1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/slab.h> 8 #include <linux/bitops.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma/qcom_bam_dma.h> 18 19 /* NANDc reg offsets */ 20 #define NAND_FLASH_CMD 0x00 21 #define NAND_ADDR0 0x04 22 #define NAND_ADDR1 0x08 23 #define NAND_FLASH_CHIP_SELECT 0x0c 24 #define NAND_EXEC_CMD 0x10 25 #define NAND_FLASH_STATUS 0x14 26 #define NAND_BUFFER_STATUS 0x18 27 #define NAND_DEV0_CFG0 0x20 28 #define NAND_DEV0_CFG1 0x24 29 #define NAND_DEV0_ECC_CFG 0x28 30 #define NAND_AUTO_STATUS_EN 0x2c 31 #define NAND_DEV1_CFG0 0x30 32 #define NAND_DEV1_CFG1 0x34 33 #define NAND_READ_ID 0x40 34 #define NAND_READ_STATUS 0x44 35 #define NAND_DEV_CMD0 0xa0 36 #define NAND_DEV_CMD1 0xa4 37 #define NAND_DEV_CMD2 0xa8 38 #define NAND_DEV_CMD_VLD 0xac 39 #define SFLASHC_BURST_CFG 0xe0 40 #define NAND_ERASED_CW_DETECT_CFG 0xe8 41 #define NAND_ERASED_CW_DETECT_STATUS 0xec 42 #define NAND_EBI2_ECC_BUF_CFG 0xf0 43 #define FLASH_BUF_ACC 0x100 44 45 #define NAND_CTRL 0xf00 46 #define NAND_VERSION 0xf08 47 #define NAND_READ_LOCATION_0 0xf20 48 #define NAND_READ_LOCATION_1 0xf24 49 #define NAND_READ_LOCATION_2 0xf28 50 #define NAND_READ_LOCATION_3 0xf2c 51 #define NAND_READ_LOCATION_LAST_CW_0 0xf40 52 #define NAND_READ_LOCATION_LAST_CW_1 0xf44 53 #define NAND_READ_LOCATION_LAST_CW_2 0xf48 54 #define NAND_READ_LOCATION_LAST_CW_3 0xf4c 55 56 /* dummy register offsets, used by write_reg_dma */ 57 #define NAND_DEV_CMD1_RESTORE 0xdead 58 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef 59 60 /* NAND_FLASH_CMD bits */ 61 #define PAGE_ACC BIT(4) 62 #define LAST_PAGE BIT(5) 63 64 /* NAND_FLASH_CHIP_SELECT bits */ 65 #define NAND_DEV_SEL 0 66 #define DM_EN BIT(2) 67 68 /* NAND_FLASH_STATUS bits */ 69 #define FS_OP_ERR BIT(4) 70 #define FS_READY_BSY_N BIT(5) 71 #define FS_MPU_ERR BIT(8) 72 #define FS_DEVICE_STS_ERR BIT(16) 73 #define FS_DEVICE_WP BIT(23) 74 75 /* NAND_BUFFER_STATUS bits */ 76 #define BS_UNCORRECTABLE_BIT BIT(8) 77 #define BS_CORRECTABLE_ERR_MSK 0x1f 78 79 /* NAND_DEVn_CFG0 bits */ 80 #define DISABLE_STATUS_AFTER_WRITE 4 81 #define CW_PER_PAGE 6 82 #define UD_SIZE_BYTES 9 83 #define ECC_PARITY_SIZE_BYTES_RS 19 84 #define SPARE_SIZE_BYTES 23 85 #define NUM_ADDR_CYCLES 27 86 #define STATUS_BFR_READ 30 87 #define SET_RD_MODE_AFTER_STATUS 31 88 89 /* NAND_DEVn_CFG0 bits */ 90 #define DEV0_CFG1_ECC_DISABLE 0 91 #define WIDE_FLASH 1 92 #define NAND_RECOVERY_CYCLES 2 93 #define CS_ACTIVE_BSY 5 94 #define BAD_BLOCK_BYTE_NUM 6 95 #define BAD_BLOCK_IN_SPARE_AREA 16 96 #define WR_RD_BSY_GAP 17 97 #define ENABLE_BCH_ECC 27 98 99 /* NAND_DEV0_ECC_CFG bits */ 100 #define ECC_CFG_ECC_DISABLE 0 101 #define ECC_SW_RESET 1 102 #define ECC_MODE 4 103 #define ECC_PARITY_SIZE_BYTES_BCH 8 104 #define ECC_NUM_DATA_BYTES 16 105 #define ECC_FORCE_CLK_OPEN 30 106 107 /* NAND_DEV_CMD1 bits */ 108 #define READ_ADDR 0 109 110 /* NAND_DEV_CMD_VLD bits */ 111 #define READ_START_VLD BIT(0) 112 #define READ_STOP_VLD BIT(1) 113 #define WRITE_START_VLD BIT(2) 114 #define ERASE_START_VLD BIT(3) 115 #define SEQ_READ_START_VLD BIT(4) 116 117 /* NAND_EBI2_ECC_BUF_CFG bits */ 118 #define NUM_STEPS 0 119 120 /* NAND_ERASED_CW_DETECT_CFG bits */ 121 #define ERASED_CW_ECC_MASK 1 122 #define AUTO_DETECT_RES 0 123 #define MASK_ECC (1 << ERASED_CW_ECC_MASK) 124 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES) 125 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) 126 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) 127 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) 128 129 /* NAND_ERASED_CW_DETECT_STATUS bits */ 130 #define PAGE_ALL_ERASED BIT(7) 131 #define CODEWORD_ALL_ERASED BIT(6) 132 #define PAGE_ERASED BIT(5) 133 #define CODEWORD_ERASED BIT(4) 134 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) 135 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) 136 137 /* NAND_READ_LOCATION_n bits */ 138 #define READ_LOCATION_OFFSET 0 139 #define READ_LOCATION_SIZE 16 140 #define READ_LOCATION_LAST 31 141 142 /* Version Mask */ 143 #define NAND_VERSION_MAJOR_MASK 0xf0000000 144 #define NAND_VERSION_MAJOR_SHIFT 28 145 #define NAND_VERSION_MINOR_MASK 0x0fff0000 146 #define NAND_VERSION_MINOR_SHIFT 16 147 148 /* NAND OP_CMDs */ 149 #define OP_PAGE_READ 0x2 150 #define OP_PAGE_READ_WITH_ECC 0x3 151 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 152 #define OP_PAGE_READ_ONFI_READ 0x5 153 #define OP_PROGRAM_PAGE 0x6 154 #define OP_PAGE_PROGRAM_WITH_ECC 0x7 155 #define OP_PROGRAM_PAGE_SPARE 0x9 156 #define OP_BLOCK_ERASE 0xa 157 #define OP_FETCH_ID 0xb 158 #define OP_RESET_DEVICE 0xd 159 160 /* Default Value for NAND_DEV_CMD_VLD */ 161 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ 162 ERASE_START_VLD | SEQ_READ_START_VLD) 163 164 /* NAND_CTRL bits */ 165 #define BAM_MODE_EN BIT(0) 166 167 /* 168 * the NAND controller performs reads/writes with ECC in 516 byte chunks. 169 * the driver calls the chunks 'step' or 'codeword' interchangeably 170 */ 171 #define NANDC_STEP_SIZE 512 172 173 /* 174 * the largest page size we support is 8K, this will have 16 steps/codewords 175 * of 512 bytes each 176 */ 177 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) 178 179 /* we read at most 3 registers per codeword scan */ 180 #define MAX_REG_RD (3 * MAX_NUM_STEPS) 181 182 /* ECC modes supported by the controller */ 183 #define ECC_NONE BIT(0) 184 #define ECC_RS_4BIT BIT(1) 185 #define ECC_BCH_4BIT BIT(2) 186 #define ECC_BCH_8BIT BIT(3) 187 188 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \ 189 nandc_set_reg(chip, reg, \ 190 ((cw_offset) << READ_LOCATION_OFFSET) | \ 191 ((read_size) << READ_LOCATION_SIZE) | \ 192 ((is_last_read_loc) << READ_LOCATION_LAST)) 193 194 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \ 195 nandc_set_reg(chip, reg, \ 196 ((cw_offset) << READ_LOCATION_OFFSET) | \ 197 ((read_size) << READ_LOCATION_SIZE) | \ 198 ((is_last_read_loc) << READ_LOCATION_LAST)) 199 /* 200 * Returns the actual register address for all NAND_DEV_ registers 201 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) 202 */ 203 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) 204 205 /* Returns the NAND register physical address */ 206 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) 207 208 /* Returns the dma address for reg read buffer */ 209 #define reg_buf_dma_addr(chip, vaddr) \ 210 ((chip)->reg_read_dma + \ 211 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) 212 213 #define QPIC_PER_CW_CMD_ELEMENTS 32 214 #define QPIC_PER_CW_CMD_SGL 32 215 #define QPIC_PER_CW_DATA_SGL 8 216 217 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) 218 219 /* 220 * Flags used in DMA descriptor preparation helper functions 221 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) 222 */ 223 /* Don't set the EOT in current tx BAM sgl */ 224 #define NAND_BAM_NO_EOT BIT(0) 225 /* Set the NWD flag in current BAM sgl */ 226 #define NAND_BAM_NWD BIT(1) 227 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ 228 #define NAND_BAM_NEXT_SGL BIT(2) 229 /* 230 * Erased codeword status is being used two times in single transfer so this 231 * flag will determine the current value of erased codeword status register 232 */ 233 #define NAND_ERASED_CW_SET BIT(4) 234 235 /* 236 * This data type corresponds to the BAM transaction which will be used for all 237 * NAND transfers. 238 * @bam_ce - the array of BAM command elements 239 * @cmd_sgl - sgl for NAND BAM command pipe 240 * @data_sgl - sgl for NAND BAM consumer/producer pipe 241 * @bam_ce_pos - the index in bam_ce which is available for next sgl 242 * @bam_ce_start - the index in bam_ce which marks the start position ce 243 * for current sgl. It will be used for size calculation 244 * for current sgl 245 * @cmd_sgl_pos - current index in command sgl. 246 * @cmd_sgl_start - start index in command sgl. 247 * @tx_sgl_pos - current index in data sgl for tx. 248 * @tx_sgl_start - start index in data sgl for tx. 249 * @rx_sgl_pos - current index in data sgl for rx. 250 * @rx_sgl_start - start index in data sgl for rx. 251 * @wait_second_completion - wait for second DMA desc completion before making 252 * the NAND transfer completion. 253 * @txn_done - completion for NAND transfer. 254 * @last_data_desc - last DMA desc in data channel (tx/rx). 255 * @last_cmd_desc - last DMA desc in command channel. 256 */ 257 struct bam_transaction { 258 struct bam_cmd_element *bam_ce; 259 struct scatterlist *cmd_sgl; 260 struct scatterlist *data_sgl; 261 u32 bam_ce_pos; 262 u32 bam_ce_start; 263 u32 cmd_sgl_pos; 264 u32 cmd_sgl_start; 265 u32 tx_sgl_pos; 266 u32 tx_sgl_start; 267 u32 rx_sgl_pos; 268 u32 rx_sgl_start; 269 bool wait_second_completion; 270 struct completion txn_done; 271 struct dma_async_tx_descriptor *last_data_desc; 272 struct dma_async_tx_descriptor *last_cmd_desc; 273 }; 274 275 /* 276 * This data type corresponds to the nand dma descriptor 277 * @list - list for desc_info 278 * @dir - DMA transfer direction 279 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by 280 * ADM 281 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM 282 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM 283 * @dma_desc - low level DMA engine descriptor 284 */ 285 struct desc_info { 286 struct list_head node; 287 288 enum dma_data_direction dir; 289 union { 290 struct scatterlist adm_sgl; 291 struct { 292 struct scatterlist *bam_sgl; 293 int sgl_cnt; 294 }; 295 }; 296 struct dma_async_tx_descriptor *dma_desc; 297 }; 298 299 /* 300 * holds the current register values that we want to write. acts as a contiguous 301 * chunk of memory which we use to write the controller registers through DMA. 302 */ 303 struct nandc_regs { 304 __le32 cmd; 305 __le32 addr0; 306 __le32 addr1; 307 __le32 chip_sel; 308 __le32 exec; 309 310 __le32 cfg0; 311 __le32 cfg1; 312 __le32 ecc_bch_cfg; 313 314 __le32 clrflashstatus; 315 __le32 clrreadstatus; 316 317 __le32 cmd1; 318 __le32 vld; 319 320 __le32 orig_cmd1; 321 __le32 orig_vld; 322 323 __le32 ecc_buf_cfg; 324 __le32 read_location0; 325 __le32 read_location1; 326 __le32 read_location2; 327 __le32 read_location3; 328 __le32 read_location_last0; 329 __le32 read_location_last1; 330 __le32 read_location_last2; 331 __le32 read_location_last3; 332 333 __le32 erased_cw_detect_cfg_clr; 334 __le32 erased_cw_detect_cfg_set; 335 }; 336 337 /* 338 * NAND controller data struct 339 * 340 * @controller: base controller structure 341 * @host_list: list containing all the chips attached to the 342 * controller 343 * @dev: parent device 344 * @base: MMIO base 345 * @base_phys: physical base address of controller registers 346 * @base_dma: dma base address of controller registers 347 * @core_clk: controller clock 348 * @aon_clk: another controller clock 349 * 350 * @chan: dma channel 351 * @cmd_crci: ADM DMA CRCI for command flow control 352 * @data_crci: ADM DMA CRCI for data flow control 353 * @desc_list: DMA descriptor list (list of desc_infos) 354 * 355 * @data_buffer: our local DMA buffer for page read/writes, 356 * used when we can't use the buffer provided 357 * by upper layers directly 358 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf 359 * functions 360 * @reg_read_buf: local buffer for reading back registers via DMA 361 * @reg_read_dma: contains dma address for register read buffer 362 * @reg_read_pos: marker for data read in reg_read_buf 363 * 364 * @regs: a contiguous chunk of memory for DMA register 365 * writes. contains the register values to be 366 * written to controller 367 * @cmd1/vld: some fixed controller register values 368 * @props: properties of current NAND controller, 369 * initialized via DT match data 370 * @max_cwperpage: maximum QPIC codewords required. calculated 371 * from all connected NAND devices pagesize 372 */ 373 struct qcom_nand_controller { 374 struct nand_controller controller; 375 struct list_head host_list; 376 377 struct device *dev; 378 379 void __iomem *base; 380 phys_addr_t base_phys; 381 dma_addr_t base_dma; 382 383 struct clk *core_clk; 384 struct clk *aon_clk; 385 386 union { 387 /* will be used only by QPIC for BAM DMA */ 388 struct { 389 struct dma_chan *tx_chan; 390 struct dma_chan *rx_chan; 391 struct dma_chan *cmd_chan; 392 }; 393 394 /* will be used only by EBI2 for ADM DMA */ 395 struct { 396 struct dma_chan *chan; 397 unsigned int cmd_crci; 398 unsigned int data_crci; 399 }; 400 }; 401 402 struct list_head desc_list; 403 struct bam_transaction *bam_txn; 404 405 u8 *data_buffer; 406 int buf_size; 407 int buf_count; 408 int buf_start; 409 unsigned int max_cwperpage; 410 411 __le32 *reg_read_buf; 412 dma_addr_t reg_read_dma; 413 int reg_read_pos; 414 415 struct nandc_regs *regs; 416 417 u32 cmd1, vld; 418 const struct qcom_nandc_props *props; 419 }; 420 421 /* 422 * NAND chip structure 423 * 424 * @chip: base NAND chip structure 425 * @node: list node to add itself to host_list in 426 * qcom_nand_controller 427 * 428 * @cs: chip select value for this chip 429 * @cw_size: the number of bytes in a single step/codeword 430 * of a page, consisting of all data, ecc, spare 431 * and reserved bytes 432 * @cw_data: the number of bytes within a codeword protected 433 * by ECC 434 * @use_ecc: request the controller to use ECC for the 435 * upcoming read/write 436 * @bch_enabled: flag to tell whether BCH ECC mode is used 437 * @ecc_bytes_hw: ECC bytes used by controller hardware for this 438 * chip 439 * @status: value to be returned if NAND_CMD_STATUS command 440 * is executed 441 * @last_command: keeps track of last command on this chip. used 442 * for reading correct status 443 * 444 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for 445 * ecc/non-ecc mode for the current nand flash 446 * device 447 */ 448 struct qcom_nand_host { 449 struct nand_chip chip; 450 struct list_head node; 451 452 int cs; 453 int cw_size; 454 int cw_data; 455 bool use_ecc; 456 bool bch_enabled; 457 int ecc_bytes_hw; 458 int spare_bytes; 459 int bbm_size; 460 u8 status; 461 int last_command; 462 463 u32 cfg0, cfg1; 464 u32 cfg0_raw, cfg1_raw; 465 u32 ecc_buf_cfg; 466 u32 ecc_bch_cfg; 467 u32 clrflashstatus; 468 u32 clrreadstatus; 469 }; 470 471 /* 472 * This data type corresponds to the NAND controller properties which varies 473 * among different NAND controllers. 474 * @ecc_modes - ecc mode for NAND 475 * @is_bam - whether NAND controller is using BAM 476 * @is_qpic - whether NAND CTRL is part of qpic IP 477 * @qpic_v2 - flag to indicate QPIC IP version 2 478 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset 479 */ 480 struct qcom_nandc_props { 481 u32 ecc_modes; 482 bool is_bam; 483 bool is_qpic; 484 bool qpic_v2; 485 u32 dev_cmd_reg_start; 486 }; 487 488 /* Frees the BAM transaction memory */ 489 static void free_bam_transaction(struct qcom_nand_controller *nandc) 490 { 491 struct bam_transaction *bam_txn = nandc->bam_txn; 492 493 devm_kfree(nandc->dev, bam_txn); 494 } 495 496 /* Allocates and Initializes the BAM transaction */ 497 static struct bam_transaction * 498 alloc_bam_transaction(struct qcom_nand_controller *nandc) 499 { 500 struct bam_transaction *bam_txn; 501 size_t bam_txn_size; 502 unsigned int num_cw = nandc->max_cwperpage; 503 void *bam_txn_buf; 504 505 bam_txn_size = 506 sizeof(*bam_txn) + num_cw * 507 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + 508 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + 509 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); 510 511 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); 512 if (!bam_txn_buf) 513 return NULL; 514 515 bam_txn = bam_txn_buf; 516 bam_txn_buf += sizeof(*bam_txn); 517 518 bam_txn->bam_ce = bam_txn_buf; 519 bam_txn_buf += 520 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; 521 522 bam_txn->cmd_sgl = bam_txn_buf; 523 bam_txn_buf += 524 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; 525 526 bam_txn->data_sgl = bam_txn_buf; 527 528 init_completion(&bam_txn->txn_done); 529 530 return bam_txn; 531 } 532 533 /* Clears the BAM transaction indexes */ 534 static void clear_bam_transaction(struct qcom_nand_controller *nandc) 535 { 536 struct bam_transaction *bam_txn = nandc->bam_txn; 537 538 if (!nandc->props->is_bam) 539 return; 540 541 bam_txn->bam_ce_pos = 0; 542 bam_txn->bam_ce_start = 0; 543 bam_txn->cmd_sgl_pos = 0; 544 bam_txn->cmd_sgl_start = 0; 545 bam_txn->tx_sgl_pos = 0; 546 bam_txn->tx_sgl_start = 0; 547 bam_txn->rx_sgl_pos = 0; 548 bam_txn->rx_sgl_start = 0; 549 bam_txn->last_data_desc = NULL; 550 bam_txn->wait_second_completion = false; 551 552 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * 553 QPIC_PER_CW_CMD_SGL); 554 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * 555 QPIC_PER_CW_DATA_SGL); 556 557 reinit_completion(&bam_txn->txn_done); 558 } 559 560 /* Callback for DMA descriptor completion */ 561 static void qpic_bam_dma_done(void *data) 562 { 563 struct bam_transaction *bam_txn = data; 564 565 /* 566 * In case of data transfer with NAND, 2 callbacks will be generated. 567 * One for command channel and another one for data channel. 568 * If current transaction has data descriptors 569 * (i.e. wait_second_completion is true), then set this to false 570 * and wait for second DMA descriptor completion. 571 */ 572 if (bam_txn->wait_second_completion) 573 bam_txn->wait_second_completion = false; 574 else 575 complete(&bam_txn->txn_done); 576 } 577 578 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) 579 { 580 return container_of(chip, struct qcom_nand_host, chip); 581 } 582 583 static inline struct qcom_nand_controller * 584 get_qcom_nand_controller(struct nand_chip *chip) 585 { 586 return container_of(chip->controller, struct qcom_nand_controller, 587 controller); 588 } 589 590 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) 591 { 592 return ioread32(nandc->base + offset); 593 } 594 595 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, 596 u32 val) 597 { 598 iowrite32(val, nandc->base + offset); 599 } 600 601 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, 602 bool is_cpu) 603 { 604 if (!nandc->props->is_bam) 605 return; 606 607 if (is_cpu) 608 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, 609 MAX_REG_RD * 610 sizeof(*nandc->reg_read_buf), 611 DMA_FROM_DEVICE); 612 else 613 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, 614 MAX_REG_RD * 615 sizeof(*nandc->reg_read_buf), 616 DMA_FROM_DEVICE); 617 } 618 619 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) 620 { 621 switch (offset) { 622 case NAND_FLASH_CMD: 623 return ®s->cmd; 624 case NAND_ADDR0: 625 return ®s->addr0; 626 case NAND_ADDR1: 627 return ®s->addr1; 628 case NAND_FLASH_CHIP_SELECT: 629 return ®s->chip_sel; 630 case NAND_EXEC_CMD: 631 return ®s->exec; 632 case NAND_FLASH_STATUS: 633 return ®s->clrflashstatus; 634 case NAND_DEV0_CFG0: 635 return ®s->cfg0; 636 case NAND_DEV0_CFG1: 637 return ®s->cfg1; 638 case NAND_DEV0_ECC_CFG: 639 return ®s->ecc_bch_cfg; 640 case NAND_READ_STATUS: 641 return ®s->clrreadstatus; 642 case NAND_DEV_CMD1: 643 return ®s->cmd1; 644 case NAND_DEV_CMD1_RESTORE: 645 return ®s->orig_cmd1; 646 case NAND_DEV_CMD_VLD: 647 return ®s->vld; 648 case NAND_DEV_CMD_VLD_RESTORE: 649 return ®s->orig_vld; 650 case NAND_EBI2_ECC_BUF_CFG: 651 return ®s->ecc_buf_cfg; 652 case NAND_READ_LOCATION_0: 653 return ®s->read_location0; 654 case NAND_READ_LOCATION_1: 655 return ®s->read_location1; 656 case NAND_READ_LOCATION_2: 657 return ®s->read_location2; 658 case NAND_READ_LOCATION_3: 659 return ®s->read_location3; 660 case NAND_READ_LOCATION_LAST_CW_0: 661 return ®s->read_location_last0; 662 case NAND_READ_LOCATION_LAST_CW_1: 663 return ®s->read_location_last1; 664 case NAND_READ_LOCATION_LAST_CW_2: 665 return ®s->read_location_last2; 666 case NAND_READ_LOCATION_LAST_CW_3: 667 return ®s->read_location_last3; 668 default: 669 return NULL; 670 } 671 } 672 673 static void nandc_set_reg(struct nand_chip *chip, int offset, 674 u32 val) 675 { 676 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 677 struct nandc_regs *regs = nandc->regs; 678 __le32 *reg; 679 680 reg = offset_to_nandc_reg(regs, offset); 681 682 if (reg) 683 *reg = cpu_to_le32(val); 684 } 685 686 /* Helper to check the code word, whether it is last cw or not */ 687 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) 688 { 689 return cw == (ecc->steps - 1); 690 } 691 692 /* helper to configure location register values */ 693 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, 694 int cw_offset, int read_size, int is_last_read_loc) 695 { 696 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 697 struct nand_ecc_ctrl *ecc = &chip->ecc; 698 int reg_base = NAND_READ_LOCATION_0; 699 700 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 701 reg_base = NAND_READ_LOCATION_LAST_CW_0; 702 703 reg_base += reg * 4; 704 705 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 706 return nandc_set_read_loc_last(chip, reg_base, cw_offset, 707 read_size, is_last_read_loc); 708 else 709 return nandc_set_read_loc_first(chip, reg_base, cw_offset, 710 read_size, is_last_read_loc); 711 } 712 713 /* helper to configure address register values */ 714 static void set_address(struct qcom_nand_host *host, u16 column, int page) 715 { 716 struct nand_chip *chip = &host->chip; 717 718 if (chip->options & NAND_BUSWIDTH_16) 719 column >>= 1; 720 721 nandc_set_reg(chip, NAND_ADDR0, page << 16 | column); 722 nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff); 723 } 724 725 /* 726 * update_rw_regs: set up read/write register values, these will be 727 * written to the NAND controller registers via DMA 728 * 729 * @num_cw: number of steps for the read/write operation 730 * @read: read or write operation 731 * @cw : which code word 732 */ 733 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) 734 { 735 struct nand_chip *chip = &host->chip; 736 u32 cmd, cfg0, cfg1, ecc_bch_cfg; 737 738 if (read) { 739 if (host->use_ecc) 740 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; 741 else 742 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; 743 } else { 744 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; 745 } 746 747 if (host->use_ecc) { 748 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | 749 (num_cw - 1) << CW_PER_PAGE; 750 751 cfg1 = host->cfg1; 752 ecc_bch_cfg = host->ecc_bch_cfg; 753 } else { 754 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | 755 (num_cw - 1) << CW_PER_PAGE; 756 757 cfg1 = host->cfg1_raw; 758 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; 759 } 760 761 nandc_set_reg(chip, NAND_FLASH_CMD, cmd); 762 nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0); 763 nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1); 764 nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg); 765 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); 766 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); 767 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); 768 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 769 770 if (read) 771 nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? 772 host->cw_data : host->cw_size, 1); 773 } 774 775 /* 776 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor 777 * for BAM. This descriptor will be added in the NAND DMA descriptor queue 778 * which will be submitted to DMA engine. 