1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016, The Linux Foundation. All rights reserved. 4 */ 5 #include <linux/clk.h> 6 #include <linux/slab.h> 7 #include <linux/bitops.h> 8 #include <linux/dma/qcom_adm.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma/qcom_bam_dma.h> 18 19 /* NANDc reg offsets */ 20 #define NAND_FLASH_CMD 0x00 21 #define NAND_ADDR0 0x04 22 #define NAND_ADDR1 0x08 23 #define NAND_FLASH_CHIP_SELECT 0x0c 24 #define NAND_EXEC_CMD 0x10 25 #define NAND_FLASH_STATUS 0x14 26 #define NAND_BUFFER_STATUS 0x18 27 #define NAND_DEV0_CFG0 0x20 28 #define NAND_DEV0_CFG1 0x24 29 #define NAND_DEV0_ECC_CFG 0x28 30 #define NAND_AUTO_STATUS_EN 0x2c 31 #define NAND_DEV1_CFG0 0x30 32 #define NAND_DEV1_CFG1 0x34 33 #define NAND_READ_ID 0x40 34 #define NAND_READ_STATUS 0x44 35 #define NAND_DEV_CMD0 0xa0 36 #define NAND_DEV_CMD1 0xa4 37 #define NAND_DEV_CMD2 0xa8 38 #define NAND_DEV_CMD_VLD 0xac 39 #define SFLASHC_BURST_CFG 0xe0 40 #define NAND_ERASED_CW_DETECT_CFG 0xe8 41 #define NAND_ERASED_CW_DETECT_STATUS 0xec 42 #define NAND_EBI2_ECC_BUF_CFG 0xf0 43 #define FLASH_BUF_ACC 0x100 44 45 #define NAND_CTRL 0xf00 46 #define NAND_VERSION 0xf08 47 #define NAND_READ_LOCATION_0 0xf20 48 #define NAND_READ_LOCATION_1 0xf24 49 #define NAND_READ_LOCATION_2 0xf28 50 #define NAND_READ_LOCATION_3 0xf2c 51 #define NAND_READ_LOCATION_LAST_CW_0 0xf40 52 #define NAND_READ_LOCATION_LAST_CW_1 0xf44 53 #define NAND_READ_LOCATION_LAST_CW_2 0xf48 54 #define NAND_READ_LOCATION_LAST_CW_3 0xf4c 55 56 /* dummy register offsets, used by write_reg_dma */ 57 #define NAND_DEV_CMD1_RESTORE 0xdead 58 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef 59 60 /* NAND_FLASH_CMD bits */ 61 #define PAGE_ACC BIT(4) 62 #define LAST_PAGE BIT(5) 63 64 /* NAND_FLASH_CHIP_SELECT bits */ 65 #define NAND_DEV_SEL 0 66 #define DM_EN BIT(2) 67 68 /* NAND_FLASH_STATUS bits */ 69 #define FS_OP_ERR BIT(4) 70 #define FS_READY_BSY_N BIT(5) 71 #define FS_MPU_ERR BIT(8) 72 #define FS_DEVICE_STS_ERR BIT(16) 73 #define FS_DEVICE_WP BIT(23) 74 75 /* NAND_BUFFER_STATUS bits */ 76 #define BS_UNCORRECTABLE_BIT BIT(8) 77 #define BS_CORRECTABLE_ERR_MSK 0x1f 78 79 /* NAND_DEVn_CFG0 bits */ 80 #define DISABLE_STATUS_AFTER_WRITE 4 81 #define CW_PER_PAGE 6 82 #define UD_SIZE_BYTES 9 83 #define ECC_PARITY_SIZE_BYTES_RS 19 84 #define SPARE_SIZE_BYTES 23 85 #define NUM_ADDR_CYCLES 27 86 #define STATUS_BFR_READ 30 87 #define SET_RD_MODE_AFTER_STATUS 31 88 89 /* NAND_DEVn_CFG0 bits */ 90 #define DEV0_CFG1_ECC_DISABLE 0 91 #define WIDE_FLASH 1 92 #define NAND_RECOVERY_CYCLES 2 93 #define CS_ACTIVE_BSY 5 94 #define BAD_BLOCK_BYTE_NUM 6 95 #define BAD_BLOCK_IN_SPARE_AREA 16 96 #define WR_RD_BSY_GAP 17 97 #define ENABLE_BCH_ECC 27 98 99 /* NAND_DEV0_ECC_CFG bits */ 100 #define ECC_CFG_ECC_DISABLE 0 101 #define ECC_SW_RESET 1 102 #define ECC_MODE 4 103 #define ECC_PARITY_SIZE_BYTES_BCH 8 104 #define ECC_NUM_DATA_BYTES 16 105 #define ECC_FORCE_CLK_OPEN 30 106 107 /* NAND_DEV_CMD1 bits */ 108 #define READ_ADDR 0 109 110 /* NAND_DEV_CMD_VLD bits */ 111 #define READ_START_VLD BIT(0) 112 #define READ_STOP_VLD BIT(1) 113 #define WRITE_START_VLD BIT(2) 114 #define ERASE_START_VLD BIT(3) 115 #define SEQ_READ_START_VLD BIT(4) 116 117 /* NAND_EBI2_ECC_BUF_CFG bits */ 118 #define NUM_STEPS 0 119 120 /* NAND_ERASED_CW_DETECT_CFG bits */ 121 #define ERASED_CW_ECC_MASK 1 122 #define AUTO_DETECT_RES 0 123 #define MASK_ECC (1 << ERASED_CW_ECC_MASK) 124 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES) 125 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) 126 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) 127 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) 128 129 /* NAND_ERASED_CW_DETECT_STATUS bits */ 130 #define PAGE_ALL_ERASED BIT(7) 131 #define CODEWORD_ALL_ERASED BIT(6) 132 #define PAGE_ERASED BIT(5) 133 #define CODEWORD_ERASED BIT(4) 134 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) 135 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) 136 137 /* NAND_READ_LOCATION_n bits */ 138 #define READ_LOCATION_OFFSET 0 139 #define READ_LOCATION_SIZE 16 140 #define READ_LOCATION_LAST 31 141 142 /* Version Mask */ 143 #define NAND_VERSION_MAJOR_MASK 0xf0000000 144 #define NAND_VERSION_MAJOR_SHIFT 28 145 #define NAND_VERSION_MINOR_MASK 0x0fff0000 146 #define NAND_VERSION_MINOR_SHIFT 16 147 148 /* NAND OP_CMDs */ 149 #define OP_PAGE_READ 0x2 150 #define OP_PAGE_READ_WITH_ECC 0x3 151 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 152 #define OP_PAGE_READ_ONFI_READ 0x5 153 #define OP_PROGRAM_PAGE 0x6 154 #define OP_PAGE_PROGRAM_WITH_ECC 0x7 155 #define OP_PROGRAM_PAGE_SPARE 0x9 156 #define OP_BLOCK_ERASE 0xa 157 #define OP_FETCH_ID 0xb 158 #define OP_RESET_DEVICE 0xd 159 160 /* Default Value for NAND_DEV_CMD_VLD */ 161 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ 162 ERASE_START_VLD | SEQ_READ_START_VLD) 163 164 /* NAND_CTRL bits */ 165 #define BAM_MODE_EN BIT(0) 166 167 /* 168 * the NAND controller performs reads/writes with ECC in 516 byte chunks. 169 * the driver calls the chunks 'step' or 'codeword' interchangeably 170 */ 171 #define NANDC_STEP_SIZE 512 172 173 /* 174 * the largest page size we support is 8K, this will have 16 steps/codewords 175 * of 512 bytes each 176 */ 177 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) 178 179 /* we read at most 3 registers per codeword scan */ 180 #define MAX_REG_RD (3 * MAX_NUM_STEPS) 181 182 /* ECC modes supported by the controller */ 183 #define ECC_NONE BIT(0) 184 #define ECC_RS_4BIT BIT(1) 185 #define ECC_BCH_4BIT BIT(2) 186 #define ECC_BCH_8BIT BIT(3) 187 188 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \ 189 nandc_set_reg(chip, reg, \ 190 ((cw_offset) << READ_LOCATION_OFFSET) | \ 191 ((read_size) << READ_LOCATION_SIZE) | \ 192 ((is_last_read_loc) << READ_LOCATION_LAST)) 193 194 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \ 195 nandc_set_reg(chip, reg, \ 196 ((cw_offset) << READ_LOCATION_OFFSET) | \ 197 ((read_size) << READ_LOCATION_SIZE) | \ 198 ((is_last_read_loc) << READ_LOCATION_LAST)) 199 /* 200 * Returns the actual register address for all NAND_DEV_ registers 201 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) 202 */ 203 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) 204 205 /* Returns the NAND register physical address */ 206 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) 207 208 /* Returns the dma address for reg read buffer */ 209 #define reg_buf_dma_addr(chip, vaddr) \ 210 ((chip)->reg_read_dma + \ 211 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) 212 213 #define QPIC_PER_CW_CMD_ELEMENTS 32 214 #define QPIC_PER_CW_CMD_SGL 32 215 #define QPIC_PER_CW_DATA_SGL 8 216 217 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) 218 219 /* 220 * Flags used in DMA descriptor preparation helper functions 221 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) 222 */ 223 /* Don't set the EOT in current tx BAM sgl */ 224 #define NAND_BAM_NO_EOT BIT(0) 225 /* Set the NWD flag in current BAM sgl */ 226 #define NAND_BAM_NWD BIT(1) 227 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ 228 #define NAND_BAM_NEXT_SGL BIT(2) 229 /* 230 * Erased codeword status is being used two times in single transfer so this 231 * flag will determine the current value of erased codeword status register 232 */ 233 #define NAND_ERASED_CW_SET BIT(4) 234 235 /* 236 * This data type corresponds to the BAM transaction which will be used for all 237 * NAND transfers. 238 * @bam_ce - the array of BAM command elements 239 * @cmd_sgl - sgl for NAND BAM command pipe 240 * @data_sgl - sgl for NAND BAM consumer/producer pipe 241 * @bam_ce_pos - the index in bam_ce which is available for next sgl 242 * @bam_ce_start - the index in bam_ce which marks the start position ce 243 * for current sgl. It will be used for size calculation 244 * for current sgl 245 * @cmd_sgl_pos - current index in command sgl. 246 * @cmd_sgl_start - start index in command sgl. 247 * @tx_sgl_pos - current index in data sgl for tx. 248 * @tx_sgl_start - start index in data sgl for tx. 249 * @rx_sgl_pos - current index in data sgl for rx. 250 * @rx_sgl_start - start index in data sgl for rx. 251 * @wait_second_completion - wait for second DMA desc completion before making 252 * the NAND transfer completion. 253 * @txn_done - completion for NAND transfer. 254 * @last_data_desc - last DMA desc in data channel (tx/rx). 255 * @last_cmd_desc - last DMA desc in command channel. 256 */ 257 struct bam_transaction { 258 struct bam_cmd_element *bam_ce; 259 struct scatterlist *cmd_sgl; 260 struct scatterlist *data_sgl; 261 u32 bam_ce_pos; 262 u32 bam_ce_start; 263 u32 cmd_sgl_pos; 264 u32 cmd_sgl_start; 265 u32 tx_sgl_pos; 266 u32 tx_sgl_start; 267 u32 rx_sgl_pos; 268 u32 rx_sgl_start; 269 bool wait_second_completion; 270 struct completion txn_done; 271 struct dma_async_tx_descriptor *last_data_desc; 272 struct dma_async_tx_descriptor *last_cmd_desc; 273 }; 274 275 /* 276 * This data type corresponds to the nand dma descriptor 277 * @list - list for desc_info 278 * @dir - DMA transfer direction 279 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by 280 * ADM 281 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM 282 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM 283 * @dma_desc - low level DMA engine descriptor 284 */ 285 struct desc_info { 286 struct list_head node; 287 288 enum dma_data_direction dir; 289 union { 290 struct scatterlist adm_sgl; 291 struct { 292 struct scatterlist *bam_sgl; 293 int sgl_cnt; 294 }; 295 }; 296 struct dma_async_tx_descriptor *dma_desc; 297 }; 298 299 /* 300 * holds the current register values that we want to write. acts as a contiguous 301 * chunk of memory which we use to write the controller registers through DMA. 302 */ 303 struct nandc_regs { 304 __le32 cmd; 305 __le32 addr0; 306 __le32 addr1; 307 __le32 chip_sel; 308 __le32 exec; 309 310 __le32 cfg0; 311 __le32 cfg1; 312 __le32 ecc_bch_cfg; 313 314 __le32 clrflashstatus; 315 __le32 clrreadstatus; 316 317 __le32 cmd1; 318 __le32 vld; 319 320 __le32 orig_cmd1; 321 __le32 orig_vld; 322 323 __le32 ecc_buf_cfg; 324 __le32 read_location0; 325 __le32 read_location1; 326 __le32 read_location2; 327 __le32 read_location3; 328 __le32 read_location_last0; 329 __le32 read_location_last1; 330 __le32 read_location_last2; 331 __le32 read_location_last3; 332 333 __le32 erased_cw_detect_cfg_clr; 334 __le32 erased_cw_detect_cfg_set; 335 }; 336 337 /* 338 * NAND controller data struct 339 * 340 * @controller: base controller structure 341 * @host_list: list containing all the chips attached to the 342 * controller 343 * @dev: parent device 344 * @base: MMIO base 345 * @base_phys: physical base address of controller registers 346 * @base_dma: dma base address of controller registers 347 * @core_clk: controller clock 348 * @aon_clk: another controller clock 349 * 350 * @chan: dma channel 351 * @cmd_crci: ADM DMA CRCI for command flow control 352 * @data_crci: ADM DMA CRCI for data flow control 353 * @desc_list: DMA descriptor list (list of desc_infos) 354 * 355 * @data_buffer: our local DMA buffer for page read/writes, 356 * used when we can't use the buffer provided 357 * by upper layers directly 358 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf 359 * functions 360 * @reg_read_buf: local buffer for reading back registers via DMA 361 * @reg_read_dma: contains dma address for register read buffer 362 * @reg_read_pos: marker for data read in reg_read_buf 363 * 364 * @regs: a contiguous chunk of memory for DMA register 365 * writes. contains the register values to be 366 * written to controller 367 * @cmd1/vld: some fixed controller register values 368 * @props: properties of current NAND controller, 369 * initialized via DT match data 370 * @max_cwperpage: maximum QPIC codewords required. calculated 371 * from all connected NAND devices pagesize 372 */ 373 struct qcom_nand_controller { 374 struct nand_controller controller; 375 struct list_head host_list; 376 377 struct device *dev; 378 379 void __iomem *base; 380 phys_addr_t base_phys; 381 dma_addr_t base_dma; 382 383 