via DMA
728  *
729  * @num_cw:		number of steps for the read/write operation
730  * @read:		read or write operation
731  * @cw	:		which code word
732  */
733 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
734 {
735 	struct nand_chip *chip = &host->chip;
736 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
737 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
738 
739 	if (read) {
740 		if (host->use_ecc)
741 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
742 		else
743 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
744 	} else {
745 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
746 	}
747 
748 	if (host->use_ecc) {
749 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
750 				(num_cw - 1) << CW_PER_PAGE;
751 
752 		cfg1 = host->cfg1;
753 		ecc_bch_cfg = host->ecc_bch_cfg;
754 	} else {
755 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
756 				(num_cw - 1) << CW_PER_PAGE;
757 
758 		cfg1 = host->cfg1_raw;
759 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
760 	}
761 
762 	nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
763 	nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
764 	nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
765 	nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
766 	if (!nandc->props->qpic_v2)
767 		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
768 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
769 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
770 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
771 
772 	if (read)
773 		nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
774 				   host->cw_data : host->cw_size, 1);
775 }
776 
777 /*
778  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
779  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
780  * which will be submitted to DMA engine.
781  */
782 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
783 				  struct dma_chan *chan,
784 				  unsigned long flags)
785 {
786 	struct desc_info *desc;
787 	struct scatterlist *sgl;
788 	unsigned int sgl_cnt;
789 	int ret;
790 	struct bam_transaction *bam_txn = nandc->bam_txn;
791 	enum dma_transfer_direction dir_eng;
792 	struct dma_async_tx_descriptor *dma_desc;
793 
794 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
795 	if (!desc)
796 		return -ENOMEM;
797 
798 	if (chan == nandc->cmd_chan) {
799 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
800 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
801 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
802 		dir_eng = DMA_MEM_TO_DEV;
803 		desc->dir = DMA_TO_DEVICE;
804 	} else if (chan == nandc->tx_chan) {
805 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
806 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
807 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
808 		dir_eng = DMA_MEM_TO_DEV;
809 		desc->dir = DMA_TO_DEVICE;
810 	} else {
811 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
812 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
813 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
814 		dir_eng = DMA_DEV_TO_MEM;
815 		desc->dir = DMA_FROM_DEVICE;
816 	}
817 
818 	sg_mark_end(sgl + sgl_cnt - 1);
819 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
820 	if (ret == 0) {
821 		dev_err(nandc->dev, "failure in mapping desc\n");
822 		kfree(desc);
823 		return -ENOMEM;
824 	}
825 
826 	desc->sgl_cnt = sgl_cnt;
827 	desc->bam_sgl = sgl;
828 
829 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
830 					   flags);
831 
832 	if (!dma_desc) {
833 		dev_err(nandc->dev, "failure in prep desc\n");
834 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
835 		kfree(desc);
836 		return -EINVAL;
837 	}
838 
839 	desc->dma_desc = dma_desc;
840 
841 	/* update last data/command descriptor */
842 	if (chan == nandc->cmd_chan)
843 		bam_txn->last_cmd_desc = dma_desc;
844 	else
845 		bam_txn->last_data_desc = dma_desc;
846 
847 	list_add_tail(&desc->node, &nandc->desc_list);
848 
849 	return 0;
850 }
851 
852 /*
853  * Prepares the command descriptor for BAM DMA which will be used for NAND
854  * register reads and writes. The command descriptor requires the command
855  * to be formed in command element type so this function uses the command
856  * element from bam transaction ce array and fills the same with required
857  * data. A single SGL can contain multiple command elements so
858  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
859  * after the current command element.
860  */
861 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
862 				 int reg_off, const void *vaddr,
863 				 int size, unsigned int flags)
864 {
865 	int bam_ce_size;
866 	int i, ret;
867 	struct bam_cmd_element *bam_ce_buffer;
868 	struct bam_transaction *bam_txn = nandc->bam_txn;
869 
870 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
871 
872 	/* fill the command desc */
873 	for (i = 0; i < size; i++) {
874 		if (read)
875 			bam_prep_ce(&bam_ce_buffer[i],
876 				    nandc_reg_phys(nandc, reg_off + 4 * i),
877 				    BAM_READ_COMMAND,
878 				    reg_buf_dma_addr(nandc,
879 						     (__le32 *)vaddr + i));
880 		else
881 			bam_prep_ce_le32(&bam_ce_buffer[i],
882 					 nandc_reg_phys(nandc, reg_off + 4 * i),
883 					 BAM_WRITE_COMMAND,
884 					 *((__le32 *)vaddr + i));
885 	}
886 
887 	bam_txn->bam_ce_pos += size;
888 
889 	/* use the separate sgl after this command */
890 	if (flags & NAND_BAM_NEXT_SGL) {
891 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
892 		bam_ce_size = (bam_txn->bam_ce_pos -
893 				bam_txn->bam_ce_start) *
894 				sizeof(struct bam_cmd_element);
895 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
896 			   bam_ce_buffer, bam_ce_size);
897 		bam_txn->cmd_sgl_pos++;
898 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
899 
900 		if (flags & NAND_BAM_NWD) {
901 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
902 						     DMA_PREP_FENCE |
903 						     DMA_PREP_CMD);
904 			if (ret)
905 				return ret;
906 		}
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * Prepares the data descriptor for BAM DMA which will be used for NAND
914  * data reads and writes.
915  */
916 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
917 				  const void *vaddr,
918 				  int size, unsigned int flags)
919 {
920 	int ret;
921 	struct bam_transaction *bam_txn = nandc->bam_txn;
922 
923 	if (read) {
924 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
925 			   vaddr, size);
926 		bam_txn->rx_sgl_pos++;
927 	} else {
928 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
929 			   vaddr, size);
930 		bam_txn->tx_sgl_pos++;
931 
932 		/*
933 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
934 		 * is not set, form the DMA descriptor
935 		 */
936 		if (!(flags & NAND_BAM_NO_EOT)) {
937 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
938 						     DMA_PREP_INTERRUPT);
939 			if (ret)
940 				return ret;
941 		}
942 	}
943 
944 	return 0;
945 }
946 
947 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
948 			     int reg_off, const void *vaddr, int size,
949 			     bool flow_control)
950 {
951 	struct desc_info *desc;
952 	struct dma_async_tx_descriptor *dma_desc;
953 	struct scatterlist *sgl;
954 	struct dma_slave_config slave_conf;
955 	enum dma_transfer_direction dir_eng;
956 	int ret;
957 
958 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
959 	if (!desc)
960 		return -ENOMEM;
961 
962 	sgl = &desc->adm_sgl;
963 
964 	sg_init_one(sgl, vaddr, size);
965 
966 	if (read) {
967 		dir_eng = DMA_DEV_TO_MEM;
968 		desc->dir = DMA_FROM_DEVICE;
969 	} else {
970 		dir_eng = DMA_MEM_TO_DEV;
971 		desc->dir = DMA_TO_DEVICE;
972 	}
973 
974 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
975 	if (ret == 0) {
976 		ret = -ENOMEM;
977 		goto err;
978 	}
979 
980 	memset(&slave_conf, 0x00, sizeof(slave_conf));
981 
982 	slave_conf.device_fc = flow_control;
983 	if (read) {
984 		slave_conf.src_maxburst = 16;
985 		slave_conf.src_addr = nandc->base_dma + reg_off;
986 		slave_conf.slave_id = nandc->data_crci;
987 	} else {
988 		slave_conf.dst_maxburst = 16;
989 		slave_conf.dst_addr = nandc->base_dma + reg_off;
990 		slave_conf.slave_id = nandc->cmd_crci;
991 	}
992 
993 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
994 	if (ret) {
995 		dev_err(nandc->dev, "failed to configure dma channel\n");
996 		goto err;
997 	}
998 
999 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
1000 	if (!dma_desc) {
1001 		dev_err(nandc->dev, "failed to prepare desc\n");
1002 		ret = -EINVAL;
1003 		goto err;
1004 	}
1005 
1006 	desc->dma_desc = dma_desc;
1007 
1008 	list_add_tail(&desc->node, &nandc->desc_list);
1009 
1010 	return 0;
1011 err:
1012 	kfree(desc);
1013 
1014 	return ret;
1015 }
1016 
1017 /*
1018  * read_reg_dma:	prepares a descriptor to read a given number of
1019  *			contiguous registers to the reg_read_buf pointer
1020  *
1021  * @first:		offset of the first register in the contiguous block
1022  * @num_regs:		number of registers to read
1023  * @flags:		flags to control DMA descriptor preparation
1024  */
1025 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1026 			int num_regs, unsigned int flags)
1027 {
1028 	bool flow_control = false;
1029 	void *vaddr;
1030 
1031 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1032 	nandc->reg_read_pos += num_regs;
1033 
1034 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1035 		first = dev_cmd_reg_addr(nandc, first);
1036 
1037 	if (nandc->props->is_bam)
1038 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1039 					     num_regs, flags);
1040 
1041 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1042 		flow_control = true;
1043 
1044 	return prep_adm_dma_desc(nandc, true, first, vaddr,
1045 				 num_regs * sizeof(u32), flow_control);
1046 }
1047 
1048 /*
1049  * write_reg_dma:	prepares a descriptor to write a given number of
1050  *			contiguous registers
1051  *
1052  * @first:		offset of the first register in the contiguous block
1053  * @num_regs:		number of registers to write
1054  * @flags:		flags to control DMA descriptor preparation
1055  */
1056 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1057 			 int num_regs, unsigned int flags)
1058 {
1059 	bool flow_control = false;
1060 	struct nandc_regs *regs = nandc->regs;
1061 	void *vaddr;
1062 
1063 	vaddr = offset_to_nandc_reg(regs, first);
1064 
1065 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1066 		if (flags & NAND_ERASED_CW_SET)
1067 			vaddr = &regs->erased_cw_detect_cfg_set;
1068 		else
1069 			vaddr = &regs->erased_cw_detect_cfg_clr;
1070 	}
1071 
1072 	if (first == NAND_EXEC_CMD)
1073 		flags |= NAND_BAM_NWD;
1074 
1075 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1076 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1077 
1078 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1079 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1080 
1081 	if (nandc->props->is_bam)
1082 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1083 					     num_regs, flags);
1084 
1085 	if (first == NAND_FLASH_CMD)
1086 		flow_control = true;
1087 
1088 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1089 				 num_regs * sizeof(u32), flow_control);
1090 }
1091 
1092 /*
1093  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1094  *			controller's internal buffer to the buffer 'vaddr'
1095  *
1096  * @reg_off:		offset within the controller's data buffer
1097  * @vaddr:		virtual address of the buffer we want to write to
1098  * @size:		DMA transaction size in bytes
1099  * @flags:		flags to control DMA descriptor preparation
1100  */
1101 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1102 			 const u8 *vaddr, int size, unsigned int flags)
1103 {
1104 	if (nandc->props->is_bam)
1105 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1106 
1107 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1108 }
1109 
1110 /*
1111  * write_data_dma:	prepares a DMA descriptor to transfer data from
1112  *			'vaddr' to the controller's internal buffer
1113  *
1114  * @reg_off:		offset within the controller's data buffer
1115  * @vaddr:		virtual address of the buffer we want to read from
1116  * @size:		DMA transaction size in bytes
1117  * @flags:		flags to control DMA descriptor preparation
1118  */
1119 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1120 			  const u8 *vaddr, int size, unsigned int flags)
1121 {
1122 	if (nandc->props->is_bam)
1123 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1124 
1125 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1126 }
1127 
1128 /*
1129  * Helper to prepare DMA descriptors for configuring registers
1130  * before reading a NAND page.