779 */ 780 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, 781 struct dma_chan *chan, 782 unsigned long flags) 783 { 784 struct desc_info *desc; 785 struct scatterlist *sgl; 786 unsigned int sgl_cnt; 787 int ret; 788 struct bam_transaction *bam_txn = nandc->bam_txn; 789 enum dma_transfer_direction dir_eng; 790 struct dma_async_tx_descriptor *dma_desc; 791 792 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 793 if (!desc) 794 return -ENOMEM; 795 796 if (chan == nandc->cmd_chan) { 797 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; 798 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; 799 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; 800 dir_eng = DMA_MEM_TO_DEV; 801 desc->dir = DMA_TO_DEVICE; 802 } else if (chan == nandc->tx_chan) { 803 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; 804 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; 805 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; 806 dir_eng = DMA_MEM_TO_DEV; 807 desc->dir = DMA_TO_DEVICE; 808 } else { 809 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; 810 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; 811 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; 812 dir_eng = DMA_DEV_TO_MEM; 813 desc->dir = DMA_FROM_DEVICE; 814 } 815 816 sg_mark_end(sgl + sgl_cnt - 1); 817 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 818 if (ret == 0) { 819 dev_err(nandc->dev, "failure in mapping desc\n"); 820 kfree(desc); 821 return -ENOMEM; 822 } 823 824 desc->sgl_cnt = sgl_cnt; 825 desc->bam_sgl = sgl; 826 827 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, 828 flags); 829 830 if (!dma_desc) { 831 dev_err(nandc->dev, "failure in prep desc\n"); 832 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); 833 kfree(desc); 834 return -EINVAL; 835 } 836 837 desc->dma_desc = dma_desc; 838 839 /* update last data/command descriptor */ 840 if (chan == nandc->cmd_chan) 841 bam_txn->last_cmd_desc = dma_desc; 842 else 843 bam_txn->last_data_desc = dma_desc; 844 845 list_add_tail(&desc->node, &nandc->desc_list); 846 847 return 0; 848 } 849 850 /* 851 * Prepares the command descriptor for BAM DMA which will be used for NAND 852 * register reads and writes. The command descriptor requires the command 853 * to be formed in command element type so this function uses the command 854 * element from bam transaction ce array and fills the same with required 855 * data. A single SGL can contain multiple command elements so 856 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL 857 * after the current command element. 858 */ 859 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, 860 int reg_off, const void *vaddr, 861 int size, unsigned int flags) 862 { 863 int bam_ce_size; 864 int i, ret; 865 struct bam_cmd_element *bam_ce_buffer; 866 struct bam_transaction *bam_txn = nandc->bam_txn; 867 868 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; 869 870 /* fill the command desc */ 871 for (i = 0; i < size; i++) { 872 if (read) 873 bam_prep_ce(&bam_ce_buffer[i], 874 nandc_reg_phys(nandc, reg_off + 4 * i), 875 BAM_READ_COMMAND, 876 reg_buf_dma_addr(nandc, 877 (__le32 *)vaddr + i)); 878 else 879 bam_prep_ce_le32(&bam_ce_buffer[i], 880 nandc_reg_phys(nandc, reg_off + 4 * i), 881 BAM_WRITE_COMMAND, 882 *((__le32 *)vaddr + i)); 883 } 884 885 bam_txn->bam_ce_pos += size; 886 887 /* use the separate sgl after this command */ 888 if (flags & NAND_BAM_NEXT_SGL) { 889 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; 890 bam_ce_size = (bam_txn->bam_ce_pos - 891 bam_txn->bam_ce_start) * 892 sizeof(struct bam_cmd_element); 893 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], 894 bam_ce_buffer, bam_ce_size); 895 bam_txn->cmd_sgl_pos++; 896 bam_txn->bam_ce_start = bam_txn->bam_ce_pos; 897 898 if (flags & NAND_BAM_NWD) { 899 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, 900 DMA_PREP_FENCE | 901 DMA_PREP_CMD); 902 if (ret) 903 return ret; 904 } 905 } 906 907 return 0; 908 } 909 910 /* 911 * Prepares the data descriptor for BAM DMA which will be used for NAND 912 * data reads and writes. 913 */ 914 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, 915 const void *vaddr, 916 int size, unsigned int flags) 917 { 918 int ret; 919 struct bam_transaction *bam_txn = nandc->bam_txn; 920 921 if (read) { 922 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], 923 vaddr, size); 924 bam_txn->rx_sgl_pos++; 925 } else { 926 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], 927 vaddr, size); 928 bam_txn->tx_sgl_pos++; 929 930 /* 931 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag 932 * is not set, form the DMA descriptor 933 */ 934 if (!(flags & NAND_BAM_NO_EOT)) { 935 ret = prepare_bam_async_desc(nandc, nandc->tx_chan, 936 DMA_PREP_INTERRUPT); 937 if (ret) 938 return ret; 939 } 940 } 941 942 return 0; 943 } 944 945 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, 946 int reg_off, const void *vaddr, int size, 947 bool flow_control) 948 { 949 struct desc_info *desc; 950 struct dma_async_tx_descriptor *dma_desc; 951 struct scatterlist *sgl; 952 struct dma_slave_config slave_conf; 953 enum dma_transfer_direction dir_eng; 954 int ret; 955 956 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 957 if (!desc) 958 return -ENOMEM; 959 960 sgl = &desc->adm_sgl; 961 962 sg_init_one(sgl, vaddr, size); 963 964 if (read) { 965 dir_eng = DMA_DEV_TO_MEM; 966 desc->dir = DMA_FROM_DEVICE; 967 } else { 968 dir_eng = DMA_MEM_TO_DEV; 969 desc->dir = DMA_TO_DEVICE; 970 } 971 972 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); 973 if (ret == 0) { 974 ret = -ENOMEM; 975 goto err; 976 } 977 978 memset(&slave_conf, 0x00, sizeof(slave_conf)); 979 980 slave_conf.device_fc = flow_control; 981 if (read) { 982 slave_conf.src_maxburst = 16; 983 slave_conf.src_addr = nandc->base_dma + reg_off; 984 slave_conf.slave_id = nandc->data_crci; 985 } else { 986 slave_conf.dst_maxburst = 16; 987 slave_conf.dst_addr = nandc->base_dma + reg_off; 988 slave_conf.slave_id = nandc->cmd_crci; 989 } 990 991 ret = dmaengine_slave_config(nandc->chan, &slave_conf); 992 if (ret) { 993 dev_err(nandc->dev, "failed to configure dma channel\n"); 994 goto err; 995 } 996 997 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); 998 if (!dma_desc) { 999 dev_err(nandc->dev, "failed to prepare desc\n"); 1000 ret = -EINVAL; 1001 goto err; 1002 } 1003 1004 desc->dma_desc = dma_desc; 1005 1006 list_add_tail(&desc->node, &nandc->desc_list); 1007 1008 return 0; 1009 err: 1010 kfree(desc); 1011 1012 return ret; 1013 } 1014 1015 /* 1016 * read_reg_dma: prepares a descriptor to read a given number of 1017 * contiguous registers to the reg_read_buf pointer 1018 * 1019 * @first: offset of the first register in the contiguous block 1020 * @num_regs: number of registers to read 1021 * @flags: flags to control DMA descriptor preparation 1022 */ 1023 static int read_reg_dma(struct qcom_nand_controller *nandc, int first, 1024 int num_regs, unsigned int flags) 1025 { 1026 bool flow_control = false; 1027 void *vaddr; 1028 1029 vaddr = nandc->reg_read_buf + nandc->reg_read_pos; 1030 nandc->reg_read_pos += num_regs; 1031 1032 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) 1033 first = dev_cmd_reg_addr(nandc, first); 1034 1035 if (nandc->props->is_bam) 1036 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, 1037 num_regs, flags); 1038 1039 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) 1040 flow_control = true; 1041 1042 return prep_adm_dma_desc(nandc, true, first, vaddr, 1043 num_regs * sizeof(u32), flow_control); 1044 } 1045 1046 /* 1047 * write_reg_dma: prepares a descriptor to write a given number of 1048 * contiguous registers 1049 * 1050 * @first: offset of the first register in the contiguous block 1051 * @num_regs: number of registers to write 1052 * @flags: flags to control DMA descriptor preparation 1053 */ 1054 static int write_reg_dma(struct qcom_nand_controller *nandc, int first, 1055 int num_regs, unsigned int flags) 1056 { 1057 bool flow_control = false; 1058 struct nandc_regs *regs = nandc->regs; 1059 void *vaddr; 1060 1061 vaddr = offset_to_nandc_reg(regs, first); 1062 1063 if (first == NAND_ERASED_CW_DETECT_CFG) { 1064 if (flags & NAND_ERASED_CW_SET) 1065 vaddr = ®s->erased_cw_detect_cfg_set; 1066 else 1067 vaddr = ®s->erased_cw_detect_cfg_clr; 1068 } 1069 1070 if (first == NAND_EXEC_CMD) 1071 flags |= NAND_BAM_NWD; 1072 1073 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) 1074 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); 1075 1076 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) 1077 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); 1078 1079 if (nandc->props->is_bam) 1080 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, 1081 num_regs, flags); 1082 1083 if (first == NAND_FLASH_CMD) 1084 flow_control = true; 1085 1086 return prep_adm_dma_desc(nandc, false, first, vaddr, 1087 num_regs * sizeof(u32), flow_control); 1088 } 1089 1090 /* 1091 * read_data_dma: prepares a DMA descriptor to transfer data from the 1092 * controller's internal buffer to the buffer 'vaddr' 1093 * 1094 * @reg_off: offset within the controller's data buffer 1095 * @vaddr: virtual address of the buffer we want to write to 1096 * @size: DMA transaction size in bytes 1097 * @flags: flags to control DMA descriptor preparation 1098 */ 1099 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1100 const u8 *vaddr, int size, unsigned int flags) 1101 { 1102 if (nandc->props->is_bam) 1103 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); 1104 1105 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); 1106 } 1107 1108 /* 1109 * write_data_dma: prepares a DMA descriptor to transfer data from 1110 * 'vaddr' to the controller's internal buffer 1111 * 1112 * @reg_off: offset within the controller's data buffer 1113 * @vaddr: virtual address of the buffer we want to read from 1114 * @size: DMA transaction size in bytes 1115 * @flags: flags to control DMA descriptor preparation 1116 */ 1117 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, 1118 const u8 *vaddr, int size, unsigned int flags) 1119 { 1120 if (nandc->props->is_bam) 1121 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); 1122 1123 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); 1124 } 1125 1126 /* 1127 * Helper to prepare DMA descriptors for configuring registers 1128 * before reading a NAND page. 1129 */ 1130 static void config_nand_page_read(struct nand_chip *chip) 1131 { 1132 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1133 1134 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1135 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1136 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); 1137 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); 1138 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 1139 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); 1140 } 1141 1142 /* 1143 * Helper to prepare DMA descriptors for configuring registers 1144 * before reading each codeword in NAND page. 1145 */ 1146 static void 1147 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) 1148 { 1149 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1150 struct nand_ecc_ctrl *ecc = &chip->ecc; 1151 1152 int reg = NAND_READ_LOCATION_0; 1153 1154 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) 1155 reg = NAND_READ_LOCATION_LAST_CW_0; 1156 1157 if (nandc->props->is_bam) 1158 write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); 1159 1160 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1161 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1162 1163 if (use_ecc) { 1164 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); 1165 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, 1166 NAND_BAM_NEXT_SGL); 1167 } else { 1168 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1169 } 1170 } 1171 1172 /* 1173 * Helper to prepare dma descriptors to configure registers needed for reading a 1174 * single codeword in page 1175 */ 1176 static void 1177 config_nand_single_cw_page_read(struct nand_chip *chip, 1178 bool use_ecc, int cw) 1179 { 1180 config_nand_page_read(chip); 1181 config_nand_cw_read(chip, use_ecc, cw); 1182 } 1183 1184 /* 1185 * Helper to prepare DMA descriptors used to configure registers needed for 1186 * before writing a NAND page. 1187 */ 1188 static void config_nand_page_write(struct nand_chip *chip) 1189 { 1190 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1191 1192 write_reg_dma(nandc, NAND_ADDR0, 2, 0); 1193 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); 1194 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 1195 NAND_BAM_NEXT_SGL); 1196 } 1197 1198 /* 1199 * Helper to prepare DMA descriptors for configuring registers 