xref: /openbmc/linux/drivers/mtd/nand/raw/qcom_nandc.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
26 #include <linux/dma-direct.h> /* XXX: drivers shall never use this directly! */
27 
28 /* NANDc reg offsets */
29 #define	NAND_FLASH_CMD			0x00
30 #define	NAND_ADDR0			0x04
31 #define	NAND_ADDR1			0x08
32 #define	NAND_FLASH_CHIP_SELECT		0x0c
33 #define	NAND_EXEC_CMD			0x10
34 #define	NAND_FLASH_STATUS		0x14
35 #define	NAND_BUFFER_STATUS		0x18
36 #define	NAND_DEV0_CFG0			0x20
37 #define	NAND_DEV0_CFG1			0x24
38 #define	NAND_DEV0_ECC_CFG		0x28
39 #define	NAND_DEV1_ECC_CFG		0x2c
40 #define	NAND_DEV1_CFG0			0x30
41 #define	NAND_DEV1_CFG1			0x34
42 #define	NAND_READ_ID			0x40
43 #define	NAND_READ_STATUS		0x44
44 #define	NAND_DEV_CMD0			0xa0
45 #define	NAND_DEV_CMD1			0xa4
46 #define	NAND_DEV_CMD2			0xa8
47 #define	NAND_DEV_CMD_VLD		0xac
48 #define	SFLASHC_BURST_CFG		0xe0
49 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
50 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
51 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
52 #define	FLASH_BUF_ACC			0x100
53 
54 #define	NAND_CTRL			0xf00
55 #define	NAND_VERSION			0xf08
56 #define	NAND_READ_LOCATION_0		0xf20
57 #define	NAND_READ_LOCATION_1		0xf24
58 #define	NAND_READ_LOCATION_2		0xf28
59 #define	NAND_READ_LOCATION_3		0xf2c
60 
61 /* dummy register offsets, used by write_reg_dma */
62 #define	NAND_DEV_CMD1_RESTORE		0xdead
63 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
64 
65 /* NAND_FLASH_CMD bits */
66 #define	PAGE_ACC			BIT(4)
67 #define	LAST_PAGE			BIT(5)
68 
69 /* NAND_FLASH_CHIP_SELECT bits */
70 #define	NAND_DEV_SEL			0
71 #define	DM_EN				BIT(2)
72 
73 /* NAND_FLASH_STATUS bits */
74 #define	FS_OP_ERR			BIT(4)
75 #define	FS_READY_BSY_N			BIT(5)
76 #define	FS_MPU_ERR			BIT(8)
77 #define	FS_DEVICE_STS_ERR		BIT(16)
78 #define	FS_DEVICE_WP			BIT(23)
79 
80 /* NAND_BUFFER_STATUS bits */
81 #define	BS_UNCORRECTABLE_BIT		BIT(8)
82 #define	BS_CORRECTABLE_ERR_MSK		0x1f
83 
84 /* NAND_DEVn_CFG0 bits */
85 #define	DISABLE_STATUS_AFTER_WRITE	4
86 #define	CW_PER_PAGE			6
87 #define	UD_SIZE_BYTES			9
88 #define	ECC_PARITY_SIZE_BYTES_RS	19
89 #define	SPARE_SIZE_BYTES		23
90 #define	NUM_ADDR_CYCLES			27
91 #define	STATUS_BFR_READ			30
92 #define	SET_RD_MODE_AFTER_STATUS	31
93 
94 /* NAND_DEVn_CFG0 bits */
95 #define	DEV0_CFG1_ECC_DISABLE		0
96 #define	WIDE_FLASH			1
97 #define	NAND_RECOVERY_CYCLES		2
98 #define	CS_ACTIVE_BSY			5
99 #define	BAD_BLOCK_BYTE_NUM		6
100 #define	BAD_BLOCK_IN_SPARE_AREA		16
101 #define	WR_RD_BSY_GAP			17
102 #define	ENABLE_BCH_ECC			27
103 
104 /* NAND_DEV0_ECC_CFG bits */
105 #define	ECC_CFG_ECC_DISABLE		0
106 #define	ECC_SW_RESET			1
107 #define	ECC_MODE			4
108 #define	ECC_PARITY_SIZE_BYTES_BCH	8
109 #define	ECC_NUM_DATA_BYTES		16
110 #define	ECC_FORCE_CLK_OPEN		30
111 
112 /* NAND_DEV_CMD1 bits */
113 #define	READ_ADDR			0
114 
115 /* NAND_DEV_CMD_VLD bits */
116 #define	READ_START_VLD			BIT(0)
117 #define	READ_STOP_VLD			BIT(1)
118 #define	WRITE_START_VLD			BIT(2)
119 #define	ERASE_START_VLD			BIT(3)
120 #define	SEQ_READ_START_VLD		BIT(4)
121 
122 /* NAND_EBI2_ECC_BUF_CFG bits */
123 #define	NUM_STEPS			0
124 
125 /* NAND_ERASED_CW_DETECT_CFG bits */
126 #define	ERASED_CW_ECC_MASK		1
127 #define	AUTO_DETECT_RES			0
128 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
129 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
130 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
131 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
132 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
133 
134 /* NAND_ERASED_CW_DETECT_STATUS bits */
135 #define	PAGE_ALL_ERASED			BIT(7)
136 #define	CODEWORD_ALL_ERASED		BIT(6)
137 #define	PAGE_ERASED			BIT(5)
138 #define	CODEWORD_ERASED			BIT(4)
139 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
140 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
141 
142 /* NAND_READ_LOCATION_n bits */
143 #define READ_LOCATION_OFFSET		0
144 #define READ_LOCATION_SIZE		16
145 #define READ_LOCATION_LAST		31
146 
147 /* Version Mask */
148 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
149 #define	NAND_VERSION_MAJOR_SHIFT	28
150 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
151 #define	NAND_VERSION_MINOR_SHIFT	16
152 
153 /* NAND OP_CMDs */
154 #define	PAGE_READ			0x2
155 #define	PAGE_READ_WITH_ECC		0x3
156 #define	PAGE_READ_WITH_ECC_SPARE	0x4
157 #define	PROGRAM_PAGE			0x6
158 #define	PAGE_PROGRAM_WITH_ECC		0x7
159 #define	PROGRAM_PAGE_SPARE		0x9
160 #define	BLOCK_ERASE			0xa
161 #define	FETCH_ID			0xb
162 #define	RESET_DEVICE			0xd
163 
164 /* Default Value for NAND_DEV_CMD_VLD */
165 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
166 					 ERASE_START_VLD | SEQ_READ_START_VLD)
167 
168 /* NAND_CTRL bits */
169 #define	BAM_MODE_EN			BIT(0)
170 
171 /*
172  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
173  * the driver calls the chunks 'step' or 'codeword' interchangeably
174  */
175 #define	NANDC_STEP_SIZE			512
176 
177 /*
178  * the largest page size we support is 8K, this will have 16 steps/codewords
179  * of 512 bytes each
180  */
181 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
182 
183 /* we read at most 3 registers per codeword scan */
184 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
185 
186 /* ECC modes supported by the controller */
187 #define	ECC_NONE	BIT(0)
188 #define	ECC_RS_4BIT	BIT(1)
189 #define	ECC_BCH_4BIT	BIT(2)
190 #define	ECC_BCH_8BIT	BIT(3)
191 
192 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
193 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
194 	      ((offset) << READ_LOCATION_OFFSET) |		\
195 	      ((size) << READ_LOCATION_SIZE) |			\
196 	      ((is_last) << READ_LOCATION_LAST))
197 
198 /*
199  * Returns the actual register address for all NAND_DEV_ registers
200  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
201  */
202 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
203 
204 /* Returns the NAND register physical address */
205 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
206 
207 /* Returns the dma address for reg read buffer */
208 #define reg_buf_dma_addr(chip, vaddr) \
209 	((chip)->reg_read_dma + \
210 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
211 
212 #define QPIC_PER_CW_CMD_ELEMENTS	32
213 #define QPIC_PER_CW_CMD_SGL		32
214 #define QPIC_PER_CW_DATA_SGL		8
215 
216 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
217 
218 /*
219  * Flags used in DMA descriptor preparation helper functions
220  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
221  */
222 /* Don't set the EOT in current tx BAM sgl */
223 #define NAND_BAM_NO_EOT			BIT(0)
224 /* Set the NWD flag in current BAM sgl */
225 #define NAND_BAM_NWD			BIT(1)
226 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
227 #define NAND_BAM_NEXT_SGL		BIT(2)
228 /*
229  * Erased codeword status is being used two times in single transfer so this
230  * flag will determine the current value of erased codeword status register
231  */
232 #define NAND_ERASED_CW_SET		BIT(4)
233 
234 /*
235  * This data type corresponds to the BAM transaction which will be used for all
236  * NAND transfers.
237  * @bam_ce - the array of BAM command elements
238  * @cmd_sgl - sgl for NAND BAM command pipe
239  * @data_sgl - sgl for NAND BAM consumer/producer pipe
240  * @bam_ce_pos - the index in bam_ce which is available for next sgl
241  * @bam_ce_start - the index in bam_ce which marks the start position ce
242  *		   for current sgl. It will be used for size calculation
243  *		   for current sgl
244  * @cmd_sgl_pos - current index in command sgl.
245  * @cmd_sgl_start - start index in command sgl.
246  * @tx_sgl_pos - current index in data sgl for tx.
247  * @tx_sgl_start - start index in data sgl for tx.
248  * @rx_sgl_pos - current index in data sgl for rx.
249  * @rx_sgl_start - start index in data sgl for rx.
250  * @wait_second_completion - wait for second DMA desc completion before making
251  *			     the NAND transfer completion.
252  * @txn_done - completion for NAND transfer.
253  * @last_data_desc - last DMA desc in data channel (tx/rx).
254  * @last_cmd_desc - last DMA desc in command channel.
255  */
256 struct bam_transaction {
257 	struct bam_cmd_element *bam_ce;
258 	struct scatterlist *cmd_sgl;
259 	struct scatterlist *data_sgl;
260 	u32 bam_ce_pos;
261 	u32 bam_ce_start;
262 	u32 cmd_sgl_pos;
263 	u32 cmd_sgl_start;
264 	u32 tx_sgl_pos;
265 	u32 tx_sgl_start;
266 	u32 rx_sgl_pos;
267 	u32 rx_sgl_start;
268 	bool wait_second_completion;
269 	struct completion txn_done;
270 	struct dma_async_tx_descriptor *last_data_desc;
271 	struct dma_async_tx_descriptor *last_cmd_desc;
272 };
273 
274 /*
275  * This data type corresponds to the nand dma descriptor
276  * @list - list for desc_info
277  * @dir - DMA transfer direction
278  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
279  *	      ADM
280  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
281  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
282  * @dma_desc - low level DMA engine descriptor
283  */
284 struct desc_info {
285 	struct list_head node;
286 
287 	enum dma_data_direction dir;
288 	union {
289 		struct scatterlist adm_sgl;
290 		struct {
291 			struct scatterlist *bam_sgl;
292 			int sgl_cnt;
293 		};
294 	};
295 	struct dma_async_tx_descriptor *dma_desc;
296 };
297 
298 /*
299  * holds the current register values that we want to write. acts as a contiguous
300  * chunk of memory which we use to write the controller registers through DMA.
