1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM PL35X NAND flash controller driver
4  *
5  * Copyright (C) 2017 Xilinx, Inc
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12 
13 #include <linux/amba/bus.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30 
31 #define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
32 
33 /* SMC controller status register (RO) */
34 #define PL35X_SMC_MEMC_STATUS 0x0
35 #define   PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1	BIT(6)
36 /* SMC clear config register (WO) */
37 #define PL35X_SMC_MEMC_CFG_CLR 0xC
38 #define   PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1	BIT(1)
39 #define   PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1	BIT(4)
40 #define   PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1	BIT(6)
41 /* SMC direct command register (WO) */
42 #define PL35X_SMC_DIRECT_CMD 0x10
43 #define   PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
44 #define   PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
45 /* SMC set cycles register (WO) */
46 #define PL35X_SMC_CYCLES 0x14
47 #define   PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
48 #define   PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
49 #define   PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
50 #define   PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
51 #define   PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
52 #define   PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
53 #define   PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
54 /* SMC set opmode register (WO) */
55 #define PL35X_SMC_OPMODE 0x18
56 #define   PL35X_SMC_OPMODE_BW_8 0
57 #define   PL35X_SMC_OPMODE_BW_16 1
58 /* SMC ECC status register (RO) */
59 #define PL35X_SMC_ECC_STATUS 0x400
60 #define   PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
61 /* SMC ECC configuration register */
62 #define PL35X_SMC_ECC_CFG 0x404
63 #define   PL35X_SMC_ECC_CFG_MODE_MASK 0xC
64 #define   PL35X_SMC_ECC_CFG_MODE_BYPASS 0
65 #define   PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
66 #define   PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
67 #define   PL35X_SMC_ECC_CFG_PGSIZE_MASK	0x3
68 /* SMC ECC command 1 register */
69 #define PL35X_SMC_ECC_CMD1 0x408
70 #define   PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
71 #define   PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
72 #define   PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
73 #define   PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
74 /* SMC ECC command 2 register */
75 #define PL35X_SMC_ECC_CMD2 0x40C
76 #define   PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
77 #define   PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
78 #define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
79 #define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
80 /* SMC ECC value registers (RO) */
81 #define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
82 #define   PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
83 #define   PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
84 #define   PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
85 
86 /* NAND AXI interface */
87 #define PL35X_SMC_CMD_PHASE 0
88 #define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
89 #define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
90 #define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
91 #define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
92 #define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
93 #define PL35X_SMC_DATA_PHASE BIT(19)
94 #define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
95 #define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
96 
97 #define PL35X_NAND_MAX_CS 1
98 #define PL35X_NAND_LAST_XFER_SZ 4
99 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
100 
101 #define PL35X_NAND_ECC_BITS_MASK 0xFFF
102 #define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
103 #define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
104 
105 struct pl35x_nand_timings {
106 	unsigned int t_rc:4;
107 	unsigned int t_wc:4;
108 	unsigned int t_rea:3;
109 	unsigned int t_wp:3;
110 	unsigned int t_clr:3;
111 	unsigned int t_ar:3;
112 	unsigned int t_rr:4;
113 	unsigned int rsvd:8;
114 };
115 
116 struct pl35x_nand {
117 	struct list_head node;
118 	struct nand_chip chip;
119 	unsigned int cs;
120 	unsigned int addr_cycles;
121 	u32 ecc_cfg;
122 	u32 timings;
123 };
124 
125 /**
126  * struct pl35x_nandc - NAND flash controller driver structure
127  * @dev: Kernel device
128  * @conf_regs: SMC configuration registers for command phase