1200 * before writing each codeword in NAND page. 1201 */ 1202 static void config_nand_cw_write(struct nand_chip *chip) 1203 { 1204 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1205 1206 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1207 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1208 1209 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1210 1211 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1212 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1213 } 1214 1215 /* 1216 * the following functions are used within chip->legacy.cmdfunc() to 1217 * perform different NAND_CMD_* commands 1218 */ 1219 1220 /* sets up descriptors for NAND_CMD_PARAM */ 1221 static int nandc_param(struct qcom_nand_host *host) 1222 { 1223 struct nand_chip *chip = &host->chip; 1224 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1225 1226 /* 1227 * NAND_CMD_PARAM is called before we know much about the FLASH chip 1228 * in use. we configure the controller to perform a raw read of 512 1229 * bytes to read onfi params 1230 */ 1231 if (nandc->props->qpic_v2) 1232 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ | 1233 PAGE_ACC | LAST_PAGE); 1234 else 1235 nandc_set_reg(chip, NAND_FLASH_CMD, OP_PAGE_READ | 1236 PAGE_ACC | LAST_PAGE); 1237 1238 nandc_set_reg(chip, NAND_ADDR0, 0); 1239 nandc_set_reg(chip, NAND_ADDR1, 0); 1240 nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE 1241 | 512 << UD_SIZE_BYTES 1242 | 5 << NUM_ADDR_CYCLES 1243 | 0 << SPARE_SIZE_BYTES); 1244 nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES 1245 | 0 << CS_ACTIVE_BSY 1246 | 17 << BAD_BLOCK_BYTE_NUM 1247 | 1 << BAD_BLOCK_IN_SPARE_AREA 1248 | 2 << WR_RD_BSY_GAP 1249 | 0 << WIDE_FLASH 1250 | 1 << DEV0_CFG1_ECC_DISABLE); 1251 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); 1252 1253 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ 1254 if (!nandc->props->qpic_v2) { 1255 nandc_set_reg(chip, NAND_DEV_CMD_VLD, 1256 (nandc->vld & ~READ_START_VLD)); 1257 nandc_set_reg(chip, NAND_DEV_CMD1, 1258 (nandc->cmd1 & ~(0xFF << READ_ADDR)) 1259 | NAND_CMD_PARAM << READ_ADDR); 1260 } 1261 1262 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1263 1264 if (!nandc->props->qpic_v2) { 1265 nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1); 1266 nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); 1267 } 1268 1269 nandc_set_read_loc(chip, 0, 0, 0, 512, 1); 1270 1271 if (!nandc->props->qpic_v2) { 1272 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); 1273 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); 1274 } 1275 1276 nandc->buf_count = 512; 1277 memset(nandc->data_buffer, 0xff, nandc->buf_count); 1278 1279 config_nand_single_cw_page_read(chip, false, 0); 1280 1281 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, 1282 nandc->buf_count, 0); 1283 1284 /* restore CMD1 and VLD regs */ 1285 if (!nandc->props->qpic_v2) { 1286 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); 1287 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); 1288 } 1289 1290 return 0; 1291 } 1292 1293 /* sets up descriptors for NAND_CMD_ERASE1 */ 1294 static int erase_block(struct qcom_nand_host *host, int page_addr) 1295 { 1296 struct nand_chip *chip = &host->chip; 1297 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1298 1299 nandc_set_reg(chip, NAND_FLASH_CMD, 1300 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE); 1301 nandc_set_reg(chip, NAND_ADDR0, page_addr); 1302 nandc_set_reg(chip, NAND_ADDR1, 0); 1303 nandc_set_reg(chip, NAND_DEV0_CFG0, 1304 host->cfg0_raw & ~(7 << CW_PER_PAGE)); 1305 nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw); 1306 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1307 nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); 1308 nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); 1309 1310 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); 1311 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); 1312 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1313 1314 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1315 1316 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); 1317 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); 1318 1319 return 0; 1320 } 1321 1322 /* sets up descriptors for NAND_CMD_READID */ 1323 static int read_id(struct qcom_nand_host *host, int column) 1324 { 1325 struct nand_chip *chip = &host->chip; 1326 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1327 1328 if (column == -1) 1329 return 0; 1330 1331 nandc_set_reg(chip, NAND_FLASH_CMD, OP_FETCH_ID); 1332 nandc_set_reg(chip, NAND_ADDR0, column); 1333 nandc_set_reg(chip, NAND_ADDR1, 0); 1334 nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT, 1335 nandc->props->is_bam ? 0 : DM_EN); 1336 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1337 1338 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); 1339 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1340 1341 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); 1342 1343 return 0; 1344 } 1345 1346 /* sets up descriptors for NAND_CMD_RESET */ 1347 static int reset(struct qcom_nand_host *host) 1348 { 1349 struct nand_chip *chip = &host->chip; 1350 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1351 1352 nandc_set_reg(chip, NAND_FLASH_CMD, OP_RESET_DEVICE); 1353 nandc_set_reg(chip, NAND_EXEC_CMD, 1); 1354 1355 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); 1356 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); 1357 1358 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); 1359 1360 return 0; 1361 } 1362 1363 /* helpers to submit/free our list of dma descriptors */ 1364 static int submit_descs(struct qcom_nand_controller *nandc) 1365 { 1366 struct desc_info *desc; 1367 dma_cookie_t cookie = 0; 1368 struct bam_transaction *bam_txn = nandc->bam_txn; 1369 int r; 1370 1371 if (nandc->props->is_bam) { 1372 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { 1373 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); 1374 if (r) 1375 return r; 1376 } 1377 1378 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { 1379 r = prepare_bam_async_desc(nandc, nandc->tx_chan, 1380 DMA_PREP_INTERRUPT); 1381 if (r) 1382 return r; 1383 } 1384 1385 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { 1386 r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 1387 DMA_PREP_CMD); 1388 if (r) 1389 return r; 1390 } 1391 } 1392 1393 list_for_each_entry(desc, &nandc->desc_list, node) 1394 cookie = dmaengine_submit(desc->dma_desc); 1395 1396 if (nandc->props->is_bam) { 1397 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; 1398 bam_txn->last_cmd_desc->callback_param = bam_txn; 1399 if (bam_txn->last_data_desc) { 1400 bam_txn->last_data_desc->callback = qpic_bam_dma_done; 1401 bam_txn->last_data_desc->callback_param = bam_txn; 1402 bam_txn->wait_second_completion = true; 1403 } 1404 1405 dma_async_issue_pending(nandc->tx_chan); 1406 dma_async_issue_pending(nandc->rx_chan); 1407 dma_async_issue_pending(nandc->cmd_chan); 1408 1409 if (!wait_for_completion_timeout(&bam_txn->txn_done, 1410 QPIC_NAND_COMPLETION_TIMEOUT)) 1411 return -ETIMEDOUT; 1412 } else { 1413 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) 1414 return -ETIMEDOUT; 1415 } 1416 1417 return 0; 1418 } 1419 1420 static void free_descs(struct qcom_nand_controller *nandc) 1421 { 1422 struct desc_info *desc, *n; 1423 1424 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { 1425 list_del(&desc->node); 1426 1427 if (nandc->props->is_bam) 1428 dma_unmap_sg(nandc->dev, desc->bam_sgl, 1429 desc->sgl_cnt, desc->dir); 1430 else 1431 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, 1432 desc->dir); 1433 1434 kfree(desc); 1435 } 1436 } 1437 1438 /* reset the register read buffer for next NAND operation */ 1439 static void clear_read_regs(struct qcom_nand_controller *nandc) 1440 { 1441 nandc->reg_read_pos = 0; 1442 nandc_read_buffer_sync(nandc, false); 1443 } 1444 1445 static void pre_command(struct qcom_nand_host *host, int command) 1446 { 1447 struct nand_chip *chip = &host->chip; 1448 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1449 1450 nandc->buf_count = 0; 1451 nandc->buf_start = 0; 1452 host->use_ecc = false; 1453 host->last_command = command; 1454 1455 clear_read_regs(nandc); 1456 1457 if (command == NAND_CMD_RESET || command == NAND_CMD_READID || 1458 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) 1459 clear_bam_transaction(nandc); 1460 } 1461 1462 /* 1463 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our 1464 * privately maintained status byte, this status byte can be read after 1465 * NAND_CMD_STATUS is called 1466 */ 1467 static void parse_erase_write_errors(struct qcom_nand_host *host, int command) 1468 { 1469 struct nand_chip *chip = &host->chip; 1470 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1471 struct nand_ecc_ctrl *ecc = &chip->ecc; 1472 int num_cw; 1473 int i; 1474 1475 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; 1476 nandc_read_buffer_sync(nandc, true); 1477 1478 for (i = 0; i < num_cw; i++) { 1479 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); 1480 1481 if (flash_status & FS_MPU_ERR) 1482 host->status &= ~NAND_STATUS_WP; 1483 1484 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && 1485 (flash_status & 1486 FS_DEVICE_STS_ERR))) 1487 host->status |= NAND_STATUS_FAIL; 1488 } 1489 } 1490 1491 static void post_command(struct qcom_nand_host *host, int command) 1492 { 1493 struct nand_chip *chip = &host->chip; 1494 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1495 1496 switch (command) { 1497 case NAND_CMD_READID: 1498 nandc_read_buffer_sync(nandc, true); 1499 memcpy(nandc->data_buffer, nandc->reg_read_buf, 1500 nandc->buf_count); 1501 break; 1502 case NAND_CMD_PAGEPROG: 1503 case NAND_CMD_ERASE1: 1504 parse_erase_write_errors(host, command); 1505 break; 1506 default: 1507 break; 1508 } 1509 } 1510 1511 /* 1512 * Implements chip->legacy.cmdfunc. It's only used for a limited set of 1513 * commands. The rest of the commands wouldn't be called by upper layers. 1514 * For example, NAND_CMD_READOOB would never be called because we have our own 1515 * versions of read_oob ops for nand_ecc_ctrl. 1516 */ 1517 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command, 1518 int column, int page_addr) 1519 { 1520 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1521 struct nand_ecc_ctrl *ecc = &chip->ecc; 1522 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1523 bool wait = false; 1524 int ret = 0; 1525 1526 pre_command(host, command); 1527 1528 switch (command) { 1529 case NAND_CMD_RESET: 1530 ret = reset(host); 1531 wait = true; 1532 break; 1533 1534 case NAND_CMD_READID: 1535 nandc->buf_count = 4; 1536 ret = read_id(host, column); 1537 wait = true; 1538 break; 1539 1540 case NAND_CMD_PARAM: 1541 ret = nandc_param(host); 1542 wait = true; 1543 break; 1544 1545 case NAND_CMD_ERASE1: 1546 ret = erase_block(host, page_addr); 1547 wait = true; 1548 break; 1549 1550 case NAND_CMD_READ0: 1551 /* we read the entire page for now */ 1552 WARN_ON(column != 0); 1553 1554 host->use_ecc = true; 1555 set_address(host, 0, page_addr); 1556 update_rw_regs(host, ecc->steps, true, 0); 1557 break; 1558 1559 case NAND_CMD_SEQIN: 1560 WARN_ON(column != 0); 1561 set_address(host, 0, page_addr); 1562 break; 1563 1564 case NAND_CMD_PAGEPROG: 1565 case NAND_CMD_STATUS: 1566 case NAND_CMD_NONE: 1567 default: 1568 break; 1569 } 1570 1571 if (ret) { 1572 dev_err(nandc->dev, "failure executing command %d\n", 1573 command); 1574 free_descs(nandc); 1575 return; 1576 } 1577 1578 if (wait) { 1579 ret = submit_descs(nandc); 1580 if (ret) 1581 dev_err(nandc->dev, 1582 "failure submitting descs for command %d\n", 1583 command); 1584 } 1585 1586 free_descs(nandc); 1587 1588 post_command(host, command); 1589 } 1590 1591 /* 1592 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read 1593 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. 