1131  */
1132 static void config_nand_page_read(struct nand_chip *chip)
1133 {
1134 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1135 
1136 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1137 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1138 	if (!nandc->props->qpic_v2)
1139 		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1140 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1141 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1142 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1143 }
1144 
1145 /*
1146  * Helper to prepare DMA descriptors for configuring registers
1147  * before reading each codeword in NAND page.
1148  */
1149 static void
1150 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1151 {
1152 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1153 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1154 
1155 	int reg = NAND_READ_LOCATION_0;
1156 
1157 	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1158 		reg = NAND_READ_LOCATION_LAST_CW_0;
1159 
1160 	if (nandc->props->is_bam)
1161 		write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1162 
1163 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1164 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1165 
1166 	if (use_ecc) {
1167 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1168 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1169 			     NAND_BAM_NEXT_SGL);
1170 	} else {
1171 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1172 	}
1173 }
1174 
1175 /*
1176  * Helper to prepare dma descriptors to configure registers needed for reading a
1177  * single codeword in page
1178  */
1179 static void
1180 config_nand_single_cw_page_read(struct nand_chip *chip,
1181 				bool use_ecc, int cw)
1182 {
1183 	config_nand_page_read(chip);
1184 	config_nand_cw_read(chip, use_ecc, cw);
1185 }
1186 
1187 /*
1188  * Helper to prepare DMA descriptors used to configure registers needed for
1189  * before writing a NAND page.
1190  */
1191 static void config_nand_page_write(struct nand_chip *chip)
1192 {
1193 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1194 
1195 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1196 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1197 	if (!nandc->props->qpic_v2)
1198 		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1199 			      NAND_BAM_NEXT_SGL);
1200 }
1201 
1202 /*
1203  * Helper to prepare DMA descriptors for configuring registers
1204  * before writing each codeword in NAND page.
1205  */
1206 static void config_nand_cw_write(struct nand_chip *chip)
1207 {
1208 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1209 
1210 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1211 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1212 
1213 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1214 
1215 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1216 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1217 }
1218 
1219 /*
1220  * the following functions are used within chip->legacy.cmdfunc() to
1221  * perform different NAND_CMD_* commands
1222  */
1223 
1224 /* sets up descriptors for NAND_CMD_PARAM */
1225 static int nandc_param(struct qcom_nand_host *host)
1226 {
1227 	struct nand_chip *chip = &host->chip;
1228 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1229 
1230 	/*
1231 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1232 	 * in use. we configure the controller to perform a raw read of 512
1233 	 * bytes to read onfi params
1234 	 */
1235 	if (nandc->props->qpic_v2)
1236 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ |
1237 			      PAGE_ACC | LAST_PAGE);
1238 	else
1239 		nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ |
1240 			      PAGE_ACC | LAST_PAGE);
1241 
1242 	nandc_set_reg(chip, NAND_ADDR0, 0);
1243 	nandc_set_reg(chip, NAND_ADDR1, 0);
1244 	nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1245 					| 512 << UD_SIZE_BYTES
1246 					| 5 << NUM_ADDR_CYCLES
1247 					| 0 << SPARE_SIZE_BYTES);
1248 	nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1249 					| 0 << CS_ACTIVE_BSY
1250 					| 17 << BAD_BLOCK_BYTE_NUM
1251 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1252 					| 2 << WR_RD_BSY_GAP
1253 					| 0 << WIDE_FLASH
1254 					| 1 << DEV0_CFG1_ECC_DISABLE);
1255 	if (!nandc->props->qpic_v2)
1256 		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1257 
1258 	/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1259 	if (!nandc->props->qpic_v2) {
1260 		nandc_set_reg(chip, NAND_DEV_CMD_VLD,
1261 			      (nandc->vld & ~READ_START_VLD));
1262 		nandc_set_reg(chip, NAND_DEV_CMD1,
1263 			      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1264 			      | NAND_CMD_PARAM << READ_ADDR);
1265 	}
1266 
1267 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1268 
1269 	if (!nandc->props->qpic_v2) {
1270 		nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1271 		nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1272 	}
1273 
1274 	nandc_set_read_loc(chip, 0, 0, 0, 512, 1);
1275 
1276 	if (!nandc->props->qpic_v2) {
1277 		write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1278 		write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1279 	}
1280 
1281 	nandc->buf_count = 512;
1282 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1283 
1284 	config_nand_single_cw_page_read(chip, false, 0);
1285 
1286 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1287 		      nandc->buf_count, 0);
1288 
1289 	/* restore CMD1 and VLD regs */
1290 	if (!nandc->props->qpic_v2) {
1291 		write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1292 		write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /* sets up descriptors for NAND_CMD_ERASE1 */
1299 static int erase_block(struct qcom_nand_host *host, int page_addr)
1300 {
1301 	struct nand_chip *chip = &host->chip;
1302 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1303 
1304 	nandc_set_reg(chip, NAND_FLASH_CMD,
1305 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1306 	nandc_set_reg(chip, NAND_ADDR0, page_addr);
1307 	nandc_set_reg(chip, NAND_ADDR1, 0);
1308 	nandc_set_reg(chip, NAND_DEV0_CFG0,
1309 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1310 	nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
1311 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1312 	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
1313 	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
1314 
1315 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1316 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1317 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1318 
1319 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1320 
1321 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1322 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1323 
1324 	return 0;
1325 }
1326 
1327 /* sets up descriptors for NAND_CMD_READID */
1328 static int read_id(struct qcom_nand_host *host, int column)
1329 {
1330 	struct nand_chip *chip = &host->chip;
1331 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1332 
1333 	if (column == -1)
1334 		return 0;
1335 
1336 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID);
1337 	nandc_set_reg(chip, NAND_ADDR0, column);
1338 	nandc_set_reg(chip, NAND_ADDR1, 0);
1339 	nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
1340 		      nandc->props->is_bam ? 0 : DM_EN);
1341 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1342 
1343 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1344 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1345 
1346 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1347 
1348 	return 0;
1349 }
1350 
1351 /* sets up descriptors for NAND_CMD_RESET */
1352 static int reset(struct qcom_nand_host *host)
1353 {
1354 	struct nand_chip *chip = &host->chip;
1355 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1356 
1357 	nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE);
1358 	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
1359 
1360 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1361 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1362 
1363 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1364 
1365 	return 0;
1366 }
1367 
1368 /* helpers to submit/free our list of dma descriptors */
1369 static int submit_descs(struct qcom_nand_controller *nandc)
1370 {
1371 	struct desc_info *desc;
1372 	dma_cookie_t cookie = 0;
1373 	struct bam_transaction *bam_txn = nandc->bam_txn;
1374 	int r;
1375 
1376 	if (nandc->props->is_bam) {
1377 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1378 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1379 			if (r)
1380 				return r;
1381 		}
1382 
1383 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1384 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1385 						   DMA_PREP_INTERRUPT);
1386 			if (r)
1387 				return r;
1388 		}
1389 
1390 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1391 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1392 						   DMA_PREP_CMD);
1393 			if (r)
1394 				return r;
1395 		}
1396 	}
1397 
1398 	list_for_each_entry(desc, &nandc->desc_list, node)
1399 		cookie = dmaengine_submit(desc->dma_desc);
1400 
1401 	if (nandc->props->is_bam) {
1402 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1403 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1404 		if (bam_txn->last_data_desc) {
1405 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1406 			bam_txn->last_data_desc->callback_param = bam_txn;
1407 			bam_txn->wait_second_completion = true;
1408 		}
1409 
1410 		dma_async_issue_pending(nandc->tx_chan);