129  * @io_regs: NAND data registers for data phase
130  * @controller: Core NAND controller structure
131  * @chip: NAND chip information structure
132  * @selected_chip: NAND chip currently selected by the controller
133  * @assigned_cs: List of assigned CS
134  * @ecc_buf: Temporary buffer to extract ECC bytes
135  */
136 struct pl35x_nandc {
137 	struct device *dev;
138 	void __iomem *conf_regs;
139 	void __iomem *io_regs;
140 	struct nand_controller controller;
141 	struct list_head chips;
142 	struct nand_chip *selected_chip;
143 	unsigned long assigned_cs;
144 	u8 *ecc_buf;
145 };
146 
147 static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
148 {
149 	return container_of(ctrl, struct pl35x_nandc, controller);
150 }
151 
152 static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
153 {
154 	return container_of(chip, struct pl35x_nand, chip);
155 }
156 
157 static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
158 				     struct mtd_oob_region *oobregion)
159 {
160 	struct nand_chip *chip = mtd_to_nand(mtd);
161 
162 	if (section >= chip->ecc.steps)
163 		return -ERANGE;
164 
165 	oobregion->offset = (section * chip->ecc.bytes);
166 	oobregion->length = chip->ecc.bytes;
167 
168 	return 0;
169 }
170 
171 static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
172 				      struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 
176 	if (section >= chip->ecc.steps)
177 		return -ERANGE;
178 
179 	oobregion->offset = (section * chip->ecc.bytes) + 8;
180 	oobregion->length = 8;
181 
182 	return 0;
183 }
184 
185 static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
186 	.ecc = pl35x_ecc_ooblayout16_ecc,
187 	.free = pl35x_ecc_ooblayout16_free,
188 };
189 
190 /* Generic flash bbt decriptors */
191 static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
192 static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
193 
194 static struct nand_bbt_descr bbt_main_descr = {
195 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
196 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
197 	.offs = 4,
198 	.len = 4,
199 	.veroffs = 20,
200 	.maxblocks = 4,
201 	.pattern = bbt_pattern
202 };
203 
204 static struct nand_bbt_descr bbt_mirror_descr = {
205 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
206 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
207 	.offs = 4,
208 	.len = 4,
209 	.veroffs = 20,
210 	.maxblocks = 4,
211 	.pattern = mirror_pattern
212 };
213 
214 static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
215 {
216 	writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
217 	       PL35X_SMC_DIRECT_CMD_UPD_REGS,
218 	       nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
219 }
220 
221 static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
222 {
223 	if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
224 		return -EINVAL;
225 
226 	writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
227 	pl35x_smc_update_regs(nfc);
228 
229 	return 0;
230 }
231 
232 static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
233 {
234 	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
235 	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
236 }
237 
238 static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
239 {
240 	u32 reg;
241 	int ret;
242 
243 	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
244 				 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
245 				 10, 1000000);
246 	if (ret)
247 		dev_err(nfc->dev,
248 			"Timeout polling on NAND controller interrupt (0x%x)\n",
249 			reg);
250 
251 	pl35x_smc_clear_irq(nfc);
252 
253 	return ret;
254 }
255 
256 static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
257 {
258 	u32 reg;
259 	int ret;
260 
261 	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
262 				 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
263 				 10, 1000000);
264 	if (ret)
265 		dev_err(nfc->dev,
266 			"Timeout polling on ECC controller interrupt\n");
267 
268 	return ret;
269 }
270 
271 static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
272 				  struct nand_chip *chip,
273 				  unsigned int mode)
274 {
275 	struct pl35x_nand *plnand;
276 	u32 ecc_cfg;
277 
278 	ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
279 	ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
280 	ecc_cfg |= mode;
281 	writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
282 
283 	if (chip) {
284 		plnand = to_pl35x_nand(chip);
285 		plnand->ecc_cfg = ecc_cfg;
286 	}
287 
288 	if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
289 		return pl35x_smc_wait_for_ecc_done(nfc);
290 
291 	return 0;
292 }
293 