struct clk *core_clk; 384 struct clk *aon_clk; 385 386 union { 387 /* will be used only by QPIC for BAM DMA */ 388 struct { 389 struct dma_chan *tx_chan; 390 struct dma_chan *rx_chan; 391 struct dma_chan *cmd_chan; 392 }; 393 394 /* will be used only by EBI2 for ADM DMA */ 395 struct { 396 struct dma_chan *chan; 397 unsigned int cmd_crci; 398 unsigned int data_crci; 399 }; 400 }; 401 402 struct list_head desc_list; 403 struct bam_transaction *bam_txn; 404 405 u8 *data_buffer; 406 int buf_size; 407 int buf_count; 408 int buf_start; 409 unsigned int max_cwperpage; 410 411 __le32 *reg_read_buf; 412 dma_addr_t reg_read_dma; 413 int reg_read_pos; 414 415 struct nandc_regs *regs; 416 417 u32 cmd1, vld; 418 const struct qcom_nandc_props *props; 419 }; 420 421 /* 422 * NAND chip structure 423 * 424 * @chip: base NAND chip structure 425 * @node: list node to add itself to host_list in 426 * qcom_nand_controller 427 * 428 * @cs: chip select value for this chip 429 * @cw_size: the number of bytes in a single step/codeword 430 * of a page, consisting of all data, ecc, spare 431 * and reserved bytes 432 * @cw_data: the number of bytes within a codeword protected 433 * by ECC 434 * @use_ecc: request the controller to use ECC for the 435 * upcoming read/write 436 * @bch_enabled: flag to tell whether BCH ECC mode is used 437 * @ecc_bytes_hw: ECC bytes used by controller hardware for this 438 * chip 439 * @status: value to be returned if NAND_CMD_STATUS command 440 * is executed 441 * @last_command: keeps track of last command on this chip. used 442 * for reading correct status 443 * 444 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for 445 * ecc/non-ecc mode for the current nand flash 446 * device 447 */ 448 struct qcom_nand_host { 449 struct nand_chip chip; 450 struct list_head node; 451 452 int cs; 453 int cw_size; 454 int cw_data; 455 bool use_ecc; 456 bool bch_enabled; 457 int ecc_bytes_hw; 458 int spare_bytes; 459 int bbm_size; 460 u8 status; 461 int last_command; 462 463 u32 cfg0, cfg1; 464 u32 cfg0_raw, cfg1_raw; 465 u32 ecc_buf_cfg; 466 u32 ecc_bch_cfg; 467 u32 clrflashstatus; 468 u32 clrreadstatus; 469 }; 470 471 /* 472 * This data type corresponds to the NAND controller properties which varies 473 * among different NAND controllers. 474 * @ecc_modes - ecc mode for NAND 475 * @is_bam - whether NAND controller is using BAM 476 * @is_qpic - whether NAND CTRL is part of qpic IP 477 * @qpic_v2 - flag to indicate QPIC IP version 2 478 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset 479 */ 480 struct qcom_nandc_props { 481 u32 ecc_modes; 482 bool is_bam; 483 bool is_qpic; 484 bool qpic_v2; 485 u32 dev_cmd_reg_start; 486 }; 487 488 /* Frees the BAM transaction memory */ 489 static void free_bam_transaction(struct qcom_nand_controller *nandc) 490 { 491 struct bam_transaction *bam_txn = nandc->bam_txn; 492 493 devm_kfree(nandc->dev, bam_txn); 494 } 495 496 /* Allocates and Initializes the BAM transaction */ 497 static struct bam_transaction * 498 alloc_bam_transaction(struct qcom_nand_controller *nandc) 499 { 500 struct bam_transaction *bam_txn; 501 size_t bam_txn_size; 502 unsigned int num_cw = nandc->max_cwperpage; 503 void *bam_txn_buf; 504 505 bam_txn_size = 506 sizeof(*bam_txn) + num_cw * 507 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + 508 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + 509 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); 510 511 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); 512 if (!bam_txn_buf) 513 return NULL; 514 515 bam_txn = bam_txn_buf; 516 bam_txn_buf += sizeof(*bam_txn); 517 518 bam_txn->bam_ce = bam_txn_buf; 519 bam_txn_buf += 520 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; 521 522 bam_txn->cmd_sgl = bam_txn_buf; 523 bam_txn_buf += 524 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; 525 526 bam_txn->data_sgl = bam_txn_buf; 527 528 init_completion(&bam_txn->txn_done); 529 530 return bam_txn; 531 } 532 533 /* Clears the BAM transaction indexes */ 534 static void clear_bam_transaction(struct qcom_nand_controller *nandc) 535 { 536 struct bam_transaction *bam_txn = nandc->bam_txn; 537 538 if (!nandc->props->is_bam) 539 return; 540 541 bam_txn->bam_ce_pos = 0; 542 bam_txn->bam_ce_start = 0; 543 bam_txn->cmd_sgl_pos = 0; 544 bam_txn->cmd_sgl_start = 0; 545 bam_txn->tx_sgl_pos = 0; 546 bam_txn->tx_sgl_start = 0; 547 bam_txn->rx_sgl_pos = 0; 548 bam_txn->rx_sgl_start = 0; 549 bam_txn->last_data_desc = NULL; 550 bam_txn->wait_second_completion = false; 551 552 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * 553 QPIC_PER_CW_CMD_SGL); 554 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * 555 QPIC_PER_CW_DATA_SGL); 556 557 reinit_completion(&bam_txn->txn_done); 558 } 559 560 /* Callback for DMA descriptor completion */ 561 static void qpic_bam_dma_done(void *data) 562 { 563 struct bam_transaction *bam_txn = data; 564 565 /* 566 * In case of data transfer with NAND, 2 callbacks will be generated. 567 * One for command channel and another one for data channel. 568 * If current transaction has data descriptors 569 * (i.e. wait_second_completion is true), then set this to false 570 * and wait for second DMA descriptor completion. 571 */ 572 if (bam_txn->wait_second_completion) 573 bam_txn->wait_second_completion = false; 574 else 575 complete(&bam_txn->txn_done); 576 } 577 578 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) 579 { 580 return container_of(chip, struct qcom_nand_host, chip); 581 } 582 583 static inline struct qcom_nand_controller * 584 get_qcom_nand_controller(struct nand_chip *chip) 585 { 586 return container_of(chip->controller, struct qcom_nand_controller, 587 controller); 588 } 589 590 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) 591 { 592 return ioread32(nandc->base + offset); 593 } 594 595 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, 596 u32 val) 597 { 598 iowrite32(val, nandc->base + offset); 599 } 600 601 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, 602 bool is_cpu) 603 { 604 if (!nandc->props->is_bam) 605 return; 606 607 if (is_cpu) 608 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, 609 MAX_REG_RD * 610 sizeof(*nandc->reg_read_buf), 611 DMA_FROM_DEVICE); 612 else 613 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, 614 MAX_REG_RD * 615 sizeof(*nandc->reg_read_buf), 616 DMA_FROM_DEVICE); 617 } 618 619 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) 620 { 621 switch (offset) { 622 case NAND_FLASH_CMD: 623 return ®s->cmd; 624 case NAND_ADDR0: 625 return ®s->addr0; 626 case NAND_ADDR1: 627 return ®s->addr1; 628 case NAND_FLASH_CHIP_SELECT: 629 return ®s->chip_sel; 630 case NAND_EXEC_CMD: 631 return ®s->exec; 632 case NAND_FLASH_STATUS: 633 return ®s->clrflashstatus; 634 case NAND_DEV0_CFG0: 635 return ®s->cfg0; 636 case NAND_DEV0_CFG1: 637 return ®s->cfg1; 638 case NAND_DEV0_ECC_CFG: 639 return ®s->ecc_bch_cfg; 640 case NAND_READ_STATUS: 641 return ®s->clrreadstatus; 642 case NAND_DEV_CMD1: 643 return ®s->cmd1; 644 case NAND_DEV_CMD1_RESTORE: 645 return ®s->orig_cmd1; 646 case NAND_DEV_CMD_VLD: 647 return ®s->vld; 648 case NAND_DEV_CMD_VLD_RESTORE: 649 return ®s->orig_vld; 650 case NAND_EBI2_ECC_BUF_CFG: 651 return ®s->ecc_buf_cfg; 652 case NAND_READ_LOCATION_0: 653 return ®s->read_location0; 654 case NAND_READ_LOCATION_1: 655 return ®s->read_location1; 656 case NAND_READ_LOCATION_2: 657 return ®s->read_location2; 658 case NAND_READ_LOCATION_3: 659 return ®s->read_location3; 660 case NAND_READ_LOCATION_LAST_CW_0: 661 return ®s->read_location_last0; 662 case NAND_READ_LOCATION_LAST_CW_1: 663 return ®s->read_location_last1; 664 case NAND_READ_LOCATION_LAST_CW_2: 665 return ®s->read_location_last2; 666 case NAND_READ_LOCATION_LAST_CW_3: 667 return ®s->read_location_last3; 668 default: 669 return NULL; 670 } 671 } 672 673 static void nandc_set_reg(struct nand_chip *chip, int offset, 674 u32 val) 675 { 676 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 677 struct nandc_regs *regs = nandc->regs; 678 __le32 *reg; 679 680 reg = offset_to_nandc_reg(regs, offset); 681 682 if (reg) 683 *reg = cpu_to_le32(val); 684 } 685 686 /* Helper to check the code word, whether it is last cw or not */ 687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) 688 { 689 return cw == (ecc->steps - 1); 690 } 691 692 /* helper to configure location register values */ 693 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, 694 int cw_offset, int read_size, int is_last_read_loc) 695 { 696 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 697 struct nand_ecc_ctrl *ecc = &chip->ecc; 698 int reg_base = NAND_READ_LOCATION_0; 699 700 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 701 reg_base = NAND_READ_LOCATION_LAST_CW_0; 702 703 reg_base += reg * 4; 704 705 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 706 return nandc_set_read_loc_last(chip, reg_base, cw_offset, 707 read_size, is_last_read_loc); 708 else 709 return nandc_set_read_loc_first(chip, reg_base, cw_offset, 710 read_size, is_last_read_loc); 711 } 712 713 /* helper to configure address register values */ 714 static void set_address(struct qcom_nand_host *host, u16 column, int page) 715 { 716 struct nand_chip *chip = &host->chip; 717 718 if (chip->options & NAND_BUSWIDTH_16) 719 column >>= 1; 720 721 nandc_set_reg(chip, NAND_ADDR0, page << 16 | column); 722 nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff); 723 } 724 725 /* 726 * update_rw_regs: set up read/write register values, these will be 727 * written to the NAND controller registers via DMA 728 * 729 * @num_cw: number of steps for the read/write operation 730 * @read: read or write operation 731 * @cw : which code word 732 */ 733 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) 734 { 735 struct nand_chip *chip = &host->chip; 736 u32 cmd, cfg0, cfg1, ecc_bch_cfg; 737 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 738 739 if (read) { 740 if (host->use_ecc) 741 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; 742 else 743 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; 744 } else { 745 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; 746 } 747 748 if (host->use_ecc) { 749 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | 750 (num_cw - 1) << CW_PER_PAGE; 751 752 cfg1 = host->cfg1; 753 ecc_bch_cfg = host->ecc_bch_cfg; 754 } else { 755 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | 756 (num_cw - 1) << CW_PER_PAGE; 757 758 cfg1 = host->cfg1_raw; 759 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; 760 } 761 762 nandc_set_reg(chip, NAND_FLASH_CMD, cmd); 763 nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0); 764 nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1); 765 nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg); 766 if (!nandc->props->qpic_v2) 767 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); 768 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); 769 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); 770 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 771 772 if (read) 773 nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? 774 host->cw_data : host->cw_size, 1); 775 } 776 777 /* 778 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor 779 * for BAM. This descriptor will be added in the NAND DMA descriptor queue 780 * which will be submitted to DMA engine. 