1594 * 1595 * when using RS ECC, the HW reports the same erros when reading an erased CW, 1596 * but it notifies that it is an erased CW by placing special characters at 1597 * certain offsets in the buffer. 1598 * 1599 * verify if the page is erased or not, and fix up the page for RS ECC by 1600 * replacing the special characters with 0xff. 1601 */ 1602 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) 1603 { 1604 u8 empty1, empty2; 1605 1606 /* 1607 * an erased page flags an error in NAND_FLASH_STATUS, check if the page 1608 * is erased by looking for 0x54s at offsets 3 and 175 from the 1609 * beginning of each codeword 1610 */ 1611 1612 empty1 = data_buf[3]; 1613 empty2 = data_buf[175]; 1614 1615 /* 1616 * if the erased codework markers, if they exist override them with 1617 * 0xffs 1618 */ 1619 if ((empty1 == 0x54 && empty2 == 0xff) || 1620 (empty1 == 0xff && empty2 == 0x54)) { 1621 data_buf[3] = 0xff; 1622 data_buf[175] = 0xff; 1623 } 1624 1625 /* 1626 * check if the entire chunk contains 0xffs or not. if it doesn't, then 1627 * restore the original values at the special offsets 1628 */ 1629 if (memchr_inv(data_buf, 0xff, data_len)) { 1630 data_buf[3] = empty1; 1631 data_buf[175] = empty2; 1632 1633 return false; 1634 } 1635 1636 return true; 1637 } 1638 1639 struct read_stats { 1640 __le32 flash; 1641 __le32 buffer; 1642 __le32 erased_cw; 1643 }; 1644 1645 /* reads back FLASH_STATUS register set by the controller */ 1646 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) 1647 { 1648 struct nand_chip *chip = &host->chip; 1649 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1650 int i; 1651 1652 nandc_read_buffer_sync(nandc, true); 1653 1654 for (i = 0; i < cw_cnt; i++) { 1655 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); 1656 1657 if (flash & (FS_OP_ERR | FS_MPU_ERR)) 1658 return -EIO; 1659 } 1660 1661 return 0; 1662 } 1663 1664 /* performs raw read for one codeword */ 1665 static int 1666 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, 1667 u8 *data_buf, u8 *oob_buf, int page, int cw) 1668 { 1669 struct qcom_nand_host *host = to_qcom_nand_host(chip); 1670 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1671 struct nand_ecc_ctrl *ecc = &chip->ecc; 1672 int data_size1, data_size2, oob_size1, oob_size2; 1673 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; 1674 1675 nand_read_page_op(chip, page, 0, NULL, 0); 1676 host->use_ecc = false; 1677 1678 clear_bam_transaction(nandc); 1679 set_address(host, host->cw_size * cw, page); 1680 update_rw_regs(host, 1, true, cw); 1681 config_nand_page_read(chip); 1682 1683 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 1684 oob_size1 = host->bbm_size; 1685 1686 if (qcom_nandc_is_last_cw(ecc, cw)) { 1687 data_size2 = ecc->size - data_size1 - 1688 ((ecc->steps - 1) * 4); 1689 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + 1690 host->spare_bytes; 1691 } else { 1692 data_size2 = host->cw_data - data_size1; 1693 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 1694 } 1695 1696 if (nandc->props->is_bam) { 1697 nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); 1698 read_loc += data_size1; 1699 1700 nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); 1701 read_loc += oob_size1; 1702 1703 nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); 1704 read_loc += data_size2; 1705 1706 nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); 1707 } 1708 1709 config_nand_cw_read(chip, false, cw); 1710 1711 read_data_dma(nandc, reg_off, data_buf, data_size1, 0); 1712 reg_off += data_size1; 1713 1714 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); 1715 reg_off += oob_size1; 1716 1717 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); 1718 reg_off += data_size2; 1719 1720 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); 1721 1722 ret = submit_descs(nandc); 1723 free_descs(nandc); 1724 if (ret) { 1725 dev_err(nandc->dev, "failure to read raw cw %d\n", cw); 1726 return ret; 1727 } 1728 1729 return check_flash_errors(host, 1); 1730 } 1731 1732 /* 1733 * Bitflips can happen in erased codewords also so this function counts the 1734 * number of 0 in each CW for which ECC engine returns the uncorrectable 1735 * error. The page will be assumed as erased if this count is less than or 1736 * equal to the ecc->strength for each CW. 1737 * 1738 * 1. Both DATA and OOB need to be checked for number of 0. The 1739 * top-level API can be called with only data buf or OOB buf so use 1740 * chip->data_buf if data buf is null and chip->oob_poi if oob buf 1741 * is null for copying the raw bytes. 1742 * 2. Perform raw read for all the CW which has uncorrectable errors. 1743 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. 1744 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check 1745 * the number of bitflips in this area. 1746 */ 1747 static int 1748 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, 1749 u8 *oob_buf, unsigned long uncorrectable_cws, 1750 int page, unsigned int max_bitflips) 1751 { 1752 struct nand_chip *chip = &host->chip; 1753 struct mtd_info *mtd = nand_to_mtd(chip); 1754 struct nand_ecc_ctrl *ecc = &chip->ecc; 1755 u8 *cw_data_buf, *cw_oob_buf; 1756 int cw, data_size, oob_size, ret = 0; 1757 1758 if (!data_buf) 1759 data_buf = nand_get_data_buf(chip); 1760 1761 if (!oob_buf) { 1762 nand_get_data_buf(chip); 1763 oob_buf = chip->oob_poi; 1764 } 1765 1766 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { 1767 if (qcom_nandc_is_last_cw(ecc, cw)) { 1768 data_size = ecc->size - ((ecc->steps - 1) * 4); 1769 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; 1770 } else { 1771 data_size = host->cw_data; 1772 oob_size = host->ecc_bytes_hw; 1773 } 1774 1775 /* determine starting buffer address for current CW */ 1776 cw_data_buf = data_buf + (cw * host->cw_data); 1777 cw_oob_buf = oob_buf + (cw * ecc->bytes); 1778 1779 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, 1780 cw_oob_buf, page, cw); 1781 if (ret) 1782 return ret; 1783 1784 /* 1785 * make sure it isn't an erased page reported 1786 * as not-erased by HW because of a few bitflips 1787 */ 1788 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, 1789 cw_oob_buf + host->bbm_size, 1790 oob_size, NULL, 1791 0, ecc->strength); 1792 if (ret < 0) { 1793 mtd->ecc_stats.failed++; 1794 } else { 1795 mtd->ecc_stats.corrected += ret; 1796 max_bitflips = max_t(unsigned int, max_bitflips, ret); 1797 } 1798 } 1799 1800 return max_bitflips; 1801 } 1802 1803 /* 1804 * reads back status registers set by the controller to notify page read 1805 * errors. this is equivalent to what 'ecc->correct()' would do. 1806 */ 1807 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, 1808 u8 *oob_buf, int page) 1809 { 1810 struct nand_chip *chip = &host->chip; 1811 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1812 struct mtd_info *mtd = nand_to_mtd(chip); 1813 struct nand_ecc_ctrl *ecc = &chip->ecc; 1814 unsigned int max_bitflips = 0, uncorrectable_cws = 0; 1815 struct read_stats *buf; 1816 bool flash_op_err = false, erased; 1817 int i; 1818 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1819 1820 buf = (struct read_stats *)nandc->reg_read_buf; 1821 nandc_read_buffer_sync(nandc, true); 1822 1823 for (i = 0; i < ecc->steps; i++, buf++) { 1824 u32 flash, buffer, erased_cw; 1825 int data_len, oob_len; 1826 1827 if (qcom_nandc_is_last_cw(ecc, i)) { 1828 data_len = ecc->size - ((ecc->steps - 1) << 2); 1829 oob_len = ecc->steps << 2; 1830 } else { 1831 data_len = host->cw_data; 1832 oob_len = 0; 1833 } 1834 1835 flash = le32_to_cpu(buf->flash); 1836 buffer = le32_to_cpu(buf->buffer); 1837 erased_cw = le32_to_cpu(buf->erased_cw); 1838 1839 /* 1840 * Check ECC failure for each codeword. ECC failure can 1841 * happen in either of the following conditions 1842 * 1. If number of bitflips are greater than ECC engine 1843 * capability. 1844 * 2. If this codeword contains all 0xff for which erased 1845 * codeword detection check will be done. 1846 */ 1847 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { 1848 /* 1849 * For BCH ECC, ignore erased codeword errors, if 1850 * ERASED_CW bits are set. 1851 */ 1852 if (host->bch_enabled) { 1853 erased = (erased_cw & ERASED_CW) == ERASED_CW ? 1854 true : false; 1855 /* 1856 * For RS ECC, HW reports the erased CW by placing 1857 * special characters at certain offsets in the buffer. 1858 * These special characters will be valid only if 1859 * complete page is read i.e. data_buf is not NULL. 1860 */ 1861 } else if (data_buf) { 1862 erased = erased_chunk_check_and_fixup(data_buf, 1863 data_len); 1864 } else { 1865 erased = false; 1866 } 1867 1868 if (!erased) 1869 uncorrectable_cws |= BIT(i); 1870 /* 1871 * Check if MPU or any other operational error (timeout, 1872 * device failure, etc.) happened for this codeword and 1873 * make flash_op_err true. If flash_op_err is set, then 1874 * EIO will be returned for page read. 1875 */ 1876 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { 1877 flash_op_err = true; 1878 /* 1879 * No ECC or operational errors happened. Check the number of 1880 * bits corrected and update the ecc_stats.corrected. 1881 */ 1882 } else { 1883 unsigned int stat; 1884 1885 stat = buffer & BS_CORRECTABLE_ERR_MSK; 1886 mtd->ecc_stats.corrected += stat; 1887 max_bitflips = max(max_bitflips, stat); 1888 } 1889 1890 if (data_buf) 1891 data_buf += data_len; 1892 if (oob_buf) 1893 oob_buf += oob_len + ecc->bytes; 1894 } 1895 1896 if (flash_op_err) 1897 return -EIO; 1898 1899 if (!uncorrectable_cws) 1900 return max_bitflips; 1901 1902 return check_for_erased_page(host, data_buf_start, oob_buf_start, 1903 uncorrectable_cws, page, 1904 max_bitflips); 1905 } 1906 1907 /* 1908 * helper to perform the actual page read operation, used by ecc->read_page(), 1909 * ecc->read_oob() 1910 */ 1911 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, 1912 u8 *oob_buf, int page) 1913 { 1914 struct nand_chip *chip = &host->chip; 1915 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1916 struct nand_ecc_ctrl *ecc = &chip->ecc; 1917 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; 1918 int i, ret; 1919 1920 config_nand_page_read(chip); 1921 1922 /* queue cmd descs for each codeword */ 1923 for (i = 0; i < ecc->steps; i++) { 1924 int data_size, oob_size; 1925 1926 if (qcom_nandc_is_last_cw(ecc, i)) { 1927 data_size = ecc->size - ((ecc->steps - 1) << 2); 1928 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 1929 host->spare_bytes; 1930 } else { 1931 data_size = host->cw_data; 1932 oob_size = host->ecc_bytes_hw + host->spare_bytes; 1933 } 1934 1935 if (nandc->props->is_bam) { 1936 if (data_buf && oob_buf) { 1937 nandc_set_read_loc(chip, i, 0, 0, data_size, 0); 1938 nandc_set_read_loc(chip, i, 1, data_size, 1939 oob_size, 1); 1940 } else if (data_buf) { 1941 nandc_set_read_loc(chip, i, 0, 0, data_size, 1); 1942 } else { 1943 nandc_set_read_loc(chip, i, 0, data_size, 1944 oob_size, 1); 1945 } 1946 } 1947 1948 config_nand_cw_read(chip, true, i); 1949 1950 if (data_buf) 1951 read_data_dma(nandc, FLASH_BUF_ACC, data_buf, 1952 data_size, 0); 1953 1954 /* 1955 * when ecc is enabled, the controller doesn't read the real 1956 * or dummy bad block markers in each chunk. To maintain a 1957 * consistent layout across RAW and ECC reads, we just 1958 * leave the real/dummy BBM offsets empty (i.e, filled with 1959 * 0xffs) 1960 */ 1961 if (oob_buf) { 1962 int j; 1963 1964 for (j = 0; j < host->bbm_size; j++) 1965 *oob_buf++ = 0xff; 1966 1967 read_data_dma(nandc, FLASH_BUF_ACC + data_size, 1968 oob_buf, oob_size, 0); 1969 } 1970 1971 if (data_buf) 1972 data_buf += data_size; 1973 if (oob_buf) 1974 oob_buf += oob_size; 1975 } 1976 1977 ret = submit_descs(nandc); 1978 free_descs(nandc); 1979 1980 if (ret) { 1981 dev_err(nandc->dev, "failure to read page/oob\n"); 1982 return ret; 1983 } 1984 1985 return parse_read_errors(host, data_buf_start, oob_buf_start, page); 1986 } 1987 1988 /* 1989 * a helper that copies the last step/codeword of a page (containing free oob) 1990 * into our local buffer 1991 */ 1992 