294 static void pl35x_smc_force_byte_access(struct nand_chip *chip,
295 					bool force_8bit)
296 {
297 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
298 	int ret;
299 
300 	if (!(chip->options & NAND_BUSWIDTH_16))
301 		return;
302 
303 	if (force_8bit)
304 		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
305 	else
306 		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
307 
308 	if (ret)
309 		dev_err(nfc->dev, "Error in Buswidth\n");
310 }
311 
312 static void pl35x_nand_select_target(struct nand_chip *chip,
313 				     unsigned int die_nr)
314 {
315 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
316 	struct pl35x_nand *plnand = to_pl35x_nand(chip);
317 
318 	if (chip == nfc->selected_chip)
319 		return;
320 
321 	/* Setup the timings */
322 	writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
323 	pl35x_smc_update_regs(nfc);
324 
325 	/* Configure the ECC engine */
326 	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
327 
328 	nfc->selected_chip = chip;
329 }
330 
331 static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
332 				    unsigned int len, bool force_8bit,
333 				    unsigned int flags, unsigned int last_flags)
334 {
335 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
336 	unsigned int buf_end = len / 4;
337 	unsigned int in_start = round_down(len, 4);
338 	unsigned int data_phase_addr;
339 	u32 *buf32 = (u32 *)in;
340 	u8 *buf8 = (u8 *)in;
341 	int i;
342 
343 	if (force_8bit)
344 		pl35x_smc_force_byte_access(chip, true);
345 
346 	for (i = 0; i < buf_end; i++) {
347 		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
348 		if (i + 1 == buf_end)
349 			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
350 
351 		buf32[i] = readl(nfc->io_regs + data_phase_addr);
352 	}
353 
354 	/* No working extra flags on unaligned data accesses */
355 	for (i = in_start; i < len; i++)
356 		buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
357 
358 	if (force_8bit)
359 		pl35x_smc_force_byte_access(chip, false);
360 }
361 
362 static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
363 				     int len, bool force_8bit,
364 				     unsigned int flags,
365 				     unsigned int last_flags)
366 {
367 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
368 	unsigned int buf_end = len / 4;
369 	unsigned int in_start = round_down(len, 4);
370 	const u32 *buf32 = (const u32 *)out;
371 	const u8 *buf8 = (const u8 *)out;
372 	unsigned int data_phase_addr;
373 	int i;
374 
375 	if (force_8bit)
376 		pl35x_smc_force_byte_access(chip, true);
377 
378 	for (i = 0; i < buf_end; i++) {
379 		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
380 		if (i + 1 == buf_end)
381 			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
382 
383 		writel(buf32[i], nfc->io_regs + data_phase_addr);
384 	}
385 
386 	/* No working extra flags on unaligned data accesses */
387 	for (i = in_start; i < len; i++)
388 		writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
389 
390 	if (force_8bit)
391 		pl35x_smc_force_byte_access(chip, false);
392 }
393 
394 static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
395 				   unsigned char *read_ecc,
396 				   unsigned char *calc_ecc)
397 {
398 	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
399 	unsigned short calc_ecc_lower, calc_ecc_upper;
400 	unsigned short byte_addr, bit_addr;
401 
402 	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
403 			 PL35X_NAND_ECC_BITS_MASK;
404 	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
405 			 PL35X_NAND_ECC_BITS_MASK;
406 
407 	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
408 			 PL35X_NAND_ECC_BITS_MASK;
409 	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
410 			 PL35X_NAND_ECC_BITS_MASK;
411 
412 	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
413 	ecc_even = read_ecc_upper ^ calc_ecc_upper;
414 
415 	/* No error */
416 	if (likely(!ecc_odd && !ecc_even))
417 		return 0;
418 
419 	/* One error in the main data; to be corrected */
420 	if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
421 		/* Bits [11:3] of error code give the byte offset */
422 		byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
423 		/* Bits [2:0] of error code give the bit offset */
424 		bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
425 		/* Toggle the faulty bit */
426 		buf[byte_addr] ^= (BIT(bit_addr));
427 
428 		return 1;
429 	}
430 
431 	/* One error in the ECC data; no action needed */
432 	if (hweight32(ecc_odd | ecc_even) == 1)
433 		return 1;
434 
435 	return -EBADMSG;
436 }
437 
438 static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
439 					u8 *ecc_array)
440 {
441 	u32 ecc_value = ~ecc_reg;
