xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/slab.h>
8 #include <linux/bitops.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma/qcom_bam_dma.h>
18 
19 /* NANDc reg offsets */
20 #define	NAND_FLASH_CMD			0x00
21 #define	NAND_ADDR0			0x04
22 #define	NAND_ADDR1			0x08
23 #define	NAND_FLASH_CHIP_SELECT		0x0c
24 #define	NAND_EXEC_CMD			0x10
25 #define	NAND_FLASH_STATUS		0x14
26 #define	NAND_BUFFER_STATUS		0x18
27 #define	NAND_DEV0_CFG0			0x20
28 #define	NAND_DEV0_CFG1			0x24
29 #define	NAND_DEV0_ECC_CFG		0x28
30 #define	NAND_DEV1_ECC_CFG		0x2c
31 #define	NAND_DEV1_CFG0			0x30
32 #define	NAND_DEV1_CFG1			0x34
33 #define	NAND_READ_ID			0x40
34 #define	NAND_READ_STATUS		0x44
35 #define	NAND_DEV_CMD0			0xa0
36 #define	NAND_DEV_CMD1			0xa4
37 #define	NAND_DEV_CMD2			0xa8
38 #define	NAND_DEV_CMD_VLD		0xac
39 #define	SFLASHC_BURST_CFG		0xe0
40 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
41 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
42 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
43 #define	FLASH_BUF_ACC			0x100
44 
45 #define	NAND_CTRL			0xf00
46 #define	NAND_VERSION			0xf08
47 #define	NAND_READ_LOCATION_0		0xf20
48 #define	NAND_READ_LOCATION_1		0xf24
49 #define	NAND_READ_LOCATION_2		0xf28
50 #define	NAND_READ_LOCATION_3		0xf2c
51 
52 /* dummy register offsets, used by write_reg_dma */
53 #define	NAND_DEV_CMD1_RESTORE		0xdead
54 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
55 
56 /* NAND_FLASH_CMD bits */
57 #define	PAGE_ACC			BIT(4)
58 #define	LAST_PAGE			BIT(5)
59 
60 /* NAND_FLASH_CHIP_SELECT bits */
61 #define	NAND_DEV_SEL			0
62 #define	DM_EN				BIT(2)
63 
64 /* NAND_FLASH_STATUS bits */
65 #define	FS_OP_ERR			BIT(4)
66 #define	FS_READY_BSY_N			BIT(5)
67 #define	FS_MPU_ERR			BIT(8)
68 #define	FS_DEVICE_STS_ERR		BIT(16)
69 #define	FS_DEVICE_WP			BIT(23)
70 
71 /* NAND_BUFFER_STATUS bits */
72 #define	BS_UNCORRECTABLE_BIT		BIT(8)
73 #define	BS_CORRECTABLE_ERR_MSK		0x1f
74 
75 /* NAND_DEVn_CFG0 bits */
76 #define	DISABLE_STATUS_AFTER_WRITE	4
77 #define	CW_PER_PAGE			6
78 #define	UD_SIZE_BYTES			9
79 #define	ECC_PARITY_SIZE_BYTES_RS	19
80 #define	SPARE_SIZE_BYTES		23
81 #define	NUM_ADDR_CYCLES			27
82 #define	STATUS_BFR_READ			30
83 #define	SET_RD_MODE_AFTER_STATUS	31
84 
85 /* NAND_DEVn_CFG0 bits */
86 #define	DEV0_CFG1_ECC_DISABLE		0
87 #define	WIDE_FLASH			1
88 #define	NAND_RECOVERY_CYCLES		2
89 #define	CS_ACTIVE_BSY			5
90 #define	BAD_BLOCK_BYTE_NUM		6
91 #define	BAD_BLOCK_IN_SPARE_AREA		16
92 #define	WR_RD_BSY_GAP			17
93 #define	ENABLE_BCH_ECC			27
94 
95 /* NAND_DEV0_ECC_CFG bits */
96 #define	ECC_CFG_ECC_DISABLE		0
97 #define	ECC_SW_RESET			1
98 #define	ECC_MODE			4
99 #define	ECC_PARITY_SIZE_BYTES_BCH	8
100 #define	ECC_NUM_DATA_BYTES		16
101 #define	ECC_FORCE_CLK_OPEN		30
102 
103 /* NAND_DEV_CMD1 bits */
104 #define	READ_ADDR			0
105 
106 /* NAND_DEV_CMD_VLD bits */
107 #define	READ_START_VLD			BIT(0)
108 #define	READ_STOP_VLD			BIT(1)
109 #define	WRITE_START_VLD			BIT(2)
110 #define	ERASE_START_VLD			BIT(3)
111 #define	SEQ_READ_START_VLD		BIT(4)
112 
113 /* NAND_EBI2_ECC_BUF_CFG bits */
114 #define	NUM_STEPS			0
115 
116 /* NAND_ERASED_CW_DETECT_CFG bits */
117 #define	ERASED_CW_ECC_MASK		1
118 #define	AUTO_DETECT_RES			0
119 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
120 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
121 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
122 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
123 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
124 
125 /* NAND_ERASED_CW_DETECT_STATUS bits */
126 #define	PAGE_ALL_ERASED			BIT(7)
127 #define	CODEWORD_ALL_ERASED		BIT(6)
128 #define	PAGE_ERASED			BIT(5)
129 #define	CODEWORD_ERASED			BIT(4)
130 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
131 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
132 
133 /* NAND_READ_LOCATION_n bits */
134 #define READ_LOCATION_OFFSET		0
135 #define READ_LOCATION_SIZE		16
136 #define READ_LOCATION_LAST		31
137 
138 /* Version Mask */
139 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
140 #define	NAND_VERSION_MAJOR_SHIFT	28
141 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
142 #define	NAND_VERSION_MINOR_SHIFT	16
143 
144 /* NAND OP_CMDs */
145 #define	OP_PAGE_READ			0x2
146 #define	OP_PAGE_READ_WITH_ECC		0x3
147 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
148 #define	OP_PROGRAM_PAGE			0x6
149 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
150 #define	OP_PROGRAM_PAGE_SPARE		0x9
151 #define	OP_BLOCK_ERASE			0xa
152 #define	OP_FETCH_ID			0xb
153 #define	OP_RESET_DEVICE			0xd
154 
155 /* Default Value for NAND_DEV_CMD_VLD */
156 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
157 					 ERASE_START_VLD | SEQ_READ_START_VLD)
158 
159 /* NAND_CTRL bits */
160 #define	BAM_MODE_EN			BIT(0)
161 
162 /*
163  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
164  * the driver calls the chunks 'step' or 'codeword' interchangeably
165  */
166 #define	NANDC_STEP_SIZE			512
167 
168 /*
169  * the largest page size we support is 8K, this will have 16 steps/codewords
170  * of 512 bytes each
171  */
172 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
173 
174 /* we read at most 3 registers per codeword scan */
175 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
176 
177 /* ECC modes supported by the controller */
178 #define	ECC_NONE	BIT(0)
179 #define	ECC_RS_4BIT	BIT(1)
180 #define	ECC_BCH_4BIT	BIT(2)
181 #define	ECC_BCH_8BIT	BIT(3)
182 
183 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
184 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
185 	      ((offset) << READ_LOCATION_OFFSET) |		\
186 	      ((size) << READ_LOCATION_SIZE) |			\
187 	      ((is_last) << READ_LOCATION_LAST))
188 
189 /*
190  * Returns the actual register address for all NAND_DEV_ registers
191  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
192  */
193 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
194 
195 /* Returns the NAND register physical address */
196 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
197 
198 /* Returns the dma address for reg read buffer */
199 #define reg_buf_dma_addr(chip, vaddr) \
200 	((chip)->reg_read_dma + \
201 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
202 
203 #define QPIC_PER_CW_CMD_ELEMENTS	32
204 #define QPIC_PER_CW_CMD_SGL		32
205 #define QPIC_PER_CW_DATA_SGL		8
206 
207 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
208 
209 /*
210  * Flags used in DMA descriptor preparation helper functions
211  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
212  */
213 /* Don't set the EOT in current tx BAM sgl */
214 #define NAND_BAM_NO_EOT			BIT(0)
215 /* Set the NWD flag in current BAM sgl */
216 #define NAND_BAM_NWD			BIT(1)
217 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
218 #define NAND_BAM_NEXT_SGL		BIT(2)
219 /*
220  * Erased codeword status is being used two times in single transfer so this
221  * flag will determine the current value of erased codeword status register
222  */
223 #define NAND_ERASED_CW_SET		BIT(4)
224 
225 /*
226  * This data type corresponds to the BAM transaction which will be used for all
227  * NAND transfers.
228  * @bam_ce - the array of BAM command elements
229  * @cmd_sgl - sgl for NAND BAM command pipe
230  * @data_sgl - sgl for NAND BAM consumer/producer pipe
231  * @bam_ce_pos - the index in bam_ce which is available for next sgl
232  * @bam_ce_start - the index in bam_ce which marks the start position ce
233  *		   for current sgl. It will be used for size calculation
234  *		   for current sgl
235  * @cmd_sgl_pos - current index in command sgl.
236  * @cmd_sgl_start - start index in command sgl.
237  * @tx_sgl_pos - current index in data sgl for tx.
238  * @tx_sgl_start - start index in data sgl for tx.
239  * @rx_sgl_pos - current index in data sgl for rx.
240  * @rx_sgl_start - start index in data sgl for rx.
241  * @wait_second_completion - wait for second DMA desc completion before making
242  *			     the NAND transfer completion.
243  * @txn_done - completion for NAND transfer.
244  * @last_data_desc - last DMA desc in data channel (tx/rx).
245  * @last_cmd_desc - last DMA desc in command channel.
246  */
247 struct bam_transaction {
248 	struct bam_cmd_element *bam_ce;
249 	struct scatterlist *cmd_sgl;
250 	struct scatterlist *data_sgl;
251 	u32 bam_ce_pos;
252 	u32 bam_ce_start;
253 	u32 cmd_sgl_pos;
254 	u32 cmd_sgl_start;
255 	u32 tx_sgl_pos;
256 	u32 tx_sgl_start;
257 	u32 rx_sgl_pos;
258 	u32 rx_sgl_start;
259 	bool wait_second_completion;
260 	struct completion txn_done;
261 	struct dma_async_tx_descriptor *last_data_desc;
262 	struct dma_async_tx_descriptor *last_cmd_desc;
263 };
264 
265 /*
266  * This data type corresponds to the nand dma descriptor
267  * @list - list for desc_info
268  * @dir - DMA transfer direction
269  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
270  *	      ADM
271  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
272  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
273  * @dma_desc - low level DMA engine descriptor
274  */
275 struct desc_info {
276 	struct list_head node;
277 
278 	enum dma_data_direction dir;
279 	union {
280 		struct scatterlist adm_sgl;
281 		struct {
282 			struct scatterlist *bam_sgl;
283 			int sgl_cnt;
284 		};
285 	};
286 	struct dma_async_tx_descriptor *dma_desc;
287 };
288 
289 /*
290  * holds the current register values that we want to write. acts as a contiguous
291  * chunk of memory which we use to write the controller registers through DMA.