static int copy_last_cw(struct qcom_nand_host *host, int page) 1993 { 1994 struct nand_chip *chip = &host->chip; 1995 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 1996 struct nand_ecc_ctrl *ecc = &chip->ecc; 1997 int size; 1998 int ret; 1999 2000 clear_read_regs(nandc); 2001 2002 size = host->use_ecc ? host->cw_data : host->cw_size; 2003 2004 /* prepare a clean read buffer */ 2005 memset(nandc->data_buffer, 0xff, size); 2006 2007 set_address(host, host->cw_size * (ecc->steps - 1), page); 2008 update_rw_regs(host, 1, true, ecc->steps - 1); 2009 2010 config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); 2011 2012 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); 2013 2014 ret = submit_descs(nandc); 2015 if (ret) 2016 dev_err(nandc->dev, "failed to copy last codeword\n"); 2017 2018 free_descs(nandc); 2019 2020 return ret; 2021 } 2022 2023 /* implements ecc->read_page() */ 2024 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf, 2025 int oob_required, int page) 2026 { 2027 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2028 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2029 u8 *data_buf, *oob_buf = NULL; 2030 2031 nand_read_page_op(chip, page, 0, NULL, 0); 2032 data_buf = buf; 2033 oob_buf = oob_required ? chip->oob_poi : NULL; 2034 2035 clear_bam_transaction(nandc); 2036 2037 return read_page_ecc(host, data_buf, oob_buf, page); 2038 } 2039 2040 /* implements ecc->read_page_raw() */ 2041 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 2042 int oob_required, int page) 2043 { 2044 struct mtd_info *mtd = nand_to_mtd(chip); 2045 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2046 struct nand_ecc_ctrl *ecc = &chip->ecc; 2047 int cw, ret; 2048 u8 *data_buf = buf, *oob_buf = chip->oob_poi; 2049 2050 for (cw = 0; cw < ecc->steps; cw++) { 2051 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, 2052 page, cw); 2053 if (ret) 2054 return ret; 2055 2056 data_buf += host->cw_data; 2057 oob_buf += ecc->bytes; 2058 } 2059 2060 return 0; 2061 } 2062 2063 /* implements ecc->read_oob() */ 2064 static int qcom_nandc_read_oob(struct nand_chip *chip, int page) 2065 { 2066 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2067 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2068 struct nand_ecc_ctrl *ecc = &chip->ecc; 2069 2070 clear_read_regs(nandc); 2071 clear_bam_transaction(nandc); 2072 2073 host->use_ecc = true; 2074 set_address(host, 0, page); 2075 update_rw_regs(host, ecc->steps, true, 0); 2076 2077 return read_page_ecc(host, NULL, chip->oob_poi, page); 2078 } 2079 2080 /* implements ecc->write_page() */ 2081 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf, 2082 int oob_required, int page) 2083 { 2084 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2085 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2086 struct nand_ecc_ctrl *ecc = &chip->ecc; 2087 u8 *data_buf, *oob_buf; 2088 int i, ret; 2089 2090 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2091 2092 clear_read_regs(nandc); 2093 clear_bam_transaction(nandc); 2094 2095 data_buf = (u8 *)buf; 2096 oob_buf = chip->oob_poi; 2097 2098 host->use_ecc = true; 2099 update_rw_regs(host, ecc->steps, false, 0); 2100 config_nand_page_write(chip); 2101 2102 for (i = 0; i < ecc->steps; i++) { 2103 int data_size, oob_size; 2104 2105 if (qcom_nandc_is_last_cw(ecc, i)) { 2106 data_size = ecc->size - ((ecc->steps - 1) << 2); 2107 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + 2108 host->spare_bytes; 2109 } else { 2110 data_size = host->cw_data; 2111 oob_size = ecc->bytes; 2112 } 2113 2114 2115 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, 2116 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); 2117 2118 /* 2119 * when ECC is enabled, we don't really need to write anything 2120 * to oob for the first n - 1 codewords since these oob regions 2121 * just contain ECC bytes that's written by the controller 2122 * itself. For the last codeword, we skip the bbm positions and 2123 * write to the free oob area. 2124 */ 2125 if (qcom_nandc_is_last_cw(ecc, i)) { 2126 oob_buf += host->bbm_size; 2127 2128 write_data_dma(nandc, FLASH_BUF_ACC + data_size, 2129 oob_buf, oob_size, 0); 2130 } 2131 2132 config_nand_cw_write(chip); 2133 2134 data_buf += data_size; 2135 oob_buf += oob_size; 2136 } 2137 2138 ret = submit_descs(nandc); 2139 if (ret) 2140 dev_err(nandc->dev, "failure to write page\n"); 2141 2142 free_descs(nandc); 2143 2144 if (!ret) 2145 ret = nand_prog_page_end_op(chip); 2146 2147 return ret; 2148 } 2149 2150 /* implements ecc->write_page_raw() */ 2151 static int qcom_nandc_write_page_raw(struct nand_chip *chip, 2152 const uint8_t *buf, int oob_required, 2153 int page) 2154 { 2155 struct mtd_info *mtd = nand_to_mtd(chip); 2156 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2157 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2158 struct nand_ecc_ctrl *ecc = &chip->ecc; 2159 u8 *data_buf, *oob_buf; 2160 int i, ret; 2161 2162 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2163 clear_read_regs(nandc); 2164 clear_bam_transaction(nandc); 2165 2166 data_buf = (u8 *)buf; 2167 oob_buf = chip->oob_poi; 2168 2169 host->use_ecc = false; 2170 update_rw_regs(host, ecc->steps, false, 0); 2171 config_nand_page_write(chip); 2172 2173 for (i = 0; i < ecc->steps; i++) { 2174 int data_size1, data_size2, oob_size1, oob_size2; 2175 int reg_off = FLASH_BUF_ACC; 2176 2177 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); 2178 oob_size1 = host->bbm_size; 2179 2180 if (qcom_nandc_is_last_cw(ecc, i)) { 2181 data_size2 = ecc->size - data_size1 - 2182 ((ecc->steps - 1) << 2); 2183 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + 2184 host->spare_bytes; 2185 } else { 2186 data_size2 = host->cw_data - data_size1; 2187 oob_size2 = host->ecc_bytes_hw + host->spare_bytes; 2188 } 2189 2190 write_data_dma(nandc, reg_off, data_buf, data_size1, 2191 NAND_BAM_NO_EOT); 2192 reg_off += data_size1; 2193 data_buf += data_size1; 2194 2195 write_data_dma(nandc, reg_off, oob_buf, oob_size1, 2196 NAND_BAM_NO_EOT); 2197 reg_off += oob_size1; 2198 oob_buf += oob_size1; 2199 2200 write_data_dma(nandc, reg_off, data_buf, data_size2, 2201 NAND_BAM_NO_EOT); 2202 reg_off += data_size2; 2203 data_buf += data_size2; 2204 2205 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); 2206 oob_buf += oob_size2; 2207 2208 config_nand_cw_write(chip); 2209 } 2210 2211 ret = submit_descs(nandc); 2212 if (ret) 2213 dev_err(nandc->dev, "failure to write raw page\n"); 2214 2215 free_descs(nandc); 2216 2217 if (!ret) 2218 ret = nand_prog_page_end_op(chip); 2219 2220 return ret; 2221 } 2222 2223 /* 2224 * implements ecc->write_oob() 2225 * 2226 * the NAND controller cannot write only data or only OOB within a codeword 2227 * since ECC is calculated for the combined codeword. So update the OOB from 2228 * chip->oob_poi, and pad the data area with OxFF before writing. 2229 */ 2230 static int qcom_nandc_write_oob(struct nand_chip *chip, int page) 2231 { 2232 struct mtd_info *mtd = nand_to_mtd(chip); 2233 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2234 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2235 struct nand_ecc_ctrl *ecc = &chip->ecc; 2236 u8 *oob = chip->oob_poi; 2237 int data_size, oob_size; 2238 int ret; 2239 2240 host->use_ecc = true; 2241 clear_bam_transaction(nandc); 2242 2243 /* calculate the data and oob size for the last codeword/step */ 2244 data_size = ecc->size - ((ecc->steps - 1) << 2); 2245 oob_size = mtd->oobavail; 2246 2247 memset(nandc->data_buffer, 0xff, host->cw_data); 2248 /* override new oob content to last codeword */ 2249 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 2250 0, mtd->oobavail); 2251 2252 set_address(host, host->cw_size * (ecc->steps - 1), page); 2253 update_rw_regs(host, 1, false, 0); 2254 2255 config_nand_page_write(chip); 2256 write_data_dma(nandc, FLASH_BUF_ACC, 2257 nandc->data_buffer, data_size + oob_size, 0); 2258 config_nand_cw_write(chip); 2259 2260 ret = submit_descs(nandc); 2261 2262 free_descs(nandc); 2263 2264 if (ret) { 2265 dev_err(nandc->dev, "failure to write oob\n"); 2266 return -EIO; 2267 } 2268 2269 return nand_prog_page_end_op(chip); 2270 } 2271 2272 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) 2273 { 2274 struct mtd_info *mtd = nand_to_mtd(chip); 2275 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2276 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2277 struct nand_ecc_ctrl *ecc = &chip->ecc; 2278 int page, ret, bbpos, bad = 0; 2279 2280 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2281 2282 /* 2283 * configure registers for a raw sub page read, the address is set to 2284 * the beginning of the last codeword, we don't care about reading ecc 2285 * portion of oob. we just want the first few bytes from this codeword 2286 * that contains the BBM 2287 */ 2288 host->use_ecc = false; 2289 2290 clear_bam_transaction(nandc); 2291 ret = copy_last_cw(host, page); 2292 if (ret) 2293 goto err; 2294 2295 if (check_flash_errors(host, 1)) { 2296 dev_warn(nandc->dev, "error when trying to read BBM\n"); 2297 goto err; 2298 } 2299 2300 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); 2301 2302 bad = nandc->data_buffer[bbpos] != 0xff; 2303 2304 if (chip->options & NAND_BUSWIDTH_16) 2305 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); 2306 err: 2307 return bad; 2308 } 2309 2310 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) 2311 { 2312 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2313 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2314 struct nand_ecc_ctrl *ecc = &chip->ecc; 2315 int page, ret; 2316 2317 clear_read_regs(nandc); 2318 clear_bam_transaction(nandc); 2319 2320 /* 2321 * to mark the BBM as bad, we flash the entire last codeword with 0s. 2322 * we don't care about the rest of the content in the codeword since 2323 * we aren't going to use this block again 2324 */ 2325 memset(nandc->data_buffer, 0x00, host->cw_size); 2326 2327 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 2328 2329 /* prepare write */ 2330 host->use_ecc = false; 2331 set_address(host, host->cw_size * (ecc->steps - 1), page); 2332 update_rw_regs(host, 1, false, ecc->steps - 1); 2333 2334 config_nand_page_write(chip); 2335 write_data_dma(nandc, FLASH_BUF_ACC, 2336 nandc->data_buffer, host->cw_size, 0); 2337 config_nand_cw_write(chip); 2338 2339 ret = submit_descs(nandc); 2340 2341 free_descs(nandc); 2342 2343 if (ret) { 2344 dev_err(nandc->dev, "failure to update BBM\n"); 2345 return -EIO; 2346 } 2347 2348 return nand_prog_page_end_op(chip); 2349 } 2350 2351 /* 2352 * the three functions below implement chip->legacy.read_byte(), 2353 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these 2354 * aren't used for reading/writing page data, they are used for smaller data 2355 * like reading id, status etc 2356 */ 2357 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip) 2358 { 2359 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2360 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2361 u8 *buf = nandc->data_buffer; 2362 u8 ret = 0x0; 2363 2364 if (host->last_command == NAND_CMD_STATUS) { 2365 ret = host->status; 2366 2367 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2368 2369 return ret; 2370 } 2371 2372 if (nandc->buf_start < nandc->buf_count) 2373 ret = buf[nandc->buf_start++]; 2374 2375 return ret; 2376 } 2377 2378 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 2379 { 2380 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2381 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2382 2383 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); 2384 nandc->buf_start += real_len; 2385 } 2386 2387 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf, 2388 int len) 2389 { 2390 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2391 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); 2392 2393 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); 2394 2395 nandc->buf_start += real_len; 2396 } 2397 2398 /* we support only one external chip for now */ 2399 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr) 2400 { 2401 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2402 2403 if (chipnr <= 0) 2404 return; 2405 2406 dev_warn(nandc->dev, "invalid chip select\n"); 2407 } 2408 2409 /* 2410 * NAND controller page layout info 2411 * 2412 * Layout with ECC enabled: 2413 * 2414 * |----------------------| |---------------------------------| 2415 * | xx.......yy| | *********xx.......yy| 2416 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| 2417 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| 2418 * | xx.......yy| | *********xx.......yy| 2419 * |----------------------| |---------------------------------| 2420 * codeword 1,2..n-1 codeword n 2421 * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> 2422 * 2423 * n = Number of codewords in the page 2424 * . = ECC bytes 2425 * * = Spare/free bytes 2426 * x = Unused byte(s) 2427 * y = Reserved byte(s) 2428 * 2429 * 2K page: n = 4, spare = 16 bytes 2430 * 4K page: n = 8, spare = 32 bytes 2431 * 8K page: n = 16, spare = 64 bytes 2432 * 2433 * the qcom nand controller operates at a sub page/codeword level. each 2434 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. 