301  */
302 struct nandc_regs {
303 	__le32 cmd;
304 	__le32 addr0;
305 	__le32 addr1;
306 	__le32 chip_sel;
307 	__le32 exec;
308 
309 	__le32 cfg0;
310 	__le32 cfg1;
311 	__le32 ecc_bch_cfg;
312 
313 	__le32 clrflashstatus;
314 	__le32 clrreadstatus;
315 
316 	__le32 cmd1;
317 	__le32 vld;
318 
319 	__le32 orig_cmd1;
320 	__le32 orig_vld;
321 
322 	__le32 ecc_buf_cfg;
323 	__le32 read_location0;
324 	__le32 read_location1;
325 	__le32 read_location2;
326 	__le32 read_location3;
327 
328 	__le32 erased_cw_detect_cfg_clr;
329 	__le32 erased_cw_detect_cfg_set;
330 };
331 
332 /*
333  * NAND controller data struct
334  *
335  * @controller:			base controller structure
336  * @host_list:			list containing all the chips attached to the
337  *				controller
338  * @dev:			parent device
339  * @base:			MMIO base
340  * @base_phys:			physical base address of controller registers
341  * @base_dma:			dma base address of controller registers
342  * @core_clk:			controller clock
343  * @aon_clk:			another controller clock
344  *
345  * @chan:			dma channel
346  * @cmd_crci:			ADM DMA CRCI for command flow control
347  * @data_crci:			ADM DMA CRCI for data flow control
348  * @desc_list:			DMA descriptor list (list of desc_infos)
349  *
350  * @data_buffer:		our local DMA buffer for page read/writes,
351  *				used when we can't use the buffer provided
352  *				by upper layers directly
353  * @buf_size/count/start:	markers for chip->read_buf/write_buf functions
354  * @reg_read_buf:		local buffer for reading back registers via DMA
355  * @reg_read_dma:		contains dma address for register read buffer
356  * @reg_read_pos:		marker for data read in reg_read_buf
357  *
358  * @regs:			a contiguous chunk of memory for DMA register
359  *				writes. contains the register values to be
360  *				written to controller
361  * @cmd1/vld:			some fixed controller register values
362  * @props:			properties of current NAND controller,
363  *				initialized via DT match data
364  * @max_cwperpage:		maximum QPIC codewords required. calculated
365  *				from all connected NAND devices pagesize
366  */
367 struct qcom_nand_controller {
368 	struct nand_controller controller;
369 	struct list_head host_list;
370 
371 	struct device *dev;
372 
373 	void __iomem *base;
374 	phys_addr_t base_phys;
375 	dma_addr_t base_dma;
376 
377 	struct clk *core_clk;
378 	struct clk *aon_clk;
379 
380 	union {
381 		/* will be used only by QPIC for BAM DMA */
382 		struct {
383 			struct dma_chan *tx_chan;
384 			struct dma_chan *rx_chan;
385 			struct dma_chan *cmd_chan;
386 		};
387 
388 		/* will be used only by EBI2 for ADM DMA */
389 		struct {
390 			struct dma_chan *chan;
391 			unsigned int cmd_crci;
392 			unsigned int data_crci;
393 		};
394 	};
395 
396 	struct list_head desc_list;
397 	struct bam_transaction *bam_txn;
398 
399 	u8		*data_buffer;
400 	int		buf_size;
401 	int		buf_count;
402 	int		buf_start;
403 	unsigned int	max_cwperpage;
404 
405 	__le32 *reg_read_buf;
406 	dma_addr_t reg_read_dma;
407 	int reg_read_pos;
408 
409 	struct nandc_regs *regs;
410 
411 	u32 cmd1, vld;
412 	const struct qcom_nandc_props *props;
413 };
414 
415 /*
416  * NAND chip structure
417  *
418  * @chip:			base NAND chip structure
419  * @node:			list node to add itself to host_list in
420  *				qcom_nand_controller
421  *
422  * @cs:				chip select value for this chip
423  * @cw_size:			the number of bytes in a single step/codeword
424  *				of a page, consisting of all data, ecc, spare
425  *				and reserved bytes
426  * @cw_data:			the number of bytes within a codeword protected
427  *				by ECC
428  * @use_ecc:			request the controller to use ECC for the
429  *				upcoming read/write
430  * @bch_enabled:		flag to tell whether BCH ECC mode is used
431  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
432  *				chip
433  * @status:			value to be returned if NAND_CMD_STATUS command
434  *				is executed
435  * @last_command:		keeps track of last command on this chip. used
436  *				for reading correct status
437  *
438  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
439  *				ecc/non-ecc mode for the current nand flash
440  *				device
441  */
442 struct qcom_nand_host {
443 	struct nand_chip chip;
444 	struct list_head node;
445 
446 	int cs;
447 	int cw_size;
448 	int cw_data;
449 	bool use_ecc;
450 	bool bch_enabled;
451 	int ecc_bytes_hw;
452 	int spare_bytes;
453 	int bbm_size;
454 	u8 status;
455 	int last_command;
456 
457 	u32 cfg0, cfg1;
458 	u32 cfg0_raw, cfg1_raw;
459 	u32 ecc_buf_cfg;
460 	u32 ecc_bch_cfg;
461 	u32 clrflashstatus;
462 	u32 clrreadstatus;
463 };
464 
465 /*
466  * This data type corresponds to the NAND controller properties which varies
467  * among different NAND controllers.
468  * @ecc_modes - ecc mode for NAND
469  * @is_bam - whether NAND controller is using BAM
470  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
471  */
472 struct qcom_nandc_props {
473 	u32 ecc_modes;
474 	bool is_bam;
475 	u32 dev_cmd_reg_start;
476 };
477 
478 /* Frees the BAM transaction memory */
479 static void free_bam_transaction(struct qcom_nand_controller *nandc)
480 {
481 	struct bam_transaction *bam_txn = nandc->bam_txn;
482 
483 	devm_kfree(nandc->dev, bam_txn);
484 }
485 
486 /* Allocates and Initializes the BAM transaction */
487 static struct bam_transaction *
488 alloc_bam_transaction(struct qcom_nand_controller *nandc)
489 {
490 	struct bam_transaction *bam_txn;
491 	size_t bam_txn_size;
492 	unsigned int num_cw = nandc->max_cwperpage;
493 	void *bam_txn_buf;
494 
495 	bam_txn_size =
496 		sizeof(*bam_txn) + num_cw *
497 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
498 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
499 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
500 
501 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
502 	if (!bam_txn_buf)
503 		return NULL;
504 
505 	bam_txn = bam_txn_buf;
506 	bam_txn_buf += sizeof(*bam_txn);
507 
508 	bam_txn->bam_ce = bam_txn_buf;
509 	bam_txn_buf +=
510 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
511 
512 	bam_txn->cmd_sgl = bam_txn_buf;
513 	bam_txn_buf +=
514 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
515 
516 	bam_txn->data_sgl = bam_txn_buf;
517 
518 	init_completion(&bam_txn->txn_done);
519 
520 	return bam_txn;
521 }
522 
523 /* Clears the BAM transaction indexes */
524 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
525 {
526 	struct bam_transaction *bam_txn = nandc->bam_txn;
527 
528 	if (!nandc->props->is_bam)
529 		return;
530 
531 	bam_txn->bam_ce_pos = 0;
532 	bam_txn->bam_ce_start = 0;
533 	bam_txn->cmd_sgl_pos = 0;
534 	bam_txn->cmd_sgl_start = 0;
535 	bam_txn->tx_sgl_pos = 0;
536 	bam_txn->tx_sgl_start = 0;
537 	bam_txn->rx_sgl_pos = 0;
538 	bam_txn->rx_sgl_start = 0;
539 	bam_txn->last_data_desc = NULL;
540 	bam_txn->wait_second_completion = false;
541 
542 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
543 		      QPIC_PER_CW_CMD_SGL);
544 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
545 		      QPIC_PER_CW_DATA_SGL);
546 
547 	reinit_completion(&bam_txn->txn_done);
548 }
549 
550 /* Callback for DMA descriptor completion */
551 static void qpic_bam_dma_done(void *data)
552 {
553 	struct bam_transaction *bam_txn = data;
554 
555 	/*
556 	 * In case of data transfer with NAND, 2 callbacks will be generated.
557 	 * One for command channel and another one for data channel.
558 	 * If current transaction has data descriptors
559 	 * (i.e. wait_second_completion is true), then set this to false
560 	 * and wait for second DMA descriptor completion.
561 	 */
562 	if (bam_txn->wait_second_completion)
563 		bam_txn->wait_second_completion = false;
564 	else
565 		complete(&bam_txn->txn_done);
566 }
567 
568 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
569 {
570 	return container_of(chip, struct qcom_nand_host, chip);
571 }
572 
573 static inline struct qcom_nand_controller *
574 get_qcom_nand_controller(struct nand_chip *chip)
575 {
576 	return container_of(chip->controller, struct qcom_nand_controller,
577 			    controller);
578 }
579 
580 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
581 {
582 	return ioread32(nandc->base + offset);
583 }
584 
585 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
586 			       u32 val)
587 {
588 	iowrite32(val, nandc->base + offset);
589 }
590 
591 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
592 					  bool is_cpu)
593 {
594 	if (!nandc->props->is_bam)
595 		return;
596 
597 	if (is_cpu)
598 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
599 					MAX_REG_RD *
600 					sizeof(*nandc->reg_read_buf),
601 					DMA_FROM_DEVICE);
602 	else
603 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
604 					   MAX_REG_RD *
605 					   sizeof(*nandc->reg_read_buf),
606 					   DMA_FROM_DEVICE);
607 }
608 
609 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
610 {
611 	switch (offset) {
612 	case NAND_FLASH_CMD:
613 		return &regs->cmd;
614 	case NAND_ADDR0:
615 		return &regs->addr0;
616 	case NAND_ADDR1:
617 		return &regs->addr1;
618 	case NAND_FLASH_CHIP_SELECT:
619 		return &regs->chip_sel;
620 	case NAND_EXEC_CMD:
621 		return &regs->exec;
622 	case NAND_FLASH_STATUS:
623 		return &regs->clrflashstatus;
624 	case NAND_DEV0_CFG0:
625 		return &regs->cfg0;
626 	case NAND_DEV0_CFG1:
627 		return &regs->cfg1;
628 	case NAND_DEV0_ECC_CFG:
629 		return &regs->ecc_bch_cfg;
630 	case NAND_READ_STATUS:
631 		return &regs->clrreadstatus;
632 	case NAND_DEV_CMD1:
633 		return &regs->cmd1;
634 	case NAND_DEV_CMD1_RESTORE:
635 		return &regs->orig_cmd1;
636 	case NAND_DEV_CMD_VLD:
637 		return &regs->vld;
638 	case NAND_DEV_CMD_VLD_RESTORE:
639 		return &regs->orig_vld;
640 	case NAND_EBI2_ECC_BUF_CFG:
641 		return &regs->ecc_buf_cfg;
642 	case NAND_READ_LOCATION_0:
643 		return &regs->read_location0;
644 	case NAND_READ_LOCATION_1:
645 		return &regs->read_location1;
646 	case NAND_READ_LOCATION_2:
647 		return &regs->read_location2;
648 	case NAND_READ_LOCATION_3:
649 		return &regs->read_location3;
650 	default:
651 		return NULL;
652 	}
653 }
654 
655 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
656 			  u32 val)
657 {
658 	struct nandc_regs *regs = nandc->regs;
659 	__le32 *reg;
660 
661 	reg = offset_to_nandc_reg(regs, offset);
662 
663 	if (reg)
664 		*reg = cpu_to_le32(val);
665 }
666 
667 /* helper to configure address register values */
668 static void set_address(struct qcom_nand_host *host, u16 column, int page)
669 {
670 	struct nand_chip *chip = &host->chip;
671 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
672 
673 	if (chip->options & NAND_BUSWIDTH_16)
674 		column >>= 1;
675 
676 	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
677 	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
678 }
679 
680 /*
681  * update_rw_regs:	set up read/write register values, these will be
682  *			written to the NAND controller registers via DMA
683  *
684  * @num_cw:		number of steps for the read/write operation
685  * @read:		read or write operation
686  */
687 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
688 {
689 	struct nand_chip *chip = &host->chip;
690 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
691 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
692 
693 	if (read) {
694 		if (host->use_ecc)
695 			cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
696 		else
697 			cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
698 	} else {
699 			cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
700 	}
701 
702 	if (host->use_ecc) {
703 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
704 				(num_cw - 1) << CW_PER_PAGE;
705 
706 		cfg1 = host->cfg1;
707 		ecc_bch_cfg = host->ecc_bch_cfg;
708 	} else {
709 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
710 				(num_cw - 1) << CW_PER_PAGE;
711 
712 		cfg1 = host->cfg1_raw;
713 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
714 	}
715 
716 	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
717 	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
718 	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
719 	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
720 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
721 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
722 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
723 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
724 
725 	if (read)
726 		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
727 				   host->cw_data : host->cw_size, 1);
728 }
729 
730 /*
731  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
732  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
733  * which will be submitted to DMA engine.