781 */ 782 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, 783 struct dma_chan *chan, 784 unsigned long flags) 785 { 786 struct desc_info *desc; 787 struct scatterlist *sgl; 788 unsigned int sgl_cnt; 789 int ret; 790 struct bam_transaction *bam_txn = nandc->bam_txn; 791 enum dma_transfer_direction dir_eng; 792 struct dma_async_tx_descriptor *dma_desc; 793 794 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 795 if (!desc) 796 return -ENOMEM; 797 798 if (chan == nandc->cmd_chan) { 799 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; 800 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; 801 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; 802 dir_eng = DMA_MEM_TO_DEV; 803 desc->dir = DMA_TO_DEVICE; 804 } else if (chan == nandc->tx_chan) { 805 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; 806 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; 807 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; 808 dir_eng = DMA_MEM_TO_DEV; 809 desc->dir = DMA_TO_DEVICE; 810 } else { 811 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; 812 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; 813 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; 814 dir_eng = DMA_DEV_TO_MEM; 815 desc->dir = DMA_FROM_DEVICE; 816 } 817 818 sg_mark_end(sgl + sgl_cnt - 1); 819 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 820 if (ret == 0) { 821 dev_err(nandc->dev, "failure in mapping desc\n"); 822 kfree(desc); 823 return -ENOMEM; 824 } 825 826 desc->sgl_cnt = sgl_cnt; 827 desc->bam_sgl = sgl; 828 829 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, 830 flags); 831 832 if (!dma_desc) { 833 dev_err(nandc->dev, "failure in prep desc\n"); 834 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 835 kfree(desc); 836 return -EINVAL; 837 } 838 839 desc->dma_desc = dma_desc; 840 841 /* update last data/command descriptor */ 842 if (chan == nandc->cmd_chan) 843 bam_txn->last_cmd_desc = dma_desc; 844 else 845 bam_txn->last_data_desc = dma_desc; 846 847 list_add_tail(&desc->node, &nandc->desc_list); 848 849 return 0; 850 } 851 852 /* 853 * Prepares the command descriptor for BAM DMA which will be used for NAND 854 * register reads and writes. The command descriptor requires the command 855 * to be formed in command element type so this function uses the command 856 * element from bam transaction ce array and fills the same with required 857 * data. A single SGL can contain multiple command elements so 858 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL 859 * after the current command element. 860 */ 861 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, 862 int reg_off, const void *vaddr, 863 int size, unsigned int flags) 864 { 865 int bam_ce_size; 866 int i, ret; 867 struct bam_cmd_element *bam_ce_buffer; 868 struct bam_transaction *bam_txn = nandc->bam_txn; 869 870 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; 871 872 /* fill the command desc */ 873 for (i = 0; i < size; i++) { 874 if (read) 875 bam_prep_ce(&bam_ce_buffer[i], 876 nandc_reg_phys(nandc, reg_off + 4 * i), 877 BAM_READ_COMMAND, 878 reg_buf_dma_addr(nandc, 879 (__le32 *)vaddr + i)); 880 else 881 bam_prep_ce_le32(&bam_ce_buffer[i], 882 nandc_reg_phys(nandc, reg_off + 4 * i), 883 BAM_WRITE_COMMAND, 884 *((__le32 *)vaddr + i)); 885 } 886 887 bam_txn->bam_ce_pos += size; 888 889 /* use the separate sgl after this command */ 890 if (flags & NAND_BAM_NEXT_SGL) { 891 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; 892 bam_ce_size = (bam_txn->bam_ce_pos - 893 bam_txn->bam_ce_start) * 894 sizeof(struct bam_cmd_element); 895 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], 896 bam_ce_buffer, bam_ce_size); 897 bam_txn->cmd_sgl_pos++; 898 bam_txn->bam_ce_start = bam_txn->bam_ce_pos; 899 900 if (flags & NAND_BAM_NWD) { 901 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, 902 DMA_PREP_FENCE | 903 DMA_PREP_CMD); 904 if (ret) 905 return ret; 906 } 907 } 908 909 return 0; 910 } 911 912 /* 913 * Prepares the data descriptor for BAM DMA which will be used for NAND 914 * data reads and writes. 915 */ 916 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, 917 const void *vaddr, 918 int size, unsigned int flags) 919 { 920 int ret; 921 struct bam_transaction *bam_txn = nandc->bam_txn; 922 923 if (read) { 924 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], 925 vaddr, size); 926 bam_txn->rx_sgl_pos++; 927 } else { 928 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], 929 vaddr, size); 930 bam_txn->tx_sgl_pos++; 931 932 /* 933 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag 934 * is not set, form the DMA descriptor 935 */ 936 if (!(flags & NAND_BAM_NO_EOT)) { 937 ret = prepare_bam_async_desc(nandc, nandc->tx_chan, 938 DMA_PREP_INTERRUPT); 939 if (ret) 940 return ret; 941 } 942 } 943 944 return 0; 945 } 946 947 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, 948 int reg_off, const void *vaddr, int size, 949 bool flow_control) 950 { 951 struct desc_info *desc; 952 struct dma_async_tx_descriptor *dma_desc; 953 struct scatterlist *sgl; 954 struct dma_slave_config slave_conf; 955 struct qcom_adm_peripheral_config periph_conf = {}; 956 enum dma_transfer_direction dir_eng; 957 int ret; 958 959 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 960 if (!desc) 961 return -ENOMEM; 962 963 sgl = &desc->adm_sgl; 964 965 sg_init_one(sgl, vaddr, size); 966 967 if (read) { 968 dir_eng = DMA_DEV_TO_MEM; 969 desc->dir = DMA_FROM_DEVICE; 970 } else { 971 dir_eng = DMA_MEM_TO_DEV; 972 desc->dir = DMA_TO_DEVICE; 973 } 974 975 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); 976 if (ret == 0) { 977 ret = -ENOMEM; 978 goto err; 979 } 980 981 memset(&slave_conf, 0x00, sizeof(slave_conf)); 982 983 slave_conf.device_fc = flow_control; 984 if (read) { 985 slave_conf.src_maxburst = 16; 986 slave_conf.src_addr = nandc->base_dma + reg_off; 987 if (nandc->data_crci) { 988 periph_conf.crci = nandc->data_crci; 989 slave_conf.peripheral_config = &periph_conf; 990 slave_conf.peripheral_size = sizeof(periph_conf); 991 } 992 } else { 993 slave_conf.dst_maxburst = 16; 994 slave_conf.dst_addr = nandc->base_dma + reg_off; 995 if (nandc->cmd_crci) { 996 periph_conf.crci = nandc->cmd_crci; 997 slave_conf.peripheral_config = &periph_conf; 998 slave_conf.peripheral_size = sizeof(periph_conf); 999 } 1000 } 1001 1002 ret = dmaengine_slave_config(nandc->chan, &slave_conf); 1003 if (ret) { 1004 dev_err(nandc->dev, "failed to configure dma channel\n"); 1005 goto err; 1006 } 1007 1008 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); 1009 if (!dma_desc) { 1010 dev_err(nandc->dev, "failed to prepare desc\n"); 1011 ret = -EINVAL; 1012 goto err; 1013 } 1014 1015 desc->dma_desc = dma_desc; 1016 1017 list_add_tail(&desc->node, &nandc->desc_list); 1018 1019 return 0; 1020 err: 1021 kfree(desc); 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * read_reg_dma: prepares a descriptor to read a given number of 1028 * contiguous registers to the reg_read_buf pointer 1029 * 1030 * @first: offset of the first register in the contiguous block 1031 * @num_regs: number of registers to read 1032 * @flags: flags to control DMA descriptor preparation 1033 */ 1034 static int read_reg_dma(struct qcom_nand_controller *nandc, int first, 1035 int num_regs, unsigned int flags) 1036 { 1037 bool flow_control = false; 1038 void *vaddr; 1039 1040 vaddr = nandc->reg_read_buf + nandc->reg_read_pos; 1041 nandc->reg_read_pos += num_regs; 1042 1043 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) 1044 first = dev_cmd_reg_addr(nandc, first); 1045 1046 if (nandc->props->is_bam) 1047 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, 1048 num_regs, flags); 1049 1050 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) 1051 flow_control = true; 1052 1053 return prep_adm_dma_desc(nandc, true, first, vaddr, 1054 num_regs * sizeof(u32), flow_control); 1055 } 1056 1057 /* 1058 * write_reg_dma: prepares a descriptor to write a given number of 1059 * contiguous registers 1060 * 1061 * @first: offset of the first register in the contiguous block 1062 * @num_regs: number of registers to write 1063 * @flags: flags to control DMA descriptor preparation 1064 */ 1065 static int write_reg_dma(struct qcom_nand_controller *nandc, int first, 1066 int num_regs, unsigned int flags) 1067 { 1068 bool flow_control = false; 1069 struct nandc_regs *regs = nandc->regs; 1070 void *vaddr; 1071 1072 vaddr = offset_to_nandc_reg(regs, first); 1073 1074 if (first == NAND_ERASED_CW_DETECT_CFG) { 1075 if (flags & NAND_ERASED_CW_SET) 1076 vaddr = ®s->erased_cw_detect_cfg_set; 1077 else 1078 vaddr = ®s->erased_cw_detect_cfg_clr; 1079 } 1080 1081 if (first == NAND_EXEC_CMD) 1082 flags |= NAND_BAM_NWD; 1083 1084 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) 1085 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); 1086 1087 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) 1088 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); 1089 1090 if (nandc->props->is_bam) 1091 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, 1092 num_regs, flags); 1093 1094 if (first == NAND_FLASH_CMD) 1095 flow_control = true; 1096 1097 return prep_adm_dma_desc(nandc, false, first, vaddr, 1098 num_regs * sizeof(u32), flow_control); 1099 } 1100 1101 /* 1102 * read_data_dma: prepares a DMA descriptor to transfer data from the 1103 * controller's internal buffer to the buffer 'vaddr' 1104 * 1105 * @reg_off: offset within the controller's data buffer 1106 * @vaddr: virtual address of the buffer we want to write to 1107 * @size: DMA transaction size in bytes 1108 * @flags: flags to control DMA descriptor preparation 1109 */ 1110 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1111 const u8 *vaddr, int size, unsigned int flags) 1112 { 1113 if (nandc->props->is_bam) 1114 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); 1115 1116 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); 1117 } 1118 1119 /* 1120 * write_data_dma: prepares a DMA descriptor to transfer data from 1121 * 'vaddr' to the controller's internal buffer 1122 * 1123 * @reg_off: offset within the controller's data buffer 1124 * @vaddr: virtual address of the buffer we want to read from 1125 * @size: DMA transaction size in bytes 1126 * @flags: flags to control DMA descriptor preparation 1127 */ 1128 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1129 const u8 *vaddr, int size, unsigned int flags) 1130 { 1131 if (nandc->props->is_bam) 1132 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); 1133 1134 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); 1135 } 1136 1137 /* 1138 * Helper to prepare DMA descriptors for configuring registers 1139 * before reading a NAND page. 1140 */ 1141 static void config_nand_page_read(struct nand_chip *chip) 1142 { 1143 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1144 1145 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1146 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1147 if (!nandc->props->qpic_v2) 1148 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); 1149 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); 1150 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 1151 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); 1152 } 1153 1154 /* 1155 * Helper to prepare DMA descriptors for configuring registers 1156 * before reading each codeword in NAND page. 1157 */ 1158 static void 1159 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) 1160 { 1161 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1162 struct nand_ecc_ctrl *ecc = &chip->ecc; 1163 1164 int reg = NAND_READ_LOCATION_0; 1165 1166 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 1167 reg = NAND_READ_LOCATION_LAST_CW_0; 1168 1169 if (nandc->props->is_bam) 1170 write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); 1171 1172 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1173 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1174 1175 if (use_ecc) { 1176 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); 1177 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, 1178 NAND_BAM_NEXT_SGL); 1179 } else { 1180 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1181 } 1182 } 1183 1184 /* 1185 * Helper to prepare dma descriptors to configure registers needed for reading a 1186 * single codeword in page 1187 */ 1188 static void 1189 config_nand_single_cw_page_read(struct nand_chip *chip, 1190 bool use_ecc, int cw) 1191 { 1192 config_nand_page_read(chip); 1193 config_nand_cw_read(chip, use_ecc, cw); 1194 } 1195 1196 /* 1197 * Helper to prepare DMA descriptors used to configure registers needed for 1198 * before writing a NAND page. 1199 */ 1200 static void config_nand_page_write(struct nand_chip *chip) 1201 { 1202 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1203 1204 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1205 