442 	unsigned int ecc_byte;
443 
444 	for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
445 		ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
446 }
447 
448 static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
449 				    struct nand_chip *chip, u8 *read_ecc)
450 {
451 	u32 ecc_value;
452 	int chunk;
453 
454 	for (chunk = 0; chunk < chip->ecc.steps;
455 	     chunk++, read_ecc += chip->ecc.bytes) {
456 		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
457 		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
458 			return -EINVAL;
459 
460 		pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
461 	}
462 
463 	return 0;
464 }
465 
466 static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
467 					 struct nand_chip *chip, u8 *data,
468 					 u8 *read_ecc)
469 {
470 	struct mtd_info *mtd = nand_to_mtd(chip);
471 	unsigned int max_bitflips = 0, chunk;
472 	u8 calc_ecc[3];
473 	u32 ecc_value;
474 	int stats;
475 
476 	for (chunk = 0; chunk < chip->ecc.steps;
477 	     chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
478 		/* Read ECC value for each chunk */
479 		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
480 
481 		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
482 			return -EINVAL;
483 
484 		if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
485 			mtd->ecc_stats.failed++;
486 			continue;
487 		}
488 
489 		pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
490 		stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
491 		if (stats < 0) {
492 			mtd->ecc_stats.failed++;
493 		} else {
494 			mtd->ecc_stats.corrected += stats;
495 			max_bitflips = max_t(unsigned int, max_bitflips, stats);
496 		}
497 	}
498 
499 	return max_bitflips;
500 }
501 
502 static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
503 				       const u8 *buf, int oob_required,
504 				       int page)
505 {
506 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
507 	struct pl35x_nand *plnand = to_pl35x_nand(chip);
508 	struct mtd_info *mtd = nand_to_mtd(chip);
509 	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
510 	unsigned int nrows = plnand->addr_cycles;
511 	u32 addr1 = 0, addr2 = 0, row;
512 	u32 cmd_addr;
513 	int i, ret;
514 
515 	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
516 	if (ret)
517 		return ret;
518 
519 	cmd_addr = PL35X_SMC_CMD_PHASE |
520 		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
521 		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
522 
523 	for (i = 0, row = first_row; row < nrows; i++, row++) {
524 		u8 addr = page >> ((i * 8) & 0xFF);
525 
526 		if (row < 4)
527 			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
528 		else
529 			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
530 	}
531 
532 	/* Send the command and address cycles */
533 	writel(addr1, nfc->io_regs + cmd_addr);
534 	if (plnand->addr_cycles > 4)
535 		writel(addr2, nfc->io_regs + cmd_addr);
536 
537 	/* Write the data with the engine enabled */
538 	pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
539 				 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
540 	ret = pl35x_smc_wait_for_ecc_done(nfc);
541 	if (ret)
542 		goto disable_ecc_engine;
543 
544 	/* Copy the HW calculated ECC bytes in the OOB buffer */
545 	ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
546 	if (ret)
547 		goto disable_ecc_engine;
548 
549 	if (!oob_required)
550 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
551 
552 	ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
553 					 0, chip->ecc.total);
554 	if (ret)
555 		goto disable_ecc_engine;
556 
557 	/* Write the spare area with ECC bytes */
558 	pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
559 				 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
560 				 PL35X_SMC_CMD_PHASE_CMD1_VALID |
561 				 PL35X_SMC_DATA_PHASE_CLEAR_CS);
562 	ret = pl35x_smc_wait_for_irq(nfc);
563 	if (ret)
564 		goto disable_ecc_engine;
565 
566 disable_ecc_engine:
567 	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
568 
569 	return ret;
570 }
571 
572 /*
573  * This functions reads data and checks the data integrity by comparing hardware
574  * generated ECC values and read ECC values from spare area.
575  *
576  * There is a limitation with SMC controller: ECC_LAST must be set on the
577  * last data access to tell the ECC engine not to expect any further data.
578  * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
579  * and doing a last 4-byte transfer with the additional bit set. The last block
580  * should be aligned with the end of an ECC block. Because of this limitation,
581  * it is not possible to use the core routines.