2435 * the number of ECC bytes vary based on the ECC strength and the bus width. 2436 * 2437 * the first n - 1 codewords contains 516 bytes of user data, the remaining 2438 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains 2439 * both user data and spare(oobavail) bytes that sum up to 516 bytes. 2440 * 2441 * When we access a page with ECC enabled, the reserved bytes(s) are not 2442 * accessible at all. When reading, we fill up these unreadable positions 2443 * with 0xffs. When writing, the controller skips writing the inaccessible 2444 * bytes. 2445 * 2446 * Layout with ECC disabled: 2447 * 2448 * |------------------------------| |---------------------------------------| 2449 * | yy xx.......| | bb *********xx.......| 2450 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| 2451 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| 2452 * | yy xx.......| | bb *********xx.......| 2453 * |------------------------------| |---------------------------------------| 2454 * codeword 1,2..n-1 codeword n 2455 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> 2456 * 2457 * n = Number of codewords in the page 2458 * . = ECC bytes 2459 * * = Spare/free bytes 2460 * x = Unused byte(s) 2461 * y = Dummy Bad Bock byte(s) 2462 * b = Real Bad Block byte(s) 2463 * size1/size2 = function of codeword size and 'n' 2464 * 2465 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus 2466 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad 2467 * Block Markers. In the last codeword, this position contains the real BBM 2468 * 2469 * In order to have a consistent layout between RAW and ECC modes, we assume 2470 * the following OOB layout arrangement: 2471 * 2472 * |-----------| |--------------------| 2473 * |yyxx.......| |bb*********xx.......| 2474 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| 2475 * |yyxx.......| |bb*********xx.......| 2476 * |yyxx.......| |bb*********xx.......| 2477 * |-----------| |--------------------| 2478 * first n - 1 nth OOB region 2479 * OOB regions 2480 * 2481 * n = Number of codewords in the page 2482 * . = ECC bytes 2483 * * = FREE OOB bytes 2484 * y = Dummy bad block byte(s) (inaccessible when ECC enabled) 2485 * x = Unused byte(s) 2486 * b = Real bad block byte(s) (inaccessible when ECC enabled) 2487 * 2488 * This layout is read as is when ECC is disabled. When ECC is enabled, the 2489 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, 2490 * and assumed as 0xffs when we read a page/oob. The ECC, unused and 2491 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is 2492 * the sum of the three). 2493 */ 2494 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2495 struct mtd_oob_region *oobregion) 2496 { 2497 struct nand_chip *chip = mtd_to_nand(mtd); 2498 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2499 struct nand_ecc_ctrl *ecc = &chip->ecc; 2500 2501 if (section > 1) 2502 return -ERANGE; 2503 2504 if (!section) { 2505 oobregion->length = (ecc->bytes * (ecc->steps - 1)) + 2506 host->bbm_size; 2507 oobregion->offset = 0; 2508 } else { 2509 oobregion->length = host->ecc_bytes_hw + host->spare_bytes; 2510 oobregion->offset = mtd->oobsize - oobregion->length; 2511 } 2512 2513 return 0; 2514 } 2515 2516 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, 2517 struct mtd_oob_region *oobregion) 2518 { 2519 struct nand_chip *chip = mtd_to_nand(mtd); 2520 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2521 struct nand_ecc_ctrl *ecc = &chip->ecc; 2522 2523 if (section) 2524 return -ERANGE; 2525 2526 oobregion->length = ecc->steps * 4; 2527 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; 2528 2529 return 0; 2530 } 2531 2532 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { 2533 .ecc = qcom_nand_ooblayout_ecc, 2534 .free = qcom_nand_ooblayout_free, 2535 }; 2536 2537 static int 2538 qcom_nandc_calc_ecc_bytes(int step_size, int strength) 2539 { 2540 return strength == 4 ? 12 : 16; 2541 } 2542 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, 2543 NANDC_STEP_SIZE, 4, 8); 2544 2545 static int qcom_nand_attach_chip(struct nand_chip *chip) 2546 { 2547 struct mtd_info *mtd = nand_to_mtd(chip); 2548 struct qcom_nand_host *host = to_qcom_nand_host(chip); 2549 struct nand_ecc_ctrl *ecc = &chip->ecc; 2550 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); 2551 int cwperpage, bad_block_byte, ret; 2552 bool wide_bus; 2553 int ecc_mode = 1; 2554 2555 /* controller only supports 512 bytes data steps */ 2556 ecc->size = NANDC_STEP_SIZE; 2557 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; 2558 cwperpage = mtd->writesize / NANDC_STEP_SIZE; 2559 2560 /* 2561 * Each CW has 4 available OOB bytes which will be protected with ECC 2562 * so remaining bytes can be used for ECC. 2563 */ 2564 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, 2565 mtd->oobsize - (cwperpage * 4)); 2566 if (ret) { 2567 dev_err(nandc->dev, "No valid ECC settings possible\n"); 2568 return ret; 2569 } 2570 2571 if (ecc->strength >= 8) { 2572 /* 8 bit ECC defaults to BCH ECC on all platforms */ 2573 host->bch_enabled = true; 2574 ecc_mode = 1; 2575 2576 if (wide_bus) { 2577 host->ecc_bytes_hw = 14; 2578 host->spare_bytes = 0; 2579 host->bbm_size = 2; 2580 } else { 2581 host->ecc_bytes_hw = 13; 2582 host->spare_bytes = 2; 2583 host->bbm_size = 1; 2584 } 2585 } else { 2586 /* 2587 * if the controller supports BCH for 4 bit ECC, the controller 2588 * uses lesser bytes for ECC. If RS is used, the ECC bytes is 2589 * always 10 bytes 2590 */ 2591 if (nandc->props->ecc_modes & ECC_BCH_4BIT) { 2592 /* BCH */ 2593 host->bch_enabled = true; 2594 ecc_mode = 0; 2595 2596 if (wide_bus) { 2597 host->ecc_bytes_hw = 8; 2598 host->spare_bytes = 2; 2599 host->bbm_size = 2; 2600 } else { 2601 host->ecc_bytes_hw = 7; 2602 host->spare_bytes = 4; 2603 host->bbm_size = 1; 2604 } 2605 } else { 2606 /* RS */ 2607 host->ecc_bytes_hw = 10; 2608 2609 if (wide_bus) { 2610 host->spare_bytes = 0; 2611 host->bbm_size = 2; 2612 } else { 2613 host->spare_bytes = 1; 2614 host->bbm_size = 1; 2615 } 2616 } 2617 } 2618 2619 /* 2620 * we consider ecc->bytes as the sum of all the non-data content in a 2621 * step. It gives us a clean representation of the oob area (even if 2622 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit 2623 * ECC and 12 bytes for 4 bit ECC 2624 */ 2625 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; 2626 2627 ecc->read_page = qcom_nandc_read_page; 2628 ecc->read_page_raw = qcom_nandc_read_page_raw; 2629 ecc->read_oob = qcom_nandc_read_oob; 2630 ecc->write_page = qcom_nandc_write_page; 2631 ecc->write_page_raw = qcom_nandc_write_page_raw; 2632 ecc->write_oob = qcom_nandc_write_oob; 2633 2634 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2635 2636 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); 2637 2638 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, 2639 cwperpage); 2640 2641 /* 2642 * DATA_UD_BYTES varies based on whether the read/write command protects 2643 * spare data with ECC too. We protect spare data by default, so we set 2644 * it to main + spare data, which are 512 and 4 bytes respectively. 2645 */ 2646 host->cw_data = 516; 2647 2648 /* 2649 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes 2650 * for 8 bit ECC 2651 */ 2652 host->cw_size = host->cw_data + ecc->bytes; 2653 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; 2654 2655 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE 2656 | host->cw_data << UD_SIZE_BYTES 2657 | 0 << DISABLE_STATUS_AFTER_WRITE 2658 | 5 << NUM_ADDR_CYCLES 2659 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS 2660 | 0 << STATUS_BFR_READ 2661 | 1 << SET_RD_MODE_AFTER_STATUS 2662 | host->spare_bytes << SPARE_SIZE_BYTES; 2663 2664 host->cfg1 = 7 << NAND_RECOVERY_CYCLES 2665 | 0 << CS_ACTIVE_BSY 2666 | bad_block_byte << BAD_BLOCK_BYTE_NUM 2667 | 0 << BAD_BLOCK_IN_SPARE_AREA 2668 | 2 << WR_RD_BSY_GAP 2669 | wide_bus << WIDE_FLASH 2670 | host->bch_enabled << ENABLE_BCH_ECC; 2671 2672 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE 2673 | host->cw_size << UD_SIZE_BYTES 2674 | 5 << NUM_ADDR_CYCLES 2675 | 0 << SPARE_SIZE_BYTES; 2676 2677 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES 2678 | 0 << CS_ACTIVE_BSY 2679 | 17 << BAD_BLOCK_BYTE_NUM 2680 | 1 << BAD_BLOCK_IN_SPARE_AREA 2681 | 2 << WR_RD_BSY_GAP 2682 | wide_bus << WIDE_FLASH 2683 | 1 << DEV0_CFG1_ECC_DISABLE; 2684 2685 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE 2686 | 0 << ECC_SW_RESET 2687 | host->cw_data << ECC_NUM_DATA_BYTES 2688 | 1 << ECC_FORCE_CLK_OPEN 2689 | ecc_mode << ECC_MODE 2690 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; 2691 2692 host->ecc_buf_cfg = 0x203 << NUM_STEPS; 2693 2694 host->clrflashstatus = FS_READY_BSY_N; 2695 host->clrreadstatus = 0xc0; 2696 nandc->regs->erased_cw_detect_cfg_clr = 2697 cpu_to_le32(CLR_ERASED_PAGE_DET); 2698 nandc->regs->erased_cw_detect_cfg_set = 2699 cpu_to_le32(SET_ERASED_PAGE_DET); 2700 2701 dev_dbg(nandc->dev, 2702 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", 2703 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, 2704 host->cw_size, host->cw_data, ecc->strength, ecc->bytes, 2705 cwperpage); 2706 2707 return 0; 2708 } 2709 2710 static const struct nand_controller_ops qcom_nandc_ops = { 2711 .attach_chip = qcom_nand_attach_chip, 2712 }; 2713 2714 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) 2715 { 2716 if (nandc->props->is_bam) { 2717 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) 2718 dma_unmap_single(nandc->dev, nandc->reg_read_dma, 2719 MAX_REG_RD * 2720 sizeof(*nandc->reg_read_buf), 2721 DMA_FROM_DEVICE); 2722 2723 if (nandc->tx_chan) 2724 dma_release_channel(nandc->tx_chan); 2725 2726 if (nandc->rx_chan) 2727 dma_release_channel(nandc->rx_chan); 2728 2729 if (nandc->cmd_chan) 2730 dma_release_channel(nandc->cmd_chan); 2731 } else { 2732 if (nandc->chan) 2733 dma_release_channel(nandc->chan); 2734 } 2735 } 2736 2737 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) 2738 { 2739 int ret; 2740 2741 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); 2742 if (ret) { 2743 dev_err(nandc->dev, "failed to set DMA mask\n"); 2744 return ret; 2745 } 2746 2747 /* 2748 * we use the internal buffer for reading ONFI params, reading small 2749 * data like ID and status, and preforming read-copy-write operations 2750 * when writing to a codeword partially. 