1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> 4 * Copyright © 2004 Micron Technology Inc. 5 * Copyright © 2004 David Brownell 6 */ 7 8 #include <linux/platform_device.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/delay.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/module.h> 14 #include <linux/interrupt.h> 15 #include <linux/jiffies.h> 16 #include <linux/sched.h> 17 #include <linux/mtd/mtd.h> 18 #include <linux/mtd/nand-ecc-sw-bch.h> 19 #include <linux/mtd/rawnand.h> 20 #include <linux/mtd/partitions.h> 21 #include <linux/omap-dma.h> 22 #include <linux/iopoll.h> 23 #include <linux/slab.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 27 #include <linux/platform_data/elm.h> 28 29 #include <linux/omap-gpmc.h> 30 #include <linux/platform_data/mtd-nand-omap2.h> 31 32 #define DRIVER_NAME "omap2-nand" 33 #define OMAP_NAND_TIMEOUT_MS 5000 34 35 #define NAND_Ecc_P1e (1 << 0) 36 #define NAND_Ecc_P2e (1 << 1) 37 #define NAND_Ecc_P4e (1 << 2) 38 #define NAND_Ecc_P8e (1 << 3) 39 #define NAND_Ecc_P16e (1 << 4) 40 #define NAND_Ecc_P32e (1 << 5) 41 #define NAND_Ecc_P64e (1 << 6) 42 #define NAND_Ecc_P128e (1 << 7) 43 #define NAND_Ecc_P256e (1 << 8) 44 #define NAND_Ecc_P512e (1 << 9) 45 #define NAND_Ecc_P1024e (1 << 10) 46 #define NAND_Ecc_P2048e (1 << 11) 47 48 #define NAND_Ecc_P1o (1 << 16) 49 #define NAND_Ecc_P2o (1 << 17) 50 #define NAND_Ecc_P4o (1 << 18) 51 #define NAND_Ecc_P8o (1 << 19) 52 #define NAND_Ecc_P16o (1 << 20) 53 #define NAND_Ecc_P32o (1 << 21) 54 #define NAND_Ecc_P64o (1 << 22) 55 #define NAND_Ecc_P128o (1 << 23) 56 #define NAND_Ecc_P256o (1 << 24) 57 #define NAND_Ecc_P512o (1 << 25) 58 #define NAND_Ecc_P1024o (1 << 26) 59 #define NAND_Ecc_P2048o (1 << 27) 60 61 #define TF(value) (value ? 1 : 0) 62 63 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) 64 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) 65 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) 66 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) 67 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) 68 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) 69 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) 70 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) 71 72 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) 73 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) 74 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) 75 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) 76 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) 77 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) 78 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) 79 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) 80 81 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) 82 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) 83 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) 84 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) 85 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) 86 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) 87 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) 88 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) 89 90 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) 91 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) 92 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) 93 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) 94 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) 95 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) 96 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) 97 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) 98 99 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) 100 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) 101 102 #define PREFETCH_CONFIG1_CS_SHIFT 24 103 #define ECC_CONFIG_CS_SHIFT 1 104 #define CS_MASK 0x7 105 #define ENABLE_PREFETCH (0x1 << 7) 106 #define DMA_MPU_MODE_SHIFT 2 107 #define ECCSIZE0_SHIFT 12 108 #define ECCSIZE1_SHIFT 22 109 #define ECC1RESULTSIZE 0x1 110 #define ECCCLEAR 0x100 111 #define ECC1 0x1 112 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 113 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) 114 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) 115 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) 116 #define STATUS_BUFF_EMPTY 0x00000001 117 118 #define SECTOR_BYTES 512 119 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ 120 #define BCH4_BIT_PAD 4 121 122 /* GPMC ecc engine settings for read */ 123 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ 124 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ 125 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ 126 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ 127 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ 128 129 /* GPMC ecc engine settings for write */ 130 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ 131 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ 132 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ 133 134 #define BBM_LEN 2 135 136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, 137 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, 138 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, 139 0x07, 0x0e}; 140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, 141 0xac, 0x6b, 0xff, 0x99, 0x7b}; 142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; 143 144 struct omap_nand_info { 145 struct nand_chip nand; 146 struct platform_device *pdev; 147 148 int gpmc_cs; 149 bool dev_ready; 150 enum nand_io xfer_type; 151 enum omap_ecc ecc_opt; 152 struct device_node *elm_of_node; 153 154 unsigned long phys_base; 155 struct completion comp; 156 struct dma_chan *dma; 157 int gpmc_irq_fifo; 158 int gpmc_irq_count; 159 enum { 160 OMAP_NAND_IO_READ = 0, /* read */ 161 OMAP_NAND_IO_WRITE, /* write */ 162 } iomode; 163 u_char *buf; 164 int buf_len; 165 /* Interface to GPMC */ 166 void __iomem *fifo; 167 struct gpmc_nand_regs reg; 168 struct gpmc_nand_ops *ops; 169 bool flash_bbt; 170 /* fields specific for BCHx_HW ECC scheme */ 171 struct device *elm_dev; 172 /* NAND ready gpio */ 173 struct gpio_desc *ready_gpiod; 174 unsigned int neccpg; 175 unsigned int nsteps_per_eccpg; 176 unsigned int eccpg_size; 177 unsigned int eccpg_bytes; 178 void (*data_in)(struct nand_chip *chip, void *buf, 179 unsigned int len, bool force_8bit); 180 void (*data_out)(struct nand_chip *chip, 181 const void *buf, unsigned int len, 182 bool force_8bit); 183 }; 184 185 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) 186 { 187 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); 188 } 189 190 static void omap_nand_data_in(struct nand_chip *chip, void *buf, 191 unsigned int len, bool force_8bit); 192 193 static void omap_nand_data_out(struct nand_chip *chip, 194 const void *buf, unsigned int len, 195 bool force_8bit); 196 197 /** 198 * omap_prefetch_enable - configures and starts prefetch transfer 199 * @cs: cs (chip select) number 200 * @fifo_th: fifo threshold to be used for read/ write 201 * @dma_mode: dma mode enable (1) or disable (0) 202 * @u32_count: number of bytes to be transferred 203 * @is_write: prefetch read(0) or write post(1) mode 204 * @info: NAND device structure containing platform data 205 */ 206 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, 207 unsigned int u32_count, int is_write, struct omap_nand_info *info) 208 { 209 u32 val; 210 211 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) 212 return -1; 213 214 if (readl(info->reg.gpmc_prefetch_control)) 215 return -EBUSY; 216 217 /* Set the amount of bytes to be prefetched */ 218 writel(u32_count, info->reg.gpmc_prefetch_config2); 219 220 /* Set dma/mpu mode, the prefetch read / post write and 221 * enable the engine. Set which cs is has requested for. 222 */ 223 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | 224 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | 225 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); 226 writel(val, info->reg.gpmc_prefetch_config1); 227 228 /* Start the prefetch engine */ 229 writel(0x1, info->reg.gpmc_prefetch_control); 230 231 return 0; 232 } 233 234 /* 235 * omap_prefetch_reset - disables and stops the prefetch engine 236 */ 237 static int omap_prefetch_reset(int cs, struct omap_nand_info *info) 238 { 239 u32 config1; 240 241 /* check if the same module/cs is trying to reset */ 242 config1 = readl(info->reg.gpmc_prefetch_config1); 243 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) 244 return -EINVAL; 245 246 /* Stop the PFPW engine */ 247 writel(0x0, info->reg.gpmc_prefetch_control); 248 249 /* Reset/disable the PFPW engine */ 250 writel(0x0, info->reg.gpmc_prefetch_config1); 251 252 return 0; 253 } 254 255 /** 256 * omap_nand_data_in_pref - NAND data in using prefetch engine 257 */ 258 