1411 		dma_async_issue_pending(nandc->rx_chan);
1412 		dma_async_issue_pending(nandc->cmd_chan);
1413 
1414 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1415 						 QPIC_NAND_COMPLETION_TIMEOUT))
1416 			return -ETIMEDOUT;
1417 	} else {
1418 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1419 			return -ETIMEDOUT;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static void free_descs(struct qcom_nand_controller *nandc)
1426 {
1427 	struct desc_info *desc, *n;
1428 
1429 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1430 		list_del(&desc->node);
1431 
1432 		if (nandc->props->is_bam)
1433 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1434 				     desc->sgl_cnt, desc->dir);
1435 		else
1436 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1437 				     desc->dir);
1438 
1439 		kfree(desc);
1440 	}
1441 }
1442 
1443 /* reset the register read buffer for next NAND operation */
1444 static void clear_read_regs(struct qcom_nand_controller *nandc)
1445 {
1446 	nandc->reg_read_pos = 0;
1447 	nandc_read_buffer_sync(nandc, false);
1448 }
1449 
1450 static void pre_command(struct qcom_nand_host *host, int command)
1451 {
1452 	struct nand_chip *chip = &host->chip;
1453 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1454 
1455 	nandc->buf_count = 0;
1456 	nandc->buf_start = 0;
1457 	host->use_ecc = false;
1458 	host->last_command = command;
1459 
1460 	clear_read_regs(nandc);
1461 
1462 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1463 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1464 		clear_bam_transaction(nandc);
1465 }
1466 
1467 /*
1468  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1469  * privately maintained status byte, this status byte can be read after
1470  * NAND_CMD_STATUS is called
1471  */
1472 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1473 {
1474 	struct nand_chip *chip = &host->chip;
1475 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1476 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1477 	int num_cw;
1478 	int i;
1479 
1480 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1481 	nandc_read_buffer_sync(nandc, true);
1482 
1483 	for (i = 0; i < num_cw; i++) {
1484 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1485 
1486 		if (flash_status & FS_MPU_ERR)
1487 			host->status &= ~NAND_STATUS_WP;
1488 
1489 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1490 						 (flash_status &
1491 						  FS_DEVICE_STS_ERR)))
1492 			host->status |= NAND_STATUS_FAIL;
1493 	}
1494 }
1495 
1496 static void post_command(struct qcom_nand_host *host, int command)
1497 {
1498 	struct nand_chip *chip = &host->chip;
1499 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1500 
1501 	switch (command) {
1502 	case NAND_CMD_READID:
1503 		nandc_read_buffer_sync(nandc, true);
1504 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1505 		       nandc->buf_count);
1506 		break;
1507 	case NAND_CMD_PAGEPROG:
1508 	case NAND_CMD_ERASE1:
1509 		parse_erase_write_errors(host, command);
1510 		break;
1511 	default:
1512 		break;
1513 	}
1514 }
1515 
1516 /*
1517  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1518  * commands. The rest of the commands wouldn't be called by upper layers.
1519  * For example, NAND_CMD_READOOB would never be called because we have our own
1520  * versions of read_oob ops for nand_ecc_ctrl.
1521  */
1522 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1523 			       int column, int page_addr)
1524 {
1525 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1526 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1527 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1528 	bool wait = false;
1529 	int ret = 0;
1530 
1531 	pre_command(host, command);
1532 
1533 	switch (command) {
1534 	case NAND_CMD_RESET:
1535 		ret = reset(host);
1536 		wait = true;
1537 		break;
1538 
1539 	case NAND_CMD_READID:
1540 		nandc->buf_count = 4;
1541 		ret = read_id(host, column);
1542 		wait = true;
1543 		break;
1544 
1545 	case NAND_CMD_PARAM:
1546 		ret = nandc_param(host);
1547 		wait = true;
1548 		break;
1549 
1550 	case NAND_CMD_ERASE1:
1551 		ret = erase_block(host, page_addr);
1552 		wait = true;
1553 		break;
1554 
1555 	case NAND_CMD_READ0:
1556 		/* we read the entire page for now */
1557 		WARN_ON(column != 0);
1558 
1559 		host->use_ecc = true;
1560 		set_address(host, 0, page_addr);
1561 		update_rw_regs(host, ecc->steps, true, 0);
1562 		break;
1563 
1564 	case NAND_CMD_SEQIN:
1565 		WARN_ON(column != 0);
1566 		set_address(host, 0, page_addr);
1567 		break;
1568 
1569 	case NAND_CMD_PAGEPROG:
1570 	case NAND_CMD_STATUS:
1571 	case NAND_CMD_NONE:
1572 	default:
1573 		break;
1574 	}
1575 
1576 	if (ret) {
1577 		dev_err(nandc->dev, "failure executing command %d\n",
1578 			command);
1579 		free_descs(nandc);
1580 		return;
1581 	}
1582 
1583 	if (wait) {
1584 		ret = submit_descs(nandc);
1585 		if (ret)
1586 			dev_err(nandc->dev,
1587 				"failure submitting descs for command %d\n",
1588 				command);
1589 	}
1590 
1591 	free_descs(nandc);
1592 
1593 	post_command(host, command);
1594 }
1595 
1596 /*
1597  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1598  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1599  *
1600  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1601  * but it notifies that it is an erased CW by placing special characters at
1602  * certain offsets in the buffer.
1603  *
1604  * verify if the page is erased or not, and fix up the page for RS ECC by
1605  * replacing the special characters with 0xff.
1606  */
1607 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1608 {
1609 	u8 empty1, empty2;
1610 
1611 	/*
1612 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1613 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1614 	 * beginning of each codeword
1615 	 */
1616 
1617 	empty1 = data_buf[3];
1618 	empty2 = data_buf[175];
1619 
1620 	/*
1621 	 * if the erased codework markers, if they exist override them with
1622 	 * 0xffs
1623 	 */
1624 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1625 	    (empty1 == 0xff && empty2 == 0x54)) {
1626 		data_buf[3] = 0xff;
1627 		data_buf[175] = 0xff;
1628 	}
1629 
1630 	/*
1631 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1632 	 * restore the original values at the special offsets
1633 	 */
1634 	if (memchr_inv(data_buf, 0xff, data_len)) {
1635 		data_buf[3] = empty1;
1636 		data_buf[175] = empty2;
1637 
1638 		return false;
1639 	}
1640 
1641 	return true;
1642 }
1643 
1644 struct read_stats {
1645 	__le32 flash;
1646 	__le32 buffer;
1647 	__le32 erased_cw;
1648 };
1649 
1650 /* reads back FLASH_STATUS register set by the controller */
1651 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1652 {
1653 	struct nand_chip *chip = &host->chip;
1654 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1655 	int i;
1656 
1657 	nandc_read_buffer_sync(nandc, true);
1658 
1659 	for (i = 0; i < cw_cnt; i++) {
1660 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1661 
1662 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1663 			return -EIO;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 /* performs raw read for one codeword */
1670 static int
1671 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1672 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1673 {
1674 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1675 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1676 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1677 	int data_size1, data_size2, oob_size1, oob_size2;
1678 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1679 
1680 	nand_read_page_op(chip, page, 0, NULL, 0);
1681 	host->use_ecc = false;
1682 
1683 	clear_bam_transaction(nandc);
1684 	set_address(host, host->cw_size * cw, page);
1685 	update_rw_regs(host, 1, true, cw);
1686 	config_nand_page_read(chip);
1687 
1688 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1689 	oob_size1 = host->bbm_size;
1690 
1691 	if (qcom_nandc_is_last_cw(ecc, cw)) {
1692 		data_size2 = ecc->size - data_size1 -
1693 			     ((ecc->steps - 1) * 4);
1694 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1695 			    host->spare_bytes;
1696 	} else {
1697 		data_size2 = host->cw_data - data_size1;
1698 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1699 	}
1700 
1701 	if (nandc->props->is_bam) {
1702 		nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1703 		read_loc += data_size1;
1704 
1705 		nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1706 		read_loc += oob_size1;
1707 
1708 		nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1709 		read_loc += data_size2;
1710 
1711 		nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1712 	}
1713 
1714 	config_nand_cw_read(chip, false, cw);
1715 
1716 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1717 	reg_off += data_size1;
1718 
1719 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1720 	reg_off += oob_size1;
1721 
1722 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1723 	reg_off += data_size2;
1724 
1725 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1726 
1727 	ret = submit_descs(nandc);
1728 	free_descs(nandc);
1729 	if (ret) {
1730 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1731 		return ret;
1732 	}
1733 
1734 	return check_flash_errors(host, 1);
1735 }
1736 
1737 /*
1738  * Bitflips can happen in erased codewords also so this function counts the
1739  * number of 0 in each CW for which ECC engine returns the uncorrectable
1740  * error. The page will be assumed as erased if this count is less than or
1741  * equal to the ecc->strength for each CW.