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1206 if (!nandc->props->qpic_v2) 1207 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 1208 NAND_BAM_NEXT_SGL); 1209 } 1210 1211 /* 1212 * Helper to prepare DMA descriptors for configuring registers 1213 * before writing each codeword in NAND page. 1214 */ 1215 static void config_nand_cw_write(struct nand_chip *chip) 1216 { 1217 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1218 1219 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1220 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1221 1222 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1223 1224 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1225 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1226 } 1227 1228 /* 1229 * the following functions are used within chip->legacy.cmdfunc() to 1230 * perform different NAND_CMD_* commands 1231 */ 1232 1233 /* sets up descriptors for NAND_CMD_PARAM */ 1234 static int nandc_param(struct qcom_nand_host *host) 1235 { 1236 struct nand_chip *chip = &host->chip; 1237 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1238 1239 /* 1240 * NAND_CMD_PARAM is called before we know much about the FLASH chip 1241 * in use. we configure the controller to perform a raw read of 512 1242 * bytes to read onfi params 1243 */ 1244 if (nandc->props->qpic_v2) 1245 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ | 1246 PAGE_ACC | LAST_PAGE); 1247 else 1248 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ | 1249 PAGE_ACC | LAST_PAGE); 1250 1251 nandc_set_reg(chip, NAND_ADDR0, 0); 1252 nandc_set_reg(chip, NAND_ADDR1, 0); 1253 nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE 1254 | 512 << UD_SIZE_BYTES 1255 | 5 << NUM_ADDR_CYCLES 1256 | 0 << SPARE_SIZE_BYTES); 1257 nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES 1258 | 0 << CS_ACTIVE_BSY 1259 | 17 << BAD_BLOCK_BYTE_NUM 1260 | 1 << BAD_BLOCK_IN_SPARE_AREA 1261 | 2 << WR_RD_BSY_GAP 1262 | 0 << WIDE_FLASH 1263 | 1 << DEV0_CFG1_ECC_DISABLE); 1264 if (!nandc->props->qpic_v2) 1265 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); 1266 1267 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ 1268 if (!nandc->props->qpic_v2) { 1269 nandc_set_reg(chip, NAND_DEV_CMD_VLD, 1270 (nandc->vld & ~READ_START_VLD)); 1271 nandc_set_reg(chip, NAND_DEV_CMD1, 1272 (nandc->cmd1 & ~(0xFF << READ_ADDR)) 1273 | NAND_CMD_PARAM << READ_ADDR); 1274 } 1275 1276 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1277 1278 if (!nandc->props->qpic_v2) { 1279 nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1); 1280 nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); 1281 } 1282 1283 nandc_set_read_loc(chip, 0, 0, 0, 512, 1); 1284 1285 if (!nandc->props->qpic_v2) { 1286 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); 1287 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); 1288 } 1289 1290 nandc->buf_count = 512; 1291 memset(nandc->data_buffer, 0xff, nandc->buf_count); 1292 1293 config_nand_single_cw_page_read(chip, false, 0); 1294 1295 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, 1296 nandc->buf_count, 0); 1297 1298 /* restore CMD1 and VLD regs */ 1299 if (!nandc->props->qpic_v2) { 1300 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); 1301 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); 1302 } 1303 1304 return 0; 1305 } 1306 1307 /* sets up descriptors for NAND_CMD_ERASE1 */ 1308 static int erase_block(struct qcom_nand_host *host, int page_addr) 1309 { 1310 struct nand_chip *chip = &host->chip; 1311 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1312 1313 nandc_set_reg(chip, NAND_FLASH_CMD, 1314 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE); 1315 nandc_set_reg(chip, NAND_ADDR0, page_addr); 1316 nandc_set_reg(chip, NAND_ADDR1, 0); 1317 nandc_set_reg(chip, NAND_DEV0_CFG0, 1318 host->cfg0_raw & ~(7 << CW_PER_PAGE)); 1319 nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw); 1320 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1321 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); 1322 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); 1323 1324 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); 1325 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); 1326 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1327 1328 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1329 1330 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1331 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1332 1333 return 0; 1334 } 1335 1336 /* sets up descriptors for NAND_CMD_READID */ 1337 static int read_id(struct qcom_nand_host *host, int column) 1338 { 1339 struct nand_chip *chip = &host->chip; 1340 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1341 1342 if (column == -1) 1343 return 0; 1344 1345 nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID); 1346 nandc_set_reg(chip, NAND_ADDR0, column); 1347 nandc_set_reg(chip, NAND_ADDR1, 0); 1348 nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT, 1349 nandc->props->is_bam ? 0 : DM_EN); 1350 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1351 1352 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); 1353 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1354 1355 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); 1356 1357 return 0; 1358 } 1359 1360 /* sets up descriptors for NAND_CMD_RESET */ 1361 static int reset(struct qcom_nand_host *host) 1362 { 1363 struct nand_chip *chip = &host->chip; 1364 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1365 1366 nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE); 1367 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1368 1369 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1370 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1371 1372 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1373 1374 return 0; 1375 } 1376 1377 /* helpers to submit/free our list of dma descriptors */ 1378 static int submit_descs(struct qcom_nand_controller *nandc) 1379 { 1380 struct desc_info *desc; 1381 dma_cookie_t cookie = 0; 1382 struct bam_transaction *bam_txn = nandc->bam_txn; 1383 int r; 1384 1385 if (nandc->props->is_bam) { 1386 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { 1387 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); 1388 if (r) 1389 return r; 1390 } 1391 1392 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { 1393 r = prepare_bam_async_desc(nandc, nandc->tx_chan, 1394 DMA_PREP_INTERRUPT); 1395 if (r) 1396 return r; 1397 } 1398 1399 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { 1400 r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 1401 DMA_PREP_CMD); 1402 if (r) 1403 return r; 1404 } 1405 } 1406 1407 list_for_each_entry(desc, &nandc->desc_list, node) 1408 cookie = dmaengine_submit(desc->dma_desc); 1409 1410 if (nandc->props->is_bam) { 1411 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; 1412 bam_txn->last_cmd_desc->callback_param = bam_txn; 1413 if (bam_txn->last_data_desc) { 1414 bam_txn->last_data_desc->callback = qpic_bam_dma_done; 1415 bam_txn->last_data_desc->callback_param = bam_txn; 1416 bam_txn->wait_second_completion = true; 1417 } 1418 1419 dma_async_issue_pending(nandc->tx_chan); 1420 dma_async_issue_pending(nandc->rx_chan); 1421 dma_async_issue_pending(nandc->cmd_chan); 1422 1423 if (!wait_for_completion_timeout(&bam_txn->txn_done, 1424 QPIC_NAND_COMPLETION_TIMEOUT)) 1425 return -ETIMEDOUT; 1426 } else { 1427 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) 1428 return -ETIMEDOUT; 1429 } 1430 1431 return 0; 1432 } 1433 1434 static void free_descs(struct qcom_nand_controller *nandc) 1435 { 1436 struct desc_info *desc, *n; 1437 1438 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { 1439 list_del(&desc->node); 1440 1441 if (nandc->props->is_bam) 1442 dma_unmap_sg(nandc->dev, desc->bam_sgl, 1443 desc->sgl_cnt, desc->dir); 1444 else 1445 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, 1446 desc->dir); 1447 1448 kfree(desc); 1449 } 1450 } 1451 1452 /* reset the register read buffer for next NAND operation */ 1453 static void clear_read_regs(struct qcom_nand_controller *nandc) 1454 { 1455 nandc->reg_read_pos = 0; 1456 nandc_read_buffer_sync(nandc, false); 1457 } 1458 1459 static void pre_command(struct qcom_nand_host *host, int command) 1460 { 1461 struct nand_chip *chip = &host->chip; 1462 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1463 1464 nandc->buf_count = 0; 1465 nandc->buf_start = 0; 1466 host->use_ecc = false; 1467 host->last_command = command; 1468 1469 clear_read_regs(nandc); 1470 1471 if (command == NAND_CMD_RESET || command == NAND_CMD_READID || 1472 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) 1473 clear_bam_transaction(nandc); 1474 } 1475 1476 /* 1477 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our 1478 * privately maintained status byte, this status byte can be read after 1479 * NAND_CMD_STATUS is called 1480 */ 1481 static void parse_erase_write_errors(struct qcom_nand_host *host, int command) 1482 { 1483 struct nand_chip *chip = &host->chip; 1484 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1485 struct nand_ecc_ctrl *ecc = &chip->ecc; 1486 int num_cw; 1487 int i; 1488 1489 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; 1490 nandc_read_buffer_sync(nandc, true); 1491 1492 for (i = 0; i < num_cw; i++) { 1493 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); 1494 1495 if (flash_status & FS_MPU_ERR) 1496 host->status &= ~NAND_STATUS_WP; 1497 1498 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && 1499 (flash_status & 1500 FS_DEVICE_STS_ERR))) 1501 host->status |= NAND_STATUS_FAIL; 1502 } 1503 } 1504 1505 static void post_command(struct qcom_nand_host *host, int command) 1506 { 1507 struct nand_chip *chip = &host->chip; 1508 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1509 1510 switch (command) { 1511 case NAND_CMD_READID: 1512 nandc_read_buffer_sync(nandc, true); 1513 memcpy(nandc->data_buffer, nandc->reg_read_buf, 1514 nandc->buf_count); 1515 break; 1516 case NAND_CMD_PAGEPROG: 1517 case NAND_CMD_ERASE1: 1518 parse_erase_write_errors(host, command); 1519 break; 1520 default: 1521 break; 1522 } 1523 } 1524 1525 /* 1526 * Implements chip->legacy.cmdfunc. It's only used for a limited set of 1527 * commands. The rest of the commands wouldn't be called by upper layers. 1528 * For example, NAND_CMD_READOOB would never be called because we have our own 1529 * versions of read_oob ops for nand_ecc_ctrl. 1530 */ 1531 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command, 1532 int column, int page_addr) 1533 { 1534 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1535 struct nand_ecc_ctrl *ecc = &chip->ecc; 1536 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1537 bool wait = false; 1538 int ret = 0; 1539 1540 pre_command(host, command); 1541 1542 switch (command) { 1543 case NAND_CMD_RESET: 1544 ret = reset(host); 1545 wait = true; 1546 break; 1547 1548 case NAND_CMD_READID: 1549 nandc->buf_count = 4; 1550 ret = read_id(host, column); 1551 wait = true; 1552 break; 1553 1554 case NAND_CMD_PARAM: 1555 ret = nandc_param(host); 1556 wait = true; 1557 break; 1558 1559 case NAND_CMD_ERASE1: 1560 ret = erase_block(host, page_addr); 1561 wait = true; 1562 break; 1563 1564 case NAND_CMD_READ0: 1565 /* we read the entire page for now */ 1566 WARN_ON(column != 0); 1567 1568 host->use_ecc = true; 1569 set_address(host, 0, page_addr); 1570 update_rw_regs(host, ecc->steps, true, 0); 1571 break; 1572 1573 case NAND_CMD_SEQIN: 1574 WARN_ON(column != 0); 1575 set_address(host, 0, page_addr); 1576 break; 1577 1578 case NAND_CMD_PAGEPROG: 1579 case NAND_CMD_STATUS: 1580 case NAND_CMD_NONE: 1581 default: 1582 break; 1583 } 1584 1585 if (ret) { 1586 dev_err(nandc->dev, "failure executing command %d\n", 1587 command); 1588 free_descs(nandc); 1589 return; 1590 } 1591 1592 if (wait) { 1593 ret = submit_descs(nandc); 1594 if (ret) 1595 dev_err(nandc->dev, 1596 "failure submitting descs for command %d\n", 1597 command); 1598 } 1599 1600 free_descs(nandc); 1601 1602 post_command(host, command); 1603 } 1604 1605 /* 1606 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read 1607 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. 