static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf, 259 unsigned int len, bool force_8bit) 260 { 261 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 262 uint32_t r_count = 0; 263 int ret = 0; 264 u32 *p = (u32 *)buf; 265 unsigned int pref_len; 266 267 if (force_8bit) { 268 omap_nand_data_in(chip, buf, len, force_8bit); 269 return; 270 } 271 272 /* read 32-bit words using prefetch and remaining bytes normally */ 273 274 /* configure and start prefetch transfer */ 275 pref_len = len - (len & 3); 276 ret = omap_prefetch_enable(info->gpmc_cs, 277 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info); 278 if (ret) { 279 /* prefetch engine is busy, use CPU copy method */ 280 omap_nand_data_in(chip, buf, len, false); 281 } else { 282 do { 283 r_count = readl(info->reg.gpmc_prefetch_status); 284 r_count = PREFETCH_STATUS_FIFO_CNT(r_count); 285 r_count = r_count >> 2; 286 ioread32_rep(info->fifo, p, r_count); 287 p += r_count; 288 pref_len -= r_count << 2; 289 } while (pref_len); 290 /* disable and stop the Prefetch engine */ 291 omap_prefetch_reset(info->gpmc_cs, info); 292 /* fetch any remaining bytes */ 293 if (len & 3) 294 omap_nand_data_in(chip, p, len & 3, false); 295 } 296 } 297 298 /** 299 * omap_nand_data_out_pref - NAND data out using Write Posting engine 300 */ 301 static void omap_nand_data_out_pref(struct nand_chip *chip, 302 const void *buf, unsigned int len, 303 bool force_8bit) 304 { 305 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 306 uint32_t w_count = 0; 307 int i = 0, ret = 0; 308 u16 *p = (u16 *)buf; 309 unsigned long tim, limit; 310 u32 val; 311 312 if (force_8bit) { 313 omap_nand_data_out(chip, buf, len, force_8bit); 314 return; 315 } 316 317 /* take care of subpage writes */ 318 if (len % 2 != 0) { 319 writeb(*(u8 *)buf, info->fifo); 320 p = (u16 *)(buf + 1); 321 len--; 322 } 323 324 /* configure and start prefetch transfer */ 325 ret = omap_prefetch_enable(info->gpmc_cs, 326 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); 327 if (ret) { 328 /* write posting engine is busy, use CPU copy method */ 329 omap_nand_data_out(chip, buf, len, false); 330 } else { 331 while (len) { 332 w_count = readl(info->reg.gpmc_prefetch_status); 333 w_count = PREFETCH_STATUS_FIFO_CNT(w_count); 334 w_count = w_count >> 1; 335 for (i = 0; (i < w_count) && len; i++, len -= 2) 336 iowrite16(*p++, info->fifo); 337 } 338 /* wait for data to flushed-out before reset the prefetch */ 339 tim = 0; 340 limit = (loops_per_jiffy * 341 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); 342 do { 343 cpu_relax(); 344 val = readl(info->reg.gpmc_prefetch_status); 345 val = PREFETCH_STATUS_COUNT(val); 346 } while (val && (tim++ < limit)); 347 348 /* disable and stop the PFPW engine */ 349 omap_prefetch_reset(info->gpmc_cs, info); 350 } 351 } 352 353 /* 354 * omap_nand_dma_callback: callback on the completion of dma transfer 355 * @data: pointer to completion data structure 356 */ 357 static void omap_nand_dma_callback(void *data) 358 { 359 complete((struct completion *) data); 360 } 361 362 /* 363 * omap_nand_dma_transfer: configure and start dma transfer 364 * @chip: nand chip structure 365 * @addr: virtual address in RAM of source/destination 366 * @len: number of data bytes to be transferred 367 * @is_write: flag for read/write operation 368 */ 369 static inline int omap_nand_dma_transfer(struct nand_chip *chip, 370 const void *addr, unsigned int len, 371 int is_write) 372 { 373 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 374 struct dma_async_tx_descriptor *tx; 375 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : 376 DMA_FROM_DEVICE; 377 struct scatterlist sg; 378 unsigned long tim, limit; 379 unsigned n; 380 int ret; 381 u32 val; 382 383 if (!virt_addr_valid(addr)) 384 goto out_copy; 385 386 sg_init_one(&sg, addr, len); 387 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); 388 if (n == 0) { 389 dev_err(&info->pdev->dev, 390 "Couldn't DMA map a %d byte buffer\n", len); 391 goto out_copy; 392 } 393 394 tx = dmaengine_prep_slave_sg(info->dma, &sg, n, 395 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 396 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 397 if (!tx) 398 goto out_copy_unmap; 399 400 tx->callback = omap_nand_dma_callback; 401 tx->callback_param = &info->comp; 402 dmaengine_submit(tx); 403 404 init_completion(&info->comp); 405 406 /* setup and start DMA using dma_addr */ 407 dma_async_issue_pending(info->dma); 408 409 /* configure and start prefetch transfer */ 410 ret = omap_prefetch_enable(info->gpmc_cs, 411 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); 412 if (ret) 413 /* PFPW engine is busy, use cpu copy method */ 414 goto out_copy_unmap; 415 416 wait_for_completion(&info->comp); 417 tim = 0; 418 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); 419 420 do { 421 cpu_relax(); 422 val = readl(info->reg.gpmc_prefetch_status); 423 val = PREFETCH_STATUS_COUNT(val); 424 } while (val && (tim++ < limit)); 425 426 /* disable and stop the PFPW engine */ 427 omap_prefetch_reset(info->gpmc_cs, info); 428 429 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); 430 return 0; 431 432 out_copy_unmap: 433 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); 434 out_copy: 435 is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false) 436 : omap_nand_data_out(chip, addr, len, false); 437 438 return 0; 439 } 440 441 /** 442 * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch 443 */ 444 static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf, 445 unsigned int len, bool force_8bit) 446 { 447 struct mtd_info *mtd = nand_to_mtd(chip); 448 449 if (force_8bit) { 450 omap_nand_data_in(chip, buf, len, force_8bit); 451 return; 452 } 453 454 if (len <= mtd->oobsize) 455 omap_nand_data_in_pref(chip, buf, len, false); 456 else 457 /* start transfer in DMA mode */ 458 omap_nand_dma_transfer(chip, buf, len, 0x0); 459 } 460 461 /** 462 * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting 463 */ 464 static void omap_nand_data_out_dma_pref(struct nand_chip *chip, 465 const void *buf, unsigned int len, 466 bool force_8bit) 467 { 468 struct mtd_info *mtd = nand_to_mtd(chip); 469 470 if (force_8bit) { 471 omap_nand_data_out(chip, buf, len, force_8bit); 472 return; 473 } 474 475 if (len <= mtd->oobsize) 476 omap_nand_data_out_pref(chip, buf, len, false); 477 else 478 /* start transfer in DMA mode */ 479 omap_nand_dma_transfer(chip, buf, len, 0x1); 480 } 481 482 /* 483 * omap_nand_irq - GPMC irq handler 484 * @this_irq: gpmc irq number 485 * @dev: omap_nand_info structure pointer is passed here 486 */ 487 static irqreturn_t omap_nand_irq(int this_irq, void *dev) 488 { 489 struct omap_nand_info *info = (struct omap_nand_info *) dev; 490 u32 bytes; 491 492 bytes = readl(info->reg.gpmc_prefetch_status); 493 bytes = PREFETCH_STATUS_FIFO_CNT(bytes); 494 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ 495 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ 496 if (this_irq == info->gpmc_irq_count) 497 goto done; 498 499 if (info->buf_len && (info->buf_len < bytes)) 500 bytes = info->buf_len; 501 else if (!info->buf_len) 502 bytes = 0; 503 iowrite32_rep(info->fifo, (u32 *)info->buf, 504 bytes >> 2); 505 info->buf = info->buf + bytes; 506 info->buf_len -= bytes; 507 508 } else { 509 ioread32_rep(info->fifo, (u32 *)info->buf, 510 bytes >> 2); 511 info->buf = info->buf + bytes; 512 513 if (this_irq == info->gpmc_irq_count) 514 goto done; 515 } 516 517 return IRQ_HANDLED; 518 519 done: 520 complete(&info->comp); 521 522 disable_irq_nosync(info->gpmc_irq_fifo); 523 disable_irq_nosync(info->gpmc_irq_count); 524 525 return IRQ_HANDLED; 526 } 527 528 /* 529 * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ 530 */ 531 static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf, 532 unsigned int len, bool force_8bit) 533 { 534 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 535 struct mtd_info *mtd = nand_to_mtd(&info->nand); 536 int ret = 0; 537 538 if (len <= mtd->oobsize || force_8bit) { 539 omap_nand_data_in(chip, buf, len, force_8bit); 540 return; 541 } 542 543 info->iomode = OMAP_NAND_IO_READ; 544 info->buf = buf; 545 init_completion(&info->comp); 546 547 /* configure and start prefetch transfer */ 548 ret = omap_prefetch_enable(info->gpmc_cs, 549 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); 550 if (ret) { 551 /* PFPW engine is busy, use cpu copy method */ 552 omap_nand_data_in(chip, buf, len, false); 553 return; 554 } 555 556 info->buf_len = len; 557 558 enable_irq(info->gpmc_irq_count); 559 enable_irq(info->gpmc_irq_fifo); 560 561 /* waiting for read to complete */ 562 wait_for_completion(&info->comp); 563 564 /* disable and stop the PFPW engine */ 565 omap_prefetch_reset(info->gpmc_cs, info); 566 return; 567 } 568 569 /* 570 * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ 571 */ 572 static void omap_nand_data_out_irq_pref(struct nand_chip *chip, 573 const void *buf, unsigned int len, 574 bool force_8bit) 575 { 576 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 577 struct mtd_info *mtd = nand_to_mtd(&info->nand); 578 int ret = 0; 579 unsigned long tim, limit; 580 u32 val; 581 582 if (len <= mtd->oobsize || force_8bit) { 583 omap_nand_data_out(chip, buf, len, force_8bit); 584 return; 585 } 586 587 info->iomode = OMAP_NAND_IO_WRITE; 588 info->buf = (u_char *) buf; 589 init_completion(&info->comp); 590 591 /* configure and start prefetch transfer : size=24 */ 592 ret = omap_prefetch_enable(info->gpmc_cs, 593 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); 594 if (ret) { 595 /* PFPW engine is busy, use cpu copy method */ 596 omap_nand_data_out(chip, buf, len, false); 597 return; 598 } 599 600 info->buf_len = len; 601 602 enable_irq(info->gpmc_irq_count); 603 enable_irq(info->gpmc_irq_fifo); 604 605 /* waiting for write to complete */ 606 wait_for_completion(&info->comp); 607 608 /* wait for data to flushed-out before reset the prefetch */ 609 tim = 0; 610 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); 611 do { 612 val = readl(info->reg.gpmc_prefetch_status); 613 val = PREFETCH_STATUS_COUNT(val); 614 cpu_relax(); 615 } while (val && (tim++ < limit)); 616 617 /* disable and stop the PFPW engine */ 618 omap_prefetch_reset(info->gpmc_cs, info); 619 return; 620 } 621 622 /** 623 * gen_true_ecc - This function will generate true ECC value 624 * @ecc_buf: buffer to store ecc code 625 * 626 * This generated true ECC value can be used when correcting 627 * data read from NAND flash memory core 628 */ 629 static void gen_true_ecc(u8 *ecc_buf) 630 { 631 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | 632 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); 633 634 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | 635 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); 636 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | 637 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); 638 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | 639 P1e(tmp) | P2048o(tmp) | P2048e(tmp)); 640 } 641 642 /** 643 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data 644 * @ecc_data1: ecc code from nand spare area 645 * @ecc_data2: ecc code from hardware register obtained from hardware ecc 646 * @page_data: page data 647 * 648 * This function compares two ECC's and indicates if there is an error. 649 * If the error can be corrected it will be corrected to the buffer. 650 * If there is no error, %0 is returned. If there is an error but it 651 * was corrected, %1 is returned. Otherwise, %-1 is returned. 652 */ 653 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ 654 u8 *ecc_data2, /* read from register */ 655 u8 *page_data) 656 { 657 uint i; 658 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; 659 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; 660 u8 ecc_bit[24]; 661 u8 ecc_sum = 0; 662 u8 find_bit = 0; 663 uint find_byte = 0; 664 int isEccFF; 665 666 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); 667 668 gen_true_ecc(ecc_data1); 669 gen_true_ecc(ecc_data2); 670 671 for (i = 0; i <= 2; i++) { 672 *(ecc_data1 + i) = ~(*(ecc_data1 + i)); 673 *(ecc_data2 + i) = ~(*(ecc_data2 + i)); 674 } 675 676 for (i = 0; i < 8; i++) { 677 tmp0_bit[i] = *ecc_data1 % 2; 678 *ecc_data1 = *ecc_data1 / 2; 679 } 680 681 for (i = 0; i < 8; i++) { 682 tmp1_bit[i] = *(ecc_data1 + 1) % 2; 683 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; 684 } 685 686 for (i = 0; i < 8; i++) { 687 tmp2_bit[i] = *(ecc_data1 + 2) % 2; 688 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; 689 } 690 691 for (i = 0; i < 8; i++) { 692 comp0_bit[i] = *ecc_data2 % 2; 693 *ecc_data2 = *ecc_data2 / 2; 694 } 695 696 for (i = 0; i < 8; i++) { 697 comp1_bit[i] = *(ecc_data2 + 1) % 2; 698 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; 699 } 700 701 for (i = 0; i < 8; i++) { 702 comp2_bit[i] = *(ecc_data2 + 2) % 2; 703 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; 704 } 705 706 for (i = 0; i < 6; i++) 707 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; 708 709 for (i = 0; i < 8; i++) 710 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; 711 712 for (i = 0; i < 8; i++) 713 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; 714 715 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; 716 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; 717 718 for (i = 0; i < 24; i++) 719 ecc_sum += ecc_bit[i]; 720 721 switch (ecc_sum) { 722 case 0: 723 /* Not reached because this function is not called if 724 * ECC values are equal 725 */ 726 return 0; 727 728 case 1: 729 /* Uncorrectable error */ 730 pr_debug("ECC UNCORRECTED_ERROR 1\n"); 731 return -EBADMSG; 732 733 case 11: 734 /* UN-Correctable error */ 735 pr_debug("ECC UNCORRECTED_ERROR B\n"); 736 return -EBADMSG; 737 738 case 12: 739 /* Correctable error */ 740 find_byte = (ecc_bit[23] << 8) + 741 (ecc_bit[21] << 7) + 742 (ecc_bit[19] << 6) + 743 (ecc_bit[17] << 5) + 744 (ecc_bit[15] << 4) + 745 (ecc_bit[13] << 3) + 746 (ecc_bit[11] << 2) + 747 (ecc_bit[9] << 1) + 748 ecc_bit[7]; 749 750 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; 751 752 pr_debug("Correcting single bit ECC error at offset: " 753 "%d, bit: %d\n", find_byte, find_bit); 754 755 page_data[find_byte] ^= (1 << find_bit); 756 757 return 1; 758 default: 759 if (isEccFF) { 760 if (ecc_data2[0] == 0 && 761 ecc_data2[1] == 0 && 762 ecc_data2[2] == 0) 763 return 0; 764 } 765 pr_debug("UNCORRECTED_ERROR default\n"); 766 return -EBADMSG; 767 } 768 } 769 770 /** 771 * omap_correct_data - Compares the ECC read with HW generated ECC 772 * @chip: NAND chip object 773 * @dat: page data 774 * @read_ecc: ecc read from nand flash 775 * @calc_ecc: ecc read from HW ECC registers 776 * 777 * Compares the ecc read from nand spare area with ECC registers values 778 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error 779 * detection and correction. If there are no errors, %0 is returned. If 780 * there were errors and all of the errors were corrected, the number of 781 * corrected errors is returned. If uncorrectable errors exist, %-1 is 782 * returned. 783 */ 784 static int omap_correct_data(struct nand_chip *chip, u_char *dat, 785 u_char *read_ecc, u_char *calc_ecc) 786 { 787 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 788 int blockCnt = 0, i = 0, ret = 0; 789 int stat = 0; 790 791 /* Ex NAND_ECC_HW12_2048 */ 792 if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && 793 info->nand.ecc.size == 2048) 794 blockCnt = 4; 795 else 796 blockCnt = 1; 797 798 for (i = 0; i < blockCnt; i++) { 799 if (memcmp(read_ecc, calc_ecc, 3) != 0) { 800 ret = omap_compare_ecc(read_ecc, calc_ecc, dat); 801 if (ret < 0) 802 return ret; 803 /* keep track of the number of corrected errors */ 804 stat += ret; 805 } 806 read_ecc += 3; 807 calc_ecc += 3; 808 dat += 512; 809 } 810 return stat; 811 } 812 813 /** 814 * omap_calculate_ecc - Generate non-inverted ECC bytes. 815 * @chip: NAND chip object 816 * @dat: The pointer to data on which ecc is computed 817 * @ecc_code: The ecc_code buffer 818 * 819 * Using noninverted ECC can be considered ugly since writing a blank 820 * page ie. padding will clear the ECC bytes. This is no problem as long 821 * nobody is trying to write data on the seemingly unused page. Reading 822 * an erased page will produce an ECC mismatch between generated and read 823 * ECC bytes that has to be dealt with separately. 824 */ 825 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat, 826 u_char *ecc_code) 827 { 828 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 829 u32 val; 830 831 val = readl(info->reg.gpmc_ecc_config); 832 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) 833 return -EINVAL; 834 835 /* read ecc result */ 836 val = readl(info->reg.gpmc_ecc1_result); 837 *ecc_code++ = val; /* P128e, ..., P1e */ 838 *ecc_code++ = val >> 16; /* P128o, ..., P1o */ 839 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ 840 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); 841 842 return 0; 843 } 844 845 /** 846 * omap_enable_hwecc - This function enables the hardware ecc functionality 847 * @chip: NAND chip object 848 * @mode: Read/Write mode 849 */ 850 static void omap_enable_hwecc(struct nand_chip *chip, int mode) 851 { 852 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 853 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; 854 u32 val; 855 856 /* clear ecc and enable bits */ 857 val = ECCCLEAR | ECC1; 858 writel(val, info->reg.gpmc_ecc_control); 859 860 /* program ecc and result sizes */ 861 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | 862 ECC1RESULTSIZE); 863 writel(val, info->reg.gpmc_ecc_size_config); 864 865 switch (mode) { 866 case NAND_ECC_READ: 867 case NAND_ECC_WRITE: 868 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); 869 break; 870 case NAND_ECC_READSYN: 871 writel(ECCCLEAR, info->reg.gpmc_ecc_control); 872 break; 873 default: 874 dev_info(&info->pdev->dev, 875 "error: unrecognized Mode[%d]!