582  */
583 static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
584 				      u8 *buf, int oob_required, int page)
585 {
586 	const struct nand_sdr_timings *sdr =
587 		nand_get_sdr_timings(nand_get_interface_config(chip));
588 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
589 	struct pl35x_nand *plnand = to_pl35x_nand(chip);
590 	struct mtd_info *mtd = nand_to_mtd(chip);
591 	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
592 	unsigned int nrows = plnand->addr_cycles;
593 	unsigned int addr1 = 0, addr2 = 0, row;
594 	u32 cmd_addr;
595 	int i, ret;
596 
597 	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
598 	if (ret)
599 		return ret;
600 
601 	cmd_addr = PL35X_SMC_CMD_PHASE |
602 		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
603 		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
604 		   PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
605 		   PL35X_SMC_CMD_PHASE_CMD1_VALID;
606 
607 	for (i = 0, row = first_row; row < nrows; i++, row++) {
608 		u8 addr = page >> ((i * 8) & 0xFF);
609 
610 		if (row < 4)
611 			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
612 		else
613 			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
614 	}
615 
616 	/* Send the command and address cycles */
617 	writel(addr1, nfc->io_regs + cmd_addr);
618 	if (plnand->addr_cycles > 4)
619 		writel(addr2, nfc->io_regs + cmd_addr);
620 
621 	/* Wait the data to be available in the NAND cache */
622 	ndelay(PSEC_TO_NSEC(sdr->tRR_min));
623 	ret = pl35x_smc_wait_for_irq(nfc);
624 	if (ret)
625 		goto disable_ecc_engine;
626 
627 	/* Retrieve the raw data with the engine enabled */
628 	pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
629 				0, PL35X_SMC_DATA_PHASE_ECC_LAST);
630 	ret = pl35x_smc_wait_for_ecc_done(nfc);
631 	if (ret)
632 		goto disable_ecc_engine;
633 
634 	/* Retrieve the stored ECC bytes */
635 	pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
636 				0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
637 	ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
638 					 chip->ecc.total);
639 	if (ret)
640 		goto disable_ecc_engine;
641 
642 	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
643 
644 	/* Correct the data and report failures */
645 	return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
646 
647 disable_ecc_engine:
648 	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
649 
650 	return ret;
651 }
652 
653 static int pl35x_nand_exec_op(struct nand_chip *chip,
654 			      const struct nand_subop *subop)
655 {
656 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
657 	const struct nand_op_instr *instr, *data_instr = NULL;
658 	unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
659 	u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
660 	unsigned int op_id, len, offset, rdy_del_ns;
661 	int last_instr_type = -1;
662 	bool cmd1_valid = false;
663 	const u8 *addrs;
664 	int i, ret;
665 
666 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
667 		instr = &subop->instrs[op_id];
668 
669 		switch (instr->type) {
670 		case NAND_OP_CMD_INSTR:
671 			if (!cmds) {
672 				cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
673 			} else {
674 				cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
675 				if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
676 					cmd1_valid = true;
677 			}
678 			cmds++;
679 			break;
680 
681 		case NAND_OP_ADDR_INSTR:
682 			offset = nand_subop_get_addr_start_off(subop, op_id);
683 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
684 			addrs = &instr->ctx.addr.addrs[offset];
685 			cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
686 
687 			for (i = offset; i < naddrs; i++) {
688 				if (i < 4)
689 					addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
690 				else
691 					addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
692 			}
693 			break;
694 
695 		case NAND_OP_DATA_IN_INSTR:
696 		case NAND_OP_DATA_OUT_INSTR:
697 			data_instr = instr;
698 			len = nand_subop_get_data_len(subop, op_id);
699 			break;
700 
701 		case NAND_OP_WAITRDY_INSTR:
702 			rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
703 			rdy_del_ns = instr->delay_ns;
704 			break;
705 		}
706 
707 		last_instr_type = instr->type;
708 	}
709 
710 	/* Command phase */
711 	cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
712 		    (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
713 	writel(addr1, nfc->io_regs + cmd_addr);
714 	if (naddrs > 4)
715 		writel(addr2, nfc->io_regs + cmd_addr);
716 
717 	/* Data phase */
718 	if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
719 		last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
720 		if (cmds == 2)
721 			last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
722 
723 		pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
724 					 len, data_instr->ctx.data.force_8bit,
725 					 0, last_flags);
726 	}
727 
728 	if (rdy_tim_ms) {
729 		ndelay(rdy_del_ns);
730 		ret = pl35x_smc_wait_for_irq(nfc);
731 		if (ret)
732 			return ret;
733 	}
734 
735 	if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
736 		pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
737 					len, data_instr->ctx.data.force_8bit,
738 					0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
739 
740 	return 0;
741 }
742 
743 static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
744 	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
745 			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
746 			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
747 			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
748 			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
749 			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
750 	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
751 			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
752 			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
753 			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
754 			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
755 			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
756 	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
757 			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
758 			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
759 			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
760 			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
761 			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
762 	);
763 
764 static int pl35x_nfc_exec_op(struct nand_chip *chip,
765 			     const struct nand_operation *op,
766 			     bool check_only)
767 {
768 	if (!check_only)
769 		pl35x_nand_select_target(chip, op->cs);
770 
771 	return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
772 				      op, check_only);
773 }
774 
775 static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
776 				     const struct nand_interface_config *conf)
777 {
778 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
779 	struct pl35x_nand *plnand = to_pl35x_nand(chip);
780 	struct pl35x_nand_timings tmgs = {};
781 	const struct nand_sdr_timings *sdr;
782 	unsigned int period_ns, val;
783 	struct clk *mclk;
784 
785 	sdr = nand_get_sdr_timings(conf);
786 	if (IS_ERR(sdr))
787 		return PTR_ERR(sdr);
788 
789 	mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
790 	if (IS_ERR(mclk)) {
791 		dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
792 		return PTR_ERR(mclk);
793 	}
794 
795 	/*
796 	 * SDR timings are given in pico-seconds while NFC timings must be
797 	 * expressed in NAND controller clock cycles. We use the TO_CYCLE()
798 	 * macro to convert from one to the other.