292  */
293 struct nandc_regs {
294 	__le32 cmd;
295 	__le32 addr0;
296 	__le32 addr1;
297 	__le32 chip_sel;
298 	__le32 exec;
299 
300 	__le32 cfg0;
301 	__le32 cfg1;
302 	__le32 ecc_bch_cfg;
303 
304 	__le32 clrflashstatus;
305 	__le32 clrreadstatus;
306 
307 	__le32 cmd1;
308 	__le32 vld;
309 
310 	__le32 orig_cmd1;
311 	__le32 orig_vld;
312 
313 	__le32 ecc_buf_cfg;
314 	__le32 read_location0;
315 	__le32 read_location1;
316 	__le32 read_location2;
317 	__le32 read_location3;
318 
319 	__le32 erased_cw_detect_cfg_clr;
320 	__le32 erased_cw_detect_cfg_set;
321 };
322 
323 /*
324  * NAND controller data struct
325  *
326  * @controller:			base controller structure
327  * @host_list:			list containing all the chips attached to the
328  *				controller
329  * @dev:			parent device
330  * @base:			MMIO base
331  * @base_phys:			physical base address of controller registers
332  * @base_dma:			dma base address of controller registers
333  * @core_clk:			controller clock
334  * @aon_clk:			another controller clock
335  *
336  * @chan:			dma channel
337  * @cmd_crci:			ADM DMA CRCI for command flow control
338  * @data_crci:			ADM DMA CRCI for data flow control
339  * @desc_list:			DMA descriptor list (list of desc_infos)
340  *
341  * @data_buffer:		our local DMA buffer for page read/writes,
342  *				used when we can't use the buffer provided
343  *				by upper layers directly
344  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
345  *				functions
346  * @reg_read_buf:		local buffer for reading back registers via DMA
347  * @reg_read_dma:		contains dma address for register read buffer
348  * @reg_read_pos:		marker for data read in reg_read_buf
349  *
350  * @regs:			a contiguous chunk of memory for DMA register
351  *				writes. contains the register values to be
352  *				written to controller
353  * @cmd1/vld:			some fixed controller register values
354  * @props:			properties of current NAND controller,
355  *				initialized via DT match data
356  * @max_cwperpage:		maximum QPIC codewords required. calculated
357  *				from all connected NAND devices pagesize
358  */
359 struct qcom_nand_controller {
360 	struct nand_controller controller;
361 	struct list_head host_list;
362 
363 	struct device *dev;
364 
365 	void __iomem *base;
366 	phys_addr_t base_phys;
367 	dma_addr_t base_dma;
368 
369 	struct clk *core_clk;
370 	struct clk *aon_clk;
371 
372 	union {
373 		/* will be used only by QPIC for BAM DMA */
374 		struct {
375 			struct dma_chan *tx_chan;
376 			struct dma_chan *rx_chan;
377 			struct dma_chan *cmd_chan;
378 		};
379 
380 		/* will be used only by EBI2 for ADM DMA */
381 		struct {
382 			struct dma_chan *chan;
383 			unsigned int cmd_crci;
384 			unsigned int data_crci;
385 		};
386 	};
387 
388 	struct list_head desc_list;
389 	struct bam_transaction *bam_txn;
390 
391 	u8		*data_buffer;
392 	int		buf_size;
393 	int		buf_count;
394 	int		buf_start;
395 	unsigned int	max_cwperpage;
396 
397 	__le32 *reg_read_buf;
398 	dma_addr_t reg_read_dma;
399 	int reg_read_pos;
400 
401 	struct nandc_regs *regs;
402 
403 	u32 cmd1, vld;
404 	const struct qcom_nandc_props *props;
405 };
406 
407 /*
408  * NAND chip structure
409  *
410  * @chip:			base NAND chip structure
411  * @node:			list node to add itself to host_list in
412  *				qcom_nand_controller
413  *
414  * @cs:				chip select value for this chip
415  * @cw_size:			the number of bytes in a single step/codeword
416  *				of a page, consisting of all data, ecc, spare
417  *				and reserved bytes
418  * @cw_data:			the number of bytes within a codeword protected
419  *				by ECC
420  * @use_ecc:			request the controller to use ECC for the
421  *				upcoming read/write
422  * @bch_enabled:		flag to tell whether BCH ECC mode is used
423  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
424  *				chip
425  * @status:			value to be returned if NAND_CMD_STATUS command
426  *				is executed
427  * @last_command:		keeps track of last command on this chip. used
428  *				for reading correct status
429  *
430  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
431  *				ecc/non-ecc mode for the current nand flash
432  *				device
433  */
434 struct qcom_nand_host {
435 	struct nand_chip chip;
436 	struct list_head node;
437 
438 	int cs;
439 	int cw_size;
440 	int cw_data;
441 	bool use_ecc;
442 	bool bch_enabled;
443 	int ecc_bytes_hw;
444 	int spare_bytes;
445 	int bbm_size;
446 	u8 status;
447 	int last_command;
448 
449 	u32 cfg0, cfg1;
450 	u32 cfg0_raw, cfg1_raw;
451 	u32 ecc_buf_cfg;
452 	u32 ecc_bch_cfg;
453 	u32 clrflashstatus;
454 	u32 clrreadstatus;
455 };
456 
457 /*
458  * This data type corresponds to the NAND controller properties which varies
459  * among different NAND controllers.
460  * @ecc_modes - ecc mode for NAND
461  * @is_bam - whether NAND controller is using BAM
462  * @is_qpic - whether NAND CTRL is part of qpic IP
463  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
464  */
465 struct qcom_nandc_props {
466 	u32 ecc_modes;
467 	bool is_bam;
468 	bool is_qpic;
469 	u32 dev_cmd_reg_start;
470 };
471 
472 /* Frees the BAM transaction memory */
473 static void free_bam_transaction(struct qcom_nand_controller *nandc)
474 {
475 	struct bam_transaction *bam_txn = nandc->bam_txn;
476 
477 	devm_kfree(nandc->dev, bam_txn);
478 }
479 
480 /* Allocates and Initializes the BAM transaction */
481 static struct bam_transaction *
482 alloc_bam_transaction(struct qcom_nand_controller *nandc)
483 {
484 	struct bam_transaction *bam_txn;
485 	size_t bam_txn_size;
486 	unsigned int num_cw = nandc->max_cwperpage;
487 	void *bam_txn_buf;
488 
489 	bam_txn_size =
490 		sizeof(*bam_txn) + num_cw *
491 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
492 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
493 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
494 
495 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
496 	if (!bam_txn_buf)
497 		return NULL;
498 
499 	bam_txn = bam_txn_buf;
500 	bam_txn_buf += sizeof(*bam_txn);
501 
502 	bam_txn->bam_ce = bam_txn_buf;
503 	bam_txn_buf +=
504 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
505 
506 	bam_txn->cmd_sgl = bam_txn_buf;
507 	bam_txn_buf +=
508 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
509 
510 	bam_txn->data_sgl = bam_txn_buf;
511 
512 	init_completion(&bam_txn->txn_done);
513 
514 	return bam_txn;
515 }
516 
517 /* Clears the BAM transaction indexes */
518 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
519 {
520 	struct bam_transaction *bam_txn = nandc->bam_txn;
521 
522 	if (!nandc->props->is_bam)
523 		return;
524 
525 	bam_txn->bam_ce_pos = 0;
526 	bam_txn->bam_ce_start = 0;
527 	bam_txn->cmd_sgl_pos = 0;
528 	bam_txn->cmd_sgl_start = 0;
529 	bam_txn->tx_sgl_pos = 0;
530 	bam_txn->tx_sgl_start = 0;
531 	bam_txn->rx_sgl_pos = 0;
532 	bam_txn->rx_sgl_start = 0;
533 	bam_txn->last_data_desc = NULL;
534 	bam_txn->wait_second_completion = false;
535 
536 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
537 		      QPIC_PER_CW_CMD_SGL);
538 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
539 		      QPIC_PER_CW_DATA_SGL);
540 
541 	reinit_completion(&bam_txn->txn_done);
542 }
543 
544 /* Callback for DMA descriptor completion */
545 static void qpic_bam_dma_done(void *data)
546 {
547 	struct bam_transaction *bam_txn = data;
548 
549 	/*
550 	 * In case of data transfer with NAND, 2 callbacks will be generated.
551 	 * One for command channel and another one for data channel.
552 	 * If current transaction has data descriptors
553 	 * (i.e. wait_second_completion is true), then set this to false
554 	 * and wait for second DMA descriptor completion.
555 	 */
556 	if (bam_txn->wait_second_completion)
557 		bam_txn->wait_second_completion = false;
558 	else
559 		complete(&bam_txn->txn_done);
560 }
561 
562 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
563 {
564 	return container_of(chip, struct qcom_nand_host, chip);
565 }
566 
567 static inline struct qcom_nand_controller *
568 get_qcom_nand_controller(struct nand_chip *chip)
569 {
570 	return container_of(chip->controller, struct qcom_nand_controller,
571 			    controller);
572 }
573 
574 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
575 {
576 	return ioread32(nandc->base + offset);
577 }
578 
579 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
580 			       u32 val)
581 {
582 	iowrite32(val, nandc->base + offset);
583 }
584 
585 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
586 					  bool is_cpu)
587 {
588 	if (!nandc->props->is_bam)
589 		return;
590 
591 	if (is_cpu)
592 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
593 					MAX_REG_RD *
594 					sizeof(*nandc->reg_read_buf),
595 					DMA_FROM_DEVICE);
596 	else
597 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
598 					   MAX_REG_RD *
599 					   sizeof(*nandc->reg_read_buf),
600 					   DMA_FROM_DEVICE);
601 }
602 
603 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
604 {
605 	switch (offset) {
606 	case NAND_FLASH_CMD:
607 		return &regs->cmd;
608 	case NAND_ADDR0:
609 		return &regs->addr0;
610 	case NAND_ADDR1:
611 		return &regs->addr1;
612 	case NAND_FLASH_CHIP_SELECT:
613 		return &regs->chip_sel;
614 	case NAND_EXEC_CMD:
615 		return &regs->exec;
616 	case NAND_FLASH_STATUS:
617 		return &regs->clrflashstatus;
618 	case NAND_DEV0_CFG0:
619 		return &regs->cfg0;
620 	case NAND_DEV0_CFG1:
621 		return &regs->cfg1;
622 	case NAND_DEV0_ECC_CFG:
623 		return &regs->ecc_bch_cfg;
624 	case NAND_READ_STATUS:
625 		return &regs->clrreadstatus;
626 	case NAND_DEV_CMD1:
627 		return &regs->cmd1;
628 	case NAND_DEV_CMD1_RESTORE:
629 		return &regs->orig_cmd1;
630 	case NAND_DEV_CMD_VLD:
631 		return &regs->vld;
632 	case NAND_DEV_CMD_VLD_RESTORE:
633 		return &regs->orig_vld;
634 	case NAND_EBI2_ECC_BUF_CFG:
635 		return &regs->ecc_buf_cfg;
636 	case NAND_READ_LOCATION_0:
637 		return &regs->read_location0;
638 	case NAND_READ_LOCATION_1:
639 		return &regs->read_location1;
640 	case NAND_READ_LOCATION_2:
641 		return &regs->read_location2;
642 	case NAND_READ_LOCATION_3:
643 		return &regs->read_location3;
644 	default:
645 		return NULL;
646 	}
647 }
648 
649 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
650 			  u32 val)
651 {
652 	struct nandc_regs *regs = nandc->regs;
653 	__le32 *reg;
654 
655 	reg = offset_to_nandc_reg(regs, offset);
656 
657 	if (reg)
658 		*reg = cpu_to_le32(val);
659 }
660 
661 /* helper to configure address register values */
662 static void set_address(struct qcom_nand_host *host, u16 column, int page)
663 {
664 	struct nand_chip *chip = &host->chip;
665 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
666 
667 	if (chip->options & NAND_BUSWIDTH_16)
668 		column >>= 1;
669 
670 	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
671 	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
672 }
673 
674 /*
675  * update_rw_regs:	set up read/write register values, these will be
676  *			written to the NAND controller registers via DMA
677  *
678  * @num_cw:		number of steps for the read/write operation
679  * @read:		read or write operation
680  */
681 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
682 {
683 	struct nand_chip *chip = &host->chip;
684 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
685 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
686 
687 	if (read) {
688 		if (host->use_ecc)
689 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
690 		else
691 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
692 	} else {
693 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
694 	}
695 
696 	if (host->use_ecc) {
697 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
698 				(num_cw - 1) << CW_PER_PAGE;
699 
700 		cfg1 = host->cfg1;
701 		ecc_bch_cfg = host->ecc_bch_cfg;
702 	} else {
703 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
704 				(num_cw - 1) << CW_PER_PAGE;
705 
706 		cfg1 = host->cfg1_raw;
707 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
708 	}
709 
710 	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
711 	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
712 	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
713 	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
714 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
715 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
716 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
717 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
718 
719 	if (read)
720 		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
721 				   host->cw_data : host->cw_size, 1);
722 }
723 
724 /*
725  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
726  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
727  * which will be submitted to DMA engine.