\n", mode); 876 break; 877 } 878 879 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ 880 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); 881 writel(val, info->reg.gpmc_ecc_config); 882 } 883 884 /** 885 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation 886 * @chip: NAND chip object 887 * @mode: Read/Write mode 888 * 889 * When using BCH with SW correction (i.e. no ELM), sector size is set 890 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode 891 * for both reading and writing with: 892 * eccsize0 = 0 (no additional protected byte in spare area) 893 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) 894 */ 895 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip, 896 int mode) 897 { 898 unsigned int bch_type; 899 unsigned int dev_width, nsectors; 900 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 901 enum omap_ecc ecc_opt = info->ecc_opt; 902 u32 val, wr_mode; 903 unsigned int ecc_size1, ecc_size0; 904 905 /* GPMC configurations for calculating ECC */ 906 switch (ecc_opt) { 907 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 908 bch_type = 0; 909 nsectors = 1; 910 wr_mode = BCH_WRAPMODE_6; 911 ecc_size0 = BCH_ECC_SIZE0; 912 ecc_size1 = BCH_ECC_SIZE1; 913 break; 914 case OMAP_ECC_BCH4_CODE_HW: 915 bch_type = 0; 916 nsectors = chip->ecc.steps; 917 if (mode == NAND_ECC_READ) { 918 wr_mode = BCH_WRAPMODE_1; 919 ecc_size0 = BCH4R_ECC_SIZE0; 920 ecc_size1 = BCH4R_ECC_SIZE1; 921 } else { 922 wr_mode = BCH_WRAPMODE_6; 923 ecc_size0 = BCH_ECC_SIZE0; 924 ecc_size1 = BCH_ECC_SIZE1; 925 } 926 break; 927 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 928 bch_type = 1; 929 nsectors = 1; 930 wr_mode = BCH_WRAPMODE_6; 931 ecc_size0 = BCH_ECC_SIZE0; 932 ecc_size1 = BCH_ECC_SIZE1; 933 break; 934 case OMAP_ECC_BCH8_CODE_HW: 935 bch_type = 1; 936 nsectors = chip->ecc.steps; 937 if (mode == NAND_ECC_READ) { 938 wr_mode = BCH_WRAPMODE_1; 939 ecc_size0 = BCH8R_ECC_SIZE0; 940 ecc_size1 = BCH8R_ECC_SIZE1; 941 } else { 942 wr_mode = BCH_WRAPMODE_6; 943 ecc_size0 = BCH_ECC_SIZE0; 944 ecc_size1 = BCH_ECC_SIZE1; 945 } 946 break; 947 case OMAP_ECC_BCH16_CODE_HW: 948 bch_type = 0x2; 949 nsectors = chip->ecc.steps; 950 if (mode == NAND_ECC_READ) { 951 wr_mode = 0x01; 952 ecc_size0 = 52; /* ECC bits in nibbles per sector */ 953 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ 954 } else { 955 wr_mode = 0x01; 956 ecc_size0 = 0; /* extra bits in nibbles per sector */ 957 ecc_size1 = 52; /* OOB bits in nibbles per sector */ 958 } 959 break; 960 default: 961 return; 962 } 963 964 writel(ECC1, info->reg.gpmc_ecc_control); 965 966 /* Configure ecc size for BCH */ 967 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); 968 writel(val, info->reg.gpmc_ecc_size_config); 969 970 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; 971 972 /* BCH configuration */ 973 val = ((1 << 16) | /* enable BCH */ 974 (bch_type << 12) | /* BCH4/BCH8/BCH16 */ 975 (wr_mode << 8) | /* wrap mode */ 976 (dev_width << 7) | /* bus width */ 977 (((nsectors-1) & 0x7) << 4) | /* number of sectors */ 978 (info->gpmc_cs << 1) | /* ECC CS */ 979 (0x1)); /* enable ECC */ 980 981 writel(val, info->reg.gpmc_ecc_config); 982 983 /* Clear ecc and enable bits */ 984 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); 985 } 986 987 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; 988 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, 989 0x97, 0x79, 0xe5, 0x24, 0xb5}; 990 991 /** 992 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector 993 * @mtd: MTD device structure 994 * @dat: The pointer to data on which ecc is computed 995 * @ecc_calc: The ecc_code buffer 996 * @i: The sector number (for a multi sector page) 997 * 998 * Support calculating of BCH4/8/16 ECC vectors for one sector 999 * within a page. Sector number is in @i. 1000 */ 1001 static int _omap_calculate_ecc_bch(struct mtd_info *mtd, 1002 const u_char *dat, u_char *ecc_calc, int i) 1003 { 1004 struct omap_nand_info *info = mtd_to_omap(mtd); 1005 int eccbytes = info->nand.ecc.bytes; 1006 struct gpmc_nand_regs *gpmc_regs = &info->reg; 1007 u8 *ecc_code; 1008 unsigned long bch_val1, bch_val2, bch_val3, bch_val4; 1009 u32 val; 1010 int j; 1011 1012 ecc_code = ecc_calc; 1013 switch (info->ecc_opt) { 1014 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1015 case OMAP_ECC_BCH8_CODE_HW: 1016 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); 1017 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); 1018 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); 1019 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); 1020 *ecc_code++ = (bch_val4 & 0xFF); 1021 *ecc_code++ = ((bch_val3 >> 24) & 0xFF); 1022 *ecc_code++ = ((bch_val3 >> 16) & 0xFF); 1023 *ecc_code++ = ((bch_val3 >> 8) & 0xFF); 1024 *ecc_code++ = (bch_val3 & 0xFF); 1025 *ecc_code++ = ((bch_val2 >> 24) & 0xFF); 1026 *ecc_code++ = ((bch_val2 >> 16) & 0xFF); 1027 *ecc_code++ = ((bch_val2 >> 8) & 0xFF); 1028 *ecc_code++ = (bch_val2 & 0xFF); 1029 *ecc_code++ = ((bch_val1 >> 24) & 0xFF); 1030 *ecc_code++ = ((bch_val1 >> 16) & 0xFF); 1031 *ecc_code++ = ((bch_val1 >> 8) & 0xFF); 1032 *ecc_code++ = (bch_val1 & 0xFF); 1033 break; 1034 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1035 case OMAP_ECC_BCH4_CODE_HW: 1036 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); 1037 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); 1038 *ecc_code++ = ((bch_val2 >> 12) & 0xFF); 1039 *ecc_code++ = ((bch_val2 >> 4) & 0xFF); 1040 *ecc_code++ = ((bch_val2 & 0xF) << 4) | 1041 ((bch_val1 >> 28) & 0xF); 1042 *ecc_code++ = ((bch_val1 >> 20) & 0xFF); 1043 *ecc_code++ = ((bch_val1 >> 12) & 0xFF); 1044 *ecc_code++ = ((bch_val1 >> 4) & 0xFF); 1045 *ecc_code++ = ((bch_val1 & 0xF) << 4); 1046 break; 1047 case OMAP_ECC_BCH16_CODE_HW: 1048 val = readl(gpmc_regs->gpmc_bch_result6[i]); 1049 ecc_code[0] = ((val >> 8) & 0xFF); 1050 ecc_code[1] = ((val >> 0) & 0xFF); 1051 val = readl(gpmc_regs->gpmc_bch_result5[i]); 1052 ecc_code[2] = ((val >> 24) & 0xFF); 1053 ecc_code[3] = ((val >> 16) & 0xFF); 1054 ecc_code[4] = ((val >> 8) & 0xFF); 1055 ecc_code[5] = ((val >> 0) & 0xFF); 1056 val = readl(gpmc_regs->gpmc_bch_result4[i]); 1057 ecc_code[6] = ((val >> 24) & 0xFF); 1058 ecc_code[7] = ((val >> 16) & 0xFF); 1059 ecc_code[8] = ((val >> 8) & 0xFF); 1060 ecc_code[9] = ((val >> 0) & 0xFF); 1061 val = readl(gpmc_regs->gpmc_bch_result3[i]); 1062 ecc_code[10] = ((val >> 24) & 0xFF); 1063 ecc_code[11] = ((val >> 16) & 0xFF); 1064 ecc_code[12] = ((val >> 8) & 0xFF); 1065 ecc_code[13] = ((val >> 0) & 0xFF); 1066 val = readl(gpmc_regs->gpmc_bch_result2[i]); 1067 ecc_code[14] = ((val >> 24) & 0xFF); 1068 ecc_code[15] = ((val >> 16) & 0xFF); 1069 ecc_code[16] = ((val >> 8) & 0xFF); 1070 ecc_code[17] = ((val >> 0) & 0xFF); 1071 val = readl(gpmc_regs->gpmc_bch_result1[i]); 1072 ecc_code[18] = ((val >> 24) & 0xFF); 1073 ecc_code[19] = ((val >> 16) & 0xFF); 1074 ecc_code[20] = ((val >> 8) & 0xFF); 1075 ecc_code[21] = ((val >> 0) & 0xFF); 1076 val = readl(gpmc_regs->gpmc_bch_result0[i]); 1077 ecc_code[22] = ((val >> 24) & 0xFF); 1078 ecc_code[23] = ((val >> 16) & 0xFF); 1079 ecc_code[24] = ((val >> 8) & 0xFF); 1080 ecc_code[25] = ((val >> 0) & 0xFF); 1081 break; 1082 default: 1083 return -EINVAL; 1084 } 1085 1086 /* ECC scheme specific syndrome customizations */ 1087 switch (info->ecc_opt) { 1088 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1089 /* Add constant polynomial to remainder, so that 1090 * ECC of blank pages results in 0x0 on reading back 1091 */ 1092 for (j = 0; j < eccbytes; j++) 1093 ecc_calc[j] ^= bch4_polynomial[j]; 1094 break; 1095 case OMAP_ECC_BCH4_CODE_HW: 1096 /* Set 8th ECC byte as 0x0 for ROM compatibility */ 1097 ecc_calc[eccbytes - 1] = 0x0; 1098 break; 1099 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1100 /* Add constant polynomial to remainder, so that 1101 * ECC of blank pages results in 0x0 on reading back 1102 */ 1103 for (j = 0; j < eccbytes; j++) 1104 ecc_calc[j] ^= bch8_polynomial[j]; 1105 break; 1106 case OMAP_ECC_BCH8_CODE_HW: 1107 /* Set 14th ECC byte as 0x0 for ROM compatibility */ 1108 ecc_calc[eccbytes - 1] = 0x0; 1109 break; 1110 case OMAP_ECC_BCH16_CODE_HW: 1111 break; 1112 default: 1113 return -EINVAL; 1114 } 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction 1121 * @chip: NAND chip object 1122 * @dat: The pointer to data on which ecc is computed 1123 * @ecc_calc: Buffer storing the calculated ECC bytes 1124 * 1125 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used 1126 * when SW based correction is required as ECC is required for one sector 1127 * at a time. 1128 */ 1129 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip, 1130 const u_char *dat, u_char *ecc_calc) 1131 { 1132 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0); 1133 } 1134 1135 /** 1136 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors 1137 * @mtd: MTD device structure 1138 * @dat: The pointer to data on which ecc is computed 1139 * @ecc_calc: Buffer storing the calculated ECC bytes 1140 * 1141 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. 