1608 * 1609 * when using RS ECC, the HW reports the same erros when reading an erased CW, 1610 * but it notifies that it is an erased CW by placing special characters at 1611 * certain offsets in the buffer. 1612 * 1613 * verify if the page is erased or not, and fix up the page for RS ECC by 1614 * replacing the special characters with 0xff. 1615 */ 1616 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) 1617 { 1618 u8 empty1, empty2; 1619 1620 /* 1621 * an erased page flags an error in NAND_FLASH_STATUS, check if the page 1622 * is erased by looking for 0x54s at offsets 3 and 175 from the 1623 * beginning of each codeword 1624 */ 1625 1626 empty1 = data_buf[3]; 1627 empty2 = data_buf[175]; 1628 1629 /* 1630 * if the erased codework markers, if they exist override them with 1631 * 0xffs 1632 */ 1633 if ((empty1 == 0x54 && empty2 == 0xff) || 1634 (empty1 == 0xff && empty2 == 0x54)) { 1635 data_buf[3] = 0xff; 1636 data_buf[175] = 0xff; 1637 } 1638 1639 /* 1640 * check if the entire chunk contains 0xffs or not. if it doesn't, then 1641 * restore the original values at the special offsets 1642 */ 1643 if (memchr_inv(data_buf, 0xff, data_len)) { 1644 data_buf[3] = empty1; 1645 data_buf[175] = empty2; 1646 1647 return false; 1648 } 1649 1650 return true; 1651 } 1652 1653 struct read_stats { 1654 __le32 flash; 1655 __le32 buffer; 1656 __le32 erased_cw; 1657 }; 1658 1659 /* reads back FLASH_STATUS register set by the controller */ 1660 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) 1661 { 1662 struct nand_chip *chip = &host->chip; 1663 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1664 int i; 1665 1666 nandc_read_buffer_sync(nandc, true); 1667 1668 for (i = 0; i < cw_cnt; i++) { 1669 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); 1670 1671 if (flash & (FS_OP_ERR | FS_MPU_ERR)) 1672 return -EIO; 1673 } 1674 1675 return 0; 1676 } 1677 1678 /* performs raw read for one codeword */ 1679 static int 1680 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, 1681 u8 *data_buf, u8 *oob_buf, int page, int cw) 1682 { 1683 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1684 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1685 struct nand_ecc_ctrl *ecc = &chip->ecc; 1686 int data_size1, data_size2, oob_size1, oob_size2; 1687 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; 1688 int raw_cw = cw; 1689 1690 nand_read_page_op(chip, page, 0, NULL, 0); 1691 host->use_ecc = false; 1692 1693 if (nandc->props->qpic_v2) 1694 raw_cw = ecc->steps - 1; 1695 1696 clear_bam_transaction(nandc); 1697 set_address(host, host->cw_size * cw, page); 1698 update_rw_regs(host, 1, true, raw_cw); 1699 config_nand_page_read(chip); 1700 1701 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 1702 oob_size1 = host->bbm_size; 1703 1704 if (qcom_nandc_is_last_cw(ecc, cw)) { 1705 data_size2 = ecc->size - data_size1 - 1706 ((ecc->steps - 1) * 4); 1707 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + 1708 host->spare_bytes; 1709 } else { 1710 data_size2 = host->cw_data - data_size1; 1711 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 1712 } 1713 1714 if (nandc->props->is_bam) { 1715 nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); 1716 read_loc += data_size1; 1717 1718 nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); 1719 read_loc += oob_size1; 1720 1721 nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); 1722 read_loc += data_size2; 1723 1724 nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); 1725 } 1726 1727 config_nand_cw_read(chip, false, raw_cw); 1728 1729 read_data_dma(nandc, reg_off, data_buf, data_size1, 0); 1730 reg_off += data_size1; 1731 1732 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); 1733 reg_off += oob_size1; 1734 1735 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); 1736 reg_off += data_size2; 1737 1738 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); 1739 1740 ret = submit_descs(nandc); 1741 free_descs(nandc); 1742 if (ret) { 1743 dev_err(nandc->dev, "failure to read raw cw %d\n", cw); 1744 return ret; 1745 } 1746 1747 return check_flash_errors(host, 1); 1748 } 1749 1750 /* 1751 * Bitflips can happen in erased codewords also so this function counts the 1752 * number of 0 in each CW for which ECC engine returns the uncorrectable 1753 * error. The page will be assumed as erased if this count is less than or 1754 * equal to the ecc->strength for each CW. 1755 * 1756 * 1. Both DATA and OOB need to be checked for number of 0. The 1757 * top-level API can be called with only data buf or OOB buf so use 1758 * chip->data_buf if data buf is null and chip->oob_poi if oob buf 1759 * is null for copying the raw bytes. 1760 * 2. Perform raw read for all the CW which has uncorrectable errors. 1761 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. 1762 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check 1763 * the number of bitflips in this area. 1764 */ 1765 static int 1766 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, 1767 u8 *oob_buf, unsigned long uncorrectable_cws, 1768 int page, unsigned int max_bitflips) 1769 { 1770 struct nand_chip *chip = &host->chip; 1771 struct mtd_info *mtd = nand_to_mtd(chip); 1772 struct nand_ecc_ctrl *ecc = &chip->ecc; 1773 u8 *cw_data_buf, *cw_oob_buf; 1774 int cw, data_size, oob_size, ret = 0; 1775 1776 if (!data_buf) 1777 data_buf = nand_get_data_buf(chip); 1778 1779 if (!oob_buf) { 1780 nand_get_data_buf(chip); 1781 oob_buf = chip->oob_poi; 1782 } 1783 1784 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { 1785 if (qcom_nandc_is_last_cw(ecc, cw)) { 1786 data_size = ecc->size - ((ecc->steps - 1) * 4); 1787 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; 1788 } else { 1789 data_size = host->cw_data; 1790 oob_size = host->ecc_bytes_hw; 1791 } 1792 1793 /* determine starting buffer address for current CW */ 1794 cw_data_buf = data_buf + (cw * host->cw_data); 1795 cw_oob_buf = oob_buf + (cw * ecc->bytes); 1796 1797 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, 1798 cw_oob_buf, page, cw); 1799 if (ret) 1800 return ret; 1801 1802 /* 1803 * make sure it isn't an erased page reported 1804 * as not-erased by HW because of a few bitflips 1805 */ 1806 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, 1807 cw_oob_buf + host->bbm_size, 1808 oob_size, NULL, 1809 0, ecc->strength); 1810 if (ret < 0) { 1811 mtd->ecc_stats.failed++; 1812 } else { 1813 mtd->ecc_stats.corrected += ret; 1814 max_bitflips = max_t(unsigned int, max_bitflips, ret); 1815 } 1816 } 1817 1818 return max_bitflips; 1819 } 1820 1821 /* 1822 * reads back status registers set by the controller to notify page read 1823 * errors. this is equivalent to what 'ecc->correct()' would do. 1824 */ 1825 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, 1826 u8 *oob_buf, int page) 1827 { 1828 struct nand_chip *chip = &host->chip; 1829 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1830 struct mtd_info *mtd = nand_to_mtd(chip); 1831 struct nand_ecc_ctrl *ecc = &chip->ecc; 1832 unsigned int max_bitflips = 0, uncorrectable_cws = 0; 1833 struct read_stats *buf; 1834 bool flash_op_err = false, erased; 1835 int i; 1836 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1837 1838 buf = (struct read_stats *)nandc->reg_read_buf; 1839 nandc_read_buffer_sync(nandc, true); 1840 1841 for (i = 0; i < ecc->steps; i++, buf++) { 1842 u32 flash, buffer, erased_cw; 1843 int data_len, oob_len; 1844 1845 if (qcom_nandc_is_last_cw(ecc, i)) { 1846 data_len = ecc->size - ((ecc->steps - 1) << 2); 1847 oob_len = ecc->steps << 2; 1848 } else { 1849 data_len = host->cw_data; 1850 oob_len = 0; 1851 } 1852 1853 flash = le32_to_cpu(buf->flash); 1854 buffer = le32_to_cpu(buf->buffer); 1855 erased_cw = le32_to_cpu(buf->erased_cw); 1856 1857 /* 1858 * Check ECC failure for each codeword. ECC failure can 1859 * happen in either of the following conditions 1860 * 1. If number of bitflips are greater than ECC engine 1861 * capability. 1862 * 2. If this codeword contains all 0xff for which erased 1863 * codeword detection check will be done. 1864 */ 1865 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { 1866 /* 1867 * For BCH ECC, ignore erased codeword errors, if 1868 * ERASED_CW bits are set. 1869 */ 1870 if (host->bch_enabled) { 1871 erased = (erased_cw & ERASED_CW) == ERASED_CW; 1872 /* 1873 * For RS ECC, HW reports the erased CW by placing 1874 * special characters at certain offsets in the buffer. 1875 * These special characters will be valid only if 1876 * complete page is read i.e. data_buf is not NULL. 1877 */ 1878 } else if (data_buf) { 1879 erased = erased_chunk_check_and_fixup(data_buf, 1880 data_len); 1881 } else { 1882 erased = false; 1883 } 1884 1885 if (!erased) 1886 uncorrectable_cws |= BIT(i); 1887 /* 1888 * Check if MPU or any other operational error (timeout, 1889 * device failure, etc.) happened for this codeword and 1890 * make flash_op_err true. If flash_op_err is set, then 1891 * EIO will be returned for page read. 1892 */ 1893 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { 1894 flash_op_err = true; 1895 /* 1896 * No ECC or operational errors happened. Check the number of 1897 * bits corrected and update the ecc_stats.corrected. 1898 */ 1899 } else { 1900 unsigned int stat; 1901 1902 stat = buffer & BS_CORRECTABLE_ERR_MSK; 1903 mtd->ecc_stats.corrected += stat; 1904 max_bitflips = max(max_bitflips, stat); 1905 } 1906 1907 if (data_buf) 1908 data_buf += data_len; 1909 if (oob_buf) 1910 oob_buf += oob_len + ecc->bytes; 1911 } 1912 1913 if (flash_op_err) 1914 return -EIO; 1915 1916 if (!uncorrectable_cws) 1917 return max_bitflips; 1918 1919 return check_for_erased_page(host, data_buf_start, oob_buf_start, 1920 uncorrectable_cws, page, 1921 max_bitflips); 1922 } 1923 1924 /* 1925 * helper to perform the actual page read operation, used by ecc->read_page(), 1926 * ecc->read_oob() 1927 */ 1928 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, 1929 u8 *oob_buf, int page) 1930 { 1931 struct nand_chip *chip = &host->chip; 1932 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1933 struct nand_ecc_ctrl *ecc = &chip->ecc; 1934 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1935 int i, ret; 1936 1937 config_nand_page_read(chip); 1938 1939 /* queue cmd descs for each codeword */ 1940 for (i = 0; i < ecc->steps; i++) { 1941 int data_size, oob_size; 1942 1943 if (qcom_nandc_is_last_cw(ecc, i)) { 1944 data_size = ecc->size - ((ecc->steps - 1) << 2); 1945 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 1946 host->spare_bytes; 1947 } else { 1948 data_size = host->cw_data; 1949 oob_size = host->ecc_bytes_hw + host->spare_bytes; 1950 } 1951 1952 if (nandc->props->is_bam) { 1953 if (data_buf && oob_buf) { 1954 nandc_set_read_loc(chip, i, 0, 0, data_size, 0); 1955 nandc_set_read_loc(chip, i, 1, data_size, 1956 oob_size, 1); 1957 } else if (data_buf) { 1958 nandc_set_read_loc(chip, i, 0, 0, data_size, 1); 1959 } else { 1960 nandc_set_read_loc(chip, i, 0, data_size, 1961 oob_size, 1); 1962 } 1963 } 1964 1965 config_nand_cw_read(chip, true, i); 1966 1967 if (data_buf) 1968 read_data_dma(nandc, FLASH_BUF_ACC, data_buf, 1969 data_size, 0); 1970 1971 /* 1972 * when ecc is enabled, the controller doesn't read the real 1973 * or dummy bad block markers in each chunk. To maintain a 1974 * consistent layout across RAW and ECC reads, we just 1975 * leave the real/dummy BBM offsets empty (i.e, filled with 1976 * 0xffs) 1977 */ 1978 if (oob_buf) { 1979 int j; 1980 1981 for (j = 0; j < host->bbm_size; j++) 1982 *oob_buf++ = 0xff; 1983 1984 read_data_dma(nandc, FLASH_BUF_ACC + data_size, 1985 oob_buf, oob_size, 0); 1986 } 1987 1988 if (data_buf) 1989 data_buf += data_size; 1990 if (oob_buf) 1991 oob_buf += oob_size; 1992 } 1993 1994 ret = submit_descs(nandc); 1995 free_descs(nandc); 1996 1997 if (ret) { 1998 dev_err(nandc->dev, "failure to read page/oob\n"); 1999 return ret; 2000 } 2001 2002 return parse_read_errors(host, data_buf_start, oob_buf_start, page); 