799 	 */
800 	period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
801 
802 	/*
803 	 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
804 	 * written anywhere in the datasheet but is an empirical observation.
805 	 */
806 	val = TO_CYCLES(sdr->tRC_min, period_ns);
807 	if (sdr->tRC_min <= 20000)
808 		val++;
809 
810 	tmgs.t_rc = val;
811 	if (tmgs.t_rc != val || tmgs.t_rc < 2)
812 		return -EINVAL;
813 
814 	val = TO_CYCLES(sdr->tWC_min, period_ns);
815 	tmgs.t_wc = val;
816 	if (tmgs.t_wc != val || tmgs.t_wc < 2)
817 		return -EINVAL;
818 
819 	/*
820 	 * For all SDR modes, PL35X SMC needs tREA_max being 1,
821 	 * this is also an empirical result.
822 	 */
823 	tmgs.t_rea = 1;
824 
825 	val = TO_CYCLES(sdr->tWP_min, period_ns);
826 	tmgs.t_wp = val;
827 	if (tmgs.t_wp != val || tmgs.t_wp < 1)
828 		return -EINVAL;
829 
830 	val = TO_CYCLES(sdr->tCLR_min, period_ns);
831 	tmgs.t_clr = val;
832 	if (tmgs.t_clr != val)
833 		return -EINVAL;
834 
835 	val = TO_CYCLES(sdr->tAR_min, period_ns);
836 	tmgs.t_ar = val;
837 	if (tmgs.t_ar != val)
838 		return -EINVAL;
839 
840 	val = TO_CYCLES(sdr->tRR_min, period_ns);
841 	tmgs.t_rr = val;
842 	if (tmgs.t_rr != val)
843 		return -EINVAL;
844 
845 	if (cs == NAND_DATA_IFACE_CHECK_ONLY)
846 		return 0;
847 
848 	plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
849 			  PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
850 			  PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
851 			  PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
852 			  PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
853 			  PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
854 			  PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
855 
856 	return 0;
857 }
858 
859 static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
860 				      struct nand_chip *chip,
861 				      unsigned int pg_sz)
862 {
863 	struct pl35x_nand *plnand = to_pl35x_nand(chip);
864 	u32 sz;
865 
866 	switch (pg_sz) {
867 	case SZ_512:
868 		sz = 1;
869 		break;
870 	case SZ_1K:
871 		sz = 2;
872 		break;
873 	case SZ_2K:
874 		sz = 3;
875 		break;
876 	default:
877 		sz = 0;
878 		break;
879 	}
880 
881 	plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
882 	plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
883 	plnand->ecc_cfg |= sz;
884 	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
885 }
886 
887 static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
888 					     struct nand_chip *chip)
889 {
890 	struct mtd_info *mtd = nand_to_mtd(chip);
891 	int ret = 0;
892 
893 	if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
894 		dev_err(nfc->dev,
895 			"The hardware ECC engine is limited to pages up to 2kiB\n");
896 		return -EOPNOTSUPP;
897 	}
898 
899 	chip->ecc.strength = 1;
900 	chip->ecc.bytes = 3;
901 	chip->ecc.size = SZ_512;
902 	chip->ecc.steps = mtd->writesize / chip->ecc.size;
903 	chip->ecc.read_page = pl35x_nand_read_page_hwecc;
904 	chip->ecc.write_page = pl35x_nand_write_page_hwecc;
905 	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
906 	pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
907 
908 	nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