1142 */ 1143 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, 1144 const u_char *dat, u_char *ecc_calc) 1145 { 1146 struct omap_nand_info *info = mtd_to_omap(mtd); 1147 int eccbytes = info->nand.ecc.bytes; 1148 unsigned long nsectors; 1149 int i, ret; 1150 1151 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; 1152 for (i = 0; i < nsectors; i++) { 1153 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); 1154 if (ret) 1155 return ret; 1156 1157 ecc_calc += eccbytes; 1158 } 1159 1160 return 0; 1161 } 1162 1163 /** 1164 * erased_sector_bitflips - count bit flips 1165 * @data: data sector buffer 1166 * @oob: oob buffer 1167 * @info: omap_nand_info 1168 * 1169 * Check the bit flips in erased page falls below correctable level. 1170 * If falls below, report the page as erased with correctable bit 1171 * flip, else report as uncorrectable page. 1172 */ 1173 static int erased_sector_bitflips(u_char *data, u_char *oob, 1174 struct omap_nand_info *info) 1175 { 1176 int flip_bits = 0, i; 1177 1178 for (i = 0; i < info->nand.ecc.size; i++) { 1179 flip_bits += hweight8(~data[i]); 1180 if (flip_bits > info->nand.ecc.strength) 1181 return 0; 1182 } 1183 1184 for (i = 0; i < info->nand.ecc.bytes - 1; i++) { 1185 flip_bits += hweight8(~oob[i]); 1186 if (flip_bits > info->nand.ecc.strength) 1187 return 0; 1188 } 1189 1190 /* 1191 * Bit flips falls in correctable level. 1192 * Fill data area with 0xFF 1193 */ 1194 if (flip_bits) { 1195 memset(data, 0xFF, info->nand.ecc.size); 1196 memset(oob, 0xFF, info->nand.ecc.bytes); 1197 } 1198 1199 return flip_bits; 1200 } 1201 1202 /** 1203 * omap_elm_correct_data - corrects page data area in case error reported 1204 * @chip: NAND chip object 1205 * @data: page data 1206 * @read_ecc: ecc read from nand flash 1207 * @calc_ecc: ecc read from HW ECC registers 1208 * 1209 * Calculated ecc vector reported as zero in case of non-error pages. 1210 * In case of non-zero ecc vector, first filter out erased-pages, and 1211 * then process data via ELM to detect bit-flips. 1212 */ 1213 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data, 1214 u_char *read_ecc, u_char *calc_ecc) 1215 { 1216 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 1217 struct nand_ecc_ctrl *ecc = &info->nand.ecc; 1218 int eccsteps = info->nsteps_per_eccpg; 1219 int i , j, stat = 0; 1220 int eccflag, actual_eccbytes; 1221 struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; 1222 u_char *ecc_vec = calc_ecc; 1223 u_char *spare_ecc = read_ecc; 1224 u_char *erased_ecc_vec; 1225 u_char *buf; 1226 int bitflip_count; 1227 bool is_error_reported = false; 1228 u32 bit_pos, byte_pos, error_max, pos; 1229 int err; 1230 1231 switch (info->ecc_opt) { 1232 case OMAP_ECC_BCH4_CODE_HW: 1233 /* omit 7th ECC byte reserved for ROM code compatibility */ 1234 actual_eccbytes = ecc->bytes - 1; 1235 erased_ecc_vec = bch4_vector; 1236 break; 1237 case OMAP_ECC_BCH8_CODE_HW: 1238 /* omit 14th ECC byte reserved for ROM code compatibility */ 1239 actual_eccbytes = ecc->bytes - 1; 1240 erased_ecc_vec = bch8_vector; 1241 break; 1242 case OMAP_ECC_BCH16_CODE_HW: 1243 actual_eccbytes = ecc->bytes; 1244 erased_ecc_vec = bch16_vector; 1245 break; 1246 default: 1247 dev_err(&info->pdev->dev, "invalid driver configuration\n"); 1248 return -EINVAL; 1249 } 1250 1251 /* Initialize elm error vector to zero */ 1252 memset(err_vec, 0, sizeof(err_vec)); 1253 1254 for (i = 0; i < eccsteps ; i++) { 1255 eccflag = 0; /* initialize eccflag */ 1256 1257 /* 1258 * Check any error reported, 1259 * In case of error, non zero ecc reported. 1260 */ 1261 for (j = 0; j < actual_eccbytes; j++) { 1262 if (calc_ecc[j] != 0) { 1263 eccflag = 1; /* non zero ecc, error present */ 1264 break; 1265 } 1266 } 1267 1268 if (eccflag == 1) { 1269 if (memcmp(calc_ecc, erased_ecc_vec, 1270 actual_eccbytes) == 0) { 1271 /* 1272 * calc_ecc[] matches pattern for ECC(all 0xff) 1273 * so this is definitely an erased-page 1274 */ 1275 } else { 1276 buf = &data[info->nand.ecc.size * i]; 1277 /* 1278 * count number of 0-bits in read_buf. 1279 * This check can be removed once a similar 1280 * check is introduced in generic NAND driver 1281 */ 1282 bitflip_count = erased_sector_bitflips( 1283 buf, read_ecc, info); 1284 if (bitflip_count) { 1285 /* 1286 * number of 0-bits within ECC limits 1287 * So this may be an erased-page 1288 */ 1289 stat += bitflip_count; 1290 } else { 1291 /* 1292 * Too many 0-bits. It may be a 1293 * - programmed-page, OR 1294 * - erased-page with many bit-flips 1295 * So this page requires check by ELM 1296 */ 1297 err_vec[i].error_reported = true; 1298 is_error_reported = true; 1299 } 1300 } 1301 } 1302 1303 /* Update the ecc vector */ 1304 calc_ecc += ecc->bytes; 1305 read_ecc += ecc->bytes; 1306 } 1307 1308 /* Check if any error reported */ 1309 if (!is_error_reported) 1310 return stat; 1311 1312 /* Decode BCH error using ELM module */ 1313 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); 1314 1315 err = 0; 1316 for (i = 0; i < eccsteps; i++) { 1317 if (err_vec[i].error_uncorrectable) { 1318 dev_err(&info->pdev->dev, 1319 "uncorrectable bit-flips found\n"); 1320 err = -EBADMSG; 1321 } else if (err_vec[i].error_reported) { 1322 for (j = 0; j < err_vec[i].error_count; j++) { 1323 switch (info->ecc_opt) { 1324 case OMAP_ECC_BCH4_CODE_HW: 1325 /* Add 4 bits to take care of padding */ 1326 pos = err_vec[i].error_loc[j] + 1327 BCH4_BIT_PAD; 1328 break; 1329 case OMAP_ECC_BCH8_CODE_HW: 1330 case OMAP_ECC_BCH16_CODE_HW: 1331 pos = err_vec[i].error_loc[j]; 1332 break; 1333 default: 1334 return -EINVAL; 1335 } 1336 error_max = (ecc->size + actual_eccbytes) * 8; 1337 /* Calculate bit position of error */ 1338 bit_pos = pos % 8; 1339 1340 /* Calculate byte position of error */ 1341 byte_pos = (error_max - pos - 1) / 8; 1342 1343 if (pos < error_max) { 1344 if (byte_pos < 512) { 1345 pr_debug("bitflip@dat[%d]=%x\n", 1346 byte_pos, data[byte_pos]); 1347 data[byte_pos] ^= 1 << bit_pos; 1348 } else { 1349 pr_debug("bitflip@oob[%d]=%x\n", 1350 (byte_pos - 512), 1351 spare_ecc[byte_pos - 512]); 1352 spare_ecc[byte_pos - 512] ^= 1353 1 << bit_pos; 1354 } 1355 } else { 1356 dev_err(&info->pdev->dev, 1357 "invalid bit-flip @ %d:%d\n", 1358 byte_pos, bit_pos); 1359 err = -EBADMSG; 1360 } 1361 } 1362 } 1363 1364 /* Update number of correctable errors */ 1365 stat = max_t(unsigned int, stat, err_vec[i].error_count); 1366 1367 /* Update page data with sector size */ 1368 data += ecc->size; 1369 spare_ecc += ecc->bytes; 1370 } 1371 1372 return (err) ? err : stat; 1373 } 1374 1375 /** 1376 * omap_write_page_bch - BCH ecc based write page function for entire page 1377 * @chip: nand chip info structure 1378 * @buf: data buffer 1379 * @oob_required: must write chip->oob_poi to OOB 1380 * @page: page 1381 * 1382 * Custom write page method evolved to support multi sector writing in one shot 1383 */ 1384 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf, 1385 int oob_required, int page) 1386 { 1387 struct mtd_info *mtd = nand_to_mtd(chip); 1388 struct omap_nand_info *info = mtd_to_omap(mtd); 1389 uint8_t *ecc_calc = chip->ecc.calc_buf; 1390 unsigned int eccpg; 1391 int ret; 1392 1393 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1394 if (ret) 1395 return ret; 1396 1397 for (eccpg = 0; eccpg < info->neccpg; eccpg++) { 1398 /* Enable GPMC ecc engine */ 1399 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 1400 1401 /* Write data */ 1402 info->data_out(chip, buf + (eccpg * info->eccpg_size), 1403 info->eccpg_size, false); 1404 1405 /* Update ecc vector from GPMC result registers */ 1406 ret = omap_calculate_ecc_bch_multi(mtd, 1407 buf + (eccpg * info->eccpg_size), 1408 ecc_calc); 1409 if (ret) 1410 return ret; 1411 1412 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, 1413 chip->oob_poi, 1414 eccpg * info->eccpg_bytes, 1415 info->eccpg_bytes); 1416 if (ret) 1417 return ret; 1418 } 1419 1420 /* Write ecc vector to OOB area */ 1421 info->data_out(chip, chip->oob_poi, mtd->oobsize, false); 1422 1423 return nand_prog_page_end_op(chip); 1424 } 1425 1426 /** 1427 * omap_write_subpage_bch - BCH hardware ECC based subpage write 1428 * @chip: nand chip info structure 1429 * @offset: column address of subpage within the page 1430 * @data_len: data length 1431 * @buf: data buffer 1432 * @oob_required: must write chip->oob_poi to OOB 1433 * @page: page number to write 1434 * 1435 * OMAP optimized subpage write method. 