1742  *
1743  * 1. Both DATA and OOB need to be checked for number of 0. The
1744  *    top-level API can be called with only data buf or OOB buf so use
1745  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1746  *    is null for copying the raw bytes.
1747  * 2. Perform raw read for all the CW which has uncorrectable errors.
1748  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1749  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1750  *    the number of bitflips in this area.
1751  */
1752 static int
1753 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1754 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1755 		      int page, unsigned int max_bitflips)
1756 {
1757 	struct nand_chip *chip = &host->chip;
1758 	struct mtd_info *mtd = nand_to_mtd(chip);
1759 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1760 	u8 *cw_data_buf, *cw_oob_buf;
1761 	int cw, data_size, oob_size, ret = 0;
1762 
1763 	if (!data_buf)
1764 		data_buf = nand_get_data_buf(chip);
1765 
1766 	if (!oob_buf) {
1767 		nand_get_data_buf(chip);
1768 		oob_buf = chip->oob_poi;
1769 	}
1770 
1771 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1772 		if (qcom_nandc_is_last_cw(ecc, cw)) {
1773 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1774 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1775 		} else {
1776 			data_size = host->cw_data;
1777 			oob_size = host->ecc_bytes_hw;
1778 		}
1779 
1780 		/* determine starting buffer address for current CW */
1781 		cw_data_buf = data_buf + (cw * host->cw_data);
1782 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1783 
1784 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1785 					     cw_oob_buf, page, cw);
1786 		if (ret)
1787 			return ret;
1788 
1789 		/*
1790 		 * make sure it isn't an erased page reported
1791 		 * as not-erased by HW because of a few bitflips
1792 		 */
1793 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1794 						  cw_oob_buf + host->bbm_size,
1795 						  oob_size, NULL,
1796 						  0, ecc->strength);
1797 		if (ret < 0) {
1798 			mtd->ecc_stats.failed++;
1799 		} else {
1800 			mtd->ecc_stats.corrected += ret;
1801 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1802 		}
1803 	}
1804 
1805 	return max_bitflips;
1806 }
1807 
1808 /*
1809  * reads back status registers set by the controller to notify page read
1810  * errors. this is equivalent to what 'ecc->correct()' would do.
1811  */
1812 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1813 			     u8 *oob_buf, int page)
1814 {
1815 	struct nand_chip *chip = &host->chip;
1816 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1817 	struct mtd_info *mtd = nand_to_mtd(chip);
1818 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1819 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1820 	struct read_stats *buf;
1821 	bool flash_op_err = false, erased;
1822 	int i;
1823 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1824 
1825 	buf = (struct read_stats *)nandc->reg_read_buf;
1826 	nandc_read_buffer_sync(nandc, true);
1827 
1828 	for (i = 0; i < ecc->steps; i++, buf++) {
1829 		u32 flash, buffer, erased_cw;
1830 		int data_len, oob_len;
1831 
1832 		if (qcom_nandc_is_last_cw(ecc, i)) {
1833 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1834 			oob_len = ecc->steps << 2;
1835 		} else {
1836 			data_len = host->cw_data;
1837 			oob_len = 0;
1838 		}
1839 
1840 		flash = le32_to_cpu(buf->flash);
1841 		buffer = le32_to_cpu(buf->buffer);
1842 		erased_cw = le32_to_cpu(buf->erased_cw);
1843 
1844 		/*
1845 		 * Check ECC failure for each codeword. ECC failure can
1846 		 * happen in either of the following conditions
1847 		 * 1. If number of bitflips are greater than ECC engine
1848 		 *    capability.
1849 		 * 2. If this codeword contains all 0xff for which erased
1850 		 *    codeword detection check will be done.
1851 		 */
1852 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1853 			/*
1854 			 * For BCH ECC, ignore erased codeword errors, if
1855 			 * ERASED_CW bits are set.
1856 			 */
1857 			if (host->bch_enabled) {
1858 				erased = (erased_cw & ERASED_CW) == ERASED_CW;
1859 			/*
1860 			 * For RS ECC, HW reports the erased CW by placing
1861 			 * special characters at certain offsets in the buffer.
1862 			 * These special characters will be valid only if
1863 			 * complete page is read i.e. data_buf is not NULL.
1864 			 */
1865 			} else if (data_buf) {
1866 				erased = erased_chunk_check_and_fixup(data_buf,
1867 								      data_len);
1868 			} else {
1869 				erased = false;
1870 			}
1871 
1872 			if (!erased)
1873 				uncorrectable_cws |= BIT(i);
1874 		/*
1875 		 * Check if MPU or any other operational error (timeout,
1876 		 * device failure, etc.) happened for this codeword and
1877 		 * make flash_op_err true. If flash_op_err is set, then
1878 		 * EIO will be returned for page read.
1879 		 */
1880 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1881 			flash_op_err = true;
1882 		/*
1883 		 * No ECC or operational errors happened. Check the number of
1884 		 * bits corrected and update the ecc_stats.corrected.
1885 		 */
1886 		} else {
1887 			unsigned int stat;
1888 
1889 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1890 			mtd->ecc_stats.corrected += stat;
1891 			max_bitflips = max(max_bitflips, stat);
1892 		}
1893 
1894 		if (data_buf)
1895 			data_buf += data_len;
1896 		if (oob_buf)
1897 			oob_buf += oob_len + ecc->bytes;
1898 	}
1899 
1900 	if (flash_op_err)
1901 		return -EIO;
1902 
1903 	if (!uncorrectable_cws)
1904 		return max_bitflips;
1905 
1906 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1907 				     uncorrectable_cws, page,
1908 				     max_bitflips);
1909 }
1910 
1911 /*
1912  * helper to perform the actual page read operation, used by ecc->read_page(),
1913  * ecc->read_oob()
1914  */
1915 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1916 			 u8 *oob_buf, int page)
1917 {
1918 	struct nand_chip *chip = &host->chip;
1919 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1920 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1921 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1922 	int i, ret;
1923 
1924 	config_nand_page_read(chip);
1925 
1926 	/* queue cmd descs for each codeword */
1927 	for (i = 0; i < ecc->steps; i++) {
1928 		int data_size, oob_size;
1929 
1930 		if (qcom_nandc_is_last_cw(ecc, i)) {
1931 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1932 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1933 				   host->spare_bytes;
1934 		} else {
1935 			data_size = host->cw_data;
1936 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1937 		}
1938 
1939 		if (nandc->props->is_bam) {
1940 			if (data_buf && oob_buf) {
1941 				nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
1942 				nandc_set_read_loc(chip, i, 1, data_size,
1943 						   oob_size, 1);
1944 			} else if (data_buf) {
1945 				nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
1946 			} else {
1947 				nandc_set_read_loc(chip, i, 0, data_size,
1948 						   oob_size, 1);
1949 			}
1950 		}
1951 
1952 		config_nand_cw_read(chip, true, i);
1953 
1954 		if (data_buf)
1955 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1956 				      data_size, 0);
1957 
1958 		/*
1959 		 * when ecc is enabled, the controller doesn't read the real
1960 		 * or dummy bad block markers in each chunk. To maintain a
1961 		 * consistent layout across RAW and ECC reads, we just
1962 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1963 		 * 0xffs)
1964 		 */
1965 		if (oob_buf) {
1966 			int j;
1967 
1968 			for (j = 0; j < host->bbm_size; j++)
1969 				*oob_buf++ = 0xff;
1970 
1971 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1972 				      oob_buf, oob_size, 0);