728  */
729 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
730 				  struct dma_chan *chan,
731 				  unsigned long flags)
732 {
733 	struct desc_info *desc;
734 	struct scatterlist *sgl;
735 	unsigned int sgl_cnt;
736 	int ret;
737 	struct bam_transaction *bam_txn = nandc->bam_txn;
738 	enum dma_transfer_direction dir_eng;
739 	struct dma_async_tx_descriptor *dma_desc;
740 
741 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
742 	if (!desc)
743 		return -ENOMEM;
744 
745 	if (chan == nandc->cmd_chan) {
746 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
747 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
748 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
749 		dir_eng = DMA_MEM_TO_DEV;
750 		desc->dir = DMA_TO_DEVICE;
751 	} else if (chan == nandc->tx_chan) {
752 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
753 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
754 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
755 		dir_eng = DMA_MEM_TO_DEV;
756 		desc->dir = DMA_TO_DEVICE;
757 	} else {
758 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
759 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
760 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
761 		dir_eng = DMA_DEV_TO_MEM;
762 		desc->dir = DMA_FROM_DEVICE;
763 	}
764 
765 	sg_mark_end(sgl + sgl_cnt - 1);
766 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
767 	if (ret == 0) {
768 		dev_err(nandc->dev, "failure in mapping desc\n");
769 		kfree(desc);
770 		return -ENOMEM;
771 	}
772 
773 	desc->sgl_cnt = sgl_cnt;
774 	desc->bam_sgl = sgl;
775 
776 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
777 					   flags);
778 
779 	if (!dma_desc) {
780 		dev_err(nandc->dev, "failure in prep desc\n");
781 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
782 		kfree(desc);
783 		return -EINVAL;
784 	}
785 
786 	desc->dma_desc = dma_desc;
787 
788 	/* update last data/command descriptor */
789 	if (chan == nandc->cmd_chan)
790 		bam_txn->last_cmd_desc = dma_desc;
791 	else
792 		bam_txn->last_data_desc = dma_desc;
793 
794 	list_add_tail(&desc->node, &nandc->desc_list);
795 
796 	return 0;
797 }
798 
799 /*
800  * Prepares the command descriptor for BAM DMA which will be used for NAND
801  * register reads and writes. The command descriptor requires the command
802  * to be formed in command element type so this function uses the command
803  * element from bam transaction ce array and fills the same with required
804  * data. A single SGL can contain multiple command elements so
805  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
806  * after the current command element.
807  */
808 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
809 				 int reg_off, const void *vaddr,
810 				 int size, unsigned int flags)
811 {
812 	int bam_ce_size;
813 	int i, ret;
814 	struct bam_cmd_element *bam_ce_buffer;
815 	struct bam_transaction *bam_txn = nandc->bam_txn;
816 
817 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
818 
819 	/* fill the command desc */
820 	for (i = 0; i < size; i++) {
821 		if (read)
822 			bam_prep_ce(&bam_ce_buffer[i],
823 				    nandc_reg_phys(nandc, reg_off + 4 * i),
824 				    BAM_READ_COMMAND,
825 				    reg_buf_dma_addr(nandc,
826 						     (__le32 *)vaddr + i));
827 		else
828 			bam_prep_ce_le32(&bam_ce_buffer[i],
829 					 nandc_reg_phys(nandc, reg_off + 4 * i),
830 					 BAM_WRITE_COMMAND,
831 					 *((__le32 *)vaddr + i));
832 	}
833 
834 	bam_txn->bam_ce_pos += size;
835 
836 	/* use the separate sgl after this command */
837 	if (flags & NAND_BAM_NEXT_SGL) {
838 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
839 		bam_ce_size = (bam_txn->bam_ce_pos -
840 				bam_txn->bam_ce_start) *
841 				sizeof(struct bam_cmd_element);
842 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
843 			   bam_ce_buffer, bam_ce_size);
844 		bam_txn->cmd_sgl_pos++;
845 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
846 
847 		if (flags & NAND_BAM_NWD) {
848 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
849 						     DMA_PREP_FENCE |
850 						     DMA_PREP_CMD);
851 			if (ret)
852 				return ret;
853 		}
854 	}
855 
856 	return 0;
857 }
858 
859 /*
860  * Prepares the data descriptor for BAM DMA which will be used for NAND
861  * data reads and writes.
862  */
863 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
864 				  const void *vaddr,
865 				  int size, unsigned int flags)
866 {
867 	int ret;
868 	struct bam_transaction *bam_txn = nandc->bam_txn;
869 
870 	if (read) {
871 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
872 			   vaddr, size);
873 		bam_txn->rx_sgl_pos++;
874 	} else {
875 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
876 			   vaddr, size);
877 		bam_txn->tx_sgl_pos++;
878 
879 		/*
880 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
881 		 * is not set, form the DMA descriptor
882 		 */
883 		if (!(flags & NAND_BAM_NO_EOT)) {
884 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
885 						     DMA_PREP_INTERRUPT);
886 			if (ret)
887 				return ret;
888 		}
889 	}
890 
891 	return 0;
892 }
893 
894 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
895 			     int reg_off, const void *vaddr, int size,
896 			     bool flow_control)
897 {
898 	struct desc_info *desc;
899 	struct dma_async_tx_descriptor *dma_desc;
900 	struct scatterlist *sgl;
901 	struct dma_slave_config slave_conf;
902 	enum dma_transfer_direction dir_eng;
903 	int ret;
904 
905 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
906 	if (!desc)
907 		return -ENOMEM;
908 
909 	sgl = &desc->adm_sgl;
910 
911 	sg_init_one(sgl, vaddr, size);
912 
913 	if (read) {
914 		dir_eng = DMA_DEV_TO_MEM;
915 		desc->dir = DMA_FROM_DEVICE;
916 	} else {
917 		dir_eng = DMA_MEM_TO_DEV;
918 		desc->dir = DMA_TO_DEVICE;
919 	}
920 
921 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
922 	if (ret == 0) {
923 		ret = -ENOMEM;
924 		goto err;
925 	}
926 
927 	memset(&slave_conf, 0x00, sizeof(slave_conf));
928 
929 	slave_conf.device_fc = flow_control;
930 	if (read) {
931 		slave_conf.src_maxburst = 16;
932 		slave_conf.src_addr = nandc->base_dma + reg_off;
933 		slave_conf.slave_id = nandc->data_crci;
934 	} else {
935 		slave_conf.dst_maxburst = 16;
936 		slave_conf.dst_addr = nandc->base_dma + reg_off;
937 		slave_conf.slave_id = nandc->cmd_crci;
938 	}
939 
940 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
941 	if (ret) {
942 		dev_err(nandc->dev, "failed to configure dma channel\n");
943 		goto err;
944 	}
945 
946 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
947 	if (!dma_desc) {
948 		dev_err(nandc->dev, "failed to prepare desc\n");
949 		ret = -EINVAL;
950 		goto err;
951 	}
952 
953 	desc->dma_desc = dma_desc;
954 
955 	list_add_tail(&desc->node, &nandc->desc_list);
956 
957 	return 0;
958 err:
959 	kfree(desc);
960 
961 	return ret;
962 }
963 
964 /*
965  * read_reg_dma:	prepares a descriptor to read a given number of
966  *			contiguous registers to the reg_read_buf pointer
967  *
968  * @first:		offset of the first register in the contiguous block
969  * @num_regs:		number of registers to read
970  * @flags:		flags to control DMA descriptor preparation
971  */
972 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
973 			int num_regs, unsigned int flags)
974 {
975 	bool flow_control = false;
976 	void *vaddr;
977 
978 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
979 	nandc->reg_read_pos += num_regs;
980 
981 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
982 		first = dev_cmd_reg_addr(nandc, first);
983 
984 	if (nandc->props->is_bam)
985 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
986 					     num_regs, flags);
987 
988 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
989 		flow_control = true;
990 
991 	return prep_adm_dma_desc(nandc, true, first, vaddr,
992 				 num_regs * sizeof(u32), flow_control);
993 }
994 
995 /*
996  * write_reg_dma:	prepares a descriptor to write a given number of
997  *			contiguous registers
998  *
999  * @first:		offset of the first register in the contiguous block
1000  * @num_regs:		number of registers to write
1001  * @flags:		flags to control DMA descriptor preparation
1002  */
1003 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1004 			 int num_regs, unsigned int flags)
1005 {
1006 	bool flow_control = false;
1007 	struct nandc_regs *regs = nandc->regs;
1008 	void *vaddr;
1009 
1010 	vaddr = offset_to_nandc_reg(regs, first);
1011 
1012 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1013 		if (flags & NAND_ERASED_CW_SET)
1014 			vaddr = &regs->erased_cw_detect_cfg_set;
1015 		else
1016 			vaddr = &regs->erased_cw_detect_cfg_clr;
1017 	}
1018 
1019 	if (first == NAND_EXEC_CMD)
1020 		flags |= NAND_BAM_NWD;
1021 
1022 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1023 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1024 
1025 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1026 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1027 
1028 	if (nandc->props->is_bam)
1029 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1030 					     num_regs, flags);
1031 
1032 	if (first == NAND_FLASH_CMD)
1033 		flow_control = true;
1034 
1035 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1036 				 num_regs * sizeof(u32), flow_control);
1037 }
1038 
1039 /*
1040  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1041  *			controller's internal buffer to the buffer 'vaddr'
1042  *
1043  * @reg_off:		offset within the controller's data buffer
1044  * @vaddr:		virtual address of the buffer we want to write to
1045  * @size:		DMA transaction size in bytes
1046  * @flags:		flags to control DMA descriptor preparation
1047  */
1048 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1049 			 const u8 *vaddr, int size, unsigned int flags)
1050 {
1051 	if (nandc->props->is_bam)
1052 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1053 
1054 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1055 }
1056 
1057 /*
1058  * write_data_dma:	prepares a DMA descriptor to transfer data from
1059  *			'vaddr' to the controller's internal buffer
1060  *
1061  * @reg_off:		offset within the controller's data buffer
1062  * @vaddr:		virtual address of the buffer we want to read from
1063  * @size:		DMA transaction size in bytes
1064  * @flags:		flags to control DMA descriptor preparation
1065  */
1066 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1067 			  const u8 *vaddr, int size, unsigned int flags)
1068 {
1069 	if (nandc->props->is_bam)
1070 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1071 
1072 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1073 }
1074 
1075 /*
1076  * Helper to prepare DMA descriptors for configuring registers
1077  * before reading a NAND page.
1078  */
1079 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1080 {
1081 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1082 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1083 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1084 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1085 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1086 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1087 }
1088 
1089 /*
1090  * Helper to prepare DMA descriptors for configuring registers
1091  * before reading each codeword in NAND page.