1436 */ 1437 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset, 1438 u32 data_len, const u8 *buf, 1439 int oob_required, int page) 1440 { 1441 struct mtd_info *mtd = nand_to_mtd(chip); 1442 struct omap_nand_info *info = mtd_to_omap(mtd); 1443 u8 *ecc_calc = chip->ecc.calc_buf; 1444 int ecc_size = chip->ecc.size; 1445 int ecc_bytes = chip->ecc.bytes; 1446 u32 start_step = offset / ecc_size; 1447 u32 end_step = (offset + data_len - 1) / ecc_size; 1448 unsigned int eccpg; 1449 int step, ret = 0; 1450 1451 /* 1452 * Write entire page at one go as it would be optimal 1453 * as ECC is calculated by hardware. 1454 * ECC is calculated for all subpages but we choose 1455 * only what we want. 1456 */ 1457 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1458 if (ret) 1459 return ret; 1460 1461 for (eccpg = 0; eccpg < info->neccpg; eccpg++) { 1462 /* Enable GPMC ECC engine */ 1463 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 1464 1465 /* Write data */ 1466 info->data_out(chip, buf + (eccpg * info->eccpg_size), 1467 info->eccpg_size, false); 1468 1469 for (step = 0; step < info->nsteps_per_eccpg; step++) { 1470 unsigned int base_step = eccpg * info->nsteps_per_eccpg; 1471 const u8 *bufoffs = buf + (eccpg * info->eccpg_size); 1472 1473 /* Mask ECC of un-touched subpages with 0xFFs */ 1474 if ((step + base_step) < start_step || 1475 (step + base_step) > end_step) 1476 memset(ecc_calc + (step * ecc_bytes), 0xff, 1477 ecc_bytes); 1478 else 1479 ret = _omap_calculate_ecc_bch(mtd, 1480 bufoffs + (step * ecc_size), 1481 ecc_calc + (step * ecc_bytes), 1482 step); 1483 1484 if (ret) 1485 return ret; 1486 } 1487 1488 /* 1489 * Copy the calculated ECC for the whole page including the 1490 * masked values (0xFF) corresponding to unwritten subpages. 1491 */ 1492 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 1493 eccpg * info->eccpg_bytes, 1494 info->eccpg_bytes); 1495 if (ret) 1496 return ret; 1497 } 1498 1499 /* write OOB buffer to NAND device */ 1500 info->data_out(chip, chip->oob_poi, mtd->oobsize, false); 1501 1502 return nand_prog_page_end_op(chip); 1503 } 1504 1505 /** 1506 * omap_read_page_bch - BCH ecc based page read function for entire page 1507 * @chip: nand chip info structure 1508 * @buf: buffer to store read data 1509 * @oob_required: caller requires OOB data read to chip->oob_poi 1510 * @page: page number to read 1511 * 1512 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module 1513 * used for error correction. 1514 * Custom method evolved to support ELM error correction & multi sector 1515 * reading. On reading page data area is read along with OOB data with 1516 * ecc engine enabled. ecc vector updated after read of OOB data. 1517 * For non error pages ecc vector reported as zero. 1518 */ 1519 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf, 1520 int oob_required, int page) 1521 { 1522 struct mtd_info *mtd = nand_to_mtd(chip); 1523 struct omap_nand_info *info = mtd_to_omap(mtd); 1524 uint8_t *ecc_calc = chip->ecc.calc_buf; 1525 uint8_t *ecc_code = chip->ecc.code_buf; 1526 unsigned int max_bitflips = 0, eccpg; 1527 int stat, ret; 1528 1529 ret = nand_read_page_op(chip, page, 0, NULL, 0); 1530 if (ret) 1531 return ret; 1532 1533 for (eccpg = 0; eccpg < info->neccpg; eccpg++) { 1534 /* Enable GPMC ecc engine */ 1535 chip->ecc.hwctl(chip, NAND_ECC_READ); 1536 1537 /* Read data */ 1538 ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size, 1539 buf + (eccpg * info->eccpg_size), 1540 info->eccpg_size, false); 1541 if (ret) 1542 return ret; 1543 1544 /* Read oob bytes */ 1545 ret = nand_change_read_column_op(chip, 1546 mtd->writesize + BBM_LEN + 1547 (eccpg * info->eccpg_bytes), 1548 chip->oob_poi + BBM_LEN + 1549 (eccpg * info->eccpg_bytes), 1550 info->eccpg_bytes, false); 1551 if (ret) 1552 return ret; 1553 1554 /* Calculate ecc bytes */ 1555 ret = omap_calculate_ecc_bch_multi(mtd, 1556 buf + (eccpg * info->eccpg_size), 1557 ecc_calc); 1558 if (ret) 1559 return ret; 1560 1561 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, 1562 chip->oob_poi, 1563 eccpg * info->eccpg_bytes, 1564 info->eccpg_bytes); 1565 if (ret) 1566 return ret; 1567 1568 stat = chip->ecc.correct(chip, 1569 buf + (eccpg * info->eccpg_size), 1570 ecc_code, ecc_calc); 1571 if (stat < 0) { 1572 mtd->ecc_stats.failed++; 1573 } else { 1574 mtd->ecc_stats.corrected += stat; 1575 max_bitflips = max_t(unsigned int, max_bitflips, stat); 1576 } 1577 } 1578 1579 return max_bitflips; 1580 } 1581 1582 /** 1583 * is_elm_present - checks for presence of ELM module by scanning DT nodes 1584 * @info: NAND device structure containing platform data 1585 * @elm_node: ELM's DT node 1586 */ 1587 static bool is_elm_present(struct omap_nand_info *info, 1588 struct device_node *elm_node) 1589 { 1590 struct platform_device *pdev; 1591 1592 /* check whether elm-id is passed via DT */ 1593 if (!elm_node) { 1594 dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); 1595 return false; 1596 } 1597 pdev = of_find_device_by_node(elm_node); 1598 /* check whether ELM device is registered */ 1599 if (!pdev) { 1600 dev_err(&info->pdev->dev, "ELM device not found\n"); 1601 return false; 1602 } 1603 /* ELM module available, now configure it */ 1604 info->elm_dev = &pdev->dev; 1605 return true; 1606 } 1607 1608 static bool omap2_nand_ecc_check(struct omap_nand_info *info) 1609 { 1610 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; 1611 1612 switch (info->ecc_opt) { 1613 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1614 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1615 ecc_needs_omap_bch = false; 1616 ecc_needs_bch = true; 1617 ecc_needs_elm = false; 1618 break; 1619 case OMAP_ECC_BCH4_CODE_HW: 1620 case OMAP_ECC_BCH8_CODE_HW: 1621 case OMAP_ECC_BCH16_CODE_HW: 1622 ecc_needs_omap_bch = true; 1623 ecc_needs_bch = false; 1624 ecc_needs_elm = true; 1625 break; 1626 default: 1627 ecc_needs_omap_bch = false; 1628 ecc_needs_bch = false; 1629 ecc_needs_elm = false; 1630 break; 1631 } 1632 1633 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 1634 dev_err(&info->pdev->dev, 1635 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 1636 return false; 1637 } 1638 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { 1639 dev_err(&info->pdev->dev, 1640 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); 1641 return false; 1642 } 1643 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { 1644 dev_err(&info->pdev->dev, "ELM not available\n"); 1645 return false; 1646 } 1647 1648 return true; 1649 } 1650 1651 static const char * const nand_xfer_types[] = { 1652 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", 1653 [NAND_OMAP_POLLED] = "polled", 1654 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", 1655 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", 1656 }; 1657 1658 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) 1659 { 1660 struct device_node *child = dev->of_node; 1661 int i; 1662 const char *s; 1663 u32 cs; 1664 1665 if (of_property_read_u32(child, "reg", &cs) < 0) { 1666 dev_err(dev, "reg not found in DT\n"); 1667 return -EINVAL; 1668 } 1669 1670 info->gpmc_cs = cs; 1671 1672 /* detect availability of ELM module. Won't be present pre-OMAP4 */ 1673 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); 1674 if (!info->elm_of_node) { 1675 info->elm_of_node = of_parse_phandle(child, "elm_id", 0); 1676 if (!info->elm_of_node) 1677 dev_dbg(dev, "ti,elm-id not in DT\n"); 1678 } 1679 1680 /* select ecc-scheme for NAND */ 1681 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { 1682 dev_err(dev, "ti,nand-ecc-opt not found\n"); 1683 return -EINVAL; 1684 } 1685 1686 if (!strcmp(s, "sw")) { 1687 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; 1688 } else if (!strcmp(s, "ham1") || 1689 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { 1690 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; 1691 } else if (!strcmp(s, "bch4")) { 1692 if (info->elm_of_node) 1693 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; 1694 else 1695 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; 1696 } else if (!strcmp(s, "bch8")) { 1697 if (info->elm_of_node) 1698 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; 1699 else 1700 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; 1701 } else if (!strcmp(s, "bch16")) { 1702 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; 1703 } else { 1704 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); 1705 return -EINVAL; 1706 } 1707 1708 /* select data transfer mode */ 1709 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { 1710 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { 1711 if (!strcasecmp(s, nand_xfer_types[i])) { 1712 info->xfer_type = i; 1713 return 0; 1714 } 1715 } 1716 1717 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); 1718 return -EINVAL; 1719 } 1720 1721 return 0; 1722 } 1723 1724 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, 1725 struct mtd_oob_region *oobregion) 1726 { 1727 struct omap_nand_info *info = mtd_to_omap(mtd); 1728 struct nand_chip *chip = &info->nand; 1729 int off = BBM_LEN; 1730 1731 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && 1732 !