734  */
735 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
736 				  struct dma_chan *chan,
737 				  unsigned long flags)
738 {
739 	struct desc_info *desc;
740 	struct scatterlist *sgl;
741 	unsigned int sgl_cnt;
742 	int ret;
743 	struct bam_transaction *bam_txn = nandc->bam_txn;
744 	enum dma_transfer_direction dir_eng;
745 	struct dma_async_tx_descriptor *dma_desc;
746 
747 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
748 	if (!desc)
749 		return -ENOMEM;
750 
751 	if (chan == nandc->cmd_chan) {
752 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
753 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
754 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
755 		dir_eng = DMA_MEM_TO_DEV;
756 		desc->dir = DMA_TO_DEVICE;
757 	} else if (chan == nandc->tx_chan) {
758 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
759 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
760 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
761 		dir_eng = DMA_MEM_TO_DEV;
762 		desc->dir = DMA_TO_DEVICE;
763 	} else {
764 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
765 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
766 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
767 		dir_eng = DMA_DEV_TO_MEM;
768 		desc->dir = DMA_FROM_DEVICE;
769 	}
770 
771 	sg_mark_end(sgl + sgl_cnt - 1);
772 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
773 	if (ret == 0) {
774 		dev_err(nandc->dev, "failure in mapping desc\n");
775 		kfree(desc);
776 		return -ENOMEM;
777 	}
778 
779 	desc->sgl_cnt = sgl_cnt;
780 	desc->bam_sgl = sgl;
781 
782 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
783 					   flags);
784 
785 	if (!dma_desc) {
786 		dev_err(nandc->dev, "failure in prep desc\n");
787 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
788 		kfree(desc);
789 		return -EINVAL;
790 	}
791 
792 	desc->dma_desc = dma_desc;
793 
794 	/* update last data/command descriptor */
795 	if (chan == nandc->cmd_chan)
796 		bam_txn->last_cmd_desc = dma_desc;
797 	else
798 		bam_txn->last_data_desc = dma_desc;
799 
800 	list_add_tail(&desc->node, &nandc->desc_list);
801 
802 	return 0;
803 }
804 
805 /*
806  * Prepares the command descriptor for BAM DMA which will be used for NAND
807  * register reads and writes. The command descriptor requires the command
808  * to be formed in command element type so this function uses the command
809  * element from bam transaction ce array and fills the same with required
810  * data. A single SGL can contain multiple command elements so
811  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
812  * after the current command element.
813  */
814 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
815 				 int reg_off, const void *vaddr,
816 				 int size, unsigned int flags)
817 {
818 	int bam_ce_size;
819 	int i, ret;
820 	struct bam_cmd_element *bam_ce_buffer;
821 	struct bam_transaction *bam_txn = nandc->bam_txn;
822 
823 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
824 
825 	/* fill the command desc */
826 	for (i = 0; i < size; i++) {
827 		if (read)
828 			bam_prep_ce(&bam_ce_buffer[i],
829 				    nandc_reg_phys(nandc, reg_off + 4 * i),
830 				    BAM_READ_COMMAND,
831 				    reg_buf_dma_addr(nandc,
832 						     (__le32 *)vaddr + i));
833 		else
834 			bam_prep_ce_le32(&bam_ce_buffer[i],
835 					 nandc_reg_phys(nandc, reg_off + 4 * i),
836 					 BAM_WRITE_COMMAND,
837 					 *((__le32 *)vaddr + i));
838 	}
839 
840 	bam_txn->bam_ce_pos += size;
841 
842 	/* use the separate sgl after this command */
843 	if (flags & NAND_BAM_NEXT_SGL) {
844 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
845 		bam_ce_size = (bam_txn->bam_ce_pos -
846 				bam_txn->bam_ce_start) *
847 				sizeof(struct bam_cmd_element);
848 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
849 			   bam_ce_buffer, bam_ce_size);
850 		bam_txn->cmd_sgl_pos++;
851 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
852 
853 		if (flags & NAND_BAM_NWD) {
854 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
855 						     DMA_PREP_FENCE |
856 						     DMA_PREP_CMD);
857 			if (ret)
858 				return ret;
859 		}
860 	}
861 
862 	return 0;
863 }
864 
865 /*
866  * Prepares the data descriptor for BAM DMA which will be used for NAND
867  * data reads and writes.
868  */
869 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
870 				  const void *vaddr,
871 				  int size, unsigned int flags)
872 {
873 	int ret;
874 	struct bam_transaction *bam_txn = nandc->bam_txn;
875 
876 	if (read) {
877 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
878 			   vaddr, size);
879 		bam_txn->rx_sgl_pos++;
880 	} else {
881 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
882 			   vaddr, size);
883 		bam_txn->tx_sgl_pos++;
884 
885 		/*
886 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
887 		 * is not set, form the DMA descriptor
888 		 */
889 		if (!(flags & NAND_BAM_NO_EOT)) {
890 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
891 						     DMA_PREP_INTERRUPT);
892 			if (ret)
893 				return ret;
894 		}
895 	}
896 
897 	return 0;
898 }
899 
900 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
901 			     int reg_off, const void *vaddr, int size,
902 			     bool flow_control)
903 {
904 	struct desc_info *desc;
905 	struct dma_async_tx_descriptor *dma_desc;
906 	struct scatterlist *sgl;
907 	struct dma_slave_config slave_conf;
908 	enum dma_transfer_direction dir_eng;
909 	int ret;
910 
911 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
912 	if (!desc)
913 		return -ENOMEM;
914 
915 	sgl = &desc->adm_sgl;
916 
917 	sg_init_one(sgl, vaddr, size);
918 
919 	if (read) {
920 		dir_eng = DMA_DEV_TO_MEM;
921 		desc->dir = DMA_FROM_DEVICE;
922 	} else {
923 		dir_eng = DMA_MEM_TO_DEV;
924 		desc->dir = DMA_TO_DEVICE;
925 	}
926 
927 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
928 	if (ret == 0) {
929 		ret = -ENOMEM;
930 		goto err;
931 	}
932 
933 	memset(&slave_conf, 0x00, sizeof(slave_conf));
934 
935 	slave_conf.device_fc = flow_control;
936 	if (read) {
937 		slave_conf.src_maxburst = 16;
938 		slave_conf.src_addr = nandc->base_dma + reg_off;
939 		slave_conf.slave_id = nandc->data_crci;
940 	} else {
941 		slave_conf.dst_maxburst = 16;
942 		slave_conf.dst_addr = nandc->base_dma + reg_off;
943 		slave_conf.slave_id = nandc->cmd_crci;
944 	}
945 
946 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
947 	if (ret) {
948 		dev_err(nandc->dev, "failed to configure dma channel\n");
949 		goto err;
950 	}
951 
952 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
953 	if (!dma_desc) {
954 		dev_err(nandc->dev, "failed to prepare desc\n");
955 		ret = -EINVAL;
956 		goto err;
957 	}
958 
959 	desc->dma_desc = dma_desc;
960 
961 	list_add_tail(&desc->node, &nandc->desc_list);
962 
963 	return 0;
964 err:
965 	kfree(desc);
966 
967 	return ret;
968 }
969 
970 /*
971  * read_reg_dma:	prepares a descriptor to read a given number of
972  *			contiguous registers to the reg_read_buf pointer
973  *
974  * @first:		offset of the first register in the contiguous block
975  * @num_regs:		number of registers to read
976  * @flags:		flags to control DMA descriptor preparation
977  */
978 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
979 			int num_regs, unsigned int flags)
980 {
981 	bool flow_control = false;
982 	void *vaddr;
983 
984 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
985 	nandc->reg_read_pos += num_regs;
986 
987 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
988 		first = dev_cmd_reg_addr(nandc, first);
989 
990 	if (nandc->props->is_bam)
991 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
992 					     num_regs, flags);
993 
994 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
995 		flow_control = true;
996 
997 	return prep_adm_dma_desc(nandc, true, first, vaddr,
998 				 num_regs * sizeof(u32), flow_control);
999 }
1000 
1001 /*
1002  * write_reg_dma:	prepares a descriptor to write a given number of
1003  *			contiguous registers
1004  *
1005  * @first:		offset of the first register in the contiguous block
1006  * @num_regs:		number of registers to write
1007  * @flags:		flags to control DMA descriptor preparation
1008  */
1009 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1010 			 int num_regs, unsigned int flags)
1011 {
1012 	bool flow_control = false;
1013 	struct nandc_regs *regs = nandc->regs;
1014 	void *vaddr;
1015 
1016 	vaddr = offset_to_nandc_reg(regs, first);
1017 
1018 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1019 		if (flags & NAND_ERASED_CW_SET)
1020 			vaddr = &regs->erased_cw_detect_cfg_set;
1021 		else
1022 			vaddr = &regs->erased_cw_detect_cfg_clr;
1023 	}
1024 
1025 	if (first == NAND_EXEC_CMD)
1026 		flags |= NAND_BAM_NWD;
1027 
1028 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1029 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1030 
1031 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1032 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1033 
1034 	if (nandc->props->is_bam)
1035 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1036 					     num_regs, flags);
1037 
1038 	if (first == NAND_FLASH_CMD)
1039 		flow_control = true;
1040 
1041 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1042 				 num_regs * sizeof(u32), flow_control);
1043 }
1044 
1045 /*
1046  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1047  *			controller's internal buffer to the buffer 'vaddr'
1048  *
1049  * @reg_off:		offset within the controller's data buffer
1050  * @vaddr:		virtual address of the buffer we want to write to
1051  * @size:		DMA transaction size in bytes
1052  * @flags:		flags to control DMA descriptor preparation
1053  */
1054 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1055 			 const u8 *vaddr, int size, unsigned int flags)
1056 {
1057 	if (nandc->props->is_bam)
1058 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1059 
1060 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1061 }
1062 
1063 /*
1064  * write_data_dma:	prepares a DMA descriptor to transfer data from
1065  *			'vaddr' to the controller's internal buffer
1066  *
1067  * @reg_off:		offset within the controller's data buffer
1068  * @vaddr:		virtual address of the buffer we want to read from
1069  * @size:		DMA transaction size in bytes
1070  * @flags:		flags to control DMA descriptor preparation
1071  */
1072 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1073 			  const u8 *vaddr, int size, unsigned int flags)
1074 {
1075 	if (nandc->props->is_bam)
1076 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1077 
1078 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1079 }
1080 
1081 /*
1082  * Helper to prepare DMA descriptors for configuring registers
1083  * before reading a NAND page.