1973 		}
1974 
1975 		if (data_buf)
1976 			data_buf += data_size;
1977 		if (oob_buf)
1978 			oob_buf += oob_size;
1979 	}
1980 
1981 	ret = submit_descs(nandc);
1982 	free_descs(nandc);
1983 
1984 	if (ret) {
1985 		dev_err(nandc->dev, "failure to read page/oob\n");
1986 		return ret;
1987 	}
1988 
1989 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1990 }
1991 
1992 /*
1993  * a helper that copies the last step/codeword of a page (containing free oob)
1994  * into our local buffer
1995  */
1996 static int copy_last_cw(struct qcom_nand_host *host, int page)
1997 {
1998 	struct nand_chip *chip = &host->chip;
1999 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2000 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2001 	int size;
2002 	int ret;
2003 
2004 	clear_read_regs(nandc);
2005 
2006 	size = host->use_ecc ? host->cw_data : host->cw_size;
2007 
2008 	/* prepare a clean read buffer */
2009 	memset(nandc->data_buffer, 0xff, size);
2010 
2011 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2012 	update_rw_regs(host, 1, true, ecc->steps - 1);
2013 
2014 	config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
2015 
2016 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
2017 
2018 	ret = submit_descs(nandc);
2019 	if (ret)
2020 		dev_err(nandc->dev, "failed to copy last codeword\n");
2021 
2022 	free_descs(nandc);
2023 
2024 	return ret;
2025 }
2026 
2027 /* implements ecc->read_page() */
2028 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
2029 				int oob_required, int page)
2030 {
2031 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2032 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2033 	u8 *data_buf, *oob_buf = NULL;
2034 
2035 	nand_read_page_op(chip, page, 0, NULL, 0);
2036 	data_buf = buf;
2037 	oob_buf = oob_required ? chip->oob_poi : NULL;
2038 
2039 	clear_bam_transaction(nandc);
2040 
2041 	return read_page_ecc(host, data_buf, oob_buf, page);
2042 }
2043 
2044 /* implements ecc->read_page_raw() */
2045 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2046 				    int oob_required, int page)
2047 {
2048 	struct mtd_info *mtd = nand_to_mtd(chip);
2049 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2050 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2051 	int cw, ret;
2052 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
2053 
2054 	for (cw = 0; cw < ecc->steps; cw++) {
2055 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
2056 					     page, cw);
2057 		if (ret)
2058 			return ret;
2059 
2060 		data_buf += host->cw_data;
2061 		oob_buf += ecc->bytes;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 /* implements ecc->read_oob() */
2068 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
2069 {
2070 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2071 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2072 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2073 
2074 	clear_read_regs(nandc);
2075 	clear_bam_transaction(nandc);
2076 
2077 	host->use_ecc = true;
2078 	set_address(host, 0, page);
2079 	update_rw_regs(host, ecc->steps, true, 0);
2080 
2081 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2082 }
2083 
2084 /* implements ecc->write_page() */
2085 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2086 				 int oob_required, int page)
2087 {
2088 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2089 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2090 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2091 	u8 *data_buf, *oob_buf;
2092 	int i, ret;
2093 
2094 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2095 
2096 	clear_read_regs(nandc);
2097 	clear_bam_transaction(nandc);
2098 
2099 	data_buf = (u8 *)buf;
2100 	oob_buf = chip->oob_poi;
2101 
2102 	host->use_ecc = true;
2103 	update_rw_regs(host, ecc->steps, false, 0);
2104 	config_nand_page_write(chip);
2105 
2106 	for (i = 0; i < ecc->steps; i++) {
2107 		int data_size, oob_size;
2108 
2109 		if (qcom_nandc_is_last_cw(ecc, i)) {
2110 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2111 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2112 				   host->spare_bytes;
2113 		} else {
2114 			data_size = host->cw_data;
2115 			oob_size = ecc->bytes;
2116 		}
2117 
2118 
2119 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2120 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2121 
2122 		/*
2123 		 * when ECC is enabled, we don't really need to write anything
2124 		 * to oob for the first n - 1 codewords since these oob regions
2125 		 * just contain ECC bytes that's written by the controller
2126 		 * itself. For the last codeword, we skip the bbm positions and
2127 		 * write to the free oob area.
2128 		 */
2129 		if (qcom_nandc_is_last_cw(ecc, i)) {
2130 			oob_buf += host->bbm_size;
2131 
2132 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2133 				       oob_buf, oob_size, 0);
2134 		}
2135 
2136 		config_nand_cw_write(chip);
2137 
2138 		data_buf += data_size;
2139 		oob_buf += oob_size;
2140 	}
2141 
2142 	ret = submit_descs(nandc);
2143 	if (ret)
2144 		dev_err(nandc->dev, "failure to write page\n");
2145 
2146 	free_descs(nandc);
2147 
2148 	if (!ret)
2149 		ret = nand_prog_page_end_op(chip);
2150 
2151 	return ret;
2152 }
2153 
2154 /* implements ecc->write_page_raw() */
2155 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2156 				     const uint8_t *buf, int oob_required,
2157 				     int page)
2158 {
2159 	struct mtd_info *mtd = nand_to_mtd(chip);
2160 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2161 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2162 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2163 	u8 *data_buf, *oob_buf;
2164 	int i, ret;
2165 
2166 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2167 	clear_read_regs(nandc);
2168 	clear_bam_transaction(nandc);
2169 
2170 	data_buf = (u8 *)buf;
2171 	oob_buf = chip->oob_poi;
2172 
2173 	host->use_ecc = false;
2174 	update_rw_regs(host, ecc->steps, false, 0);
2175 	config_nand_page_write(chip);
2176 
2177 	for (i = 0; i < ecc->steps; i++) {
2178 		int data_size1, data_size2, oob_size1, oob_size2;
2179 		int reg_off = FLASH_BUF_ACC;
2180 
2181 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2182 		oob_size1 = host->bbm_size;
2183 
2184 		if (qcom_nandc_is_last_cw(ecc, i)) {
2185 			data_size2 = ecc->size - data_size1 -
2186 				     ((ecc->steps - 1) << 2);
2187 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2188 				    host->spare_bytes;
2189 		} else {
2190 			data_size2 = host->cw_data - data_size1;
2191 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2192 		}
2193 
2194 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2195 			       NAND_BAM_NO_EOT);
2196 		reg_off += data_size1;
2197 		data_buf += data_size1;
2198 
2199 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2200 			       NAND_BAM_NO_EOT);
2201 		reg_off += oob_size1;
2202 		oob_buf += oob_size1;
2203 
2204 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2205 			       NAND_BAM_NO_EOT);
2206 		reg_off += data_size2;
2207 		data_buf += data_size2;
2208 
2209 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2210 		oob_buf += oob_size2;
2211 
2212 		config_nand_cw_write(chip);
2213 	}
2214 
2215 	ret = submit_descs(nandc);
2216 	if (ret)
2217 		dev_err(nandc->dev, "failure to write raw page\n");
2218 
2219 	free_descs(nandc);
2220 
2221 	if (!ret)
2222 		ret = nand_prog_page_end_op(chip);
2223 
2224 	return ret;
2225 }
2226 
2227 /*
2228  * implements ecc->write_oob()
2229  *
2230  * the NAND controller cannot write only data or only OOB within a codeword
2231  * since ECC is calculated for the combined codeword. So update the OOB from
2232  * chip->oob_poi, and pad the data area with OxFF before writing.