(chip->options & NAND_BUSWIDTH_16)) 1733 off = 1; 1734 1735 if (section) 1736 return -ERANGE; 1737 1738 oobregion->offset = off; 1739 oobregion->length = chip->ecc.total; 1740 1741 return 0; 1742 } 1743 1744 static int omap_ooblayout_free(struct mtd_info *mtd, int section, 1745 struct mtd_oob_region *oobregion) 1746 { 1747 struct omap_nand_info *info = mtd_to_omap(mtd); 1748 struct nand_chip *chip = &info->nand; 1749 int off = BBM_LEN; 1750 1751 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && 1752 !(chip->options & NAND_BUSWIDTH_16)) 1753 off = 1; 1754 1755 if (section) 1756 return -ERANGE; 1757 1758 off += chip->ecc.total; 1759 if (off >= mtd->oobsize) 1760 return -ERANGE; 1761 1762 oobregion->offset = off; 1763 oobregion->length = mtd->oobsize - off; 1764 1765 return 0; 1766 } 1767 1768 static const struct mtd_ooblayout_ops omap_ooblayout_ops = { 1769 .ecc = omap_ooblayout_ecc, 1770 .free = omap_ooblayout_free, 1771 }; 1772 1773 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, 1774 struct mtd_oob_region *oobregion) 1775 { 1776 struct nand_device *nand = mtd_to_nanddev(mtd); 1777 unsigned int nsteps = nanddev_get_ecc_nsteps(nand); 1778 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand); 1779 int off = BBM_LEN; 1780 1781 if (section >= nsteps) 1782 return -ERANGE; 1783 1784 /* 1785 * When SW correction is employed, one OMAP specific marker byte is 1786 * reserved after each ECC step. 1787 */ 1788 oobregion->offset = off + (section * (ecc_bytes + 1)); 1789 oobregion->length = ecc_bytes; 1790 1791 return 0; 1792 } 1793 1794 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, 1795 struct mtd_oob_region *oobregion) 1796 { 1797 struct nand_device *nand = mtd_to_nanddev(mtd); 1798 unsigned int nsteps = nanddev_get_ecc_nsteps(nand); 1799 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand); 1800 int off = BBM_LEN; 1801 1802 if (section) 1803 return -ERANGE; 1804 1805 /* 1806 * When SW correction is employed, one OMAP specific marker byte is 1807 * reserved after each ECC step. 1808 */ 1809 off += ((ecc_bytes + 1) * nsteps); 1810 if (off >= mtd->oobsize) 1811 return -ERANGE; 1812 1813 oobregion->offset = off; 1814 oobregion->length = mtd->oobsize - off; 1815 1816 return 0; 1817 } 1818 1819 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { 1820 .ecc = omap_sw_ooblayout_ecc, 1821 .free = omap_sw_ooblayout_free, 1822 }; 1823 1824 static int omap_nand_attach_chip(struct nand_chip *chip) 1825 { 1826 struct mtd_info *mtd = nand_to_mtd(chip); 1827 struct omap_nand_info *info = mtd_to_omap(mtd); 1828 struct device *dev = &info->pdev->dev; 1829 int min_oobbytes = BBM_LEN; 1830 int elm_bch_strength = -1; 1831 int oobbytes_per_step; 1832 dma_cap_mask_t mask; 1833 int err; 1834 1835 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1836 chip->bbt_options |= NAND_BBT_NO_OOB; 1837 else 1838 chip->options |= NAND_SKIP_BBTSCAN; 1839 1840 /* Re-populate low-level callbacks based on xfer modes */ 1841 switch (info->xfer_type) { 1842 case NAND_OMAP_PREFETCH_POLLED: 1843 info->data_in = omap_nand_data_in_pref; 1844 info->data_out = omap_nand_data_out_pref; 1845 break; 1846 1847 case NAND_OMAP_POLLED: 1848 /* Use nand_base defaults for {read,write}_buf */ 1849 break; 1850 1851 case NAND_OMAP_PREFETCH_DMA: 1852 dma_cap_zero(mask); 1853 dma_cap_set(DMA_SLAVE, mask); 1854 info->dma = dma_request_chan(dev->parent, "rxtx"); 1855 1856 if (IS_ERR(info->dma)) { 1857 dev_err(dev, "DMA engine request failed\n"); 1858 return PTR_ERR(info->dma); 1859 } else { 1860 struct dma_slave_config cfg; 1861 1862 memset(&cfg, 0, sizeof(cfg)); 1863 cfg.src_addr = info->phys_base; 1864 cfg.dst_addr = info->phys_base; 1865 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1866 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1867 cfg.src_maxburst = 16; 1868 cfg.dst_maxburst = 16; 1869 err = dmaengine_slave_config(info->dma, &cfg); 1870 if (err) { 1871 dev_err(dev, 1872 "DMA engine slave config failed: %d\n", 1873 err); 1874 return err; 1875 } 1876 1877 info->data_in = omap_nand_data_in_dma_pref; 1878 info->data_out = omap_nand_data_out_dma_pref; 1879 } 1880 break; 1881 1882 case NAND_OMAP_PREFETCH_IRQ: 1883 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0); 1884 if (info->gpmc_irq_fifo <= 0) 1885 return -ENODEV; 1886 err = devm_request_irq(dev, info->gpmc_irq_fifo, 1887 omap_nand_irq, IRQF_SHARED, 1888 "gpmc-nand-fifo", info); 1889 if (err) { 1890 dev_err(dev, "Requesting IRQ %d, error %d\n", 1891 info->gpmc_irq_fifo, err); 1892 info->gpmc_irq_fifo = 0; 1893 return err; 1894 } 1895 1896 info->gpmc_irq_count = platform_get_irq(info->pdev, 1); 1897 if (info->gpmc_irq_count <= 0) 1898 return -ENODEV; 1899 err = devm_request_irq(dev, info->gpmc_irq_count, 1900 omap_nand_irq, IRQF_SHARED, 1901 "gpmc-nand-count", info); 1902 if (err) { 1903 dev_err(dev, "Requesting IRQ %d, error %d\n", 1904 info->gpmc_irq_count, err); 1905 info->gpmc_irq_count = 0; 1906 return err; 1907 } 1908 1909 info->data_in = omap_nand_data_in_irq_pref; 1910 info->data_out = omap_nand_data_out_irq_pref; 1911 break; 1912 1913 default: 1914 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type); 1915 return -EINVAL; 1916 } 1917 1918 if (!omap2_nand_ecc_check(info)) 1919 return -EINVAL; 1920 1921 /* 1922 * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own 1923 * ooblayout instead of using ours. 1924 */ 1925 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { 1926 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 1927 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 1928 return 0; 1929 } 1930 1931 /* Populate MTD interface based on ECC scheme */ 1932 switch (info->ecc_opt) { 1933 case OMAP_ECC_HAM1_CODE_HW: 1934 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n"); 1935 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1936 chip->ecc.bytes = 3; 1937 chip->ecc.size = 512; 1938 chip->ecc.strength = 1; 1939 chip->ecc.calculate = omap_calculate_ecc; 1940 chip->ecc.hwctl = omap_enable_hwecc; 1941 chip->ecc.correct = omap_correct_data; 1942 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 1943 oobbytes_per_step = chip->ecc.bytes; 1944 1945 if (!(chip->options & NAND_BUSWIDTH_16)) 1946 min_oobbytes = 1; 1947 1948 break; 1949 1950 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1951 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); 1952 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1953 chip->ecc.size = 512; 1954 chip->ecc.bytes = 7; 1955 chip->ecc.strength = 4; 1956 chip->ecc.hwctl = omap_enable_hwecc_bch; 1957 chip->ecc.correct = rawnand_sw_bch_correct; 1958 chip->ecc.calculate = omap_calculate_ecc_bch_sw; 1959 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); 1960 /* Reserve one byte for the OMAP marker */ 1961 oobbytes_per_step = chip->ecc.bytes + 1; 1962 /* Software BCH library is used for locating errors */ 1963 err = rawnand_sw_bch_init(chip); 1964 if (err) { 1965 dev_err(dev, "Unable to use BCH library\n"); 1966 return err; 1967 } 1968 break; 1969 1970 case OMAP_ECC_BCH4_CODE_HW: 1971 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); 1972 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1973 chip->ecc.size = 512; 1974 /* 14th bit is kept reserved for ROM-code compatibility */ 1975 chip->ecc.bytes = 7 + 1; 1976 chip->ecc.strength = 4; 1977 chip->ecc.hwctl = omap_enable_hwecc_bch; 1978 chip->ecc.correct = omap_elm_correct_data; 1979 chip->ecc.read_page = omap_read_page_bch; 1980 chip->ecc.write_page = omap_write_page_bch; 1981 chip->ecc.write_subpage = omap_write_subpage_bch; 1982 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 1983 oobbytes_per_step = chip->ecc.bytes; 1984 elm_bch_strength = BCH4_ECC; 1985 break; 1986 1987 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1988 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); 1989 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1990 chip->ecc.size = 512; 1991 chip->ecc.bytes = 13; 1992 chip->ecc.strength = 8; 1993 chip->ecc.hwctl = omap_enable_hwecc_bch; 1994 chip->ecc.correct = rawnand_sw_bch_correct; 1995 chip->ecc.calculate = omap_calculate_ecc_bch_sw; 1996 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); 1997 /* Reserve one byte for the OMAP marker */ 1998 oobbytes_per_step = chip->ecc.bytes + 1; 1999 /* Software BCH library is used for locating errors */ 2000 err = rawnand_sw_bch_init(chip); 2001 if (err) { 2002 dev_err(dev, "unable to use BCH library\n"); 2003 return err; 2004 } 2005 break; 2006 2007 case OMAP_ECC_BCH8_CODE_HW: 2008 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); 2009 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2010 chip->ecc.size = 512; 2011 /* 14th bit is kept reserved for ROM-code compatibility */ 2012 chip->ecc.bytes = 13 + 1; 2013 chip->ecc.strength = 8; 2014 chip->ecc.hwctl = omap_enable_hwecc_bch; 2015 chip->ecc.correct = omap_elm_correct_data; 2016 chip->ecc.read_page = omap_read_page_bch; 2017 chip->ecc.write_page = omap_write_page_bch; 2018 chip->ecc.write_subpage = omap_write_subpage_bch; 2019 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 2020 oobbytes_per_step = chip->ecc.bytes; 2021 elm_bch_strength = BCH8_ECC; 2022 break; 2023 2024 case OMAP_ECC_BCH16_CODE_HW: 2025 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); 2026 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2027 chip->ecc.size = 512; 2028 chip->ecc.bytes = 26; 2029 chip->ecc.strength = 16; 2030 chip->ecc.hwctl = omap_enable_hwecc_bch; 2031 chip->ecc.correct = omap_elm_correct_data; 2032 chip->ecc.read_page = omap_read_page_bch; 2033 chip->ecc.write_page = omap_write_page_bch; 2034 chip->ecc.write_subpage = omap_write_subpage_bch; 2035 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 2036 oobbytes_per_step = chip->ecc.bytes; 2037 elm_bch_strength = BCH16_ECC; 2038 break; 2039 default: 2040 dev_err(dev, "Invalid or unsupported ECC scheme\n"); 2041 return -EINVAL; 2042 } 2043 2044 if (elm_bch_strength >= 0) { 2045 chip->ecc.steps = mtd->writesize / chip->ecc.size; 2046 info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX; 2047 if (info->neccpg) { 2048 info->nsteps_per_eccpg = ERROR_VECTOR_MAX; 2049 } else { 2050 info->neccpg = 1; 2051 info->nsteps_per_eccpg = chip->ecc.steps; 2052 } 2053 info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size; 2054 info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes; 2055 2056 err = elm_config(info->elm_dev, elm_bch_strength, 2057 info->nsteps_per_eccpg, chip->ecc.size, 2058 chip->ecc.bytes); 2059 if (err < 0) 2060 return err; 2061 } 2062 2063 /* Check if NAND device's OOB is enough to store ECC signatures */ 2064 min_oobbytes += (oobbytes_per_step * 2065 (mtd->writesize / chip->ecc.size)); 2066 if (mtd->oobsize < min_oobbytes) { 2067 dev_err(dev, 2068 "Not enough OOB bytes: required = %d, available=%d\n", 2069 min_oobbytes, mtd->oobsize); 2070 return -EINVAL; 2071 } 2072 2073 return 0; 2074 } 2075 2076 static void omap_nand_data_in(struct nand_chip *chip, void *buf, 2077 unsigned int len, bool force_8bit) 2078 { 2079 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 2080 u32 alignment = ((uintptr_t)buf | len) & 3; 2081 2082 if (force_8bit || (alignment & 1)) 2083 ioread8_rep(info->fifo, buf, len); 2084 else if (alignment & 3) 2085 ioread16_rep(info->fifo, buf, len >> 1); 2086 else 2087 ioread32_rep(info->fifo, buf, len >> 2); 2088 } 2089 2090 static void omap_nand_data_out(struct nand_chip *chip, 2091 const void *buf, unsigned int len, 2092 bool force_8bit) 2093 { 2094 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 2095 u32 alignment = ((uintptr_t)buf | len) & 3; 2096 2097 if (force_8bit || (alignment & 1)) 2098 iowrite8_rep(info->fifo, buf, len); 2099 else if (alignment & 3) 2100 iowrite16_rep(info->fifo, buf, len >> 1); 2101 else 2102 iowrite32_rep(info->fifo, buf, len >> 2); 2103 } 2104 2105 static int omap_nand_exec_instr(struct nand_chip *chip, 2106 const struct nand_op_instr *instr) 2107 { 2108 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 2109 unsigned int i; 2110 int ret; 2111 2112 switch (instr->type) { 2113 case NAND_OP_CMD_INSTR: 2114 iowrite8(instr->ctx.cmd.opcode, 2115 info->reg.gpmc_nand_command); 2116 break; 2117 2118 case NAND_OP_ADDR_INSTR: 2119 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 2120 iowrite8(instr->ctx.addr.addrs[i], 2121 info->reg.gpmc_nand_address); 2122 } 2123 break; 2124 2125 case NAND_OP_DATA_IN_INSTR: 2126 info->data_in(chip, instr->ctx.data.buf.in, 2127 instr->ctx.data.len, 2128 instr->ctx.data.force_8bit); 2129 break; 2130 2131 case NAND_OP_DATA_OUT_INSTR: 2132 info->data_out(chip, instr->ctx.data.buf.out, 2133 instr->ctx.data.len, 2134 instr->ctx.data.force_8bit); 2135 break; 2136 2137 case NAND_OP_WAITRDY_INSTR: 2138 ret = info->ready_gpiod ? 2139 nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) : 2140 nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); 2141 if (ret) 2142 return ret; 2143 break; 2144 } 2145 2146 if (instr->delay_ns) 2147 ndelay(instr->delay_ns); 2148 2149 return 0; 2150 } 2151 2152 static int omap_nand_exec_op(struct nand_chip *chip, 2153 const struct nand_operation *op, 2154 bool check_only) 2155 { 2156 unsigned int i; 2157 2158 if (check_only) 2159 return 0; 2160 2161 for (i = 0; i < op->ninstrs; i++) { 2162 int ret; 2163 2164 ret = omap_nand_exec_instr(chip, &op->instrs[i]); 2165 if (ret) 2166 return ret; 2167 } 2168 2169 return 0; 2170 } 2171 2172 static const struct nand_controller_ops omap_nand_controller_ops = { 2173 .attach_chip = omap_nand_attach_chip, 2174 .exec_op = omap_nand_exec_op, 2175 }; 2176 2177 /* Shared among all NAND instances to synchronize access to the ECC Engine */ 2178 static struct nand_controller omap_gpmc_controller; 2179 static bool omap_gpmc_controller_initialized; 2180 2181 static int omap_nand_probe(struct platform_device *pdev) 2182 { 2183 struct omap_nand_info *info; 2184 struct mtd_info *mtd; 2185 struct nand_chip *nand_chip; 2186 int err; 2187 struct resource *res; 2188 struct device *dev = &pdev->dev; 2189 void __iomem *vaddr; 2190 2191 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), 2192 GFP_KERNEL); 2193 if (!info) 2194 return -ENOMEM; 2195 2196 info->pdev = pdev; 2197 2198 err = omap_get_dt_info(dev, info); 2199 if (err) 2200 return err; 2201 2202 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); 2203 if (!info->ops) { 2204 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); 2205 return -ENODEV; 2206 } 2207 2208 nand_chip = &info->nand; 2209 mtd = nand_to_mtd(nand_chip); 2210 mtd->dev.parent = &pdev->dev; 2211 nand_set_flash_node(nand_chip, dev->of_node); 2212 2213 if (!mtd->name) { 2214 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 2215 "omap2-nand.%d", info->gpmc_cs); 2216 if (!mtd->name) { 2217 dev_err(&pdev->dev, "Failed to set MTD name\n"); 2218 return -ENOMEM; 2219 } 2220 } 2221 2222 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2223 vaddr = devm_ioremap_resource(&pdev->dev, res); 2224 if (IS_ERR(vaddr)) 2225 return PTR_ERR(vaddr); 2226 2227 info->fifo = vaddr; 2228 info->phys_base = res->start; 2229 2230 if (!omap_gpmc_controller_initialized) { 2231 omap_gpmc_controller.ops = &omap_nand_controller_ops; 2232 nand_controller_init(&omap_gpmc_controller); 2233 omap_gpmc_controller_initialized = true; 2234 } 2235 2236 nand_chip->controller = &omap_gpmc_controller; 2237 2238 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", 2239 GPIOD_IN); 2240 if (IS_ERR(info->ready_gpiod)) { 2241 dev_err(dev, "failed to get ready gpio\n"); 2242 return PTR_ERR(info->ready_gpiod); 2243 } 2244 2245 if (info->flash_bbt) 2246 nand_chip->bbt_options |= NAND_BBT_USE_FLASH; 2247 2248 /* default operations */ 2249 info->data_in = omap_nand_data_in; 2250 info->data_out = omap_nand_data_out; 2251 2252 err = nand_scan(nand_chip, 1); 2253 if (err) 2254 goto return_error; 2255 2256 err = mtd_device_register(mtd, NULL, 0); 2257 if (err) 2258 goto cleanup_nand; 2259 2260 platform_set_drvdata(pdev, mtd); 2261 2262 return 0; 2263 2264 cleanup_nand: 2265 nand_cleanup(nand_chip); 2266 2267 return_error: 2268 if (!IS_ERR_OR_NULL(info->dma)) 2269 dma_release_channel(info->dma); 2270 2271 rawnand_sw_bch_cleanup(nand_chip); 2272 2273 return err; 2274 } 2275 2276 static int omap_nand_remove(struct platform_device *pdev) 2277 { 2278 struct mtd_info *mtd = platform_get_drvdata(pdev); 2279 struct nand_chip *nand_chip = mtd_to_nand(mtd); 2280 struct omap_nand_info *info = mtd_to_omap(mtd); 2281 2282 rawnand_sw_bch_cleanup(nand_chip); 2283 2284 if (info->dma) 2285 dma_release_channel(info->dma); 2286 WARN_ON(mtd_device_unregister(mtd)); 2287 nand_cleanup(nand_chip); 2288 return 0; 2289 } 2290 2291 /* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */ 2292 MODULE_DEVICE_TABLE(of, omap_nand_ids); 2293 2294 static struct platform_driver omap_nand_driver = { 2295 .probe = omap_nand_probe, 2296 .remove = omap_nand_remove, 2297 .driver = { 2298 .name = DRIVER_NAME, 2299 .of_match_table = omap_nand_ids, 2300 }, 2301 }; 2302 2303 module_platform_driver(omap_nand_driver); 2304 2305 MODULE_ALIAS("platform:" DRIVER_NAME); 2306 MODULE_LICENSE("GPL"); 2307 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); 2308