2003 } 2004 2005 /* 2006 * a helper that copies the last step/codeword of a page (containing free oob) 2007 * into our local buffer 2008 */ 2009 static int copy_last_cw(struct qcom_nand_host *host, int page) 2010 { 2011 struct nand_chip *chip = &host->chip; 2012 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2013 struct nand_ecc_ctrl *ecc = &chip->ecc; 2014 int size; 2015 int ret; 2016 2017 clear_read_regs(nandc); 2018 2019 size = host->use_ecc ? host->cw_data : host->cw_size; 2020 2021 /* prepare a clean read buffer */ 2022 memset(nandc->data_buffer, 0xff, size); 2023 2024 set_address(host, host->cw_size * (ecc->steps - 1), page); 2025 update_rw_regs(host, 1, true, ecc->steps - 1); 2026 2027 config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); 2028 2029 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); 2030 2031 ret = submit_descs(nandc); 2032 if (ret) 2033 dev_err(nandc->dev, "failed to copy last codeword\n"); 2034 2035 free_descs(nandc); 2036 2037 return ret; 2038 } 2039 2040 /* implements ecc->read_page() */ 2041 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf, 2042 int oob_required, int page) 2043 { 2044 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2045 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2046 u8 *data_buf, *oob_buf = NULL; 2047 2048 nand_read_page_op(chip, page, 0, NULL, 0); 2049 data_buf = buf; 2050 oob_buf = oob_required ? chip->oob_poi : NULL; 2051 2052 clear_bam_transaction(nandc); 2053 2054 return read_page_ecc(host, data_buf, oob_buf, page); 2055 } 2056 2057 /* implements ecc->read_page_raw() */ 2058 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 2059 int oob_required, int page) 2060 { 2061 struct mtd_info *mtd = nand_to_mtd(chip); 2062 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2063 struct nand_ecc_ctrl *ecc = &chip->ecc; 2064 int cw, ret; 2065 u8 *data_buf = buf, *oob_buf = chip->oob_poi; 2066 2067 for (cw = 0; cw < ecc->steps; cw++) { 2068 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, 2069 page, cw); 2070 if (ret) 2071 return ret; 2072 2073 data_buf += host->cw_data; 2074 oob_buf += ecc->bytes; 2075 } 2076 2077 return 0; 2078 } 2079 2080 /* implements ecc->read_oob() */ 2081 static int qcom_nandc_read_oob(struct nand_chip *chip, int page) 2082 { 2083 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2084 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2085 struct nand_ecc_ctrl *ecc = &chip->ecc; 2086 2087 clear_read_regs(nandc); 2088 clear_bam_transaction(nandc); 2089 2090 host->use_ecc = true; 2091 set_address(host, 0, page); 2092 update_rw_regs(host, ecc->steps, true, 0); 2093 2094 return read_page_ecc(host, NULL, chip->oob_poi, page); 2095 } 2096 2097 /* implements ecc->write_page() */ 2098 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf, 2099 int oob_required, int page) 2100 { 2101 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2102 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2103 struct nand_ecc_ctrl *ecc = &chip->ecc; 2104 u8 *data_buf, *oob_buf; 2105 int i, ret; 2106 2107 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2108 2109 clear_read_regs(nandc); 2110 clear_bam_transaction(nandc); 2111 2112 data_buf = (u8 *)buf; 2113 oob_buf = chip->oob_poi; 2114 2115 host->use_ecc = true; 2116 update_rw_regs(host, ecc->steps, false, 0); 2117 config_nand_page_write(chip); 2118 2119 for (i = 0; i < ecc->steps; i++) { 2120 int data_size, oob_size; 2121 2122 if (qcom_nandc_is_last_cw(ecc, i)) { 2123 data_size = ecc->size - ((ecc->steps - 1) << 2); 2124 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 2125 host->spare_bytes; 2126 } else { 2127 data_size = host->cw_data; 2128 oob_size = ecc->bytes; 2129 } 2130 2131 2132 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, 2133 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); 2134 2135 /* 2136 * when ECC is enabled, we don't really need to write anything 2137 * to oob for the first n - 1 codewords since these oob regions 2138 * just contain ECC bytes that's written by the controller 2139 * itself. For the last codeword, we skip the bbm positions and 2140 * write to the free oob area. 2141 */ 2142 if (qcom_nandc_is_last_cw(ecc, i)) { 2143 oob_buf += host->bbm_size; 2144 2145 write_data_dma(nandc, FLASH_BUF_ACC + data_size, 2146 oob_buf, oob_size, 0); 2147 } 2148 2149 config_nand_cw_write(chip); 2150 2151 data_buf += data_size; 2152 oob_buf += oob_size; 2153 } 2154 2155 ret = submit_descs(nandc); 2156 if (ret) 2157 dev_err(nandc->dev, "failure to write page\n"); 2158 2159 free_descs(nandc); 2160 2161 if (!ret) 2162 ret = nand_prog_page_end_op(chip); 2163 2164 return ret; 2165 } 2166 2167 /* implements ecc->write_page_raw() */ 2168 static int qcom_nandc_write_page_raw(struct nand_chip *chip, 2169 const uint8_t *buf, int oob_required, 2170 int page) 2171 { 2172 struct mtd_info *mtd = nand_to_mtd(chip); 2173 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2174 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2175 struct nand_ecc_ctrl *ecc = &chip->ecc; 2176 u8 *data_buf, *oob_buf; 2177 int i, ret; 2178 2179 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2180 clear_read_regs(nandc); 2181 clear_bam_transaction(nandc); 2182 2183 data_buf = (u8 *)buf; 2184 oob_buf = chip->oob_poi; 2185 2186 host->use_ecc = false; 2187 update_rw_regs(host, ecc->steps, false, 0); 2188 config_nand_page_write(chip); 2189 2190 for (i = 0; i < ecc->steps; i++) { 2191 int data_size1, data_size2, oob_size1, oob_size2; 2192 int reg_off = FLASH_BUF_ACC; 2193 2194 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 2195 oob_size1 = host->bbm_size; 2196 2197 if (qcom_nandc_is_last_cw(ecc, i)) { 2198 data_size2 = ecc->size - data_size1 - 2199 ((ecc->steps - 1) << 2); 2200 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + 2201 host->spare_bytes; 2202 } else { 2203 data_size2 = host->cw_data - data_size1; 2204 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 2205 } 2206 2207 write_data_dma(nandc, reg_off, data_buf, data_size1, 2208 NAND_BAM_NO_EOT); 2209 reg_off += data_size1; 2210 data_buf += data_size1; 2211 2212 write_data_dma(nandc, reg_off, oob_buf, oob_size1, 2213 NAND_BAM_NO_EOT); 2214 reg_off += oob_size1; 2215 oob_buf += oob_size1; 2216 2217 write_data_dma(nandc, reg_off, data_buf, data_size2, 2218 NAND_BAM_NO_EOT); 2219 reg_off += data_size2; 2220 data_buf += data_size2; 2221 2222 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); 2223 oob_buf += oob_size2; 2224 2225 config_nand_cw_write(chip); 2226 } 2227 2228 ret = submit_descs(nandc); 2229 if (ret) 2230 dev_err(nandc->dev, "failure to write raw page\n"); 2231 2232 free_descs(nandc); 2233 2234 if (!ret) 2235 ret = nand_prog_page_end_op(chip); 2236 2237 return ret; 2238 } 2239 2240 /* 2241 * implements ecc->write_oob() 2242 * 2243 * the NAND controller cannot write only data or only OOB within a codeword 2244 * since ECC is calculated for the combined codeword. So update the OOB from 2245 * chip->oob_poi, and pad the data area with OxFF before writing. 2246 */ 2247 static int qcom_nandc_write_oob(struct nand_chip *chip, int page) 2248 { 2249 struct mtd_info *mtd = nand_to_mtd(chip); 2250 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2251 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2252 struct nand_ecc_ctrl *ecc = &chip->ecc; 2253 u8 *oob = chip->oob_poi; 2254 int data_size, oob_size; 2255 int ret; 2256 2257 host->use_ecc = true; 2258 clear_bam_transaction(nandc); 2259 2260 /* calculate the data and oob size for the last codeword/step */ 2261 data_size = ecc->size - ((ecc->steps - 1) << 2); 2262 oob_size = mtd->oobavail; 2263 2264 memset(nandc->data_buffer, 0xff, host->cw_data); 2265 /* override new oob content to last codeword */ 2266 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 2267 0, mtd->oobavail); 2268 2269 set_address(host, host->cw_size * (ecc->steps - 1), page); 2270 update_rw_regs(host, 1, false, 0); 2271 2272 config_nand_page_write(chip); 2273 write_data_dma(nandc, FLASH_BUF_ACC, 2274 nandc->data_buffer, data_size + oob_size, 0); 2275 config_nand_cw_write(chip); 2276 2277 ret = submit_descs(nandc); 2278 2279 free_descs(nandc); 2280 2281 if (ret) { 2282 dev_err(nandc->dev, "failure to write oob\n"); 2283 return -EIO; 2284 } 2285 2286 return nand_prog_page_end_op(chip); 2287 } 2288 2289 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) 2290 { 2291 struct mtd_info *mtd = nand_to_mtd(chip); 2292 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2293 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2294 struct nand_ecc_ctrl *ecc = &chip->ecc; 2295 int page, ret, bbpos, bad = 0; 2296 2297 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2298 2299 /* 2300 * configure registers for a raw sub page read, the address is set to 2301 * the beginning of the last codeword, we don't care about reading ecc 2302 * portion of oob. we just want the first few bytes from this codeword 2303 * that contains the BBM 2304 */ 2305 host->use_ecc = false; 2306 2307 clear_bam_transaction(nandc); 2308 ret = copy_last_cw(host, page); 2309 if (ret) 2310 goto err; 2311 2312 if (check_flash_errors(host, 1)) { 2313 dev_warn(nandc->dev, "error when trying to read BBM\n"); 2314 goto err; 2315 } 2316 2317 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); 2318 2319 bad = nandc->data_buffer[bbpos] != 0xff; 2320 2321 if (chip->options & NAND_BUSWIDTH_16) 2322 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); 2323 err: 2324 return bad; 2325 } 2326 2327 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) 2328 { 2329 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2330 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2331 struct nand_ecc_ctrl *ecc = &chip->ecc; 2332 int page, ret; 2333 2334 clear_read_regs(nandc); 2335 clear_bam_transaction(nandc); 2336 2337 /* 2338 * to mark the BBM as bad, we flash the entire last codeword with 0s. 2339 * we don't care about the rest of the content in the codeword since 2340 * we aren't going to use this block again 2341 */ 2342 memset(nandc->data_buffer, 0x00, host->cw_size); 2343 2344 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2345 2346 /* prepare write */ 2347 host->use_ecc = false; 2348 set_address(host, host->cw_size * (ecc->steps - 1), page); 2349 update_rw_regs(host, 1, false, ecc->steps - 1); 2350 2351 config_nand_page_write(chip); 2352 write_data_dma(nandc, FLASH_BUF_ACC, 2353 nandc->data_buffer, host->cw_size, 0); 2354 config_nand_cw_write(chip); 2355 2356 ret = submit_descs(nandc); 2357 2358 free_descs(nandc); 2359 2360 if (ret) { 2361 dev_err(nandc->dev, "failure to update BBM\n"); 2362 return -EIO; 2363 } 2364 2365 return nand_prog_page_end_op(chip); 2366 } 2367 2368 /* 2369 * the three functions below implement chip->legacy.read_byte(), 2370 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these 2371 * aren't used for reading/writing page data, they are used for smaller data 2372 * like reading id, status etc 2373 */ 2374 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip) 2375 { 2376 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2377 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2378 u8 *buf = nandc->data_buffer; 2379 u8 ret = 0x0; 2380 2381 if (host->last_command == NAND_CMD_STATUS) { 2382 ret = host->status; 2383 2384 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2385 2386 return ret; 2387 } 2388 2389 if (nandc->buf_start < nandc->buf_count) 2390 ret = buf[nandc->buf_start++]; 2391 2392 return ret; 2393 } 2394 2395 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 2396 { 2397 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2398 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2399 2400 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); 2401 nandc->buf_start += real_len; 2402 } 2403 2404 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf, 2405 int len) 2406 { 2407 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2408 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2409 2410 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); 2411 2412 nandc->buf_start += real_len; 2413 } 2414 2415 /* we support only one external chip for now */ 2416 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr) 2417 { 2418 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2419 2420 if (chipnr <= 0) 2421 return; 2422 2423 dev_warn(nandc->dev, "invalid chip select\n"); 2424 } 2425 2426 /* 2427 * NAND controller page layout info 2428 * 2429 * Layout with ECC enabled: 2430 * 2431 * |----------------------| |---------------------------------| 2432 * | xx.......yy| | *********xx.......yy| 2433 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| 2434 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| 2435 * | xx.......yy| | *********xx.......yy| 2436 * |----------------------| |---------------------------------| 2437 * codeword 1,2..n-1 codeword n 2438 * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> 2439 * 2440 * n = Number of codewords in the page 2441 * . = ECC bytes 2442 * * = Spare/free bytes 2443 * x = Unused byte(s) 2444 * y = Reserved byte(s) 2445 * 2446 * 2K page: n = 4, spare = 16 bytes 2447 * 4K page: n = 8, spare = 32 bytes 2448 * 8K page: n = 16, spare = 64 bytes 2449 * 2450 * the qcom nand controller operates at a sub page/codeword level. each 2451 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. 