1084  */
1085 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1086 {
1087 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1088 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1089 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1090 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1091 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1092 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1093 }
1094 
1095 /*
1096  * Helper to prepare DMA descriptors for configuring registers
1097  * before reading each codeword in NAND page.
1098  */
1099 static void
1100 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1101 {
1102 	if (nandc->props->is_bam)
1103 		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1104 			      NAND_BAM_NEXT_SGL);
1105 
1106 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1107 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1108 
1109 	if (use_ecc) {
1110 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1111 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1112 			     NAND_BAM_NEXT_SGL);
1113 	} else {
1114 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1115 	}
1116 }
1117 
1118 /*
1119  * Helper to prepare dma descriptors to configure registers needed for reading a
1120  * single codeword in page
1121  */
1122 static void
1123 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1124 				bool use_ecc)
1125 {
1126 	config_nand_page_read(nandc);
1127 	config_nand_cw_read(nandc, use_ecc);
1128 }
1129 
1130 /*
1131  * Helper to prepare DMA descriptors used to configure registers needed for
1132  * before writing a NAND page.
1133  */
1134 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1135 {
1136 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1137 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1138 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1139 		      NAND_BAM_NEXT_SGL);
1140 }
1141 
1142 /*
1143  * Helper to prepare DMA descriptors for configuring registers
1144  * before writing each codeword in NAND page.
1145  */
1146 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1147 {
1148 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1149 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1150 
1151 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1152 
1153 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1154 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1155 }
1156 
1157 /*
1158  * the following functions are used within chip->cmdfunc() to perform different
1159  * NAND_CMD_* commands
1160  */
1161 
1162 /* sets up descriptors for NAND_CMD_PARAM */
1163 static int nandc_param(struct qcom_nand_host *host)
1164 {
1165 	struct nand_chip *chip = &host->chip;
1166 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1167 
1168 	/*
1169 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1170 	 * in use. we configure the controller to perform a raw read of 512
1171 	 * bytes to read onfi params
1172 	 */
1173 	nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
1174 	nandc_set_reg(nandc, NAND_ADDR0, 0);
1175 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1176 	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1177 					| 512 << UD_SIZE_BYTES
1178 					| 5 << NUM_ADDR_CYCLES
1179 					| 0 << SPARE_SIZE_BYTES);
1180 	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1181 					| 0 << CS_ACTIVE_BSY
1182 					| 17 << BAD_BLOCK_BYTE_NUM
1183 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1184 					| 2 << WR_RD_BSY_GAP
1185 					| 0 << WIDE_FLASH
1186 					| 1 << DEV0_CFG1_ECC_DISABLE);
1187 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1188 
1189 	/* configure CMD1 and VLD for ONFI param probing */
1190 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1191 		      (nandc->vld & ~READ_START_VLD));
1192 	nandc_set_reg(nandc, NAND_DEV_CMD1,
1193 		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1194 		      | NAND_CMD_PARAM << READ_ADDR);
1195 
1196 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1197 
1198 	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1199 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1200 	nandc_set_read_loc(nandc, 0, 0, 512, 1);
1201 
1202 	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1203 	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1204 
1205 	nandc->buf_count = 512;
1206 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1207 
1208 	config_nand_single_cw_page_read(nandc, false);
1209 
1210 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1211 		      nandc->buf_count, 0);
1212 
1213 	/* restore CMD1 and VLD regs */
1214 	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1215 	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1216 
1217 	return 0;
1218 }
1219 
1220 /* sets up descriptors for NAND_CMD_ERASE1 */
1221 static int erase_block(struct qcom_nand_host *host, int page_addr)
1222 {
1223 	struct nand_chip *chip = &host->chip;
1224 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225 
1226 	nandc_set_reg(nandc, NAND_FLASH_CMD,
1227 		      BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1228 	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1229 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1230 	nandc_set_reg(nandc, NAND_DEV0_CFG0,
1231 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1232 	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1233 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1234 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1235 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1236 
1237 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1238 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1239 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1240 
1241 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1242 
1243 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1244 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1245 
1246 	return 0;
1247 }
1248 
1249 /* sets up descriptors for NAND_CMD_READID */
1250 static int read_id(struct qcom_nand_host *host, int column)
1251 {
1252 	struct nand_chip *chip = &host->chip;
1253 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1254 
1255 	if (column == -1)
1256 		return 0;
1257 
1258 	nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID);
1259 	nandc_set_reg(nandc, NAND_ADDR0, column);
1260 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1261 	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1262 		      nandc->props->is_bam ? 0 : DM_EN);
1263 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1264 
1265 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1266 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1267 
1268 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1269 
1270 	return 0;
1271 }
1272 
1273 /* sets up descriptors for NAND_CMD_RESET */
1274 static int reset(struct qcom_nand_host *host)
1275 {
1276 	struct nand_chip *chip = &host->chip;
1277 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1278 
1279 	nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE);
1280 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1281 
1282 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1283 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1284 
1285 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1286 
1287 	return 0;
1288 }
1289 
1290 /* helpers to submit/free our list of dma descriptors */
1291 static int submit_descs(struct qcom_nand_controller *nandc)
1292 {
1293 	struct desc_info *desc;
1294 	dma_cookie_t cookie = 0;
1295 	struct bam_transaction *bam_txn = nandc->bam_txn;
1296 	int r;
1297 
1298 	if (nandc->props->is_bam) {
1299 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1300 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1301 			if (r)
1302 				return r;
1303 		}
1304 
1305 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1306 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1307 						   DMA_PREP_INTERRUPT);
1308 			if (r)
1309 				return r;
1310 		}
1311 
1312 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1313 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1314 						   DMA_PREP_CMD);
1315 			if (r)
1316 				return r;
1317 		}
1318 	}
1319 
1320 	list_for_each_entry(desc, &nandc->desc_list, node)
1321 		cookie = dmaengine_submit(desc->dma_desc);
1322 
1323 	if (nandc->props->is_bam) {
1324 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1325 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1326 		if (bam_txn->last_data_desc) {
1327 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1328 			bam_txn->last_data_desc->callback_param = bam_txn;
1329 			bam_txn->wait_second_completion = true;
1330 		}
1331 
1332 		dma_async_issue_pending(nandc->tx_chan);
1333 		dma_async_issue_pending(nandc->rx_chan);
1334 		dma_async_issue_pending(nandc->cmd_chan);
1335 
1336 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1337 						 QPIC_NAND_COMPLETION_TIMEOUT))
1338 			return -ETIMEDOUT;
1339 	} else {
1340 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1341 			return -ETIMEDOUT;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static void free_descs(struct qcom_nand_controller *nandc)
1348 {
1349 	struct desc_info *desc, *n;
1350 
1351 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1352 		list_del(&desc->node);
1353 
1354 		if (nandc->props->is_bam)
1355 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1356 				     desc->sgl_cnt, desc->dir);
1357 		else
1358 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1359 				     desc->dir);
1360 
1361 		kfree(desc);
1362 	}
1363 }
1364 
1365 /* reset the register read buffer for next NAND operation */
1366 static void clear_read_regs(struct qcom_nand_controller *nandc)
1367 {
1368 	nandc->reg_read_pos = 0;
1369 	nandc_read_buffer_sync(nandc, false);
1370 }
1371 
1372 static void pre_command(struct qcom_nand_host *host, int command)
1373 {
1374 	struct nand_chip *chip = &host->chip;
1375 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1376 
1377 	nandc->buf_count = 0;
1378 	nandc->buf_start = 0;
1379 	host->use_ecc = false;
1380 	host->last_command = command;
1381 
1382 	clear_read_regs(nandc);
1383 
1384 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1385 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1386 		clear_bam_transaction(nandc);
1387 }
1388 
1389 /*
1390  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1391  * privately maintained status byte, this status byte can be read after
1392  * NAND_CMD_STATUS is called
1393  */
1394 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1395 {
1396 	struct nand_chip *chip = &host->chip;
1397 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1398 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1399 	int num_cw;
1400 	int i;
1401 
1402 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1403 	nandc_read_buffer_sync(nandc, true);
1404 
1405 	for (i = 0; i < num_cw; i++) {
1406 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1407 
1408 		if (flash_status & FS_MPU_ERR)
1409 			host->status &= ~NAND_STATUS_WP;
1410 
1411 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1412 						 (flash_status &
1413 						  FS_DEVICE_STS_ERR)))
1414 			host->status |= NAND_STATUS_FAIL;
1415 	}
1416 }
1417 
1418 static void post_command(struct qcom_nand_host *host, int command)
1419 {
1420 	struct nand_chip *chip = &host->chip;
1421 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1422 
1423 	switch (command) {
1424 	case NAND_CMD_READID:
1425 		nandc_read_buffer_sync(nandc, true);
1426 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1427 		       nandc->buf_count);
1428 		break;
1429 	case NAND_CMD_PAGEPROG:
1430 	case NAND_CMD_ERASE1:
1431 		parse_erase_write_errors(host, command);
1432 		break;
1433 	default:
1434 		break;
1435 	}
1436 }
1437 
1438 /*
1439  * Implements chip->cmdfunc. It's  only used for a limited set of commands.
1440  * The rest of the commands wouldn't be called by upper layers. For example,
1441  * NAND_CMD_READOOB would never be called because we have our own versions
1442  * of read_oob ops for nand_ecc_ctrl.
1443  */
1444 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1445 			       int column, int page_addr)
1446 {
1447 	struct nand_chip *chip = mtd_to_nand(mtd);
1448 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1449 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1450 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1451 	bool wait = false;
1452 	int ret = 0;
1453 
1454 	pre_command(host, command);
1455 
1456 	switch (command) {
1457 	case NAND_CMD_RESET:
1458 		ret = reset(host);
1459 		wait = true;
1460 		break;
1461 
1462 	case NAND_CMD_READID:
1463 		nandc->buf_count = 4;
1464 		ret = read_id(host, column);
1465 		wait = true;
1466 		break;
1467 
1468 	case NAND_CMD_PARAM:
1469 		ret = nandc_param(host);
1470 		wait = true;
1471 		break;
1472 
1473 	case NAND_CMD_ERASE1:
1474 		ret = erase_block(host, page_addr);
1475 		wait = true;
1476 		break;
1477 
1478 	case NAND_CMD_READ0:
1479 		/* we read the entire page for now */
1480 		WARN_ON(column != 0);
1481 
1482 		host->use_ecc = true;
1483 		set_address(host, 0, page_addr);
1484 		update_rw_regs(host, ecc->steps, true);
1485 		break;
1486 
1487 	case NAND_CMD_SEQIN:
1488 		WARN_ON(column != 0);
1489 		set_address(host, 0, page_addr);
1490 		break;
1491 
1492 	case NAND_CMD_PAGEPROG:
1493 	case NAND_CMD_STATUS:
1494 	case NAND_CMD_NONE:
1495 	default:
1496 		break;
1497 	}
1498 
1499 	if (ret) {
1500 		dev_err(nandc->dev, "failure executing command %d\n",
1501 			command);
1502 		free_descs(nandc);
1503 		return;
1504 	}
1505 
1506 	if (wait) {
1507 		ret = submit_descs(nandc);
1508 		if (ret)
1509 			dev_err(nandc->dev,
1510 				"failure submitting descs for command %d\n",
1511 				command);
1512 	}
1513 
1514 	free_descs(nandc);
1515 
1516 	post_command(host, command);
1517 }
1518 
1519 /*
1520  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1521  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1522  *
1523  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1524  * but it notifies that it is an erased CW by placing special characters at
1525  * certain offsets in the buffer.