532 is the maximum possible 2751 * size of a codeword for our nand controller 2752 */ 2753 nandc->buf_size = 532; 2754 2755 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, 2756 GFP_KERNEL); 2757 if (!nandc->data_buffer) 2758 return -ENOMEM; 2759 2760 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), 2761 GFP_KERNEL); 2762 if (!nandc->regs) 2763 return -ENOMEM; 2764 2765 nandc->reg_read_buf = devm_kcalloc(nandc->dev, 2766 MAX_REG_RD, sizeof(*nandc->reg_read_buf), 2767 GFP_KERNEL); 2768 if (!nandc->reg_read_buf) 2769 return -ENOMEM; 2770 2771 if (nandc->props->is_bam) { 2772 nandc->reg_read_dma = 2773 dma_map_single(nandc->dev, nandc->reg_read_buf, 2774 MAX_REG_RD * 2775 sizeof(*nandc->reg_read_buf), 2776 DMA_FROM_DEVICE); 2777 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { 2778 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); 2779 return -EIO; 2780 } 2781 2782 nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); 2783 if (IS_ERR(nandc->tx_chan)) { 2784 ret = PTR_ERR(nandc->tx_chan); 2785 nandc->tx_chan = NULL; 2786 dev_err_probe(nandc->dev, ret, 2787 "tx DMA channel request failed\n"); 2788 goto unalloc; 2789 } 2790 2791 nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); 2792 if (IS_ERR(nandc->rx_chan)) { 2793 ret = PTR_ERR(nandc->rx_chan); 2794 nandc->rx_chan = NULL; 2795 dev_err_probe(nandc->dev, ret, 2796 "rx DMA channel request failed\n"); 2797 goto unalloc; 2798 } 2799 2800 nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); 2801 if (IS_ERR(nandc->cmd_chan)) { 2802 ret = PTR_ERR(nandc->cmd_chan); 2803 nandc->cmd_chan = NULL; 2804 dev_err_probe(nandc->dev, ret, 2805 "cmd DMA channel request failed\n"); 2806 goto unalloc; 2807 } 2808 2809 /* 2810 * Initially allocate BAM transaction to read ONFI param page. 2811 * After detecting all the devices, this BAM transaction will 2812 * be freed and the next BAM tranasction will be allocated with 2813 * maximum codeword size 2814 */ 2815 nandc->max_cwperpage = 1; 2816 nandc->bam_txn = alloc_bam_transaction(nandc); 2817 if (!nandc->bam_txn) { 2818 dev_err(nandc->dev, 2819 "failed to allocate bam transaction\n"); 2820 ret = -ENOMEM; 2821 goto unalloc; 2822 } 2823 } else { 2824 nandc->chan = dma_request_chan(nandc->dev, "rxtx"); 2825 if (IS_ERR(nandc->chan)) { 2826 ret = PTR_ERR(nandc->chan); 2827 nandc->chan = NULL; 2828 dev_err_probe(nandc->dev, ret, 2829 "rxtx DMA channel request failed\n"); 2830 return ret; 2831 } 2832 } 2833 2834 INIT_LIST_HEAD(&nandc->desc_list); 2835 INIT_LIST_HEAD(&nandc->host_list); 2836 2837 nand_controller_init(&nandc->controller); 2838 nandc->controller.ops = &qcom_nandc_ops; 2839 2840 return 0; 2841 unalloc: 2842 qcom_nandc_unalloc(nandc); 2843 return ret; 2844 } 2845 2846 /* one time setup of a few nand controller registers */ 2847 static int qcom_nandc_setup(struct qcom_nand_controller *nandc) 2848 { 2849 u32 nand_ctrl; 2850 2851 /* kill onenand */ 2852 if (!nandc->props->is_qpic) 2853 nandc_write(nandc, SFLASHC_BURST_CFG, 0); 2854 2855 if (!nandc->props->qpic_v2) 2856 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), 2857 NAND_DEV_CMD_VLD_VAL); 2858 2859 /* enable ADM or BAM DMA */ 2860 if (nandc->props->is_bam) { 2861 nand_ctrl = nandc_read(nandc, NAND_CTRL); 2862 2863 /* 2864 *NAND_CTRL is an operational registers, and CPU 2865 * access to operational registers are read only 2866 * in BAM mode. So update the NAND_CTRL register 2867 * only if it is not in BAM mode. In most cases BAM 2868 * mode will be enabled in bootloader 2869 */ 2870 if (!(nand_ctrl & BAM_MODE_EN)) 2871 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); 2872 } else { 2873 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); 2874 } 2875 2876 /* save the original values of these registers */ 2877 if (!nandc->props->qpic_v2) { 2878 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); 2879 nandc->vld = NAND_DEV_CMD_VLD_VAL; 2880 } 2881 2882 return 0; 2883 } 2884 2885 static const char * const probes[] = { "qcomsmem", NULL }; 2886 2887 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, 2888 struct qcom_nand_host *host, 2889 struct device_node *dn) 2890 { 2891 struct nand_chip *chip = &host->chip; 2892 struct mtd_info *mtd = nand_to_mtd(chip); 2893 struct device *dev = nandc->dev; 2894 int ret; 2895 2896 ret = of_property_read_u32(dn, "reg", &host->cs); 2897 if (ret) { 2898 dev_err(dev, "can't get chip-select\n"); 2899 return -ENXIO; 2900 } 2901 2902 nand_set_flash_node(chip, dn); 2903 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); 2904 if (!mtd->name) 2905 return -ENOMEM; 2906 2907 mtd->owner = THIS_MODULE; 2908 mtd->dev.parent = dev; 2909 2910 chip->legacy.cmdfunc = qcom_nandc_command; 2911 chip->legacy.select_chip = qcom_nandc_select_chip; 2912 chip->legacy.read_byte = qcom_nandc_read_byte; 2913 chip->legacy.read_buf = qcom_nandc_read_buf; 2914 chip->legacy.write_buf = qcom_nandc_write_buf; 2915 chip->legacy.set_features = nand_get_set_features_notsupp; 2916 chip->legacy.get_features = nand_get_set_features_notsupp; 2917 2918 /* 2919 * the bad block marker is readable only when we read the last codeword 2920 * of a page with ECC disabled. currently, the nand_base and nand_bbt 2921 * helpers don't allow us to read BB from a nand chip with ECC 2922 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad 2923 * and block_markbad helpers until we permanently switch to using 2924 * MTD_OPS_RAW for all drivers (with the help of badblockbits) 2925 */ 2926 chip->legacy.block_bad = qcom_nandc_block_bad; 2927 chip->legacy.block_markbad = qcom_nandc_block_markbad; 2928 2929 chip->controller = &nandc->controller; 2930 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | 2931 NAND_SKIP_BBTSCAN; 2932 2933 /* set up initial status value */ 2934 host->status = NAND_STATUS_READY | NAND_STATUS_WP; 2935 2936 ret = nand_scan(chip, 1); 2937 if (ret) 2938 return ret; 2939 2940 if (nandc->props->is_bam) { 2941 free_bam_transaction(nandc); 2942 nandc->bam_txn = alloc_bam_transaction(nandc); 2943 if (!nandc->bam_txn) { 2944 dev_err(nandc->dev, 2945 "failed to allocate bam transaction\n"); 2946 nand_cleanup(chip); 2947 return -ENOMEM; 2948 } 2949 } 2950 2951 ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); 2952 if (ret) 2953 nand_cleanup(chip); 2954 2955 return ret; 2956 } 2957 2958 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) 2959 { 2960 struct device *dev = nandc->dev; 2961 struct device_node *dn = dev->of_node, *child; 2962 struct qcom_nand_host *host; 2963 int ret = -ENODEV; 2964 2965 for_each_available_child_of_node(dn, child) { 2966 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 2967 if (!host) { 2968 of_node_put(child); 2969 return -ENOMEM; 2970 } 2971 2972 ret = qcom_nand_host_init_and_register(nandc, host, child); 2973 if (ret) { 2974 devm_kfree(dev, host); 2975 continue; 2976 } 2977 2978 list_add_tail(&host->node, &nandc->host_list); 2979 } 2980 2981 return ret; 2982 } 2983 2984 /* parse custom DT properties here */ 2985 static int qcom_nandc_parse_dt(struct platform_device *pdev) 2986 { 2987 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 2988 struct device_node *np = nandc->dev->of_node; 2989 int ret; 2990 2991 if (!nandc->props->is_bam) { 2992 ret = of_property_read_u32(np, "qcom,cmd-crci", 2993 &nandc->cmd_crci); 2994 if (ret) { 2995 dev_err(nandc->dev, "command CRCI unspecified\n"); 2996 return ret; 2997 } 2998 2999 ret = of_property_read_u32(np, "qcom,data-crci", 3000 &nandc->data_crci); 3001 if (ret) { 3002 dev_err(nandc->dev, "data CRCI unspecified\n"); 3003 return ret; 3004 } 3005 } 3006 3007 return 0; 3008 } 3009 3010 static int qcom_nandc_probe(struct platform_device *pdev) 3011 { 3012 struct qcom_nand_controller *nandc; 3013 const void *dev_data; 3014 struct device *dev = &pdev->dev; 3015 struct resource *res; 3016 int ret; 3017 3018 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); 3019 if (!nandc) 3020 return -ENOMEM; 3021 3022 platform_set_drvdata(pdev, nandc); 3023 nandc->dev = dev; 3024 3025 dev_data = of_device_get_match_data(dev); 3026 if (!dev_data) { 3027 dev_err(&pdev->dev, "failed to get device data\n"); 3028 return -ENODEV; 3029 } 3030 3031 nandc->props = dev_data; 3032 3033 nandc->core_clk = devm_clk_get(dev, "core"); 3034 if (IS_ERR(nandc->core_clk)) 3035 return PTR_ERR(nandc->core_clk); 3036 3037 nandc->aon_clk = devm_clk_get(dev, "aon"); 3038 if (IS_ERR(nandc->aon_clk)) 3039 return PTR_ERR(nandc->aon_clk); 3040 3041 ret = qcom_nandc_parse_dt(pdev); 3042 if (ret) 3043 return ret; 3044 3045 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3046 nandc->base = devm_ioremap_resource(dev, res); 3047 if (IS_ERR(nandc->base)) 3048 return PTR_ERR(nandc->base); 3049 3050 nandc->base_phys = res->start; 3051 nandc->base_dma = dma_map_resource(dev, res->start, 3052 resource_size(res), 3053 DMA_BIDIRECTIONAL, 0); 3054 if (dma_mapping_error(dev, nandc->base_dma)) 3055 return -ENXIO; 3056 3057 ret = qcom_nandc_alloc(nandc); 3058 if (ret) 3059 goto err_nandc_alloc; 3060 3061 ret = clk_prepare_enable(nandc->core_clk); 3062 if (ret) 3063 goto err_core_clk; 3064 3065 ret = clk_prepare_enable(nandc->aon_clk); 3066 if (ret) 3067 goto err_aon_clk; 3068 3069 ret = qcom_nandc_setup(nandc); 3070 if (ret) 3071 goto err_setup; 3072 3073 ret = qcom_probe_nand_devices(nandc); 3074 if (ret) 3075 goto err_setup; 3076 3077 return 0; 3078 3079 err_setup: 3080 clk_disable_unprepare(nandc->aon_clk); 3081 err_aon_clk: 3082 clk_disable_unprepare(nandc->core_clk); 3083 err_core_clk: 3084 qcom_nandc_unalloc(nandc); 3085 err_nandc_alloc: 3086 dma_unmap_resource(dev, res->start, resource_size(res), 3087 DMA_BIDIRECTIONAL, 0); 3088 3089 return ret; 3090 } 3091 3092 static int qcom_nandc_remove(struct platform_device *pdev) 3093 { 3094 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); 3095 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3096 struct qcom_nand_host *host; 3097 struct nand_chip *chip; 3098 int ret; 3099 3100 list_for_each_entry(host, &nandc->host_list, node) { 3101 chip = &host->chip; 3102 ret = mtd_device_unregister(nand_to_mtd(chip)); 3103 WARN_ON(ret); 3104 nand_cleanup(chip); 3105 } 3106 3107 qcom_nandc_unalloc(nandc); 3108 3109 clk_disable_unprepare(nandc->aon_clk); 3110 clk_disable_unprepare(nandc->core_clk); 3111 3112 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), 3113 DMA_BIDIRECTIONAL, 0); 3114 3115 return 0; 3116 } 3117 3118 static const struct qcom_nandc_props ipq806x_nandc_props = { 3119 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), 3120 .is_bam = false, 3121 .dev_cmd_reg_start = 0x0, 3122 }; 3123 3124 static const struct qcom_nandc_props ipq4019_nandc_props = { 3125 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3126 .is_bam = true, 3127 .is_qpic = true, 3128 .dev_cmd_reg_start = 0x0, 3129 }; 3130 3131 static const struct qcom_nandc_props ipq8074_nandc_props = { 3132 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3133 .is_bam = true, 3134 .is_qpic = true, 3135 .dev_cmd_reg_start = 0x7000, 3136 }; 3137 3138 static const struct qcom_nandc_props sdx55_nandc_props = { 3139 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), 3140 .is_bam = true, 3141 .is_qpic = true, 3142 .qpic_v2 = true, 3143 .dev_cmd_reg_start = 0x7000, 3144 }; 3145 3146 /* 3147 * data will hold a struct pointer containing more differences once we support 3148 * more controller variants 3149 */ 3150 static const struct of_device_id qcom_nandc_of_match[] = { 3151 { 3152 .compatible = "qcom,ipq806x-nand", 3153 .data = &ipq806x_nandc_props, 3154 }, 3155 { 3156 .compatible = "qcom,ipq4019-nand", 3157 .data = &ipq4019_nandc_props, 3158 }, 3159 { 3160 .compatible = "qcom,ipq6018-nand", 3161 .data = &ipq8074_nandc_props, 3162 }, 3163 { 3164 .compatible = "qcom,ipq8074-nand", 3165 .data = &ipq8074_nandc_props, 3166 }, 3167 { 3168 .compatible = "qcom,sdx55-nand", 3169 .data = &sdx55_nandc_props, 3170 }, 3171 {} 3172 }; 3173 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); 3174 3175 static struct platform_driver qcom_nandc_driver = { 3176 .driver = { 3177 .name = "qcom-nandc", 3178 .of_match_table = qcom_nandc_of_match, 3179 }, 3180 .probe = qcom_nandc_probe, 3181 .remove = qcom_nandc_remove, 3182 }; 3183 module_platform_driver(qcom_nandc_driver); 3184 3185 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); 3186 MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); 3187 MODULE_LICENSE("GPL v2"); 3188