2452 * the number of ECC bytes vary based on the ECC strength and the bus width. 2453 * 2454 * the first n - 1 codewords contains 516 bytes of user data, the remaining 2455 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains 2456 * both user data and spare(oobavail) bytes that sum up to 516 bytes. 2457 * 2458 * When we access a page with ECC enabled, the reserved bytes(s) are not 2459 * accessible at all. When reading, we fill up these unreadable positions 2460 * with 0xffs. When writing, the controller skips writing the inaccessible 2461 * bytes. 2462 * 2463 * Layout with ECC disabled: 2464 * 2465 * |------------------------------| |---------------------------------------| 2466 * | yy xx.......| | bb *********xx.......| 2467 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| 2468 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| 2469 * | yy xx.......| | bb *********xx.......| 2470 * |------------------------------| |---------------------------------------| 2471 * codeword 1,2..n-1 codeword n 2472 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> 2473 * 2474 * n = Number of codewords in the page 2475 * . = ECC bytes 2476 * * = Spare/free bytes 2477 * x = Unused byte(s) 2478 * y = Dummy Bad Bock byte(s) 2479 * b = Real Bad Block byte(s) 2480 * size1/size2 = function of codeword size and 'n' 2481 * 2482 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus 2483 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad 2484 * Block Markers. In the last codeword, this position contains the real BBM 2485 * 2486 * In order to have a consistent layout between RAW and ECC modes, we assume 2487 * the following OOB layout arrangement: 2488 * 2489 * |-----------| |--------------------| 2490 * |yyxx.......| |bb*********xx.......| 2491 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| 2492 * |yyxx.......| |bb*********xx.......| 2493 * |yyxx.......| |bb*********xx.......| 2494 * |-----------| |--------------------| 2495 * first n - 1 nth OOB region 2496 * OOB regions 2497 * 2498 * n = Number of codewords in the page 2499 * . = ECC bytes 2500 * * = FREE OOB bytes 2501 * y = Dummy bad block byte(s) (inaccessible when ECC enabled) 2502 * x = Unused byte(s) 2503 * b = Real bad block byte(s) (inaccessible when ECC enabled) 2504 * 2505 * This layout is read as is when ECC is disabled. When ECC is enabled, the 2506 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, 2507 * and assumed as 0xffs when we read a page/oob. The ECC, unused and 2508 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is 2509 * the sum of the three). 2510 */ 2511 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2512 struct mtd_oob_region *oobregion) 2513 { 2514 struct nand_chip *chip = mtd_to_nand(mtd); 2515 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2516 struct nand_ecc_ctrl *ecc = &chip->ecc; 2517 2518 if (section > 1) 2519 return -ERANGE; 2520 2521 if (!section) { 2522 oobregion->length = (ecc->bytes * (ecc->steps - 1)) + 2523 host->bbm_size; 2524 oobregion->offset = 0; 2525 } else { 2526 oobregion->length = host->ecc_bytes_hw + host->spare_bytes; 2527 oobregion->offset = mtd->oobsize - oobregion->length; 2528 } 2529 2530 return 0; 2531 } 2532 2533 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, 2534 struct mtd_oob_region *oobregion) 2535 { 2536 struct nand_chip *chip = mtd_to_nand(mtd); 2537 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2538 struct nand_ecc_ctrl *ecc = &chip->ecc; 2539 2540 if (section) 2541 return -ERANGE; 2542 2543 oobregion->length = ecc->steps * 4; 2544 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; 2545 2546 return 0; 2547 } 2548 2549 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { 2550 .ecc = qcom_nand_ooblayout_ecc, 2551 .free = qcom_nand_ooblayout_free, 2552 }; 2553 2554 static int 2555 qcom_nandc_calc_ecc_bytes(int step_size, int strength) 2556 { 2557 return strength == 4 ? 12 : 16; 2558 } 2559 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, 2560 NANDC_STEP_SIZE, 4, 8); 2561 2562 static int qcom_nand_attach_chip(struct nand_chip *chip) 2563 { 2564 struct mtd_info *mtd = nand_to_mtd(chip); 2565 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2566 struct nand_ecc_ctrl *ecc = &chip->ecc; 2567 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2568 int cwperpage, bad_block_byte, ret; 2569 bool wide_bus; 2570 int ecc_mode = 1; 2571 2572 /* controller only supports 512 bytes data steps */ 2573 ecc->size = NANDC_STEP_SIZE; 2574 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; 2575 cwperpage = mtd->writesize / NANDC_STEP_SIZE; 2576 2577 /* 2578 * Each CW has 4 available OOB bytes which will be protected with ECC 2579 * so remaining bytes can be used for ECC. 2580 */ 2581 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, 2582 mtd->oobsize - (cwperpage * 4)); 2583 if (ret) { 2584 dev_err(nandc->dev, "No valid ECC settings possible\n"); 2585 return ret; 2586 } 2587 2588 if (ecc->strength >= 8) { 2589 /* 8 bit ECC defaults to BCH ECC on all platforms */ 2590 host->bch_enabled = true; 2591 ecc_mode = 1; 2592 2593 if (wide_bus) { 2594 host->ecc_bytes_hw = 14; 2595 host->spare_bytes = 0; 2596 host->bbm_size = 2; 2597 } else { 2598 host->ecc_bytes_hw = 13; 2599 host->spare_bytes = 2; 2600 host->bbm_size = 1; 2601 } 2602 } else { 2603 /* 2604 * if the controller supports BCH for 4 bit ECC, the controller 2605 * uses lesser bytes for ECC. If RS is used, the ECC bytes is 2606 * always 10 bytes 2607 */ 2608 if (nandc->props->ecc_modes & ECC_BCH_4BIT) { 2609 /* BCH */ 2610 host->bch_enabled = true; 2611 ecc_mode = 0; 2612 2613 if (wide_bus) { 2614 host->ecc_bytes_hw = 8; 2615 host->spare_bytes = 2; 2616 host->bbm_size = 2; 2617 } else { 2618 host->ecc_bytes_hw = 7; 2619 host->spare_bytes = 4; 2620 host->bbm_size = 1; 2621 } 2622 } else { 2623 /* RS */ 2624 host->ecc_bytes_hw = 10; 2625 2626 if (wide_bus) { 2627 host->spare_bytes = 0; 2628 host->bbm_size = 2; 2629 } else { 2630 host->spare_bytes = 1; 2631 host->bbm_size = 1; 2632 } 2633 } 2634 } 2635 2636 /* 2637 * we consider ecc->bytes as the sum of all the non-data content in a 2638 * step. It gives us a clean representation of the oob area (even if 2639 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit 2640 * ECC and 12 bytes for 4 bit ECC 2641 */ 2642 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; 2643 2644 ecc->read_page = qcom_nandc_read_page; 2645 ecc->read_page_raw = qcom_nandc_read_page_raw; 2646 ecc->read_oob = qcom_nandc_read_oob; 2647 ecc->write_page = qcom_nandc_write_page; 2648 ecc->write_page_raw = qcom_nandc_write_page_raw; 2649 ecc->write_oob = qcom_nandc_write_oob; 2650 2651 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2652 2653 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); 2654 /* Free the initially allocated BAM transaction for reading the ONFI params */ 2655 if (nandc->props->is_bam) 2656 free_bam_transaction(nandc); 2657 2658 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, 2659 cwperpage); 2660 2661 /* Now allocate the BAM transaction based on updated max_cwperpage */ 2662 if (nandc->props->is_bam) { 2663 nandc->bam_txn = alloc_bam_transaction(nandc); 2664 if (!nandc->bam_txn) { 2665 dev_err(nandc->dev, 2666 "failed to allocate bam transaction\n"); 2667 return -ENOMEM; 2668 } 2669 } 2670 2671 /* 2672 * DATA_UD_BYTES varies based on whether the read/write command protects 2673 * spare data with ECC too. We protect spare data by default, so we set 2674 * it to main + spare data, which are 512 and 4 bytes respectively. 2675 */ 2676 host->cw_data = 516; 2677 2678 /* 2679 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes 2680 * for 8 bit ECC 2681 */ 2682 host->cw_size = host->cw_data + ecc->bytes; 2683 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; 2684 2685 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE 2686 | host->cw_data << UD_SIZE_BYTES 2687 | 0 << DISABLE_STATUS_AFTER_WRITE 2688 | 5 << NUM_ADDR_CYCLES 2689 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS 2690 | 0 << STATUS_BFR_READ 2691 | 1 << SET_RD_MODE_AFTER_STATUS 2692 | host->spare_bytes << SPARE_SIZE_BYTES; 2693 2694 host->cfg1 = 7 << NAND_RECOVERY_CYCLES 2695 | 0 << CS_ACTIVE_BSY 2696 | bad_block_byte << BAD_BLOCK_BYTE_NUM 2697 | 0 << BAD_BLOCK_IN_SPARE_AREA 2698 | 2 << WR_RD_BSY_GAP 2699 | wide_bus << WIDE_FLASH 2700 | host->bch_enabled << ENABLE_BCH_ECC; 2701 2702 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE 2703 | host->cw_size << UD_SIZE_BYTES 2704 | 5 << NUM_ADDR_CYCLES 2705 | 0 << SPARE_SIZE_BYTES; 2706 2707 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES 2708 | 0 << CS_ACTIVE_BSY 2709 | 17 << BAD_BLOCK_BYTE_NUM 2710 | 1 << BAD_BLOCK_IN_SPARE_AREA 2711 | 2 << WR_RD_BSY_GAP 2712 | wide_bus << WIDE_FLASH 2713 | 1 << DEV0_CFG1_ECC_DISABLE; 2714 2715 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE 2716 | 0 << ECC_SW_RESET 2717 | host->cw_data << ECC_NUM_DATA_BYTES 2718 | 1 << ECC_FORCE_CLK_OPEN 2719 | ecc_mode << ECC_MODE 2720 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; 2721 2722 if (!nandc->props->qpic_v2) 2723 host->ecc_buf_cfg = 0x203 << NUM_STEPS; 2724 2725 host->clrflashstatus = FS_READY_BSY_N; 2726 host->clrreadstatus = 0xc0; 2727 nandc->regs->erased_cw_detect_cfg_clr = 2728 cpu_to_le32(CLR_ERASED_PAGE_DET); 2729 nandc->regs->erased_cw_detect_cfg_set = 2730 cpu_to_le32(SET_ERASED_PAGE_DET); 2731 2732 dev_dbg(nandc->dev, 2733 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", 2734 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, 2735 host->cw_size, host->cw_data, ecc->strength, ecc->bytes, 2736 cwperpage); 2737 2738 return 0; 2739 } 2740 2741 static const struct nand_controller_ops qcom_nandc_ops = { 2742 .attach_chip = qcom_nand_attach_chip, 2743 }; 2744 2745 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) 2746 { 2747 if (nandc->props->is_bam) { 2748 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) 2749 dma_unmap_single(nandc->dev, nandc->reg_read_dma, 2750 MAX_REG_RD * 2751 sizeof(*nandc->reg_read_buf), 2752 DMA_FROM_DEVICE); 2753 2754 if (nandc->tx_chan) 2755 dma_release_channel(nandc->tx_chan); 2756 2757 if (nandc->rx_chan) 2758 dma_release_channel(nandc->rx_chan); 2759 2760 if (nandc->cmd_chan) 2761 dma_release_channel(nandc->cmd_chan); 2762 } else { 2763 if (nandc->chan) 2764 dma_release_channel(nandc->chan); 2765 } 2766 } 2767 2768 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) 2769 { 2770 int ret; 2771 2772 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); 2773 if (ret) { 2774 dev_err(nandc->dev, "failed to set DMA mask\n"); 2775 return ret; 2776 } 2777 2778 /* 2779 * we use the internal buffer for reading ONFI params, reading small 2780 * data like ID and status, and preforming read-copy-write operations 2781 * when writing to a codeword partially. 