909 				    GFP_KERNEL);
910 	if (!nfc->ecc_buf)
911 		return -ENOMEM;
912 
913 	switch (mtd->oobsize) {
914 	case 16:
915 		/* Legacy Xilinx layout */
916 		mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
917 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
918 		break;
919 	case 64:
920 		mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
921 		break;
922 	default:
923 		dev_err(nfc->dev, "Unsupported OOB size\n");
924 		return -EOPNOTSUPP;
925 	}
926 
927 	return ret;
928 }
929 
930 static int pl35x_nand_attach_chip(struct nand_chip *chip)
931 {
932 	const struct nand_ecc_props *requirements =
933 		nanddev_get_ecc_requirements(&chip->base);
934 	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
935 	struct pl35x_nand *plnand = to_pl35x_nand(chip);
936 	struct mtd_info *mtd = nand_to_mtd(chip);
937 	int ret;
938 
939 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
940 	    (!chip->ecc.size || !chip->ecc.strength)) {
941 		if (requirements->step_size && requirements->strength) {
942 			chip->ecc.size = requirements->step_size;
943 			chip->ecc.strength = requirements->strength;
944 		} else {
945 			dev_info(nfc->dev,
946 				 "No minimum ECC strength, using 1b/512B\n");
947 			chip->ecc.size = 512;
948 			chip->ecc.strength = 1;
949 		}
950 	}
951 
952 	if (mtd->writesize <= SZ_512)
953 		plnand->addr_cycles = 1;
954 	else
955 		plnand->addr_cycles = 2;
956 
957 	if (chip->options & NAND_ROW_ADDR_3)
958 		plnand->addr_cycles += 3;
959 	else
960 		plnand->addr_cycles += 2;
961 
962 	switch (chip->ecc.engine_type) {
963 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
964 		/* Keep these legacy BBT descriptors for ON_DIE situations */
965 		chip->bbt_td = &bbt_main_descr;
966 		chip->bbt_md = &bbt_mirror_descr;
967 		fallthrough;
968 	case NAND_ECC_ENGINE_TYPE_NONE:
969 	case NAND_ECC_ENGINE_TYPE_SOFT:
970 		break;
971 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
972 		ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
973 		if (ret)
974 			return ret;
975 		break;
976 	default:
977 		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
978 			chip->ecc.engine_type);
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static const struct nand_controller_ops pl35x_nandc_ops = {
986 	.attach_chip = pl35x_nand_attach_chip,
987 	.exec_op = pl35x_nfc_exec_op,
988 	.setup_interface = pl35x_nfc_setup_interface,
989 };
990 
991 static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
992 {
993 	int ret;
994 
995 	/* Disable interrupts and clear their status */
996 	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
997 	       PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
998 	       PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
999 	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
1000 
1001 	/* Set default bus width to 8-bit */
1002 	ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
1003 	if (ret)
1004 		return ret;
1005 
1006 	/* Ensure the ECC controller is bypassed by default */
1007 	ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
1008 	if (ret)
1009 		return ret;
1010 
1011 	/*
1012 	 * Configure the commands that the ECC block uses to detect the
1013 	 * operations it should start/end.