1526  *
1527  * verify if the page is erased or not, and fix up the page for RS ECC by
1528  * replacing the special characters with 0xff.
1529  */
1530 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1531 {
1532 	u8 empty1, empty2;
1533 
1534 	/*
1535 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1536 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1537 	 * beginning of each codeword
1538 	 */
1539 
1540 	empty1 = data_buf[3];
1541 	empty2 = data_buf[175];
1542 
1543 	/*
1544 	 * if the erased codework markers, if they exist override them with
1545 	 * 0xffs
1546 	 */
1547 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1548 	    (empty1 == 0xff && empty2 == 0x54)) {
1549 		data_buf[3] = 0xff;
1550 		data_buf[175] = 0xff;
1551 	}
1552 
1553 	/*
1554 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1555 	 * restore the original values at the special offsets
1556 	 */
1557 	if (memchr_inv(data_buf, 0xff, data_len)) {
1558 		data_buf[3] = empty1;
1559 		data_buf[175] = empty2;
1560 
1561 		return false;
1562 	}
1563 
1564 	return true;
1565 }
1566 
1567 struct read_stats {
1568 	__le32 flash;
1569 	__le32 buffer;
1570 	__le32 erased_cw;
1571 };
1572 
1573 /* reads back FLASH_STATUS register set by the controller */
1574 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1575 {
1576 	struct nand_chip *chip = &host->chip;
1577 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1578 	int i;
1579 
1580 	for (i = 0; i < cw_cnt; i++) {
1581 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1582 
1583 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1584 			return -EIO;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 /* performs raw read for one codeword */
1591 static int
1592 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1593 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1594 {
1595 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1596 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1597 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1598 	int data_size1, data_size2, oob_size1, oob_size2;
1599 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1600 
1601 	nand_read_page_op(chip, page, 0, NULL, 0);
1602 	host->use_ecc = false;
1603 
1604 	clear_bam_transaction(nandc);
1605 	set_address(host, host->cw_size * cw, page);
1606 	update_rw_regs(host, 1, true);
1607 	config_nand_page_read(nandc);
1608 
1609 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1610 	oob_size1 = host->bbm_size;
1611 
1612 	if (cw == (ecc->steps - 1)) {
1613 		data_size2 = ecc->size - data_size1 -
1614 			     ((ecc->steps - 1) * 4);
1615 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1616 			    host->spare_bytes;
1617 	} else {
1618 		data_size2 = host->cw_data - data_size1;
1619 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1620 	}
1621 
1622 	if (nandc->props->is_bam) {
1623 		nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1624 		read_loc += data_size1;
1625 
1626 		nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1627 		read_loc += oob_size1;
1628 
1629 		nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1630 		read_loc += data_size2;
1631 
1632 		nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1633 	}
1634 
1635 	config_nand_cw_read(nandc, false);
1636 
1637 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1638 	reg_off += data_size1;
1639 
1640 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1641 	reg_off += oob_size1;
1642 
1643 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1644 	reg_off += data_size2;
1645 
1646 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1647 
1648 	ret = submit_descs(nandc);
1649 	free_descs(nandc);
1650 	if (ret) {
1651 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1652 		return ret;
1653 	}
1654 
1655 	return check_flash_errors(host, 1);
1656 }
1657 
1658 /*
1659  * Bitflips can happen in erased codewords also so this function counts the
1660  * number of 0 in each CW for which ECC engine returns the uncorrectable
1661  * error. The page will be assumed as erased if this count is less than or
1662  * equal to the ecc->strength for each CW.
1663  *
1664  * 1. Both DATA and OOB need to be checked for number of 0. The
1665  *    top-level API can be called with only data buf or OOB buf so use
1666  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1667  *    is null for copying the raw bytes.
1668  * 2. Perform raw read for all the CW which has uncorrectable errors.
1669  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1670  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1671  *    the number of bitflips in this area.
1672  */
1673 static int
1674 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1675 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1676 		      int page, unsigned int max_bitflips)
1677 {
1678 	struct nand_chip *chip = &host->chip;
1679 	struct mtd_info *mtd = nand_to_mtd(chip);
1680 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1681 	u8 *cw_data_buf, *cw_oob_buf;
1682 	int cw, data_size, oob_size, ret = 0;
1683 
1684 	if (!data_buf) {
1685 		data_buf = chip->data_buf;
1686 		chip->pagebuf = -1;
1687 	}
1688 
1689 	if (!oob_buf) {
1690 		oob_buf = chip->oob_poi;
1691 		chip->pagebuf = -1;
1692 	}
1693 
1694 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1695 		if (cw == (ecc->steps - 1)) {
1696 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1697 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1698 		} else {
1699 			data_size = host->cw_data;
1700 			oob_size = host->ecc_bytes_hw;
1701 		}
1702 
1703 		/* determine starting buffer address for current CW */
1704 		cw_data_buf = data_buf + (cw * host->cw_data);
1705 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1706 
1707 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1708 					     cw_oob_buf, page, cw);
1709 		if (ret)
1710 			return ret;
1711 
1712 		/*
1713 		 * make sure it isn't an erased page reported
1714 		 * as not-erased by HW because of a few bitflips
1715 		 */
1716 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1717 						  cw_oob_buf + host->bbm_size,
1718 						  oob_size, NULL,
1719 						  0, ecc->strength);
1720 		if (ret < 0) {
1721 			mtd->ecc_stats.failed++;
1722 		} else {
1723 			mtd->ecc_stats.corrected += ret;
1724 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1725 		}
1726 	}
1727 
1728 	return max_bitflips;
1729 }
1730 
1731 /*
1732  * reads back status registers set by the controller to notify page read
1733  * errors. this is equivalent to what 'ecc->correct()' would do.
1734  */
1735 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1736 			     u8 *oob_buf, int page)
1737 {
1738 	struct nand_chip *chip = &host->chip;
1739 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1740 	struct mtd_info *mtd = nand_to_mtd(chip);
1741 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1742 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1743 	struct read_stats *buf;
1744 	bool flash_op_err = false, erased;
1745 	int i;
1746 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1747 
1748 	buf = (struct read_stats *)nandc->reg_read_buf;
1749 	nandc_read_buffer_sync(nandc, true);
1750 
1751 	for (i = 0; i < ecc->steps; i++, buf++) {
1752 		u32 flash, buffer, erased_cw;
1753 		int data_len, oob_len;
1754 
1755 		if (i == (ecc->steps - 1)) {
1756 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1757 			oob_len = ecc->steps << 2;
1758 		} else {
1759 			data_len = host->cw_data;
1760 			oob_len = 0;
1761 		}
1762 
1763 		flash = le32_to_cpu(buf->flash);
1764 		buffer = le32_to_cpu(buf->buffer);
1765 		erased_cw = le32_to_cpu(buf->erased_cw);
1766 
1767 		/*
1768 		 * Check ECC failure for each codeword. ECC failure can
1769 		 * happen in either of the following conditions
1770 		 * 1. If number of bitflips are greater than ECC engine
1771 		 *    capability.
1772 		 * 2. If this codeword contains all 0xff for which erased
1773 		 *    codeword detection check will be done.
1774 		 */
1775 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1776 			/*
1777 			 * For BCH ECC, ignore erased codeword errors, if
1778 			 * ERASED_CW bits are set.
1779 			 */
1780 			if (host->bch_enabled) {
1781 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1782 					 true : false;
1783 			/*
1784 			 * For RS ECC, HW reports the erased CW by placing
1785 			 * special characters at certain offsets in the buffer.
1786 			 * These special characters will be valid only if
1787 			 * complete page is read i.e. data_buf is not NULL.
1788 			 */
1789 			} else if (data_buf) {
1790 				erased = erased_chunk_check_and_fixup(data_buf,
1791 								      data_len);
1792 			} else {
1793 				erased = false;
1794 			}
1795 
1796 			if (!erased)
1797 				uncorrectable_cws |= BIT(i);
1798 		/*
1799 		 * Check if MPU or any other operational error (timeout,
1800 		 * device failure, etc.) happened for this codeword and
1801 		 * make flash_op_err true. If flash_op_err is set, then
1802 		 * EIO will be returned for page read.
1803 		 */
1804 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1805 			flash_op_err = true;
1806 		/*
1807 		 * No ECC or operational errors happened. Check the number of
1808 		 * bits corrected and update the ecc_stats.corrected.