1092  */
1093 static void
1094 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1095 {
1096 	if (nandc->props->is_bam)
1097 		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1098 			      NAND_BAM_NEXT_SGL);
1099 
1100 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1101 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1102 
1103 	if (use_ecc) {
1104 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1105 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1106 			     NAND_BAM_NEXT_SGL);
1107 	} else {
1108 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1109 	}
1110 }
1111 
1112 /*
1113  * Helper to prepare dma descriptors to configure registers needed for reading a
1114  * single codeword in page
1115  */
1116 static void
1117 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1118 				bool use_ecc)
1119 {
1120 	config_nand_page_read(nandc);
1121 	config_nand_cw_read(nandc, use_ecc);
1122 }
1123 
1124 /*
1125  * Helper to prepare DMA descriptors used to configure registers needed for
1126  * before writing a NAND page.
1127  */
1128 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1129 {
1130 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1131 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1132 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1133 		      NAND_BAM_NEXT_SGL);
1134 }
1135 
1136 /*
1137  * Helper to prepare DMA descriptors for configuring registers
1138  * before writing each codeword in NAND page.
1139  */
1140 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1141 {
1142 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1143 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1144 
1145 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1146 
1147 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1148 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1149 }
1150 
1151 /*
1152  * the following functions are used within chip->legacy.cmdfunc() to
1153  * perform different NAND_CMD_* commands
1154  */
1155 
1156 /* sets up descriptors for NAND_CMD_PARAM */
1157 static int nandc_param(struct qcom_nand_host *host)
1158 {
1159 	struct nand_chip *chip = &host->chip;
1160 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1161 
1162 	/*
1163 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1164 	 * in use. we configure the controller to perform a raw read of 512
1165 	 * bytes to read onfi params
1166 	 */
1167 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1168 	nandc_set_reg(nandc, NAND_ADDR0, 0);
1169 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1170 	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1171 					| 512 << UD_SIZE_BYTES
1172 					| 5 << NUM_ADDR_CYCLES
1173 					| 0 << SPARE_SIZE_BYTES);
1174 	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1175 					| 0 << CS_ACTIVE_BSY
1176 					| 17 << BAD_BLOCK_BYTE_NUM
1177 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1178 					| 2 << WR_RD_BSY_GAP
1179 					| 0 << WIDE_FLASH
1180 					| 1 << DEV0_CFG1_ECC_DISABLE);
1181 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1182 
1183 	/* configure CMD1 and VLD for ONFI param probing */
1184 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1185 		      (nandc->vld & ~READ_START_VLD));
1186 	nandc_set_reg(nandc, NAND_DEV_CMD1,
1187 		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1188 		      | NAND_CMD_PARAM << READ_ADDR);
1189 
1190 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1191 
1192 	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1193 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1194 	nandc_set_read_loc(nandc, 0, 0, 512, 1);
1195 
1196 	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1197 	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1198 
1199 	nandc->buf_count = 512;
1200 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1201 
1202 	config_nand_single_cw_page_read(nandc, false);
1203 
1204 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1205 		      nandc->buf_count, 0);
1206 
1207 	/* restore CMD1 and VLD regs */
1208 	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1209 	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1210 
1211 	return 0;
1212 }
1213 
1214 /* sets up descriptors for NAND_CMD_ERASE1 */
1215 static int erase_block(struct qcom_nand_host *host, int page_addr)
1216 {
1217 	struct nand_chip *chip = &host->chip;
1218 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1219 
1220 	nandc_set_reg(nandc, NAND_FLASH_CMD,
1221 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1222 	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1223 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1224 	nandc_set_reg(nandc, NAND_DEV0_CFG0,
1225 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1226 	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1227 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1228 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1229 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1230 
1231 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1232 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1233 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1234 
1235 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1236 
1237 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1238 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1239 
1240 	return 0;
1241 }
1242 
1243 /* sets up descriptors for NAND_CMD_READID */
1244 static int read_id(struct qcom_nand_host *host, int column)
1245 {
1246 	struct nand_chip *chip = &host->chip;
1247 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1248 
1249 	if (column == -1)
1250 		return 0;
1251 
1252 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1253 	nandc_set_reg(nandc, NAND_ADDR0, column);
1254 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1255 	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1256 		      nandc->props->is_bam ? 0 : DM_EN);
1257 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1258 
1259 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1260 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1261 
1262 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1263 
1264 	return 0;
1265 }
1266 
1267 /* sets up descriptors for NAND_CMD_RESET */
1268 static int reset(struct qcom_nand_host *host)
1269 {
1270 	struct nand_chip *chip = &host->chip;
1271 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1272 
1273 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1274 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1275 
1276 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1277 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1278 
1279 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1280 
1281 	return 0;
1282 }
1283 
1284 /* helpers to submit/free our list of dma descriptors */
1285 static int submit_descs(struct qcom_nand_controller *nandc)
1286 {
1287 	struct desc_info *desc;
1288 	dma_cookie_t cookie = 0;
1289 	struct bam_transaction *bam_txn = nandc->bam_txn;
1290 	int r;
1291 
1292 	if (nandc->props->is_bam) {
1293 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1294 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1295 			if (r)
1296 				return r;
1297 		}
1298 
1299 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1300 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1301 						   DMA_PREP_INTERRUPT);
1302 			if (r)
1303 				return r;
1304 		}
1305 
1306 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1307 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1308 						   DMA_PREP_CMD);
1309 			if (r)
1310 				return r;
1311 		}
1312 	}
1313 
1314 	list_for_each_entry(desc, &nandc->desc_list, node)
1315 		cookie = dmaengine_submit(desc->dma_desc);
1316 
1317 	if (nandc->props->is_bam) {
1318 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1319 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1320 		if (bam_txn->last_data_desc) {
1321 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1322 			bam_txn->last_data_desc->callback_param = bam_txn;
1323 			bam_txn->wait_second_completion = true;
1324 		}
1325 
1326 		dma_async_issue_pending(nandc->tx_chan);
1327 		dma_async_issue_pending(nandc->rx_chan);
1328 		dma_async_issue_pending(nandc->cmd_chan);
1329 
1330 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1331 						 QPIC_NAND_COMPLETION_TIMEOUT))
1332 			return -ETIMEDOUT;
1333 	} else {
1334 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1335 			return -ETIMEDOUT;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static void free_descs(struct qcom_nand_controller *nandc)
1342 {
1343 	struct desc_info *desc, *n;
1344 
1345 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1346 		list_del(&desc->node);
1347 
1348 		if (nandc->props->is_bam)
1349 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1350 				     desc->sgl_cnt, desc->dir);
1351 		else
1352 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1353 				     desc->dir);
1354 
1355 		kfree(desc);
1356 	}
1357 }
1358 
1359 /* reset the register read buffer for next NAND operation */
1360 static void clear_read_regs(struct qcom_nand_controller *nandc)
1361 {
1362 	nandc->reg_read_pos = 0;
1363 	nandc_read_buffer_sync(nandc, false);
1364 }
1365 
1366 static void pre_command(struct qcom_nand_host *host, int command)
1367 {
1368 	struct nand_chip *chip = &host->chip;
1369 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1370 
1371 	nandc->buf_count = 0;
1372 	nandc->buf_start = 0;
1373 	host->use_ecc = false;
1374 	host->last_command = command;
1375 
1376 	clear_read_regs(nandc);
1377 
1378 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1379 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1380 		clear_bam_transaction(nandc);
1381 }
1382 
1383 /*
1384  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1385  * privately maintained status byte, this status byte can be read after
1386  * NAND_CMD_STATUS is called
1387  */
1388 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1389 {
1390 	struct nand_chip *chip = &host->chip;
1391 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1392 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1393 	int num_cw;
1394 	int i;
1395 
1396 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1397 	nandc_read_buffer_sync(nandc, true);
1398 
1399 	for (i = 0; i < num_cw; i++) {
1400 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1401 
1402 		if (flash_status & FS_MPU_ERR)
1403 			host->status &= ~NAND_STATUS_WP;
1404 
1405 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1406 						 (flash_status &
1407 						  FS_DEVICE_STS_ERR)))
1408 			host->status |= NAND_STATUS_FAIL;
1409 	}
1410 }
1411 
1412 static void post_command(struct qcom_nand_host *host, int command)
1413 {
1414 	struct nand_chip *chip = &host->chip;
1415 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1416 
1417 	switch (command) {
1418 	case NAND_CMD_READID:
1419 		nandc_read_buffer_sync(nandc, true);
1420 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1421 		       nandc->buf_count);
1422 		break;
1423 	case NAND_CMD_PAGEPROG:
1424 	case NAND_CMD_ERASE1:
1425 		parse_erase_write_errors(host, command);
1426 		break;
1427 	default:
1428 		break;
1429 	}
1430 }
1431 
1432 /*
1433  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1434  * commands. The rest of the commands wouldn't be called by upper layers.
1435  * For example, NAND_CMD_READOOB would never be called because we have our own
1436  * versions of read_oob ops for nand_ecc_ctrl.
1437  */
1438 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1439 			       int column, int page_addr)
1440 {
1441 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1442 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1443 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1444 	bool wait = false;
1445 	int ret = 0;
1446 
1447 	pre_command(host, command);
1448 
1449 	switch (command) {
1450 	case NAND_CMD_RESET:
1451 		ret = reset(host);
1452 		wait = true;
1453 		break;
1454 
1455 	case NAND_CMD_READID:
1456 		nandc->buf_count = 4;
1457 		ret = read_id(host, column);
1458 		wait = true;
1459 		break;
1460 
1461 	case NAND_CMD_PARAM:
1462 		ret = nandc_param(host);
1463 		wait = true;
1464 		break;
1465 
1466 	case NAND_CMD_ERASE1:
1467 		ret = erase_block(host, page_addr);
1468 		wait = true;
1469 		break;
1470 
1471 	case NAND_CMD_READ0:
1472 		/* we read the entire page for now */
1473 		WARN_ON(column != 0);
1474 
1475 		host->use_ecc = true;
1476 		set_address(host, 0, page_addr);
1477 		update_rw_regs(host, ecc->steps, true);
1478 		break;
1479 
1480 	case NAND_CMD_SEQIN:
1481 		WARN_ON(column != 0);
1482 		set_address(host, 0, page_addr);
1483 		break;
1484 
1485 	case NAND_CMD_PAGEPROG:
1486 	case NAND_CMD_STATUS:
1487 	case NAND_CMD_NONE:
1488 	default:
1489 		break;
1490 	}
1491 
1492 	if (ret) {
1493 		dev_err(nandc->dev, "failure executing command %d\n",
1494 			command);
1495 		free_descs(nandc);
1496 		return;
1497 	}
1498 
1499 	if (wait) {
1500 		ret = submit_descs(nandc);
1501 		if (ret)
1502 			dev_err(nandc->dev,
1503 				"failure submitting descs for command %d\n",
1504 				command);
1505 	}
1506 
1507 	free_descs(nandc);
1508 
1509 	post_command(host, command);
1510 }
1511 
1512 /*
1513  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1514  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1515  *
1516  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1517  * but it notifies that it is an erased CW by placing special characters at
1518  * certain offsets in the buffer.
1519  *
1520  * verify if the page is erased or not, and fix up the page for RS ECC by
1521  * replacing the special characters with 0xff.