2233  */
2234 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2235 {
2236 	struct mtd_info *mtd = nand_to_mtd(chip);
2237 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2238 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2239 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2240 	u8 *oob = chip->oob_poi;
2241 	int data_size, oob_size;
2242 	int ret;
2243 
2244 	host->use_ecc = true;
2245 	clear_bam_transaction(nandc);
2246 
2247 	/* calculate the data and oob size for the last codeword/step */
2248 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2249 	oob_size = mtd->oobavail;
2250 
2251 	memset(nandc->data_buffer, 0xff, host->cw_data);
2252 	/* override new oob content to last codeword */
2253 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2254 				    0, mtd->oobavail);
2255 
2256 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2257 	update_rw_regs(host, 1, false, 0);
2258 
2259 	config_nand_page_write(chip);
2260 	write_data_dma(nandc, FLASH_BUF_ACC,
2261 		       nandc->data_buffer, data_size + oob_size, 0);
2262 	config_nand_cw_write(chip);
2263 
2264 	ret = submit_descs(nandc);
2265 
2266 	free_descs(nandc);
2267 
2268 	if (ret) {
2269 		dev_err(nandc->dev, "failure to write oob\n");
2270 		return -EIO;
2271 	}
2272 
2273 	return nand_prog_page_end_op(chip);
2274 }
2275 
2276 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2277 {
2278 	struct mtd_info *mtd = nand_to_mtd(chip);
2279 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2280 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2281 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2282 	int page, ret, bbpos, bad = 0;
2283 
2284 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2285 
2286 	/*
2287 	 * configure registers for a raw sub page read, the address is set to
2288 	 * the beginning of the last codeword, we don't care about reading ecc
2289 	 * portion of oob. we just want the first few bytes from this codeword
2290 	 * that contains the BBM
2291 	 */
2292 	host->use_ecc = false;
2293 
2294 	clear_bam_transaction(nandc);
2295 	ret = copy_last_cw(host, page);
2296 	if (ret)
2297 		goto err;
2298 
2299 	if (check_flash_errors(host, 1)) {
2300 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2301 		goto err;
2302 	}
2303 
2304 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2305 
2306 	bad = nandc->data_buffer[bbpos] != 0xff;
2307 
2308 	if (chip->options & NAND_BUSWIDTH_16)
2309 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2310 err:
2311 	return bad;
2312 }
2313 
2314 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2315 {
2316 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2317 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2318 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2319 	int page, ret;
2320 
2321 	clear_read_regs(nandc);
2322 	clear_bam_transaction(nandc);
2323 
2324 	/*
2325 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2326 	 * we don't care about the rest of the content in the codeword since
2327 	 * we aren't going to use this block again
2328 	 */
2329 	memset(nandc->data_buffer, 0x00, host->cw_size);
2330 
2331 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2332 
2333 	/* prepare write */
2334 	host->use_ecc = false;
2335 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2336 	update_rw_regs(host, 1, false, ecc->steps - 1);
2337 
2338 	config_nand_page_write(chip);
2339 	write_data_dma(nandc, FLASH_BUF_ACC,
2340 		       nandc->data_buffer, host->cw_size, 0);
2341 	config_nand_cw_write(chip);
2342 
2343 	ret = submit_descs(nandc);
2344 
2345 	free_descs(nandc);
2346 
2347 	if (ret) {
2348 		dev_err(nandc->dev, "failure to update BBM\n");
2349 		return -EIO;
2350 	}
2351 
2352 	return nand_prog_page_end_op(chip);
2353 }
2354 
2355 /*
2356  * the three functions below implement chip->legacy.read_byte(),
2357  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2358  * aren't used for reading/writing page data, they are used for smaller data
2359  * like reading	id, status etc
2360  */
2361 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2362 {
2363 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2364 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2365 	u8 *buf = nandc->data_buffer;
2366 	u8 ret = 0x0;
2367 
2368 	if (host->last_command == NAND_CMD_STATUS) {
2369 		ret = host->status;
2370 
2371 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2372 
2373 		return ret;
2374 	}
2375 
2376 	if (nandc->buf_start < nandc->buf_count)
2377 		ret = buf[nandc->buf_start++];
2378 
2379 	return ret;
2380 }
2381 
2382 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2383 {
2384 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2385 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2386 
2387 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2388 	nandc->buf_start += real_len;
2389 }
2390 
2391 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2392 				 int len)
2393 {
2394 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2395 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2396 
2397 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2398 
2399 	nandc->buf_start += real_len;
2400 }
2401 
2402 /* we support only one external chip for now */
2403 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2404 {
2405 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2406 
2407 	if (chipnr <= 0)
2408 		return;
2409 
2410 	dev_warn(nandc->dev, "invalid chip select\n");
2411 }
2412 
2413 /*
2414  * NAND controller page layout info
2415  *
2416  * Layout with ECC enabled:
2417  *
2418  * |----------------------|  |---------------------------------|
2419  * |           xx.......yy|  |             *********xx.......yy|
2420  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2421  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2422  * |           xx.......yy|  |             *********xx.......yy|
2423  * |----------------------|  |---------------------------------|
2424  *     codeword 1,2..n-1                  codeword n
2425  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2426  *
2427  * n = Number of codewords in the page
2428  * . = ECC bytes
2429  * * = Spare/free bytes
2430  * x = Unused byte(s)
2431  * y = Reserved byte(s)
2432  *
2433  * 2K page: n = 4, spare = 16 bytes
2434  * 4K page: n = 8, spare = 32 bytes
2435  * 8K page: n = 16, spare = 64 bytes
2436  *
2437  * the qcom nand controller operates at a sub page/codeword level. each
2438  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2439  * the number of ECC bytes vary based on the ECC strength and the bus width.
2440  *
2441  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2442  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2443  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2444  *
2445  * When we access a page with ECC enabled, the reserved bytes(s) are not
2446  * accessible at all. When reading, we fill up these unreadable positions
2447  * with 0xffs. When writing, the controller skips writing the inaccessible
2448  * bytes.
2449  *
2450  * Layout with ECC disabled:
2451  *
2452  * |------------------------------|  |---------------------------------------|
2453  * |         yy          xx.......|  |         bb          *********xx.......|
2454  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2455  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2456  * |         yy          xx.......|  |         bb          *********xx.......|
2457  * |------------------------------|  |---------------------------------------|
2458  *         codeword 1,2..n-1                        codeword n
2459  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2460  *
2461  * n = Number of codewords in the page
2462  * . = ECC bytes
2463  * * = Spare/free bytes
2464  * x = Unused byte(s)
2465  * y = Dummy Bad Bock byte(s)
2466  * b = Real Bad Block byte(s)
2467  * size1/size2 = function of codeword size and 'n'
2468  *
2469  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2470  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2471  * Block Markers. In the last codeword, this position contains the real BBM
2472  *
2473  * In order to have a consistent layout between RAW and ECC modes, we assume
2474  * the following OOB layout arrangement:
2475  *
2476  * |-----------|  |--------------------|
2477  * |yyxx.......|  |bb*********xx.......|
2478  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2479  * |yyxx.......|  |bb*********xx.......|
2480  * |yyxx.......|  |bb*********xx.......|
2481  * |-----------|  |--------------------|
2482  *  first n - 1       nth OOB region
2483  *  OOB regions
2484  *
2485  * n = Number of codewords in the page
2486  * . = ECC bytes
2487  * * = FREE OOB bytes
2488  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2489  * x = Unused byte(s)
2490  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2491  *
2492  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2493  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2494  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2495  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2496  * the sum of the three).
2497  */
2498 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2499 				   struct mtd_oob_region *oobregion)
2500 {
2501 	struct nand_chip *chip = mtd_to_nand(mtd);
2502 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2503 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2504 
2505 	if (section > 1)
2506 		return -ERANGE;
2507 
2508 	if (!section) {
2509 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2510 				    host->bbm_size;
2511 		oobregion->offset = 0;
2512 	} else {
2513 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2514 		oobregion->offset = mtd->oobsize - oobregion->length;
2515 	}
2516 
2517 	return 0;
2518 }
2519 
2520 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2521 				     struct mtd_oob_region *oobregion)
2522 {
2523 	struct nand_chip *chip = mtd_to_nand(mtd);
2524 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2525 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2526 
2527 	if (section)
2528 		return -ERANGE;
2529 
2530 	oobregion->length = ecc->steps * 4;
2531 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2532 
2533 	return 0;
2534 }
2535 
2536 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2537 	.ecc = qcom_nand_ooblayout_ecc,
2538 	.free = qcom_nand_ooblayout_free,
2539 };
2540 
2541 static int
2542 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2543 {
2544 	return strength == 4 ? 12 : 16;
2545 }
2546 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2547 		     NANDC_STEP_SIZE, 4, 8);
2548 
2549 static int qcom_nand_attach_chip(struct nand_chip *chip)
2550 {
2551 	struct mtd_info *mtd = nand_to_mtd(chip);
2552 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2553 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2554 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2555 	int cwperpage, bad_block_byte, ret;
2556 	bool wide_bus;
2557 	int ecc_mode = 1;
2558 
2559 	/* controller only supports 512 bytes data steps */
2560 	ecc->size = NANDC_STEP_SIZE;
2561 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2562 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2563 
2564 	/*
2565 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2566 	 * so remaining bytes can be used for ECC.