1809 		 */
1810 		} else {
1811 			unsigned int stat;
1812 
1813 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1814 			mtd->ecc_stats.corrected += stat;
1815 			max_bitflips = max(max_bitflips, stat);
1816 		}
1817 
1818 		if (data_buf)
1819 			data_buf += data_len;
1820 		if (oob_buf)
1821 			oob_buf += oob_len + ecc->bytes;
1822 	}
1823 
1824 	if (flash_op_err)
1825 		return -EIO;
1826 
1827 	if (!uncorrectable_cws)
1828 		return max_bitflips;
1829 
1830 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1831 				     uncorrectable_cws, page,
1832 				     max_bitflips);
1833 }
1834 
1835 /*
1836  * helper to perform the actual page read operation, used by ecc->read_page(),
1837  * ecc->read_oob()
1838  */
1839 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1840 			 u8 *oob_buf, int page)
1841 {
1842 	struct nand_chip *chip = &host->chip;
1843 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1844 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1845 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1846 	int i, ret;
1847 
1848 	config_nand_page_read(nandc);
1849 
1850 	/* queue cmd descs for each codeword */
1851 	for (i = 0; i < ecc->steps; i++) {
1852 		int data_size, oob_size;
1853 
1854 		if (i == (ecc->steps - 1)) {
1855 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1856 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1857 				   host->spare_bytes;
1858 		} else {
1859 			data_size = host->cw_data;
1860 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1861 		}
1862 
1863 		if (nandc->props->is_bam) {
1864 			if (data_buf && oob_buf) {
1865 				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1866 				nandc_set_read_loc(nandc, 1, data_size,
1867 						   oob_size, 1);
1868 			} else if (data_buf) {
1869 				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1870 			} else {
1871 				nandc_set_read_loc(nandc, 0, data_size,
1872 						   oob_size, 1);
1873 			}
1874 		}
1875 
1876 		config_nand_cw_read(nandc, true);
1877 
1878 		if (data_buf)
1879 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1880 				      data_size, 0);
1881 
1882 		/*
1883 		 * when ecc is enabled, the controller doesn't read the real
1884 		 * or dummy bad block markers in each chunk. To maintain a
1885 		 * consistent layout across RAW and ECC reads, we just
1886 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1887 		 * 0xffs)
1888 		 */
1889 		if (oob_buf) {
1890 			int j;
1891 
1892 			for (j = 0; j < host->bbm_size; j++)
1893 				*oob_buf++ = 0xff;
1894 
1895 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1896 				      oob_buf, oob_size, 0);
1897 		}
1898 
1899 		if (data_buf)
1900 			data_buf += data_size;
1901 		if (oob_buf)
1902 			oob_buf += oob_size;
1903 	}
1904 
1905 	ret = submit_descs(nandc);
1906 	free_descs(nandc);
1907 
1908 	if (ret) {
1909 		dev_err(nandc->dev, "failure to read page/oob\n");
1910 		return ret;
1911 	}
1912 
1913 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1914 }
1915 
1916 /*
1917  * a helper that copies the last step/codeword of a page (containing free oob)
1918  * into our local buffer
1919  */
1920 static int copy_last_cw(struct qcom_nand_host *host, int page)
1921 {
1922 	struct nand_chip *chip = &host->chip;
1923 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1924 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1925 	int size;
1926 	int ret;
1927 
1928 	clear_read_regs(nandc);
1929 
1930 	size = host->use_ecc ? host->cw_data : host->cw_size;
1931 
1932 	/* prepare a clean read buffer */
1933 	memset(nandc->data_buffer, 0xff, size);
1934 
1935 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1936 	update_rw_regs(host, 1, true);
1937 
1938 	config_nand_single_cw_page_read(nandc, host->use_ecc);
1939 
1940 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1941 
1942 	ret = submit_descs(nandc);
1943 	if (ret)
1944 		dev_err(nandc->dev, "failed to copy last codeword\n");
1945 
1946 	free_descs(nandc);
1947 
1948 	return ret;
1949 }
1950 
1951 /* implements ecc->read_page() */
1952 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1953 				uint8_t *buf, int oob_required, int page)
1954 {
1955 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1956 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1957 	u8 *data_buf, *oob_buf = NULL;
1958 
1959 	nand_read_page_op(chip, page, 0, NULL, 0);
1960 	data_buf = buf;
1961 	oob_buf = oob_required ? chip->oob_poi : NULL;
1962 
1963 	clear_bam_transaction(nandc);
1964 
1965 	return read_page_ecc(host, data_buf, oob_buf, page);
1966 }
1967 
1968 /* implements ecc->read_page_raw() */
1969 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1970 				    struct nand_chip *chip, uint8_t *buf,
1971 				    int oob_required, int page)
1972 {
1973 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1974 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1975 	int cw, ret;
1976 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1977 
1978 	for (cw = 0; cw < ecc->steps; cw++) {
1979 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1980 					     page, cw);
1981 		if (ret)
1982 			return ret;
1983 
1984 		data_buf += host->cw_data;
1985 		oob_buf += ecc->bytes;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 /* implements ecc->read_oob() */
1992 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1993 			       int page)
1994 {
1995 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1996 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1997 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1998 
1999 	clear_read_regs(nandc);
2000 	clear_bam_transaction(nandc);
2001 
2002 	host->use_ecc = true;
2003 	set_address(host, 0, page);
2004 	update_rw_regs(host, ecc->steps, true);
2005 
2006 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2007 }
2008 
2009 /* implements ecc->write_page() */
2010 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2011 				 const uint8_t *buf, int oob_required, int page)
2012 {
2013 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2014 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2015 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2016 	u8 *data_buf, *oob_buf;
2017 	int i, ret;
2018 
2019 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2020 
2021 	clear_read_regs(nandc);
2022 	clear_bam_transaction(nandc);
2023 
2024 	data_buf = (u8 *)buf;
2025 	oob_buf = chip->oob_poi;
2026 
2027 	host->use_ecc = true;
2028 	update_rw_regs(host, ecc->steps, false);
2029 	config_nand_page_write(nandc);
2030 
2031 	for (i = 0; i < ecc->steps; i++) {
2032 		int data_size, oob_size;
2033 
2034 		if (i == (ecc->steps - 1)) {
2035 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2036 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2037 				   host->spare_bytes;
2038 		} else {
2039 			data_size = host->cw_data;
2040 			oob_size = ecc->bytes;
2041 		}
2042 
2043 
2044 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2045 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2046 
2047 		/*
2048 		 * when ECC is enabled, we don't really need to write anything
2049 		 * to oob for the first n - 1 codewords since these oob regions
2050 		 * just contain ECC bytes that's written by the controller
2051 		 * itself. For the last codeword, we skip the bbm positions and
2052 		 * write to the free oob area.
2053 		 */
2054 		if (i == (ecc->steps - 1)) {
2055 			oob_buf += host->bbm_size;
2056 
2057 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2058 				       oob_buf, oob_size, 0);
2059 		}
2060 
2061 		config_nand_cw_write(nandc);
2062 
2063 		data_buf += data_size;
2064 		oob_buf += oob_size;
2065 	}
2066 
2067 	ret = submit_descs(nandc);
2068 	if (ret)
2069 		dev_err(nandc->dev, "failure to write page\n");
2070 
2071 	free_descs(nandc);
2072 
2073 	if (!ret)
2074 		ret = nand_prog_page_end_op(chip);
2075 
2076 	return ret;
2077 }
2078 
2079 /* implements ecc->write_page_raw() */
2080 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
2081 				     struct nand_chip *chip, const uint8_t *buf,
2082 				     int oob_required, int page)
2083 {
2084 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2085 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2086 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2087 	u8 *data_buf, *oob_buf;
2088 	int i, ret;
2089 
2090 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2091 	clear_read_regs(nandc);
2092 	clear_bam_transaction(nandc);
2093 
2094 	data_buf = (u8 *)buf;
2095 	oob_buf = chip->oob_poi;
2096 
2097 	host->use_ecc = false;
2098 	update_rw_regs(host, ecc->steps, false);
2099 	config_nand_page_write(nandc);
2100 
2101 	for (i = 0; i < ecc->steps; i++) {
2102 		int data_size1, data_size2, oob_size1, oob_size2;
2103 		int reg_off = FLASH_BUF_ACC;
2104 
2105 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2106 		oob_size1 = host->bbm_size;
2107 
2108 		if (i == (ecc->steps - 1)) {
2109 			data_size2 = ecc->size - data_size1 -
2110 				     ((ecc->steps - 1) << 2);
2111 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2112 				    host->spare_bytes;
2113 		} else {
2114 			data_size2 = host->cw_data - data_size1;
2115 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2116 		}
2117 
2118 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2119 			       NAND_BAM_NO_EOT);
2120 		reg_off += data_size1;
2121 		data_buf += data_size1;
2122 
2123 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2124 			       NAND_BAM_NO_EOT);
2125 		reg_off += oob_size1;
2126 		oob_buf += oob_size1;
2127 
2128 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2129 			       NAND_BAM_NO_EOT);
2130 		reg_off += data_size2;
2131 		data_buf += data_size2;
2132 
2133 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2134 		oob_buf += oob_size2;
2135 
2136 		config_nand_cw_write(nandc);
2137 	}
2138 
2139 	ret = submit_descs(nandc);
2140 	if (ret)
2141 		dev_err(nandc->dev, "failure to write raw page\n");
2142 
2143 	free_descs(nandc);
2144 
2145 	if (!ret)
2146 		ret = nand_prog_page_end_op(chip);
2147 
2148 	return ret;
2149 }
2150 
2151 /*
2152  * implements ecc->write_oob()
2153  *
2154  * the NAND controller cannot write only data or only OOB within a codeword
2155  * since ECC is calculated for the combined codeword. So update the OOB from
2156  * chip->oob_poi, and pad the data area with OxFF before writing.
2157  */
2158 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
2159 				int page)
2160 {
2161 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2162 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2163 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2164 	u8 *oob = chip->oob_poi;
2165 	int data_size, oob_size;
2166 	int ret;
2167 
2168 	host->use_ecc = true;
2169 	clear_bam_transaction(nandc);
2170 
2171 	/* calculate the data and oob size for the last codeword/step */
2172 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2173 	oob_size = mtd->oobavail;
2174 
2175 	memset(nandc->data_buffer, 0xff, host->cw_data);
2176 	/* override new oob content to last codeword */
2177 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2178 				    0, mtd->oobavail);
2179 
2180 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2181 	update_rw_regs(host, 1, false);
2182 
2183 	config_nand_page_write(nandc);
2184 	write_data_dma(nandc, FLASH_BUF_ACC,
2185 		       nandc->data_buffer, data_size + oob_size, 0);
2186 	config_nand_cw_write(nandc);
2187 
2188 	ret = submit_descs(nandc);
2189 
2190 	free_descs(nandc);
2191 
2192 	if (ret) {
2193 		dev_err(nandc->dev, "failure to write oob\n");
2194 		return -EIO;
2195 	}
2196 
2197 	return nand_prog_page_end_op(chip);
2198 }
2199 
2200 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
2201 {
2202 	struct nand_chip *chip = mtd_to_nand(mtd);
2203 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2204 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2205 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2206 	int page, ret, bbpos, bad = 0;
2207 
2208 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2209 
2210 	/*
2211 	 * configure registers for a raw sub page read, the address is set to
2212 	 * the beginning of the last codeword, we don't care about reading ecc
2213 	 * portion of oob. we just want the first few bytes from this codeword
2214 	 * that contains the BBM
2215 	 */
2216 	host->use_ecc = false;
2217 
2218 	clear_bam_transaction(nandc);
2219 	ret = copy_last_cw(host, page);
2220 	if (ret)
2221 		goto err;
2222 
2223 	if (check_flash_errors(host, 1)) {
2224 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2225 		goto err;
2226 	}
2227 
2228 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2229 
2230 	bad = nandc->data_buffer[bbpos] != 0xff;
2231 
2232 	if (chip->options & NAND_BUSWIDTH_16)
2233 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2234 err:
2235 	return bad;
2236 }
2237 
2238 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
2239 {
2240 	struct nand_chip *chip = mtd_to_nand(mtd);
2241 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2242 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2243 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2244 	int page, ret;
2245 
2246 	clear_read_regs(nandc);
2247 	clear_bam_transaction(nandc);
2248 
2249 	/*
2250 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2251 	 * we don't care about the rest of the content in the codeword since
2252 	 * we aren't going to use this block again
2253 	 */
2254 	memset(nandc->data_buffer, 0x00, host->cw_size);
2255 
2256 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2257 
2258 	/* prepare write */
2259 	host->use_ecc = false;
2260 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2261 	update_rw_regs(host, 1, false);
2262 
2263 	config_nand_page_write(nandc);
2264 	write_data_dma(nandc, FLASH_BUF_ACC,
2265 		       nandc->data_buffer, host->cw_size, 0);
2266 	config_nand_cw_write(nandc);
2267 
2268 	ret = submit_descs(nandc);
2269 
2270 	free_descs(nandc);
2271 
2272 	if (ret) {
2273 		dev_err(nandc->dev, "failure to update BBM\n");
2274 		return -EIO;
2275 	}
2276 
2277 	return nand_prog_page_end_op(chip);
2278 }
2279 
2280 /*
2281  * the three functions below implement chip->read_byte(), chip->read_buf()
2282  * and chip->write_buf() respectively. these aren't used for
2283  * reading/writing page data, they are used for smaller data like reading
2284  * id, status etc
2285  */
2286 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2287 {
2288 	struct nand_chip *chip = mtd_to_nand(mtd);
2289 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2290 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2291 	u8 *buf = nandc->data_buffer;
2292 	u8 ret = 0x0;
2293 
2294 	if (host->last_command == NAND_CMD_STATUS) {
2295 		ret = host->status;
2296 
2297 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2298 
2299 		return ret;
2300 	}
2301 
2302 	if (nandc->buf_start < nandc->buf_count)
2303 		ret = buf[nandc->buf_start++];
2304 
2305 	return ret;
2306 }
2307 
2308 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2309 {
2310 	struct nand_chip *chip = mtd_to_nand(mtd);
2311 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2312 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2313 
2314 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2315 	nandc->buf_start += real_len;
2316 }
2317 
2318 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2319 				 int len)
2320 {
2321 	struct nand_chip *chip = mtd_to_nand(mtd);
2322 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2323 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2324 
2325 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2326 
2327 	nandc->buf_start += real_len;
2328 }
2329 
2330 /* we support only one external chip for now */
2331 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2332 {
2333 	struct nand_chip *chip = mtd_to_nand(mtd);
2334 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2335 
2336 	if (chipnr <= 0)
2337 		return;
2338 
2339 	dev_warn(nandc->dev, "invalid chip select\n");
2340 }
2341 
2342 /*
2343  * NAND controller page layout info
2344  *
2345  * Layout with ECC enabled:
2346  *
2347  * |----------------------|  |---------------------------------|
2348  * |           xx.......yy|  |             *********xx.......yy|
2349  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2350  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2351  * |           xx.......yy|  |             *********xx.......yy|
2352  * |----------------------|  |---------------------------------|
2353  *     codeword 1,2..n-1                  codeword n
2354  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2355  *
2356  * n = Number of codewords in the page
2357  * . = ECC bytes
2358  * * = Spare/free bytes
2359  * x = Unused byte(s)
2360  * y = Reserved byte(s)
2361  *
2362  * 2K page: n = 4, spare = 16 bytes
2363  * 4K page: n = 8, spare = 32 bytes
2364  * 8K page: n = 16, spare = 64 bytes
2365  *
2366  * the qcom nand controller operates at a sub page/codeword level. each
2367  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2368  * the number of ECC bytes vary based on the ECC strength and the bus width.