1522  */
1523 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1524 {
1525 	u8 empty1, empty2;
1526 
1527 	/*
1528 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1529 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1530 	 * beginning of each codeword
1531 	 */
1532 
1533 	empty1 = data_buf[3];
1534 	empty2 = data_buf[175];
1535 
1536 	/*
1537 	 * if the erased codework markers, if they exist override them with
1538 	 * 0xffs
1539 	 */
1540 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1541 	    (empty1 == 0xff && empty2 == 0x54)) {
1542 		data_buf[3] = 0xff;
1543 		data_buf[175] = 0xff;
1544 	}
1545 
1546 	/*
1547 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1548 	 * restore the original values at the special offsets
1549 	 */
1550 	if (memchr_inv(data_buf, 0xff, data_len)) {
1551 		data_buf[3] = empty1;
1552 		data_buf[175] = empty2;
1553 
1554 		return false;
1555 	}
1556 
1557 	return true;
1558 }
1559 
1560 struct read_stats {
1561 	__le32 flash;
1562 	__le32 buffer;
1563 	__le32 erased_cw;
1564 };
1565 
1566 /* reads back FLASH_STATUS register set by the controller */
1567 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1568 {
1569 	struct nand_chip *chip = &host->chip;
1570 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1571 	int i;
1572 
1573 	for (i = 0; i < cw_cnt; i++) {
1574 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1575 
1576 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1577 			return -EIO;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 /* performs raw read for one codeword */
1584 static int
1585 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1586 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1587 {
1588 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1589 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1590 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1591 	int data_size1, data_size2, oob_size1, oob_size2;
1592 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1593 
1594 	nand_read_page_op(chip, page, 0, NULL, 0);
1595 	host->use_ecc = false;
1596 
1597 	clear_bam_transaction(nandc);
1598 	set_address(host, host->cw_size * cw, page);
1599 	update_rw_regs(host, 1, true);
1600 	config_nand_page_read(nandc);
1601 
1602 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1603 	oob_size1 = host->bbm_size;
1604 
1605 	if (cw == (ecc->steps - 1)) {
1606 		data_size2 = ecc->size - data_size1 -
1607 			     ((ecc->steps - 1) * 4);
1608 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1609 			    host->spare_bytes;
1610 	} else {
1611 		data_size2 = host->cw_data - data_size1;
1612 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1613 	}
1614 
1615 	if (nandc->props->is_bam) {
1616 		nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1617 		read_loc += data_size1;
1618 
1619 		nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1620 		read_loc += oob_size1;
1621 
1622 		nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1623 		read_loc += data_size2;
1624 
1625 		nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1626 	}
1627 
1628 	config_nand_cw_read(nandc, false);
1629 
1630 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1631 	reg_off += data_size1;
1632 
1633 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1634 	reg_off += oob_size1;
1635 
1636 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1637 	reg_off += data_size2;
1638 
1639 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1640 
1641 	ret = submit_descs(nandc);
1642 	free_descs(nandc);
1643 	if (ret) {
1644 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1645 		return ret;
1646 	}
1647 
1648 	return check_flash_errors(host, 1);
1649 }
1650 
1651 /*
1652  * Bitflips can happen in erased codewords also so this function counts the
1653  * number of 0 in each CW for which ECC engine returns the uncorrectable
1654  * error. The page will be assumed as erased if this count is less than or
1655  * equal to the ecc->strength for each CW.
1656  *
1657  * 1. Both DATA and OOB need to be checked for number of 0. The
1658  *    top-level API can be called with only data buf or OOB buf so use
1659  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1660  *    is null for copying the raw bytes.
1661  * 2. Perform raw read for all the CW which has uncorrectable errors.
1662  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1663  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1664  *    the number of bitflips in this area.
1665  */
1666 static int
1667 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1668 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1669 		      int page, unsigned int max_bitflips)
1670 {
1671 	struct nand_chip *chip = &host->chip;
1672 	struct mtd_info *mtd = nand_to_mtd(chip);
1673 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1674 	u8 *cw_data_buf, *cw_oob_buf;
1675 	int cw, data_size, oob_size, ret = 0;
1676 
1677 	if (!data_buf)
1678 		data_buf = nand_get_data_buf(chip);
1679 
1680 	if (!oob_buf) {
1681 		nand_get_data_buf(chip);
1682 		oob_buf = chip->oob_poi;
1683 	}
1684 
1685 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1686 		if (cw == (ecc->steps - 1)) {
1687 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1688 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1689 		} else {
1690 			data_size = host->cw_data;
1691 			oob_size = host->ecc_bytes_hw;
1692 		}
1693 
1694 		/* determine starting buffer address for current CW */
1695 		cw_data_buf = data_buf + (cw * host->cw_data);
1696 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1697 
1698 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1699 					     cw_oob_buf, page, cw);
1700 		if (ret)
1701 			return ret;
1702 
1703 		/*
1704 		 * make sure it isn't an erased page reported
1705 		 * as not-erased by HW because of a few bitflips
1706 		 */
1707 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1708 						  cw_oob_buf + host->bbm_size,
1709 						  oob_size, NULL,
1710 						  0, ecc->strength);
1711 		if (ret < 0) {
1712 			mtd->ecc_stats.failed++;
1713 		} else {
1714 			mtd->ecc_stats.corrected += ret;
1715 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1716 		}
1717 	}
1718 
1719 	return max_bitflips;
1720 }
1721 
1722 /*
1723  * reads back status registers set by the controller to notify page read
1724  * errors. this is equivalent to what 'ecc->correct()' would do.
1725  */
1726 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1727 			     u8 *oob_buf, int page)
1728 {
1729 	struct nand_chip *chip = &host->chip;
1730 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1731 	struct mtd_info *mtd = nand_to_mtd(chip);
1732 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1733 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1734 	struct read_stats *buf;
1735 	bool flash_op_err = false, erased;
1736 	int i;
1737 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1738 
1739 	buf = (struct read_stats *)nandc->reg_read_buf;
1740 	nandc_read_buffer_sync(nandc, true);
1741 
1742 	for (i = 0; i < ecc->steps; i++, buf++) {
1743 		u32 flash, buffer, erased_cw;
1744 		int data_len, oob_len;
1745 
1746 		if (i == (ecc->steps - 1)) {
1747 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1748 			oob_len = ecc->steps << 2;
1749 		} else {
1750 			data_len = host->cw_data;
1751 			oob_len = 0;
1752 		}
1753 
1754 		flash = le32_to_cpu(buf->flash);
1755 		buffer = le32_to_cpu(buf->buffer);
1756 		erased_cw = le32_to_cpu(buf->erased_cw);
1757 
1758 		/*
1759 		 * Check ECC failure for each codeword. ECC failure can
1760 		 * happen in either of the following conditions
1761 		 * 1. If number of bitflips are greater than ECC engine
1762 		 *    capability.
1763 		 * 2. If this codeword contains all 0xff for which erased
1764 		 *    codeword detection check will be done.
1765 		 */
1766 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1767 			/*
1768 			 * For BCH ECC, ignore erased codeword errors, if
1769 			 * ERASED_CW bits are set.
1770 			 */
1771 			if (host->bch_enabled) {
1772 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1773 					 true : false;
1774 			/*
1775 			 * For RS ECC, HW reports the erased CW by placing
1776 			 * special characters at certain offsets in the buffer.
1777 			 * These special characters will be valid only if
1778 			 * complete page is read i.e. data_buf is not NULL.
1779 			 */
1780 			} else if (data_buf) {
1781 				erased = erased_chunk_check_and_fixup(data_buf,
1782 								      data_len);
1783 			} else {
1784 				erased = false;
1785 			}
1786 
1787 			if (!erased)
1788 				uncorrectable_cws |= BIT(i);
1789 		/*
1790 		 * Check if MPU or any other operational error (timeout,
1791 		 * device failure, etc.) happened for this codeword and
1792 		 * make flash_op_err true. If flash_op_err is set, then
1793 		 * EIO will be returned for page read.
1794 		 */
1795 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1796 			flash_op_err = true;
1797 		/*
1798 		 * No ECC or operational errors happened. Check the number of
1799 		 * bits corrected and update the ecc_stats.corrected.
1800 		 */
1801 		} else {
1802 			unsigned int stat;
1803 
1804 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1805 			mtd->ecc_stats.corrected += stat;
1806 			max_bitflips = max(max_bitflips, stat);
1807 		}
1808 
1809 		if (data_buf)
1810 			data_buf += data_len;
1811 		if (oob_buf)
1812 			oob_buf += oob_len + ecc->bytes;
1813 	}
1814 
1815 	if (flash_op_err)
1816 		return -EIO;
1817 
1818 	if (!uncorrectable_cws)
1819 		return max_bitflips;
1820 
1821 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1822 				     uncorrectable_cws, page,
1823 				     max_bitflips);
1824 }
1825 
1826 /*
1827  * helper to perform the actual page read operation, used by ecc->read_page(),
1828  * ecc->read_oob()
1829  */
1830 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1831 			 u8 *oob_buf, int page)
1832 {
1833 	struct nand_chip *chip = &host->chip;
1834 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1835 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1836 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1837 	int i, ret;
1838 
1839 	config_nand_page_read(nandc);
1840 
1841 	/* queue cmd descs for each codeword */
1842 	for (i = 0; i < ecc->steps; i++) {
1843 		int data_size, oob_size;
1844 
1845 		if (i == (ecc->steps - 1)) {
1846 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1847 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1848 				   host->spare_bytes;
1849 		} else {
1850 			data_size = host->cw_data;
1851 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1852 		}
1853 
1854 		if (nandc->props->is_bam) {
1855 			if (data_buf && oob_buf) {
1856 				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1857 				nandc_set_read_loc(nandc, 1, data_size,
1858 						   oob_size, 1);
1859 			} else if (data_buf) {
1860 				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1861 			} else {
1862 				nandc_set_read_loc(nandc, 0, data_size,
1863 						   oob_size, 1);
1864 			}
1865 		}
1866 
1867 		config_nand_cw_read(nandc, true);
1868 
1869 		if (data_buf)
1870 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1871 				      data_size, 0);
1872 
1873 		/*
1874 		 * when ecc is enabled, the controller doesn't read the real
1875 		 * or dummy bad block markers in each chunk. To maintain a
1876 		 * consistent layout across RAW and ECC reads, we just
1877 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1878 		 * 0xffs)
1879 		 */
1880 		if (oob_buf) {
1881 			int j;
1882 
1883 			for (j = 0; j < host->bbm_size; j++)
1884 				*oob_buf++ = 0xff;
1885 
1886 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1887 				      oob_buf, oob_size, 0);
1888 		}
1889 
1890 		if (data_buf)
1891 			data_buf += data_size;
1892 		if (oob_buf)
1893 			oob_buf += oob_size;
1894 	}
1895 
1896 	ret = submit_descs(nandc);
1897 	free_descs(nandc);
1898 
1899 	if (ret) {
1900 		dev_err(nandc->dev, "failure to read page/oob\n");
1901 		return ret;
1902 	}
1903 
1904 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1905 }
1906 
1907 /*
1908  * a helper that copies the last step/codeword of a page (containing free oob)
1909  * into our local buffer
1910  */
1911 static int copy_last_cw(struct qcom_nand_host *host, int page)
1912 {
1913 	struct nand_chip *chip = &host->chip;
1914 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1915 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1916 	int size;
1917 	int ret;
1918 
1919 	clear_read_regs(nandc);
1920 
1921 	size = host->use_ecc ? host->cw_data : host->cw_size;
1922 
1923 	/* prepare a clean read buffer */
1924 	memset(nandc->data_buffer, 0xff, size);
1925 
1926 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1927 	update_rw_regs(host, 1, true);
1928 
1929 	config_nand_single_cw_page_read(nandc, host->use_ecc);
1930 
1931 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1932 
1933 	ret = submit_descs(nandc);
1934 	if (ret)
1935 		dev_err(nandc->dev, "failed to copy last codeword\n");
1936 
1937 	free_descs(nandc);
1938 
1939 	return ret;
1940 }
1941 
1942 /* implements ecc->read_page() */
1943 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1944 				int oob_required, int page)
1945 {
1946 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1947 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1948 	u8 *data_buf, *oob_buf = NULL;
1949 
1950 	nand_read_page_op(chip, page, 0, NULL, 0);
1951 	data_buf = buf;
1952 	oob_buf = oob_required ? chip->oob_poi : NULL;
1953 
1954 	clear_bam_transaction(nandc);
1955 
1956 	return read_page_ecc(host, data_buf, oob_buf, page);
1957 }
1958 
1959 /* implements ecc->read_page_raw() */
1960 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1961 				    int oob_required, int page)
1962 {
1963 	struct mtd_info *mtd = nand_to_mtd(chip);
1964 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1965 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1966 	int cw, ret;
1967 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1968 
1969 	for (cw = 0; cw < ecc->steps; cw++) {
1970 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1971 					     page, cw);
1972 		if (ret)
1973 			return ret;
1974 
1975 		data_buf += host->cw_data;
1976 		oob_buf += ecc->bytes;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 /* implements ecc->read_oob() */
1983 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1984 {
1985 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1986 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1987 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1988 
1989 	clear_read_regs(nandc);
1990 	clear_bam_transaction(nandc);
1991 
1992 	host->use_ecc = true;
1993 	set_address(host, 0, page);
1994 	update_rw_regs(host, ecc->steps, true);
1995 
1996 	return read_page_ecc(host, NULL, chip->oob_poi, page);
1997 }
1998 
1999 /* implements ecc->write_page() */
2000 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2001 				 int oob_required, int page)
2002 {
2003 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2004 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2005 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2006 	u8 *data_buf, *oob_buf;
2007 	int i, ret;
2008 
2009 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2010 
2011 	clear_read_regs(nandc);
2012 	clear_bam_transaction(nandc);
2013 
2014 	data_buf = (u8 *)buf;
2015 	oob_buf = chip->oob_poi;
2016 
2017 	host->use_ecc = true;
2018 	update_rw_regs(host, ecc->steps, false);
2019 	config_nand_page_write(nandc);
2020 
2021 	for (i = 0; i < ecc->steps; i++) {
2022 		int data_size, oob_size;
2023 
2024 		if (i == (ecc->steps - 1)) {
2025 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2026 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2027 				   host->spare_bytes;
2028 		} else {
2029 			data_size = host->cw_data;
2030 			oob_size = ecc->bytes;
2031 		}
2032 
2033 
2034 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2035 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2036 
2037 		/*
2038 		 * when ECC is enabled, we don't really need to write anything
2039 		 * to oob for the first n - 1 codewords since these oob regions
2040 		 * just contain ECC bytes that's written by the controller
2041 		 * itself. For the last codeword, we skip the bbm positions and
2042 		 * write to the free oob area.