2567 	 */
2568 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2569 				   mtd->oobsize - (cwperpage * 4));
2570 	if (ret) {
2571 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2572 		return ret;
2573 	}
2574 
2575 	if (ecc->strength >= 8) {
2576 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2577 		host->bch_enabled = true;
2578 		ecc_mode = 1;
2579 
2580 		if (wide_bus) {
2581 			host->ecc_bytes_hw = 14;
2582 			host->spare_bytes = 0;
2583 			host->bbm_size = 2;
2584 		} else {
2585 			host->ecc_bytes_hw = 13;
2586 			host->spare_bytes = 2;
2587 			host->bbm_size = 1;
2588 		}
2589 	} else {
2590 		/*
2591 		 * if the controller supports BCH for 4 bit ECC, the controller
2592 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2593 		 * always 10 bytes
2594 		 */
2595 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2596 			/* BCH */
2597 			host->bch_enabled = true;
2598 			ecc_mode = 0;
2599 
2600 			if (wide_bus) {
2601 				host->ecc_bytes_hw = 8;
2602 				host->spare_bytes = 2;
2603 				host->bbm_size = 2;
2604 			} else {
2605 				host->ecc_bytes_hw = 7;
2606 				host->spare_bytes = 4;
2607 				host->bbm_size = 1;
2608 			}
2609 		} else {
2610 			/* RS */
2611 			host->ecc_bytes_hw = 10;
2612 
2613 			if (wide_bus) {
2614 				host->spare_bytes = 0;
2615 				host->bbm_size = 2;
2616 			} else {
2617 				host->spare_bytes = 1;
2618 				host->bbm_size = 1;
2619 			}
2620 		}
2621 	}
2622 
2623 	/*
2624 	 * we consider ecc->bytes as the sum of all the non-data content in a
2625 	 * step. It gives us a clean representation of the oob area (even if
2626 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2627 	 * ECC and 12 bytes for 4 bit ECC
2628 	 */
2629 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2630 
2631 	ecc->read_page		= qcom_nandc_read_page;
2632 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2633 	ecc->read_oob		= qcom_nandc_read_oob;
2634 	ecc->write_page		= qcom_nandc_write_page;
2635 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2636 	ecc->write_oob		= qcom_nandc_write_oob;
2637 
2638 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2639 
2640 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2641 
2642 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2643 				     cwperpage);
2644 
2645 	/*
2646 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2647 	 * spare data with ECC too. We protect spare data by default, so we set
2648 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2649 	 */
2650 	host->cw_data = 516;
2651 
2652 	/*
2653 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2654 	 * for 8 bit ECC
2655 	 */
2656 	host->cw_size = host->cw_data + ecc->bytes;
2657 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2658 
2659 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2660 				| host->cw_data << UD_SIZE_BYTES
2661 				| 0 << DISABLE_STATUS_AFTER_WRITE
2662 				| 5 << NUM_ADDR_CYCLES
2663 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2664 				| 0 << STATUS_BFR_READ
2665 				| 1 << SET_RD_MODE_AFTER_STATUS
2666 				| host->spare_bytes << SPARE_SIZE_BYTES;
2667 
2668 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2669 				| 0 <<  CS_ACTIVE_BSY
2670 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2671 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2672 				| 2 << WR_RD_BSY_GAP
2673 				| wide_bus << WIDE_FLASH
2674 				| host->bch_enabled << ENABLE_BCH_ECC;
2675 
2676 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2677 				| host->cw_size << UD_SIZE_BYTES
2678 				| 5 << NUM_ADDR_CYCLES
2679 				| 0 << SPARE_SIZE_BYTES;
2680 
2681 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2682 				| 0 << CS_ACTIVE_BSY
2683 				| 17 << BAD_BLOCK_BYTE_NUM
2684 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2685 				| 2 << WR_RD_BSY_GAP
2686 				| wide_bus << WIDE_FLASH
2687 				| 1 << DEV0_CFG1_ECC_DISABLE;
2688 
2689 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2690 				| 0 << ECC_SW_RESET
2691 				| host->cw_data << ECC_NUM_DATA_BYTES
2692 				| 1 << ECC_FORCE_CLK_OPEN
2693 				| ecc_mode << ECC_MODE
2694 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2695 
2696 	if (!nandc->props->qpic_v2)
2697 		host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2698 
2699 	host->clrflashstatus = FS_READY_BSY_N;
2700 	host->clrreadstatus = 0xc0;
2701 	nandc->regs->erased_cw_detect_cfg_clr =
2702 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2703 	nandc->regs->erased_cw_detect_cfg_set =
2704 		cpu_to_le32(SET_ERASED_PAGE_DET);
2705 
2706 	dev_dbg(nandc->dev,
2707 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2708 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2709 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2710 		cwperpage);
2711 
2712 	return 0;
2713 }
2714 
2715 static const struct nand_controller_ops qcom_nandc_ops = {
2716 	.attach_chip = qcom_nand_attach_chip,
2717 };
2718 
2719 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2720 {
2721 	if (nandc->props->is_bam) {
2722 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2723 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2724 					 MAX_REG_RD *
2725 					 sizeof(*nandc->reg_read_buf),
2726 					 DMA_FROM_DEVICE);
2727 
2728 		if (nandc->tx_chan)
2729 			dma_release_channel(nandc->tx_chan);
2730 
2731 		if (nandc->rx_chan)
2732 			dma_release_channel(nandc->rx_chan);
2733 
2734 		if (nandc->cmd_chan)
2735 			dma_release_channel(nandc->cmd_chan);
2736 	} else {
2737 		if (nandc->chan)
2738 			dma_release_channel(nandc->chan);
2739 	}
2740 }
2741 
2742 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2743 {
2744 	int ret;
2745 
2746 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2747 	if (ret) {
2748 		dev_err(nandc->dev, "failed to set DMA mask\n");
2749 		return ret;
2750 	}
2751 
2752 	/*
2753 	 * we use the internal buffer for reading ONFI params, reading small
2754 	 * data like ID and status, and preforming read-copy-write operations
2755 	 * when writing to a codeword partially. 532 is the maximum possible
2756 	 * size of a codeword for our nand controller
2757 	 */
2758 	nandc->buf_size = 532;
2759 
2760 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2761 					GFP_KERNEL);
2762 	if (!nandc->data_buffer)
2763 		return -ENOMEM;
2764 
2765 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2766 					GFP_KERNEL);
2767 	if (!nandc->regs)
2768 		return -ENOMEM;
2769 
2770 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2771 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2772 				GFP_KERNEL);
2773 	if (!nandc->reg_read_buf)
2774 		return -ENOMEM;
2775 
2776 	if (nandc->props->is_bam) {
2777 		nandc->reg_read_dma =
2778 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2779 				       MAX_REG_RD *
2780 				       sizeof(*nandc->reg_read_buf),
2781 				       DMA_FROM_DEVICE);
2782 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2783 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2784 			return -EIO;
2785 		}
2786 
2787 		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2788 		if (IS_ERR(nandc->tx_chan)) {
2789 			ret = PTR_ERR(nandc->tx_chan);
2790 			nandc->tx_chan = NULL;
2791 			dev_err_probe(nandc->dev, ret,
2792 				      "tx DMA channel request failed\n");
2793 			goto unalloc;
2794 		}
2795 
2796 		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2797 		if (IS_ERR(nandc->rx_chan)) {
2798 			ret = PTR_ERR(nandc->rx_chan);
2799 			nandc->rx_chan = NULL;
2800 			dev_err_probe(nandc->dev, ret,
2801 				      "rx DMA channel request failed\n");
2802 			goto unalloc;
2803 		}
2804 
2805 		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2806 		if (IS_ERR(nandc->cmd_chan)) {
2807 			ret = PTR_ERR(nandc->cmd_chan);
2808 			nandc->cmd_chan = NULL;
2809 			dev_err_probe(nandc->dev, ret,
2810 				      "cmd DMA channel request failed\n");
2811 			goto unalloc;
2812 		}
2813 
2814 		/*
2815 		 * Initially allocate BAM transaction to read ONFI param page.
2816 		 * After detecting all the devices, this BAM transaction will
2817 		 * be freed and the next BAM tranasction will be allocated with
2818 		 * maximum codeword size
2819 		 */
2820 		nandc->max_cwperpage = 1;
2821 		nandc->bam_txn = alloc_bam_transaction(nandc);
2822 		if (!nandc->bam_txn) {
2823 			dev_err(nandc->dev,
2824 				"failed to allocate bam transaction\n");
2825 			ret = -ENOMEM;
2826 			goto unalloc;
2827 		}
2828 	} else {
2829 		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2830 		if (IS_ERR(nandc->chan)) {
2831 			ret = PTR_ERR(nandc->chan);
2832 			nandc->chan = NULL;
2833 			dev_err_probe(nandc->dev, ret,
2834 				      "rxtx DMA channel request failed\n");
2835 			return ret;
2836 		}
2837 	}
2838 
2839 	INIT_LIST_HEAD(&nandc->desc_list);
2840 	INIT_LIST_HEAD(&nandc->host_list);
2841 
2842 	nand_controller_init(&nandc->controller);
2843 	nandc->controller.ops = &qcom_nandc_ops;
2844 
2845 	return 0;
2846 unalloc:
2847 	qcom_nandc_unalloc(nandc);
2848 	return ret;
2849 }
2850 
2851 /* one time setup of a few nand controller registers */
2852 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2853 {
2854 	u32 nand_ctrl;
2855 
2856 	/* kill onenand */
2857 	if (!nandc->props->is_qpic)
2858 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2859 
2860 	if (!nandc->props->qpic_v2)
2861 		nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2862 			    NAND_DEV_CMD_VLD_VAL);
2863 
2864 	/* enable ADM or BAM DMA */
2865 	if (nandc->props->is_bam) {
2866 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2867 