532 is the maximum possible 2782 * size of a codeword for our nand controller 2783 */ 2784 nandc->buf_size = 532; 2785 2786 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, 2787 GFP_KERNEL); 2788 if (!nandc->data_buffer) 2789 return -ENOMEM; 2790 2791 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), 2792 GFP_KERNEL); 2793 if (!nandc->regs) 2794 return -ENOMEM; 2795 2796 nandc->reg_read_buf = devm_kcalloc(nandc->dev, 2797 MAX_REG_RD, sizeof(*nandc->reg_read_buf), 2798 GFP_KERNEL); 2799 if (!nandc->reg_read_buf) 2800 return -ENOMEM; 2801 2802 if (nandc->props->is_bam) { 2803 nandc->reg_read_dma = 2804 dma_map_single(nandc->dev, nandc->reg_read_buf, 2805 MAX_REG_RD * 2806 sizeof(*nandc->reg_read_buf), 2807 DMA_FROM_DEVICE); 2808 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { 2809 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); 2810 return -EIO; 2811 } 2812 2813 nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); 2814 if (IS_ERR(nandc->tx_chan)) { 2815 ret = PTR_ERR(nandc->tx_chan); 2816 nandc->tx_chan = NULL; 2817 dev_err_probe(nandc->dev, ret, 2818 "tx DMA channel request failed\n"); 2819 goto unalloc; 2820 } 2821 2822 nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); 2823 if (IS_ERR(nandc->rx_chan)) { 2824 ret = PTR_ERR(nandc->rx_chan); 2825 nandc->rx_chan = NULL; 2826 dev_err_probe(nandc->dev, ret, 2827 "rx DMA channel request failed\n"); 2828 goto unalloc; 2829 } 2830 2831 nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); 2832 if (IS_ERR(nandc->cmd_chan)) { 2833 ret = PTR_ERR(nandc->cmd_chan); 2834 nandc->cmd_chan = NULL; 2835 dev_err_probe(nandc->dev, ret, 2836 "cmd DMA channel request failed\n"); 2837 goto unalloc; 2838 } 2839 2840 /* 2841 * Initially allocate BAM transaction to read ONFI param page. 2842 * After detecting all the devices, this BAM transaction will 2843 * be freed and the next BAM tranasction will be allocated with 2844 * maximum codeword size 2845 */ 2846 nandc->max_cwperpage = 1; 2847 nandc->bam_txn = alloc_bam_transaction(nandc); 2848 if (!nandc->bam_txn) { 2849 dev_err(nandc->dev, 2850 "failed to allocate bam transaction\n"); 2851 ret = -ENOMEM; 2852 goto unalloc; 2853 } 2854 } else { 2855 nandc->chan = dma_request_chan(nandc->dev, "rxtx"); 2856 if (IS_ERR(nandc->chan)) { 2857 ret = PTR_ERR(nandc->chan); 2858 nandc->chan = NULL; 2859 dev_err_probe(nandc->dev, ret, 2860 "rxtx DMA channel request failed\n"); 2861 return ret; 2862 } 2863 } 2864 2865 INIT_LIST_HEAD(&nandc->desc_list); 2866 INIT_LIST_HEAD(&nandc->host_list); 2867 2868 nand_controller_init(&nandc->controller); 2869 nandc->controller.ops = &qcom_nandc_ops; 2870 2871 return 0; 2872 unalloc: 2873 qcom_nandc_unalloc(nandc); 2874 return ret; 2875 } 2876 2877 /* one time setup of a few nand controller registers */ 2878 static int qcom_nandc_setup(struct qcom_nand_controller *nandc) 2879 { 2880 u32 nand_ctrl; 2881 2882 /* kill onenand */ 2883 if (!nandc->props->is_qpic) 2884 nandc_write(nandc, SFLASHC_BURST_CFG, 0); 2885 2886 if (!nandc->props->qpic_v2) 2887 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), 2888 NAND_DEV_CMD_VLD_VAL); 2889 2890 /* enable ADM or BAM DMA */ 2891 if (nandc->props->is_bam) { 2892 nand_ctrl = nandc_read(nandc, NAND_CTRL); 2893 2894 /* 2895 *NAND_CTRL is an operational registers, and CPU 2896 * access to operational registers are read only 2897 * in BAM mode. So update the NAND_CTRL register 2898 * only if it is not in BAM mode. In most cases BAM 2899 * mode will be enabled in bootloader 2900 */ 2901 if (!(nand_ctrl & BAM_MODE_EN)) 2902 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); 2903 } else { 2904 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); 2905 } 2906 2907 /* save the original values of these registers */ 2908 if (!nandc->props->qpic_v2) { 2909 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); 2910 nandc->vld = NAND_DEV_CMD_VLD_VAL; 2911 } 2912 2913 return 0; 2914 } 2915 2916 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; 2917 2918 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, 2919 struct qcom_nand_host *host, 2920 struct device_node *dn) 2921 { 2922 struct nand_chip *chip = &host->chip; 2923 struct mtd_info *mtd = nand_to_mtd(chip); 2924 struct device *dev = nandc->dev; 2925 int ret; 2926 2927 ret = of_property_read_u32(dn, "reg", &host->cs); 2928 if (ret) { 2929 dev_err(dev, "can't get chip-select\n"); 2930 return -ENXIO; 2931 } 2932 2933 nand_set_flash_node(chip, dn); 2934 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); 2935 if (!mtd->name) 2936 return -ENOMEM; 2937 2938 mtd->owner = THIS_MODULE; 2939 mtd->dev.parent = dev; 2940 2941 chip->legacy.cmdfunc = qcom_nandc_command; 2942 chip->legacy.select_chip = qcom_nandc_select_chip; 2943 chip->legacy.read_byte = qcom_nandc_read_byte; 2944 chip->legacy.read_buf = qcom_nandc_read_buf; 2945 chip->legacy.write_buf = qcom_nandc_write_buf; 2946 chip->legacy.set_features = nand_get_set_features_notsupp; 2947 chip->legacy.get_features = nand_get_set_features_notsupp; 2948 2949 /* 2950 * the bad block marker is readable only when we read the last codeword 2951 * of a page with ECC disabled. currently, the nand_base and nand_bbt 2952 * helpers don't allow us to read BB from a nand chip with ECC 2953 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad 2954 * and block_markbad helpers until we permanently switch to using 2955 * MTD_OPS_RAW for all drivers (with the help of badblockbits) 2956 */ 2957 chip->legacy.block_bad = qcom_nandc_block_bad; 2958 chip->legacy.block_markbad = qcom_nandc_block_markbad; 2959 2960 chip->controller = &nandc->controller; 2961 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | 2962 NAND_SKIP_BBTSCAN; 2963 2964 /* set up initial status value */ 2965 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2966 2967 ret = nand_scan(chip, 1); 2968 if (ret) 2969 return ret; 2970 2971 ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); 2972 if (ret) 2973 nand_cleanup(chip); 2974 2975 return ret; 2976 } 2977 2978 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) 2979 { 2980 struct device *dev = nandc->dev; 2981 struct device_node *dn = dev->of_node, *child; 2982 struct qcom_nand_host *host; 2983 int ret = -ENODEV; 2984 2985 for_each_available_child_of_node(dn, child) { 2986 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 2987 if (!host) { 2988 of_node_put(child); 2989 return -ENOMEM; 2990 } 2991 2992 ret = qcom_nand_host_init_and_register(nandc, host, child); 2993 if (ret) { 2994 devm_kfree(dev, host); 2995 continue; 2996 } 2997 2998 list_add_tail(&host->node, &nandc->host_list); 2999 } 3000 3001 return ret; 3002 } 3003 3004 /* parse custom DT properties here */ 3005 static int qcom_nandc_parse_dt(struct platform_device *pdev) 3006 { 3007 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 3008 struct device_node *np = nandc->dev->of_node; 3009 int ret; 3010 3011 if (!nandc->props->is_bam) { 3012 ret = of_property_read_u32(np, "qcom,cmd-crci", 3013 &nandc->cmd_crci); 3014 if (ret) { 3015 dev_err(nandc->dev, "command CRCI unspecified\n"); 3016 return ret; 3017 } 3018 3019 ret = of_property_read_u32(np, "qcom,data-crci", 3020 &nandc->data_crci); 3021 if (ret) { 3022 dev_err(nandc->dev, "data CRCI unspecified\n"); 3023 return ret; 3024 } 3025 } 3026 3027 return 0; 3028 } 3029 3030 static int qcom_nandc_probe(struct platform_device *pdev) 3031 { 3032 struct qcom_nand_controller *nandc; 3033 const void *dev_data; 3034 struct device *dev = &pdev->dev; 3035 struct resource *res; 3036 int ret; 3037 3038 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); 3039 if (!nandc) 3040 return -ENOMEM; 3041 3042 platform_set_drvdata(pdev, nandc); 3043 nandc->dev = dev; 3044 3045 dev_data = of_device_get_match_data(dev); 3046 if (!dev_data) { 3047 dev_err(&pdev->dev, "failed to get device data\n"); 3048 return -ENODEV; 3049 } 3050 3051 nandc->props = dev_data; 3052 3053 nandc->core_clk = devm_clk_get(dev, "core"); 3054 if (IS_ERR(nandc->core_clk)) 3055 return PTR_ERR(nandc->core_clk); 3056 3057 nandc->aon_clk = devm_clk_get(dev, "aon"); 3058 if (IS_ERR(nandc->aon_clk)) 3059 return PTR_ERR(nandc->aon_clk); 3060 3061 ret = qcom_nandc_parse_dt(pdev); 3062 if (ret) 3063 return ret; 3064 3065 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3066 nandc->base = devm_ioremap_resource(dev, res); 3067 if (IS_ERR(nandc->base)) 3068 return PTR_ERR(nandc->base); 3069 3070 nandc->base_phys = res->start; 3071 nandc->base_dma = dma_map_resource(dev, res->start, 3072 resource_size(res), 3073 DMA_BIDIRECTIONAL, 0); 3074 if (dma_mapping_error(dev, nandc->base_dma)) 3075 return -ENXIO; 3076 3077 ret = clk_prepare_enable(nandc->core_clk); 3078 if (ret) 3079 goto err_core_clk; 3080 3081 ret = clk_prepare_enable(nandc->aon_clk); 3082 if (ret) 3083 goto err_aon_clk; 3084 3085 ret = qcom_nandc_alloc(nandc); 3086 if (ret) 3087 goto err_nandc_alloc; 3088 3089 ret = qcom_nandc_setup(nandc); 3090 if (ret) 3091 goto err_setup; 3092 3093 ret = qcom_probe_nand_devices(nandc); 3094 if (ret) 3095 goto err_setup; 3096 3097 return 0; 3098 3099 err_setup: 3100 qcom_nandc_unalloc(nandc); 3101 err_nandc_alloc: 3102 clk_disable_unprepare(nandc->aon_clk); 3103 err_aon_clk: 3104 clk_disable_unprepare(nandc->core_clk); 3105 err_core_clk: 3106 dma_unmap_resource(dev, res->start, resource_size(res), 3107 DMA_BIDIRECTIONAL, 0); 3108 return ret; 3109 } 3110 3111 static int qcom_nandc_remove(struct platform_device *pdev) 3112 { 3113 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 3114 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3115 struct qcom_nand_host *host; 3116 struct nand_chip *chip; 3117 int ret; 3118 3119 list_for_each_entry(host, &nandc->host_list, node) { 3120 chip = &host->chip; 3121 ret = mtd_device_unregister(nand_to_mtd(chip)); 3122 WARN_ON(ret); 3123 nand_cleanup(chip); 3124 } 3125 3126 qcom_nandc_unalloc(nandc); 3127 3128 clk_disable_unprepare(nandc->aon_clk); 3129 clk_disable_unprepare(nandc->core_clk); 3130 3131 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), 3132 DMA_BIDIRECTIONAL, 0); 3133 3134 return 0; 3135 } 3136 3137 static const struct qcom_nandc_props ipq806x_nandc_props = { 3138 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), 3139 .is_bam = false, 3140 .dev_cmd_reg_start = 0x0, 3141 }; 3142 3143 static const struct qcom_nandc_props ipq4019_nandc_props = { 3144 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3145 .is_bam = true, 3146 .is_qpic = true, 3147 .dev_cmd_reg_start = 0x0, 3148 }; 3149 3150 static const struct qcom_nandc_props ipq8074_nandc_props = { 3151 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3152 .is_bam = true, 3153 .is_qpic = true, 3154 .dev_cmd_reg_start = 0x7000, 3155 }; 3156 3157 static const struct qcom_nandc_props sdx55_nandc_props = { 3158 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3159 .is_bam = true, 3160 .is_qpic = true, 3161 .qpic_v2 = true, 3162 .dev_cmd_reg_start = 0x7000, 3163 }; 3164 3165 /* 3166 * data will hold a struct pointer containing more differences once we support 3167 * more controller variants 3168 */ 3169 static const struct of_device_id qcom_nandc_of_match[] = { 3170 { 3171 .compatible = "qcom,ipq806x-nand", 3172 .data = &ipq806x_nandc_props, 3173 }, 3174 { 3175 .compatible = "qcom,ipq4019-nand", 3176 .data = &ipq4019_nandc_props, 3177 }, 3178 { 3179 .compatible = "qcom,ipq6018-nand", 3180 .data = &ipq8074_nandc_props, 3181 }, 3182 { 3183 .compatible = "qcom,ipq8074-nand", 3184 .data = &ipq8074_nandc_props, 3185 }, 3186 { 3187 .compatible = "qcom,sdx55-nand", 3188 .data = &sdx55_nandc_props, 3189 }, 3190 {} 3191 }; 3192 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); 3193 3194 static struct platform_driver qcom_nandc_driver = { 3195 .driver = { 3196 .name = "qcom-nandc", 3197 .of_match_table = qcom_nandc_of_match, 3198 }, 3199 .probe = qcom_nandc_probe, 3200 .remove = qcom_nandc_remove, 3201 }; 3202 module_platform_driver(qcom_nandc_driver); 3203 3204 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); 3205 MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); 3206 MODULE_LICENSE("GPL v2"); 3207