2043 		 */
2044 		if (i == (ecc->steps - 1)) {
2045 			oob_buf += host->bbm_size;
2046 
2047 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2048 				       oob_buf, oob_size, 0);
2049 		}
2050 
2051 		config_nand_cw_write(nandc);
2052 
2053 		data_buf += data_size;
2054 		oob_buf += oob_size;
2055 	}
2056 
2057 	ret = submit_descs(nandc);
2058 	if (ret)
2059 		dev_err(nandc->dev, "failure to write page\n");
2060 
2061 	free_descs(nandc);
2062 
2063 	if (!ret)
2064 		ret = nand_prog_page_end_op(chip);
2065 
2066 	return ret;
2067 }
2068 
2069 /* implements ecc->write_page_raw() */
2070 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2071 				     const uint8_t *buf, int oob_required,
2072 				     int page)
2073 {
2074 	struct mtd_info *mtd = nand_to_mtd(chip);
2075 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2076 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2077 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2078 	u8 *data_buf, *oob_buf;
2079 	int i, ret;
2080 
2081 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2082 	clear_read_regs(nandc);
2083 	clear_bam_transaction(nandc);
2084 
2085 	data_buf = (u8 *)buf;
2086 	oob_buf = chip->oob_poi;
2087 
2088 	host->use_ecc = false;
2089 	update_rw_regs(host, ecc->steps, false);
2090 	config_nand_page_write(nandc);
2091 
2092 	for (i = 0; i < ecc->steps; i++) {
2093 		int data_size1, data_size2, oob_size1, oob_size2;
2094 		int reg_off = FLASH_BUF_ACC;
2095 
2096 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2097 		oob_size1 = host->bbm_size;
2098 
2099 		if (i == (ecc->steps - 1)) {
2100 			data_size2 = ecc->size - data_size1 -
2101 				     ((ecc->steps - 1) << 2);
2102 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2103 				    host->spare_bytes;
2104 		} else {
2105 			data_size2 = host->cw_data - data_size1;
2106 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2107 		}
2108 
2109 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2110 			       NAND_BAM_NO_EOT);
2111 		reg_off += data_size1;
2112 		data_buf += data_size1;
2113 
2114 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2115 			       NAND_BAM_NO_EOT);
2116 		reg_off += oob_size1;
2117 		oob_buf += oob_size1;
2118 
2119 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2120 			       NAND_BAM_NO_EOT);
2121 		reg_off += data_size2;
2122 		data_buf += data_size2;
2123 
2124 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2125 		oob_buf += oob_size2;
2126 
2127 		config_nand_cw_write(nandc);
2128 	}
2129 
2130 	ret = submit_descs(nandc);
2131 	if (ret)
2132 		dev_err(nandc->dev, "failure to write raw page\n");
2133 
2134 	free_descs(nandc);
2135 
2136 	if (!ret)
2137 		ret = nand_prog_page_end_op(chip);
2138 
2139 	return ret;
2140 }
2141 
2142 /*
2143  * implements ecc->write_oob()
2144  *
2145  * the NAND controller cannot write only data or only OOB within a codeword
2146  * since ECC is calculated for the combined codeword. So update the OOB from
2147  * chip->oob_poi, and pad the data area with OxFF before writing.
2148  */
2149 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2150 {
2151 	struct mtd_info *mtd = nand_to_mtd(chip);
2152 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2153 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2154 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2155 	u8 *oob = chip->oob_poi;
2156 	int data_size, oob_size;
2157 	int ret;
2158 
2159 	host->use_ecc = true;
2160 	clear_bam_transaction(nandc);
2161 
2162 	/* calculate the data and oob size for the last codeword/step */
2163 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2164 	oob_size = mtd->oobavail;
2165 
2166 	memset(nandc->data_buffer, 0xff, host->cw_data);
2167 	/* override new oob content to last codeword */
2168 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2169 				    0, mtd->oobavail);
2170 
2171 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2172 	update_rw_regs(host, 1, false);
2173 
2174 	config_nand_page_write(nandc);
2175 	write_data_dma(nandc, FLASH_BUF_ACC,
2176 		       nandc->data_buffer, data_size + oob_size, 0);
2177 	config_nand_cw_write(nandc);
2178 
2179 	ret = submit_descs(nandc);
2180 
2181 	free_descs(nandc);
2182 
2183 	if (ret) {
2184 		dev_err(nandc->dev, "failure to write oob\n");
2185 		return -EIO;
2186 	}
2187 
2188 	return nand_prog_page_end_op(chip);
2189 }
2190 
2191 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2192 {
2193 	struct mtd_info *mtd = nand_to_mtd(chip);
2194 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2195 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2196 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2197 	int page, ret, bbpos, bad = 0;
2198 
2199 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2200 
2201 	/*
2202 	 * configure registers for a raw sub page read, the address is set to
2203 	 * the beginning of the last codeword, we don't care about reading ecc
2204 	 * portion of oob. we just want the first few bytes from this codeword
2205 	 * that contains the BBM
2206 	 */
2207 	host->use_ecc = false;
2208 
2209 	clear_bam_transaction(nandc);
2210 	ret = copy_last_cw(host, page);
2211 	if (ret)
2212 		goto err;
2213 
2214 	if (check_flash_errors(host, 1)) {
2215 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2216 		goto err;
2217 	}
2218 
2219 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2220 
2221 	bad = nandc->data_buffer[bbpos] != 0xff;
2222 
2223 	if (chip->options & NAND_BUSWIDTH_16)
2224 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2225 err:
2226 	return bad;
2227 }
2228 
2229 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2230 {
2231 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2232 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2233 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2234 	int page, ret;
2235 
2236 	clear_read_regs(nandc);
2237 	clear_bam_transaction(nandc);
2238 
2239 	/*
2240 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2241 	 * we don't care about the rest of the content in the codeword since
2242 	 * we aren't going to use this block again
2243 	 */
2244 	memset(nandc->data_buffer, 0x00, host->cw_size);
2245 
2246 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2247 
2248 	/* prepare write */
2249 	host->use_ecc = false;
2250 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2251 	update_rw_regs(host, 1, false);
2252 
2253 	config_nand_page_write(nandc);
2254 	write_data_dma(nandc, FLASH_BUF_ACC,
2255 		       nandc->data_buffer, host->cw_size, 0);
2256 	config_nand_cw_write(nandc);
2257 
2258 	ret = submit_descs(nandc);
2259 
2260 	free_descs(nandc);
2261 
2262 	if (ret) {
2263 		dev_err(nandc->dev, "failure to update BBM\n");
2264 		return -EIO;
2265 	}
2266 
2267 	return nand_prog_page_end_op(chip);
2268 }
2269 
2270 /*
2271  * the three functions below implement chip->legacy.read_byte(),
2272  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2273  * aren't used for reading/writing page data, they are used for smaller data
2274  * like reading	id, status etc
2275  */
2276 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2277 {
2278 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2279 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2280 	u8 *buf = nandc->data_buffer;
2281 	u8 ret = 0x0;
2282 
2283 	if (host->last_command == NAND_CMD_STATUS) {
2284 		ret = host->status;
2285 
2286 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2287 
2288 		return ret;
2289 	}
2290 
2291 	if (nandc->buf_start < nandc->buf_count)
2292 		ret = buf[nandc->buf_start++];
2293 
2294 	return ret;
2295 }
2296 
2297 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2298 {
2299 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2300 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2301 
2302 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2303 	nandc->buf_start += real_len;
2304 }
2305 
2306 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2307 				 int len)
2308 {
2309 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2310 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2311 
2312 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2313 
2314 	nandc->buf_start += real_len;
2315 }
2316 
2317 /* we support only one external chip for now */
2318 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2319 {
2320 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2321 
2322 	if (chipnr <= 0)
2323 		return;
2324 
2325 	dev_warn(nandc->dev, "invalid chip select\n");
2326 }
2327 
2328 /*
2329  * NAND controller page layout info
2330  *
2331  * Layout with ECC enabled:
2332  *
2333  * |----------------------|  |---------------------------------|
2334  * |           xx.......yy|  |             *********xx.......yy|
2335  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2336  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2337  * |           xx.......yy|  |             *********xx.......yy|
2338  * |----------------------|  |---------------------------------|
2339  *     codeword 1,2..n-1                  codeword n
2340  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2341  *
2342  * n = Number of codewords in the page
2343  * . = ECC bytes
2344  * * = Spare/free bytes
2345  * x = Unused byte(s)
2346  * y = Reserved byte(s)
2347  *
2348  * 2K page: n = 4, spare = 16 bytes
2349  * 4K page: n = 8, spare = 32 bytes
2350  * 8K page: n = 16, spare = 64 bytes
2351  *
2352  * the qcom nand controller operates at a sub page/codeword level. each
2353  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2354  * the number of ECC bytes vary based on the ECC strength and the bus width.