2868 		/*
2869 		 *NAND_CTRL is an operational registers, and CPU
2870 		 * access to operational registers are read only
2871 		 * in BAM mode. So update the NAND_CTRL register
2872 		 * only if it is not in BAM mode. In most cases BAM
2873 		 * mode will be enabled in bootloader
2874 		 */
2875 		if (!(nand_ctrl & BAM_MODE_EN))
2876 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2877 	} else {
2878 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2879 	}
2880 
2881 	/* save the original values of these registers */
2882 	if (!nandc->props->qpic_v2) {
2883 		nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2884 		nandc->vld = NAND_DEV_CMD_VLD_VAL;
2885 	}
2886 
2887 	return 0;
2888 }
2889 
2890 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
2891 
2892 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2893 					    struct qcom_nand_host *host,
2894 					    struct device_node *dn)
2895 {
2896 	struct nand_chip *chip = &host->chip;
2897 	struct mtd_info *mtd = nand_to_mtd(chip);
2898 	struct device *dev = nandc->dev;
2899 	int ret;
2900 
2901 	ret = of_property_read_u32(dn, "reg", &host->cs);
2902 	if (ret) {
2903 		dev_err(dev, "can't get chip-select\n");
2904 		return -ENXIO;
2905 	}
2906 
2907 	nand_set_flash_node(chip, dn);
2908 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2909 	if (!mtd->name)
2910 		return -ENOMEM;
2911 
2912 	mtd->owner = THIS_MODULE;
2913 	mtd->dev.parent = dev;
2914 
2915 	chip->legacy.cmdfunc	= qcom_nandc_command;
2916 	chip->legacy.select_chip	= qcom_nandc_select_chip;
2917 	chip->legacy.read_byte	= qcom_nandc_read_byte;
2918 	chip->legacy.read_buf	= qcom_nandc_read_buf;
2919 	chip->legacy.write_buf	= qcom_nandc_write_buf;
2920 	chip->legacy.set_features	= nand_get_set_features_notsupp;
2921 	chip->legacy.get_features	= nand_get_set_features_notsupp;
2922 
2923 	/*
2924 	 * the bad block marker is readable only when we read the last codeword
2925 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2926 	 * helpers don't allow us to read BB from a nand chip with ECC
2927 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2928 	 * and block_markbad helpers until we permanently switch to using
2929 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2930 	 */
2931 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2932 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2933 
2934 	chip->controller = &nandc->controller;
2935 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2936 			 NAND_SKIP_BBTSCAN;
2937 
2938 	/* set up initial status value */
2939 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2940 
2941 	ret = nand_scan(chip, 1);
2942 	if (ret)
2943 		return ret;
2944 
2945 	if (nandc->props->is_bam) {
2946 		free_bam_transaction(nandc);
2947 		nandc->bam_txn = alloc_bam_transaction(nandc);
2948 		if (!nandc->bam_txn) {
2949 			dev_err(nandc->dev,
2950 				"failed to allocate bam transaction\n");
2951 			nand_cleanup(chip);
2952 			return -ENOMEM;
2953 		}
2954 	}
2955 
2956 	ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
2957 	if (ret)
2958 		nand_cleanup(chip);
2959 
2960 	return ret;
2961 }
2962 
2963 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2964 {
2965 	struct device *dev = nandc->dev;
2966 	struct device_node *dn = dev->of_node, *child;
2967 	struct qcom_nand_host *host;
2968 	int ret = -ENODEV;
2969 
2970 	for_each_available_child_of_node(dn, child) {
2971 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2972 		if (!host) {
2973 			of_node_put(child);
2974 			return -ENOMEM;
2975 		}
2976 
2977 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2978 		if (ret) {
2979 			devm_kfree(dev, host);
2980 			continue;
2981 		}
2982 
2983 		list_add_tail(&host->node, &nandc->host_list);
2984 	}
2985 
2986 	return ret;
2987 }
2988 
2989 /* parse custom DT properties here */
2990 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2991 {
2992 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2993 	struct device_node *np = nandc->dev->of_node;
2994 	int ret;
2995 
2996 	if (!nandc->props->is_bam) {
2997 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2998 					   &nandc->cmd_crci);
2999 		if (ret) {
3000 			dev_err(nandc->dev, "command CRCI unspecified\n");
3001 			return ret;
3002 		}
3003 
3004 		ret = of_property_read_u32(np, "qcom,data-crci",
3005 					   &nandc->data_crci);
3006 		if (ret) {
3007 			dev_err(nandc->dev, "data CRCI unspecified\n");
3008 			return ret;
3009 		}
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static int qcom_nandc_probe(struct platform_device *pdev)
3016 {
3017 	struct qcom_nand_controller *nandc;
3018 	const void *dev_data;
3019 	struct device *dev = &pdev->dev;
3020 	struct resource *res;
3021 	int ret;
3022 
3023 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3024 	if (!nandc)
3025 		return -ENOMEM;
3026 
3027 	platform_set_drvdata(pdev, nandc);
3028 	nandc->dev = dev;
3029 
3030 	dev_data = of_device_get_match_data(dev);
3031 	if (!dev_data) {
3032 		dev_err(&pdev->dev, "failed to get device data\n");
3033 		return -ENODEV;
3034 	}
3035 
3036 	nandc->props = dev_data;
3037 
3038 	nandc->core_clk = devm_clk_get(dev, "core");
3039 	if (IS_ERR(nandc->core_clk))
3040 		return PTR_ERR(nandc->core_clk);
3041 
3042 	nandc->aon_clk = devm_clk_get(dev, "aon");
3043 	if (IS_ERR(nandc->aon_clk))
3044 		return PTR_ERR(nandc->aon_clk);
3045 
3046 	ret = qcom_nandc_parse_dt(pdev);
3047 	if (ret)
3048 		return ret;
3049 
3050 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3051 	nandc->base = devm_ioremap_resource(dev, res);
3052 	if (IS_ERR(nandc->base))
3053 		return PTR_ERR(nandc->base);
3054 
3055 	nandc->base_phys = res->start;
3056 	nandc->base_dma = dma_map_resource(dev, res->start,
3057 					   resource_size(res),
3058 					   DMA_BIDIRECTIONAL, 0);
3059 	if (dma_mapping_error(dev, nandc->base_dma))
3060 		return -ENXIO;
3061 
3062 	ret = qcom_nandc_alloc(nandc);
3063 	if (ret)
3064 		goto err_nandc_alloc;
3065 
3066 	ret = clk_prepare_enable(nandc->core_clk);
3067 	if (ret)
3068 		goto err_core_clk;
3069 
3070 	ret = clk_prepare_enable(nandc->aon_clk);
3071 	if (ret)
3072 		goto err_aon_clk;
3073 
3074 	ret = qcom_nandc_setup(nandc);
3075 	if (ret)
3076 		goto err_setup;
3077 
3078 	ret = qcom_probe_nand_devices(nandc);
3079 	if (ret)
3080 		goto err_setup;
3081 
3082 	return 0;
3083 
3084 err_setup:
3085 	clk_disable_unprepare(nandc->aon_clk);
3086 err_aon_clk:
3087 	clk_disable_unprepare(nandc->core_clk);
3088 err_core_clk:
3089 	qcom_nandc_unalloc(nandc);
3090 err_nandc_alloc:
3091 	dma_unmap_resource(dev, res->start, resource_size(res),
3092 			   DMA_BIDIRECTIONAL, 0);
3093 
3094 	return ret;
3095 }
3096 
3097 static int qcom_nandc_remove(struct platform_device *pdev)
3098 {
3099 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3100 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3101 	struct qcom_nand_host *host;
3102 	struct nand_chip *chip;
3103 	int ret;
3104 
3105 	list_for_each_entry(host, &nandc->host_list, node) {
3106 		chip = &host->chip;
3107 		ret = mtd_device_unregister(nand_to_mtd(chip));
3108 		WARN_ON(ret);
3109 		nand_cleanup(chip);
3110 	}
3111 
3112 	qcom_nandc_unalloc(nandc);
3113 
3114 	clk_disable_unprepare(nandc->aon_clk);
3115 	clk_disable_unprepare(nandc->core_clk);
3116 
3117 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3118 			   DMA_BIDIRECTIONAL, 0);
3119 
3120 	return 0;
3121 }
3122 
3123 static const struct qcom_nandc_props ipq806x_nandc_props = {
3124 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3125 	.is_bam = false,
3126 	.dev_cmd_reg_start = 0x0,
3127 };
3128 
3129 static const struct qcom_nandc_props ipq4019_nandc_props = {
3130 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3131 	.is_bam = true,
3132 	.is_qpic = true,
3133 	.dev_cmd_reg_start = 0x0,
3134 };
3135 
3136 static const struct qcom_nandc_props ipq8074_nandc_props = {
3137 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3138 	.is_bam = true,
3139 	.is_qpic = true,
3140 	.dev_cmd_reg_start = 0x7000,
3141 };
3142 
3143 static const struct qcom_nandc_props sdx55_nandc_props = {
3144 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3145 	.is_bam = true,
3146 	.is_qpic = true,
3147 	.qpic_v2 = true,
3148 	.dev_cmd_reg_start = 0x7000,
3149 };
3150 
3151 /*
3152  * data will hold a struct pointer containing more differences once we support
3153  * more controller variants
3154  */
3155 static const struct of_device_id qcom_nandc_of_match[] = {
3156 	{
3157 		.compatible = "qcom,ipq806x-nand",
3158 		.data = &ipq806x_nandc_props,
3159 	},
3160 	{
3161 		.compatible = "qcom,ipq4019-nand",
3162 		.data = &ipq4019_nandc_props,
3163 	},
3164 	{
3165 		.compatible = "qcom,ipq6018-nand",
3166 		.data = &ipq8074_nandc_props,
3167 	},
3168 	{
3169 		.compatible = "qcom,ipq8074-nand",
3170 		.data = &ipq8074_nandc_props,
3171 	},
3172 	{
3173 		.compatible = "qcom,sdx55-nand",
3174 		.data = &sdx55_nandc_props,
3175 	},
3176 	{}
3177 };
3178 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3179 
3180 static struct platform_driver qcom_nandc_driver = {
3181 	.driver = {
3182 		.name = "qcom-nandc",
3183 		.of_match_table = qcom_nandc_of_match,
3184 	},
3185 	.probe   = qcom_nandc_probe,
3186 	.remove  = qcom_nandc_remove,
3187 };
3188 module_platform_driver(qcom_nandc_driver);
3189 
3190 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3191 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3192 MODULE_LICENSE("GPL v2");
3193