2369  *
2370  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2371  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2372  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2373  *
2374  * When we access a page with ECC enabled, the reserved bytes(s) are not
2375  * accessible at all. When reading, we fill up these unreadable positions
2376  * with 0xffs. When writing, the controller skips writing the inaccessible
2377  * bytes.
2378  *
2379  * Layout with ECC disabled:
2380  *
2381  * |------------------------------|  |---------------------------------------|
2382  * |         yy          xx.......|  |         bb          *********xx.......|
2383  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2384  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2385  * |         yy          xx.......|  |         bb          *********xx.......|
2386  * |------------------------------|  |---------------------------------------|
2387  *         codeword 1,2..n-1                        codeword n
2388  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2389  *
2390  * n = Number of codewords in the page
2391  * . = ECC bytes
2392  * * = Spare/free bytes
2393  * x = Unused byte(s)
2394  * y = Dummy Bad Bock byte(s)
2395  * b = Real Bad Block byte(s)
2396  * size1/size2 = function of codeword size and 'n'
2397  *
2398  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2399  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2400  * Block Markers. In the last codeword, this position contains the real BBM
2401  *
2402  * In order to have a consistent layout between RAW and ECC modes, we assume
2403  * the following OOB layout arrangement:
2404  *
2405  * |-----------|  |--------------------|
2406  * |yyxx.......|  |bb*********xx.......|
2407  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2408  * |yyxx.......|  |bb*********xx.......|
2409  * |yyxx.......|  |bb*********xx.......|
2410  * |-----------|  |--------------------|
2411  *  first n - 1       nth OOB region
2412  *  OOB regions
2413  *
2414  * n = Number of codewords in the page
2415  * . = ECC bytes
2416  * * = FREE OOB bytes
2417  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2418  * x = Unused byte(s)
2419  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2420  *
2421  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2422  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2423  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2424  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2425  * the sum of the three).
2426  */
2427 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2428 				   struct mtd_oob_region *oobregion)
2429 {
2430 	struct nand_chip *chip = mtd_to_nand(mtd);
2431 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2432 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2433 
2434 	if (section > 1)
2435 		return -ERANGE;
2436 
2437 	if (!section) {
2438 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2439 				    host->bbm_size;
2440 		oobregion->offset = 0;
2441 	} else {
2442 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2443 		oobregion->offset = mtd->oobsize - oobregion->length;
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2450 				     struct mtd_oob_region *oobregion)
2451 {
2452 	struct nand_chip *chip = mtd_to_nand(mtd);
2453 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2454 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2455 
2456 	if (section)
2457 		return -ERANGE;
2458 
2459 	oobregion->length = ecc->steps * 4;
2460 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2461 
2462 	return 0;
2463 }
2464 
2465 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2466 	.ecc = qcom_nand_ooblayout_ecc,
2467 	.free = qcom_nand_ooblayout_free,
2468 };
2469 
2470 static int
2471 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2472 {
2473 	return strength == 4 ? 12 : 16;
2474 }
2475 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2476 		     NANDC_STEP_SIZE, 4, 8);
2477 
2478 static int qcom_nand_attach_chip(struct nand_chip *chip)
2479 {
2480 	struct mtd_info *mtd = nand_to_mtd(chip);
2481 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2482 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2483 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2484 	int cwperpage, bad_block_byte, ret;
2485 	bool wide_bus;
2486 	int ecc_mode = 1;
2487 
2488 	/* controller only supports 512 bytes data steps */
2489 	ecc->size = NANDC_STEP_SIZE;
2490 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2491 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2492 
2493 	/*
2494 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2495 	 * so remaining bytes can be used for ECC.
2496 	 */
2497 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2498 				   mtd->oobsize - (cwperpage * 4));
2499 	if (ret) {
2500 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2501 		return ret;
2502 	}
2503 
2504 	if (ecc->strength >= 8) {
2505 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2506 		host->bch_enabled = true;
2507 		ecc_mode = 1;
2508 
2509 		if (wide_bus) {
2510 			host->ecc_bytes_hw = 14;
2511 			host->spare_bytes = 0;
2512 			host->bbm_size = 2;
2513 		} else {
2514 			host->ecc_bytes_hw = 13;
2515 			host->spare_bytes = 2;
2516 			host->bbm_size = 1;
2517 		}
2518 	} else {
2519 		/*
2520 		 * if the controller supports BCH for 4 bit ECC, the controller
2521 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2522 		 * always 10 bytes
2523 		 */
2524 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2525 			/* BCH */
2526 			host->bch_enabled = true;
2527 			ecc_mode = 0;
2528 
2529 			if (wide_bus) {
2530 				host->ecc_bytes_hw = 8;
2531 				host->spare_bytes = 2;
2532 				host->bbm_size = 2;
2533 			} else {
2534 				host->ecc_bytes_hw = 7;
2535 				host->spare_bytes = 4;
2536 				host->bbm_size = 1;
2537 			}
2538 		} else {
2539 			/* RS */
2540 			host->ecc_bytes_hw = 10;
2541 
2542 			if (wide_bus) {
2543 				host->spare_bytes = 0;
2544 				host->bbm_size = 2;
2545 			} else {
2546 				host->spare_bytes = 1;
2547 				host->bbm_size = 1;
2548 			}
2549 		}
2550 	}
2551 
2552 	/*
2553 	 * we consider ecc->bytes as the sum of all the non-data content in a
2554 	 * step. It gives us a clean representation of the oob area (even if
2555 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2556 	 * ECC and 12 bytes for 4 bit ECC
2557 	 */
2558 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2559 
2560 	ecc->read_page		= qcom_nandc_read_page;
2561 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2562 	ecc->read_oob		= qcom_nandc_read_oob;
2563 	ecc->write_page		= qcom_nandc_write_page;
2564 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2565 	ecc->write_oob		= qcom_nandc_write_oob;
2566 
2567 	ecc->mode = NAND_ECC_HW;
2568 
2569 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2570 
2571 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2572 				     cwperpage);
2573 
2574 	/*
2575 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2576 	 * spare data with ECC too. We protect spare data by default, so we set
2577 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2578 	 */
2579 	host->cw_data = 516;
2580 
2581 	/*
2582 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2583 	 * for 8 bit ECC
2584 	 */
2585 	host->cw_size = host->cw_data + ecc->bytes;
2586 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2587 
2588 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2589 				| host->cw_data << UD_SIZE_BYTES
2590 				| 0 << DISABLE_STATUS_AFTER_WRITE
2591 				| 5 << NUM_ADDR_CYCLES
2592 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2593 				| 0 << STATUS_BFR_READ
2594 				| 1 << SET_RD_MODE_AFTER_STATUS
2595 				| host->spare_bytes << SPARE_SIZE_BYTES;
2596 
2597 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2598 				| 0 <<  CS_ACTIVE_BSY
2599 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2600 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2601 				| 2 << WR_RD_BSY_GAP
2602 				| wide_bus << WIDE_FLASH
2603 				| host->bch_enabled << ENABLE_BCH_ECC;
2604 
2605 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2606 				| host->cw_size << UD_SIZE_BYTES
2607 				| 5 << NUM_ADDR_CYCLES
2608 				| 0 << SPARE_SIZE_BYTES;
2609 
2610 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2611 				| 0 << CS_ACTIVE_BSY
2612 				| 17 << BAD_BLOCK_BYTE_NUM
2613 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2614 				| 2 << WR_RD_BSY_GAP
2615 				| wide_bus << WIDE_FLASH
2616 				| 1 << DEV0_CFG1_ECC_DISABLE;
2617 
2618 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2619 				| 0 << ECC_SW_RESET
2620 				| host->cw_data << ECC_NUM_DATA_BYTES
2621 				| 1 << ECC_FORCE_CLK_OPEN
2622 				| ecc_mode << ECC_MODE
2623 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2624 
2625 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2626 
2627 	host->clrflashstatus = FS_READY_BSY_N;
2628 	host->clrreadstatus = 0xc0;
2629 	nandc->regs->erased_cw_detect_cfg_clr =
2630 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2631 	nandc->regs->erased_cw_detect_cfg_set =
2632 		cpu_to_le32(SET_ERASED_PAGE_DET);
2633 
2634 	dev_dbg(nandc->dev,
2635 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2636 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2637 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2638 		cwperpage);
2639 
2640 	return 0;
2641 }
2642 
2643 static const struct nand_controller_ops qcom_nandc_ops = {
2644 	.attach_chip = qcom_nand_attach_chip,
2645 };
2646 
2647 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2648 {
2649 	int ret;
2650 
2651 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2652 	if (ret) {
2653 		dev_err(nandc->dev, "failed to set DMA mask\n");
2654 		return ret;
2655 	}
2656 
2657 	/*
2658 	 * we use the internal buffer for reading ONFI params, reading small
2659 	 * data like ID and status, and preforming read-copy-write operations
2660 	 * when writing to a codeword partially. 532 is the maximum possible
2661 	 * size of a codeword for our nand controller
2662 	 */
2663 	nandc->buf_size = 532;
2664 
2665 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2666 					GFP_KERNEL);
2667 	if (!nandc->data_buffer)
2668 		return -ENOMEM;
2669 
2670 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2671 					GFP_KERNEL);
2672 	if (!nandc->regs)
2673 		return -ENOMEM;
2674 
2675 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2676 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2677 				GFP_KERNEL);
2678 	if (!nandc->reg_read_buf)
2679 		return -ENOMEM;
2680 
2681 	if (nandc->props->is_bam) {
2682 		nandc->reg_read_dma =
2683 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2684 				       MAX_REG_RD *
2685 				       sizeof(*nandc->reg_read_buf),
2686 				       DMA_FROM_DEVICE);
2687 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2688 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2689 			return -EIO;
2690 		}
2691 
2692 		nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2693 		if (!nandc->tx_chan) {
2694 			dev_err(nandc->dev, "failed to request tx channel\n");
2695 			return -ENODEV;
2696 		}
2697 
2698 		nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2699 		if (!nandc->rx_chan) {
2700 			dev_err(nandc->dev, "failed to request rx channel\n");
2701 			return -ENODEV;
2702 		}
2703 
2704 		nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2705 		if (!nandc->cmd_chan) {
2706 			dev_err(nandc->dev, "failed to request cmd channel\n");
2707 			return -ENODEV;
2708 		}
2709 
2710 		/*
2711 		 * Initially allocate BAM transaction to read ONFI param page.