2355  *
2356  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2357  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2358  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2359  *
2360  * When we access a page with ECC enabled, the reserved bytes(s) are not
2361  * accessible at all. When reading, we fill up these unreadable positions
2362  * with 0xffs. When writing, the controller skips writing the inaccessible
2363  * bytes.
2364  *
2365  * Layout with ECC disabled:
2366  *
2367  * |------------------------------|  |---------------------------------------|
2368  * |         yy          xx.......|  |         bb          *********xx.......|
2369  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2370  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2371  * |         yy          xx.......|  |         bb          *********xx.......|
2372  * |------------------------------|  |---------------------------------------|
2373  *         codeword 1,2..n-1                        codeword n
2374  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2375  *
2376  * n = Number of codewords in the page
2377  * . = ECC bytes
2378  * * = Spare/free bytes
2379  * x = Unused byte(s)
2380  * y = Dummy Bad Bock byte(s)
2381  * b = Real Bad Block byte(s)
2382  * size1/size2 = function of codeword size and 'n'
2383  *
2384  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2385  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2386  * Block Markers. In the last codeword, this position contains the real BBM
2387  *
2388  * In order to have a consistent layout between RAW and ECC modes, we assume
2389  * the following OOB layout arrangement:
2390  *
2391  * |-----------|  |--------------------|
2392  * |yyxx.......|  |bb*********xx.......|
2393  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2394  * |yyxx.......|  |bb*********xx.......|
2395  * |yyxx.......|  |bb*********xx.......|
2396  * |-----------|  |--------------------|
2397  *  first n - 1       nth OOB region
2398  *  OOB regions
2399  *
2400  * n = Number of codewords in the page
2401  * . = ECC bytes
2402  * * = FREE OOB bytes
2403  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2404  * x = Unused byte(s)
2405  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2406  *
2407  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2408  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2409  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2410  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2411  * the sum of the three).
2412  */
2413 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2414 				   struct mtd_oob_region *oobregion)
2415 {
2416 	struct nand_chip *chip = mtd_to_nand(mtd);
2417 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2418 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2419 
2420 	if (section > 1)
2421 		return -ERANGE;
2422 
2423 	if (!section) {
2424 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2425 				    host->bbm_size;
2426 		oobregion->offset = 0;
2427 	} else {
2428 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2429 		oobregion->offset = mtd->oobsize - oobregion->length;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2436 				     struct mtd_oob_region *oobregion)
2437 {
2438 	struct nand_chip *chip = mtd_to_nand(mtd);
2439 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2440 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2441 
2442 	if (section)
2443 		return -ERANGE;
2444 
2445 	oobregion->length = ecc->steps * 4;
2446 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2447 
2448 	return 0;
2449 }
2450 
2451 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2452 	.ecc = qcom_nand_ooblayout_ecc,
2453 	.free = qcom_nand_ooblayout_free,
2454 };
2455 
2456 static int
2457 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2458 {
2459 	return strength == 4 ? 12 : 16;
2460 }
2461 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2462 		     NANDC_STEP_SIZE, 4, 8);
2463 
2464 static int qcom_nand_attach_chip(struct nand_chip *chip)
2465 {
2466 	struct mtd_info *mtd = nand_to_mtd(chip);
2467 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2468 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2469 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2470 	int cwperpage, bad_block_byte, ret;
2471 	bool wide_bus;
2472 	int ecc_mode = 1;
2473 
2474 	/* controller only supports 512 bytes data steps */
2475 	ecc->size = NANDC_STEP_SIZE;
2476 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2477 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2478 
2479 	/*
2480 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2481 	 * so remaining bytes can be used for ECC.
2482 	 */
2483 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2484 				   mtd->oobsize - (cwperpage * 4));
2485 	if (ret) {
2486 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2487 		return ret;
2488 	}
2489 
2490 	if (ecc->strength >= 8) {
2491 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2492 		host->bch_enabled = true;
2493 		ecc_mode = 1;
2494 
2495 		if (wide_bus) {
2496 			host->ecc_bytes_hw = 14;
2497 			host->spare_bytes = 0;
2498 			host->bbm_size = 2;
2499 		} else {
2500 			host->ecc_bytes_hw = 13;
2501 			host->spare_bytes = 2;
2502 			host->bbm_size = 1;
2503 		}
2504 	} else {
2505 		/*
2506 		 * if the controller supports BCH for 4 bit ECC, the controller
2507 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2508 		 * always 10 bytes
2509 		 */
2510 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2511 			/* BCH */
2512 			host->bch_enabled = true;
2513 			ecc_mode = 0;
2514 
2515 			if (wide_bus) {
2516 				host->ecc_bytes_hw = 8;
2517 				host->spare_bytes = 2;
2518 				host->bbm_size = 2;
2519 			} else {
2520 				host->ecc_bytes_hw = 7;
2521 				host->spare_bytes = 4;
2522 				host->bbm_size = 1;
2523 			}
2524 		} else {
2525 			/* RS */
2526 			host->ecc_bytes_hw = 10;
2527 
2528 			if (wide_bus) {
2529 				host->spare_bytes = 0;
2530 				host->bbm_size = 2;
2531 			} else {
2532 				host->spare_bytes = 1;
2533 				host->bbm_size = 1;
2534 			}
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * we consider ecc->bytes as the sum of all the non-data content in a
2540 	 * step. It gives us a clean representation of the oob area (even if
2541 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2542 	 * ECC and 12 bytes for 4 bit ECC
2543 	 */
2544 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2545 
2546 	ecc->read_page		= qcom_nandc_read_page;
2547 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2548 	ecc->read_oob		= qcom_nandc_read_oob;
2549 	ecc->write_page		= qcom_nandc_write_page;
2550 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2551 	ecc->write_oob		= qcom_nandc_write_oob;
2552 
2553 	ecc->mode = NAND_ECC_HW;
2554 
2555 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2556 
2557 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2558 				     cwperpage);
2559 
2560 	/*
2561 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2562 	 * spare data with ECC too. We protect spare data by default, so we set
2563 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2564 	 */
2565 	host->cw_data = 516;
2566 
2567 	/*
2568 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2569 	 * for 8 bit ECC
2570 	 */
2571 	host->cw_size = host->cw_data + ecc->bytes;
2572 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2573 
2574 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2575 				| host->cw_data << UD_SIZE_BYTES
2576 				| 0 << DISABLE_STATUS_AFTER_WRITE
2577 				| 5 << NUM_ADDR_CYCLES
2578 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2579 				| 0 << STATUS_BFR_READ
2580 				| 1 << SET_RD_MODE_AFTER_STATUS
2581 				| host->spare_bytes << SPARE_SIZE_BYTES;
2582 
2583 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2584 				| 0 <<  CS_ACTIVE_BSY
2585 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2586 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2587 				| 2 << WR_RD_BSY_GAP
2588 				| wide_bus << WIDE_FLASH
2589 				| host->bch_enabled << ENABLE_BCH_ECC;
2590 
2591 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2592 				| host->cw_size << UD_SIZE_BYTES
2593 				| 5 << NUM_ADDR_CYCLES
2594 				| 0 << SPARE_SIZE_BYTES;
2595 
2596 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2597 				| 0 << CS_ACTIVE_BSY
2598 				| 17 << BAD_BLOCK_BYTE_NUM
2599 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2600 				| 2 << WR_RD_BSY_GAP
2601 				| wide_bus << WIDE_FLASH
2602 				| 1 << DEV0_CFG1_ECC_DISABLE;
2603 
2604 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2605 				| 0 << ECC_SW_RESET
2606 				| host->cw_data << ECC_NUM_DATA_BYTES
2607 				| 1 << ECC_FORCE_CLK_OPEN
2608 				| ecc_mode << ECC_MODE
2609 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2610 
2611 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2612 
2613 	host->clrflashstatus = FS_READY_BSY_N;
2614 	host->clrreadstatus = 0xc0;
2615 	nandc->regs->erased_cw_detect_cfg_clr =
2616 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2617 	nandc->regs->erased_cw_detect_cfg_set =
2618 		cpu_to_le32(SET_ERASED_PAGE_DET);
2619 
2620 	dev_dbg(nandc->dev,
2621 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2622 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2623 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2624 		cwperpage);
2625 
2626 	return 0;
2627 }
2628 
2629 static const struct nand_controller_ops qcom_nandc_ops = {
2630 	.attach_chip = qcom_nand_attach_chip,
2631 };
2632 
2633 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2634 {
2635 	if (nandc->props->is_bam) {
2636 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2637 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2638 					 MAX_REG_RD *
2639 					 sizeof(*nandc->reg_read_buf),
2640 					 DMA_FROM_DEVICE);
2641 
2642 		if (nandc->tx_chan)
2643 			dma_release_channel(nandc->tx_chan);
2644 
2645 		if (nandc->rx_chan)
2646 			dma_release_channel(nandc->rx_chan);
2647 
2648 		if (nandc->cmd_chan)
2649 			dma_release_channel(nandc->cmd_chan);
2650 	} else {
2651 		if (nandc->chan)
2652 			dma_release_channel(nandc->chan);
2653 	}
2654 }
2655 
2656 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2657 {
2658 	int ret;
2659 
2660 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2661 	if (ret) {
2662 		dev_err(nandc->dev, "failed to set DMA mask\n");
2663 		return ret;
2664 	}
2665 
2666 	/*
2667 	 * we use the internal buffer for reading ONFI params, reading small
2668 	 * data like ID and status, and preforming read-copy-write operations
2669 	 * when writing to a codeword partially. 532 is the maximum possible
2670 	 * size of a codeword for our nand controller
2671 	 */
2672 	nandc->buf_size = 532;
2673 
2674 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2675 					GFP_KERNEL);
2676 	if (!nandc->data_buffer)
2677 		return -ENOMEM;
2678 
2679 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2680 					GFP_KERNEL);
2681 	if (!nandc->regs)
2682 		return -ENOMEM;
2683 
2684 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2685 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2686 				GFP_KERNEL);
2687 	if (!nandc->reg_read_buf)
2688 		return -ENOMEM;
2689 
2690 	if (nandc->props->is_bam) {
2691 		nandc->reg_read_dma =
2692 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2693 				       MAX_REG_RD *
2694 				       sizeof(*nandc->reg_read_buf),
2695 				       DMA_FROM_DEVICE);
2696 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2697 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2698 			return -EIO;
2699 		}
2700 
2701 		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2702 		if (IS_ERR(nandc->tx_chan)) {
2703 			ret = PTR_ERR(nandc->tx_chan);
2704 			nandc->tx_chan = NULL;
2705 			if (ret != -EPROBE_DEFER)
2706 				dev_err(nandc->dev,
2707 					"tx DMA channel request failed: %d\n",
2708 					ret);
2709 			goto unalloc;
2710 		}
2711 
2712 		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2713 		if (IS_ERR(nandc->rx_chan)) {
2714 			ret = PTR_ERR(nandc->rx_chan);
2715 			nandc->rx_chan = NULL;
2716 			if (ret != -EPROBE_DEFER)
2717 				dev_err(nandc->dev,
2718 					"rx DMA channel request failed: %d\n",
2719 					ret);
2720 			goto unalloc;
2721 		}
2722 
2723 		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2724 		if (IS_ERR(nandc->cmd_chan)) {
2725 			ret = PTR_ERR(nandc->cmd_chan);
2726 			nandc->cmd_chan = NULL;
2727 			if (ret != -EPROBE_DEFER)
2728 				dev_err(nandc->dev,
2729 					"cmd DMA channel request failed: %d\n",
2730 					ret);
2731 			goto unalloc;
2732 		}
2733 
2734 		/*
2735 		 * Initially allocate BAM transaction to read ONFI param page.