1014 	 */
1015 	writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
1016 	       PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
1017 	       PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
1018 	       PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
1019 	       nfc->conf_regs + PL35X_SMC_ECC_CMD1);
1020 	writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
1021 	       PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
1022 	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
1023 	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
1024 	       nfc->conf_regs + PL35X_SMC_ECC_CMD2);
1025 
1026 	return 0;
1027 }
1028 
1029 static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
1030 				struct device_node *np)
1031 {
1032 	struct pl35x_nand *plnand;
1033 	struct nand_chip *chip;
1034 	struct mtd_info *mtd;
1035 	int cs, ret;
1036 
1037 	plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
1038 	if (!plnand)
1039 		return -ENOMEM;
1040 
1041 	ret = of_property_read_u32(np, "reg", &cs);
1042 	if (ret)
1043 		return ret;
1044 
1045 	if (cs >= PL35X_NAND_MAX_CS) {
1046 		dev_err(nfc->dev, "Wrong CS %d\n", cs);
1047 		return -EINVAL;
1048 	}
1049 
1050 	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1051 		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1052 		return -EINVAL;
1053 	}
1054 
1055 	plnand->cs = cs;
1056 
1057 	chip = &plnand->chip;
1058 	chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1059 	chip->bbt_options = NAND_BBT_USE_FLASH;
1060 	chip->controller = &nfc->controller;
1061 	mtd = nand_to_mtd(chip);
1062 	mtd->dev.parent = nfc->dev;
1063 	nand_set_flash_node(chip, np);
1064 	if (!mtd->name) {
1065 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
1066 					   "%s", PL35X_NANDC_DRIVER_NAME);
1067 		if (!mtd->name) {
1068 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
1069 			return -ENOMEM;
1070 		}
1071 	}
1072 
1073 	ret = nand_scan(chip, 1);
1074 	if (ret)
1075 		return ret;
1076 
1077 	ret = mtd_device_register(mtd, NULL, 0);
1078 	if (ret) {
1079 		nand_cleanup(chip);
1080 		return ret;
1081 	}
1082 
1083 	list_add_tail(&plnand->node, &nfc->chips);
1084 
1085 	return ret;
1086 }
1087 
1088 static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
1089 {
1090 	struct pl35x_nand *plnand, *tmp;
1091 	struct nand_chip *chip;
1092 	int ret;
1093 
1094 	list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
1095 		chip = &plnand->chip;
1096 		ret = mtd_device_unregister(nand_to_mtd(chip));
1097 		WARN_ON(ret);
1098 		nand_cleanup(chip);
1099 		list_del(&plnand->node);
1100 	}
1101 }
1102 
1103 static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
1104 {
1105 	struct device_node *np = nfc->dev->of_node, *nand_np;
1106 	int nchips = of_get_child_count(np);
1107 	int ret;
1108 
1109 	if (!nchips || nchips > PL35X_NAND_MAX_CS) {
1110 		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1111 			nchips);
1112 		return -EINVAL;
1113 	}
1114 
1115 	for_each_child_of_node(np, nand_np) {
1116 		ret = pl35x_nand_chip_init(nfc, nand_np);
1117 		if (ret) {
1118 			of_node_put(nand_np);
1119 			pl35x_nand_chips_cleanup(nfc);
1120 			break;
1121 		}
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 static int pl35x_nand_probe(struct platform_device *pdev)
1128 {
1129 	struct device *smc_dev = pdev->dev.parent;
1130 	struct amba_device *smc_amba = to_amba_device(smc_dev);
1131 	struct pl35x_nandc *nfc;
1132 	u32 ret;
1133 
1134 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1135 	if (!nfc)
1136 		return -ENOMEM;
1137 
1138 	nfc->dev = &pdev->dev;
1139 	nand_controller_init(&nfc->controller);
1140 	nfc->controller.ops = &pl35x_nandc_ops;
1141 	INIT_LIST_HEAD(&nfc->chips);
1142 
1143 	nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
1144 	if (IS_ERR(nfc->conf_regs))
1145 		return PTR_ERR(nfc->conf_regs);
1146 
1147 	nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
1148 	if (IS_ERR(nfc->io_regs))
1149 		return PTR_ERR(nfc->io_regs);
1150 
1151 	ret = pl35x_nand_reset_state(nfc);
1152 	if (ret)
1153 		return ret;
1154 
1155 	ret = pl35x_nand_chips_init(nfc);
1156 	if (ret)
1157 		return ret;
1158 
1159 	platform_set_drvdata(pdev, nfc);
1160 
1161 	return 0;
1162 }
1163 
1164 static void pl35x_nand_remove(struct platform_device *pdev)
1165 {
1166 	struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
1167 
1168 	pl35x_nand_chips_cleanup(nfc);
1169 }
1170 
1171 static const struct of_device_id pl35x_nand_of_match[] = {
1172 	{ .compatible = "arm,pl353-nand-r2p1" },
1173 	{},
1174 };
1175 MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
1176 
1177 static struct platform_driver pl35x_nandc_driver = {
1178 	.probe = pl35x_nand_probe,
1179 	.remove_new = pl35x_nand_remove,
1180 	.driver = {
1181 		.name = PL35X_NANDC_DRIVER_NAME,
1182 		.of_match_table = pl35x_nand_of_match,
1183 	},
1184 };
1185 module_platform_driver(pl35x_nandc_driver);
1186 
1187 MODULE_AUTHOR("Xilinx, Inc.");
1188 MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
1189 MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
1190 MODULE_LICENSE("GPL");
1191