2712 		 * After detecting all the devices, this BAM transaction will
2713 		 * be freed and the next BAM tranasction will be allocated with
2714 		 * maximum codeword size
2715 		 */
2716 		nandc->max_cwperpage = 1;
2717 		nandc->bam_txn = alloc_bam_transaction(nandc);
2718 		if (!nandc->bam_txn) {
2719 			dev_err(nandc->dev,
2720 				"failed to allocate bam transaction\n");
2721 			return -ENOMEM;
2722 		}
2723 	} else {
2724 		nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2725 		if (!nandc->chan) {
2726 			dev_err(nandc->dev,
2727 				"failed to request slave channel\n");
2728 			return -ENODEV;
2729 		}
2730 	}
2731 
2732 	INIT_LIST_HEAD(&nandc->desc_list);
2733 	INIT_LIST_HEAD(&nandc->host_list);
2734 
2735 	nand_controller_init(&nandc->controller);
2736 	nandc->controller.ops = &qcom_nandc_ops;
2737 
2738 	return 0;
2739 }
2740 
2741 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2742 {
2743 	if (nandc->props->is_bam) {
2744 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2745 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2746 					 MAX_REG_RD *
2747 					 sizeof(*nandc->reg_read_buf),
2748 					 DMA_FROM_DEVICE);
2749 
2750 		if (nandc->tx_chan)
2751 			dma_release_channel(nandc->tx_chan);
2752 
2753 		if (nandc->rx_chan)
2754 			dma_release_channel(nandc->rx_chan);
2755 
2756 		if (nandc->cmd_chan)
2757 			dma_release_channel(nandc->cmd_chan);
2758 	} else {
2759 		if (nandc->chan)
2760 			dma_release_channel(nandc->chan);
2761 	}
2762 }
2763 
2764 /* one time setup of a few nand controller registers */
2765 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2766 {
2767 	u32 nand_ctrl;
2768 
2769 	/* kill onenand */
2770 	nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2771 	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2772 		    NAND_DEV_CMD_VLD_VAL);
2773 
2774 	/* enable ADM or BAM DMA */
2775 	if (nandc->props->is_bam) {
2776 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2777 		nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2778 	} else {
2779 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2780 	}
2781 
2782 	/* save the original values of these registers */
2783 	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2784 	nandc->vld = NAND_DEV_CMD_VLD_VAL;
2785 
2786 	return 0;
2787 }
2788 
2789 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2790 					    struct qcom_nand_host *host,
2791 					    struct device_node *dn)
2792 {
2793 	struct nand_chip *chip = &host->chip;
2794 	struct mtd_info *mtd = nand_to_mtd(chip);
2795 	struct device *dev = nandc->dev;
2796 	int ret;
2797 
2798 	ret = of_property_read_u32(dn, "reg", &host->cs);
2799 	if (ret) {
2800 		dev_err(dev, "can't get chip-select\n");
2801 		return -ENXIO;
2802 	}
2803 
2804 	nand_set_flash_node(chip, dn);
2805 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2806 	if (!mtd->name)
2807 		return -ENOMEM;
2808 
2809 	mtd->owner = THIS_MODULE;
2810 	mtd->dev.parent = dev;
2811 
2812 	chip->cmdfunc		= qcom_nandc_command;
2813 	chip->select_chip	= qcom_nandc_select_chip;
2814 	chip->read_byte		= qcom_nandc_read_byte;
2815 	chip->read_buf		= qcom_nandc_read_buf;
2816 	chip->write_buf		= qcom_nandc_write_buf;
2817 	chip->set_features	= nand_get_set_features_notsupp;
2818 	chip->get_features	= nand_get_set_features_notsupp;
2819 
2820 	/*
2821 	 * the bad block marker is readable only when we read the last codeword
2822 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2823 	 * helpers don't allow us to read BB from a nand chip with ECC
2824 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2825 	 * and block_markbad helpers until we permanently switch to using
2826 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2827 	 */
2828 	chip->block_bad		= qcom_nandc_block_bad;
2829 	chip->block_markbad	= qcom_nandc_block_markbad;
2830 
2831 	chip->controller = &nandc->controller;
2832 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2833 			 NAND_SKIP_BBTSCAN;
2834 
2835 	/* set up initial status value */
2836 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2837 
2838 	ret = nand_scan(mtd, 1);
2839 	if (ret)
2840 		return ret;
2841 
2842 	ret = mtd_device_register(mtd, NULL, 0);
2843 	if (ret)
2844 		nand_cleanup(chip);
2845 
2846 	return ret;
2847 }
2848 
2849 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2850 {
2851 	struct device *dev = nandc->dev;
2852 	struct device_node *dn = dev->of_node, *child;
2853 	struct qcom_nand_host *host;
2854 	int ret;
2855 
2856 	if (nandc->props->is_bam) {
2857 		free_bam_transaction(nandc);
2858 		nandc->bam_txn = alloc_bam_transaction(nandc);
2859 		if (!nandc->bam_txn) {
2860 			dev_err(nandc->dev,
2861 				"failed to allocate bam transaction\n");
2862 			return -ENOMEM;
2863 		}
2864 	}
2865 
2866 	for_each_available_child_of_node(dn, child) {
2867 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2868 		if (!host) {
2869 			of_node_put(child);
2870 			return -ENOMEM;
2871 		}
2872 
2873 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2874 		if (ret) {
2875 			devm_kfree(dev, host);
2876 			continue;
2877 		}
2878 
2879 		list_add_tail(&host->node, &nandc->host_list);
2880 	}
2881 
2882 	if (list_empty(&nandc->host_list))
2883 		return -ENODEV;
2884 
2885 	return 0;
2886 }
2887 
2888 /* parse custom DT properties here */
2889 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2890 {
2891 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2892 	struct device_node *np = nandc->dev->of_node;
2893 	int ret;
2894 
2895 	if (!nandc->props->is_bam) {
2896 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2897 					   &nandc->cmd_crci);
2898 		if (ret) {
2899 			dev_err(nandc->dev, "command CRCI unspecified\n");
2900 			return ret;
2901 		}
2902 
2903 		ret = of_property_read_u32(np, "qcom,data-crci",
2904 					   &nandc->data_crci);
2905 		if (ret) {
2906 			dev_err(nandc->dev, "data CRCI unspecified\n");
2907 			return ret;
2908 		}
2909 	}
2910 
2911 	return 0;
2912 }
2913 
2914 static int qcom_nandc_probe(struct platform_device *pdev)
2915 {
2916 	struct qcom_nand_controller *nandc;
2917 	const void *dev_data;
2918 	struct device *dev = &pdev->dev;
2919 	struct resource *res;
2920 	int ret;
2921 
2922 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2923 	if (!nandc)
2924 		return -ENOMEM;
2925 
2926 	platform_set_drvdata(pdev, nandc);
2927 	nandc->dev = dev;
2928 
2929 	dev_data = of_device_get_match_data(dev);
2930 	if (!dev_data) {
2931 		dev_err(&pdev->dev, "failed to get device data\n");
2932 		return -ENODEV;
2933 	}
2934 
2935 	nandc->props = dev_data;
2936 
2937 	nandc->core_clk = devm_clk_get(dev, "core");
2938 	if (IS_ERR(nandc->core_clk))
2939 		return PTR_ERR(nandc->core_clk);
2940 
2941 	nandc->aon_clk = devm_clk_get(dev, "aon");
2942 	if (IS_ERR(nandc->aon_clk))
2943 		return PTR_ERR(nandc->aon_clk);
2944 
2945 	ret = qcom_nandc_parse_dt(pdev);
2946 	if (ret)
2947 		return ret;
2948 
2949 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2950 	nandc->base = devm_ioremap_resource(dev, res);
2951 	if (IS_ERR(nandc->base))
2952 		return PTR_ERR(nandc->base);
2953 
2954 	nandc->base_phys = res->start;
2955 	nandc->base_dma = dma_map_resource(dev, res->start,
2956 					   resource_size(res),
2957 					   DMA_BIDIRECTIONAL, 0);
2958 	if (!nandc->base_dma)
2959 		return -ENXIO;
2960 
2961 	ret = qcom_nandc_alloc(nandc);
2962 	if (ret)
2963 		goto err_nandc_alloc;
2964 
2965 	ret = clk_prepare_enable(nandc->core_clk);
2966 	if (ret)
2967 		goto err_core_clk;
2968 
2969 	ret = clk_prepare_enable(nandc->aon_clk);
2970 	if (ret)
2971 		goto err_aon_clk;
2972 
2973 	ret = qcom_nandc_setup(nandc);
2974 	if (ret)
2975 		goto err_setup;
2976 
2977 	ret = qcom_probe_nand_devices(nandc);
2978 	if (ret)
2979 		goto err_setup;
2980 
2981 	return 0;
2982 
2983 err_setup:
2984 	clk_disable_unprepare(nandc->aon_clk);
2985 err_aon_clk:
2986 	clk_disable_unprepare(nandc->core_clk);
2987 err_core_clk:
2988 	qcom_nandc_unalloc(nandc);
2989 err_nandc_alloc:
2990 	dma_unmap_resource(dev, res->start, resource_size(res),
2991 			   DMA_BIDIRECTIONAL, 0);
2992 
2993 	return ret;
2994 }
2995 
2996 static int qcom_nandc_remove(struct platform_device *pdev)
2997 {
2998 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2999 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3000 	struct qcom_nand_host *host;
3001 
3002 	list_for_each_entry(host, &nandc->host_list, node)
3003 		nand_release(nand_to_mtd(&host->chip));
3004 
3005 
3006 	qcom_nandc_unalloc(nandc);
3007 
3008 	clk_disable_unprepare(nandc->aon_clk);
3009 	clk_disable_unprepare(nandc->core_clk);
3010 
3011 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3012 			   DMA_BIDIRECTIONAL, 0);
3013 
3014 	return 0;
3015 }
3016 
3017 static const struct qcom_nandc_props ipq806x_nandc_props = {
3018 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3019 	.is_bam = false,
3020 	.dev_cmd_reg_start = 0x0,
3021 };
3022 
3023 static const struct qcom_nandc_props ipq4019_nandc_props = {
3024 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3025 	.is_bam = true,
3026 	.dev_cmd_reg_start = 0x0,
3027 };
3028 
3029 static const struct qcom_nandc_props ipq8074_nandc_props = {
3030 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3031 	.is_bam = true,
3032 	.dev_cmd_reg_start = 0x7000,
3033 };
3034 
3035 /*
3036  * data will hold a struct pointer containing more differences once we support
3037  * more controller variants
3038  */
3039 static const struct of_device_id qcom_nandc_of_match[] = {
3040 	{
3041 		.compatible = "qcom,ipq806x-nand",
3042 		.data = &ipq806x_nandc_props,
3043 	},
3044 	{
3045 		.compatible = "qcom,ipq4019-nand",
3046 		.data = &ipq4019_nandc_props,
3047 	},
3048 	{
3049 		.compatible = "qcom,ipq8074-nand",
3050 		.data = &ipq8074_nandc_props,
3051 	},
3052 	{}
3053 };
3054 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3055 
3056 static struct platform_driver qcom_nandc_driver = {
3057 	.driver = {
3058 		.name = "qcom-nandc",
3059 		.of_match_table = qcom_nandc_of_match,
3060 	},
3061 	.probe   = qcom_nandc_probe,
3062 	.remove  = qcom_nandc_remove,
3063 };
3064 module_platform_driver(qcom_nandc_driver);
3065 
3066 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3067 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3068 MODULE_LICENSE("GPL v2");
3069