2736 		 * After detecting all the devices, this BAM transaction will
2737 		 * be freed and the next BAM tranasction will be allocated with
2738 		 * maximum codeword size
2739 		 */
2740 		nandc->max_cwperpage = 1;
2741 		nandc->bam_txn = alloc_bam_transaction(nandc);
2742 		if (!nandc->bam_txn) {
2743 			dev_err(nandc->dev,
2744 				"failed to allocate bam transaction\n");
2745 			ret = -ENOMEM;
2746 			goto unalloc;
2747 		}
2748 	} else {
2749 		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2750 		if (IS_ERR(nandc->chan)) {
2751 			ret = PTR_ERR(nandc->chan);
2752 			nandc->chan = NULL;
2753 			if (ret != -EPROBE_DEFER)
2754 				dev_err(nandc->dev,
2755 					"rxtx DMA channel request failed: %d\n",
2756 					ret);
2757 			return ret;
2758 		}
2759 	}
2760 
2761 	INIT_LIST_HEAD(&nandc->desc_list);
2762 	INIT_LIST_HEAD(&nandc->host_list);
2763 
2764 	nand_controller_init(&nandc->controller);
2765 	nandc->controller.ops = &qcom_nandc_ops;
2766 
2767 	return 0;
2768 unalloc:
2769 	qcom_nandc_unalloc(nandc);
2770 	return ret;
2771 }
2772 
2773 /* one time setup of a few nand controller registers */
2774 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2775 {
2776 	u32 nand_ctrl;
2777 
2778 	/* kill onenand */
2779 	if (!nandc->props->is_qpic)
2780 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2781 	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2782 		    NAND_DEV_CMD_VLD_VAL);
2783 
2784 	/* enable ADM or BAM DMA */
2785 	if (nandc->props->is_bam) {
2786 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2787 
2788 		/*
2789 		 *NAND_CTRL is an operational registers, and CPU
2790 		 * access to operational registers are read only
2791 		 * in BAM mode. So update the NAND_CTRL register
2792 		 * only if it is not in BAM mode. In most cases BAM
2793 		 * mode will be enabled in bootloader
2794 		 */
2795 		if (!(nand_ctrl & BAM_MODE_EN))
2796 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2797 	} else {
2798 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2799 	}
2800 
2801 	/* save the original values of these registers */
2802 	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2803 	nandc->vld = NAND_DEV_CMD_VLD_VAL;
2804 
2805 	return 0;
2806 }
2807 
2808 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2809 					    struct qcom_nand_host *host,
2810 					    struct device_node *dn)
2811 {
2812 	struct nand_chip *chip = &host->chip;
2813 	struct mtd_info *mtd = nand_to_mtd(chip);
2814 	struct device *dev = nandc->dev;
2815 	int ret;
2816 
2817 	ret = of_property_read_u32(dn, "reg", &host->cs);
2818 	if (ret) {
2819 		dev_err(dev, "can't get chip-select\n");
2820 		return -ENXIO;
2821 	}
2822 
2823 	nand_set_flash_node(chip, dn);
2824 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2825 	if (!mtd->name)
2826 		return -ENOMEM;
2827 
2828 	mtd->owner = THIS_MODULE;
2829 	mtd->dev.parent = dev;
2830 
2831 	chip->legacy.cmdfunc	= qcom_nandc_command;
2832 	chip->legacy.select_chip	= qcom_nandc_select_chip;
2833 	chip->legacy.read_byte	= qcom_nandc_read_byte;
2834 	chip->legacy.read_buf	= qcom_nandc_read_buf;
2835 	chip->legacy.write_buf	= qcom_nandc_write_buf;
2836 	chip->legacy.set_features	= nand_get_set_features_notsupp;
2837 	chip->legacy.get_features	= nand_get_set_features_notsupp;
2838 
2839 	/*
2840 	 * the bad block marker is readable only when we read the last codeword
2841 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2842 	 * helpers don't allow us to read BB from a nand chip with ECC
2843 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2844 	 * and block_markbad helpers until we permanently switch to using
2845 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2846 	 */
2847 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2848 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2849 
2850 	chip->controller = &nandc->controller;
2851 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2852 			 NAND_SKIP_BBTSCAN;
2853 
2854 	/* set up initial status value */
2855 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2856 
2857 	ret = nand_scan(chip, 1);
2858 	if (ret)
2859 		return ret;
2860 
2861 	if (nandc->props->is_bam) {
2862 		free_bam_transaction(nandc);
2863 		nandc->bam_txn = alloc_bam_transaction(nandc);
2864 		if (!nandc->bam_txn) {
2865 			dev_err(nandc->dev,
2866 				"failed to allocate bam transaction\n");
2867 			return -ENOMEM;
2868 		}
2869 	}
2870 
2871 	ret = mtd_device_register(mtd, NULL, 0);
2872 	if (ret)
2873 		nand_cleanup(chip);
2874 
2875 	return ret;
2876 }
2877 
2878 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2879 {
2880 	struct device *dev = nandc->dev;
2881 	struct device_node *dn = dev->of_node, *child;
2882 	struct qcom_nand_host *host;
2883 	int ret;
2884 
2885 	for_each_available_child_of_node(dn, child) {
2886 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2887 		if (!host) {
2888 			of_node_put(child);
2889 			return -ENOMEM;
2890 		}
2891 
2892 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2893 		if (ret) {
2894 			devm_kfree(dev, host);
2895 			continue;
2896 		}
2897 
2898 		list_add_tail(&host->node, &nandc->host_list);
2899 	}
2900 
2901 	if (list_empty(&nandc->host_list))
2902 		return -ENODEV;
2903 
2904 	return 0;
2905 }
2906 
2907 /* parse custom DT properties here */
2908 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2909 {
2910 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2911 	struct device_node *np = nandc->dev->of_node;
2912 	int ret;
2913 
2914 	if (!nandc->props->is_bam) {
2915 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2916 					   &nandc->cmd_crci);
2917 		if (ret) {
2918 			dev_err(nandc->dev, "command CRCI unspecified\n");
2919 			return ret;
2920 		}
2921 
2922 		ret = of_property_read_u32(np, "qcom,data-crci",
2923 					   &nandc->data_crci);
2924 		if (ret) {
2925 			dev_err(nandc->dev, "data CRCI unspecified\n");
2926 			return ret;
2927 		}
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 static int qcom_nandc_probe(struct platform_device *pdev)
2934 {
2935 	struct qcom_nand_controller *nandc;
2936 	const void *dev_data;
2937 	struct device *dev = &pdev->dev;
2938 	struct resource *res;
2939 	int ret;
2940 
2941 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2942 	if (!nandc)
2943 		return -ENOMEM;
2944 
2945 	platform_set_drvdata(pdev, nandc);
2946 	nandc->dev = dev;
2947 
2948 	dev_data = of_device_get_match_data(dev);
2949 	if (!dev_data) {
2950 		dev_err(&pdev->dev, "failed to get device data\n");
2951 		return -ENODEV;
2952 	}
2953 
2954 	nandc->props = dev_data;
2955 
2956 	nandc->core_clk = devm_clk_get(dev, "core");
2957 	if (IS_ERR(nandc->core_clk))
2958 		return PTR_ERR(nandc->core_clk);
2959 
2960 	nandc->aon_clk = devm_clk_get(dev, "aon");
2961 	if (IS_ERR(nandc->aon_clk))
2962 		return PTR_ERR(nandc->aon_clk);
2963 
2964 	ret = qcom_nandc_parse_dt(pdev);
2965 	if (ret)
2966 		return ret;
2967 
2968 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2969 	nandc->base = devm_ioremap_resource(dev, res);
2970 	if (IS_ERR(nandc->base))
2971 		return PTR_ERR(nandc->base);
2972 
2973 	nandc->base_phys = res->start;
2974 	nandc->base_dma = dma_map_resource(dev, res->start,
2975 					   resource_size(res),
2976 					   DMA_BIDIRECTIONAL, 0);
2977 	if (!nandc->base_dma)
2978 		return -ENXIO;
2979 
2980 	ret = qcom_nandc_alloc(nandc);
2981 	if (ret)
2982 		goto err_nandc_alloc;
2983 
2984 	ret = clk_prepare_enable(nandc->core_clk);
2985 	if (ret)
2986 		goto err_core_clk;
2987 
2988 	ret = clk_prepare_enable(nandc->aon_clk);
2989 	if (ret)
2990 		goto err_aon_clk;
2991 
2992 	ret = qcom_nandc_setup(nandc);
2993 	if (ret)
2994 		goto err_setup;
2995 
2996 	ret = qcom_probe_nand_devices(nandc);
2997 	if (ret)
2998 		goto err_setup;
2999 
3000 	return 0;
3001 
3002 err_setup:
3003 	clk_disable_unprepare(nandc->aon_clk);
3004 err_aon_clk:
3005 	clk_disable_unprepare(nandc->core_clk);
3006 err_core_clk:
3007 	qcom_nandc_unalloc(nandc);
3008 err_nandc_alloc:
3009 	dma_unmap_resource(dev, res->start, resource_size(res),
3010 			   DMA_BIDIRECTIONAL, 0);
3011 
3012 	return ret;
3013 }
3014 
3015 static int qcom_nandc_remove(struct platform_device *pdev)
3016 {
3017 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3018 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3019 	struct qcom_nand_host *host;
3020 	struct nand_chip *chip;
3021 	int ret;
3022 
3023 	list_for_each_entry(host, &nandc->host_list, node) {
3024 		chip = &host->chip;
3025 		ret = mtd_device_unregister(nand_to_mtd(chip));
3026 		WARN_ON(ret);
3027 		nand_cleanup(chip);
3028 	}
3029 
3030 	qcom_nandc_unalloc(nandc);
3031 
3032 	clk_disable_unprepare(nandc->aon_clk);
3033 	clk_disable_unprepare(nandc->core_clk);
3034 
3035 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3036 			   DMA_BIDIRECTIONAL, 0);
3037 
3038 	return 0;
3039 }
3040 
3041 static const struct qcom_nandc_props ipq806x_nandc_props = {
3042 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3043 	.is_bam = false,
3044 	.dev_cmd_reg_start = 0x0,
3045 };
3046 
3047 static const struct qcom_nandc_props ipq4019_nandc_props = {
3048 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3049 	.is_bam = true,
3050 	.is_qpic = true,
3051 	.dev_cmd_reg_start = 0x0,
3052 };
3053 
3054 static const struct qcom_nandc_props ipq8074_nandc_props = {
3055 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3056 	.is_bam = true,
3057 	.is_qpic = true,
3058 	.dev_cmd_reg_start = 0x7000,
3059 };
3060 
3061 /*
3062  * data will hold a struct pointer containing more differences once we support
3063  * more controller variants
3064  */
3065 static const struct of_device_id qcom_nandc_of_match[] = {
3066 	{
3067 		.compatible = "qcom,ipq806x-nand",
3068 		.data = &ipq806x_nandc_props,
3069 	},
3070 	{
3071 		.compatible = "qcom,ipq4019-nand",
3072 		.data = &ipq4019_nandc_props,
3073 	},
3074 	{
3075 		.compatible = "qcom,ipq8074-nand",
3076 		.data = &ipq8074_nandc_props,
3077 	},
3078 	{}
3079 };
3080 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3081 
3082 static struct platform_driver qcom_nandc_driver = {
3083 	.driver = {
3084 		.name = "qcom-nandc",
3085 		.of_match_table = qcom_nandc_of_match,
3086 	},
3087 	.probe   = qcom_nandc_probe,
3088 	.remove  = qcom_nandc_remove,
3089 };
3090 module_platform_driver(qcom_nandc_driver);
3091 
3092 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3093 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3094 MODULE_LICENSE("GPL v2");
3095