1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> 4 * Copyright © 2004 Micron Technology Inc. 5 * Copyright © 2004 David Brownell 6 */ 7 8 #include <linux/platform_device.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/delay.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/module.h> 14 #include <linux/interrupt.h> 15 #include <linux/jiffies.h> 16 #include <linux/sched.h> 17 #include <linux/mtd/mtd.h> 18 #include <linux/mtd/nand-ecc-sw-bch.h> 19 #include <linux/mtd/rawnand.h> 20 #include <linux/mtd/partitions.h> 21 #include <linux/omap-dma.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 27 #include <linux/platform_data/elm.h> 28 29 #include <linux/omap-gpmc.h> 30 #include <linux/platform_data/mtd-nand-omap2.h> 31 32 #define DRIVER_NAME "omap2-nand" 33 #define OMAP_NAND_TIMEOUT_MS 5000 34 35 #define NAND_Ecc_P1e (1 << 0) 36 #define NAND_Ecc_P2e (1 << 1) 37 #define NAND_Ecc_P4e (1 << 2) 38 #define NAND_Ecc_P8e (1 << 3) 39 #define NAND_Ecc_P16e (1 << 4) 40 #define NAND_Ecc_P32e (1 << 5) 41 #define NAND_Ecc_P64e (1 << 6) 42 #define NAND_Ecc_P128e (1 << 7) 43 #define NAND_Ecc_P256e (1 << 8) 44 #define NAND_Ecc_P512e (1 << 9) 45 #define NAND_Ecc_P1024e (1 << 10) 46 #define NAND_Ecc_P2048e (1 << 11) 47 48 #define NAND_Ecc_P1o (1 << 16) 49 #define NAND_Ecc_P2o (1 << 17) 50 #define NAND_Ecc_P4o (1 << 18) 51 #define NAND_Ecc_P8o (1 << 19) 52 #define NAND_Ecc_P16o (1 << 20) 53 #define NAND_Ecc_P32o (1 << 21) 54 #define NAND_Ecc_P64o (1 << 22) 55 #define NAND_Ecc_P128o (1 << 23) 56 #define NAND_Ecc_P256o (1 << 24) 57 #define NAND_Ecc_P512o (1 << 25) 58 #define NAND_Ecc_P1024o (1 << 26) 59 #define NAND_Ecc_P2048o (1 << 27) 60 61 #define TF(value) (value ? 1 : 0) 62 63 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) 64 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) 65 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) 66 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) 67 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) 68 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) 69 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) 70 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) 71 72 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) 73 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) 74 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) 75 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) 76 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) 77 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) 78 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) 79 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) 80 81 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) 82 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) 83 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) 84 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) 85 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) 86 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) 87 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) 88 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) 89 90 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) 91 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) 92 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) 93 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) 94 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) 95 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) 96 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) 97 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) 98 99 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) 100 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) 101 102 #define PREFETCH_CONFIG1_CS_SHIFT 24 103 #define ECC_CONFIG_CS_SHIFT 1 104 #define CS_MASK 0x7 105 #define ENABLE_PREFETCH (0x1 << 7) 106 #define DMA_MPU_MODE_SHIFT 2 107 #define ECCSIZE0_SHIFT 12 108 #define ECCSIZE1_SHIFT 22 109 #define ECC1RESULTSIZE 0x1 110 #define ECCCLEAR 0x100 111 #define ECC1 0x1 112 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 113 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) 114 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) 115 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) 116 #define STATUS_BUFF_EMPTY 0x00000001 117 118 #define SECTOR_BYTES 512 119 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ 120 #define BCH4_BIT_PAD 4 121 122 /* GPMC ecc engine settings for read */ 123 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ 124 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ 125 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ 126 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ 127 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ 128 129 /* GPMC ecc engine settings for write */ 130 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ 131 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ 132 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ 133 134 #define BADBLOCK_MARKER_LENGTH 2 135 136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, 137 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, 138 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, 139 0x07, 0x0e}; 140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, 141 0xac, 0x6b, 0xff, 0x99, 0x7b}; 142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; 143 144 struct omap_nand_info { 145 struct nand_chip nand; 146 struct platform_device *pdev; 147 148 int gpmc_cs; 149 bool dev_ready; 150 enum nand_io xfer_type; 151 int devsize; 152 enum omap_ecc ecc_opt; 153 struct device_node *elm_of_node; 154 155 unsigned long phys_base; 156 struct completion comp; 157 struct dma_chan *dma; 158 int gpmc_irq_fifo; 159 int gpmc_irq_count; 160 enum { 161 OMAP_NAND_IO_READ = 0, /* read */ 162 OMAP_NAND_IO_WRITE, /* write */ 163 } iomode; 164 u_char *buf; 165 int buf_len; 166 /* Interface to GPMC */ 167 struct gpmc_nand_regs reg; 168 struct gpmc_nand_ops *ops; 169 bool flash_bbt; 170 /* fields specific for BCHx_HW ECC scheme */ 171 struct device *elm_dev; 172 /* NAND ready gpio */ 173 struct gpio_desc *ready_gpiod; 174 }; 175 176 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) 177 { 178 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); 179 } 180 181 /** 182 * omap_prefetch_enable - configures and starts prefetch transfer 183 * @cs: cs (chip select) number 184 * @fifo_th: fifo threshold to be used for read/ write 185 * @dma_mode: dma mode enable (1) or disable (0) 186 * @u32_count: number of bytes to be transferred 187 * @is_write: prefetch read(0) or write post(1) mode 188 * @info: NAND device structure containing platform data 189 */ 190 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, 191 unsigned int u32_count, int is_write, struct omap_nand_info *info) 192 { 193 u32 val; 194 195 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) 196 return -1; 197 198 if (readl(info->reg.gpmc_prefetch_control)) 199 return -EBUSY; 200 201 /* Set the amount of bytes to be prefetched */ 202 writel(u32_count, info->reg.gpmc_prefetch_config2); 203 204 /* Set dma/mpu mode, the prefetch read / post write and 205 * enable the engine. Set which cs is has requested for. 206 */ 207 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | 208 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | 209 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); 210 writel(val, info->reg.gpmc_prefetch_config1); 211 212 /* Start the prefetch engine */ 213 writel(0x1, info->reg.gpmc_prefetch_control); 214 215 return 0; 216 } 217 218 /* 219 * omap_prefetch_reset - disables and stops the prefetch engine 220 */ 221 static int omap_prefetch_reset(int cs, struct omap_nand_info *info) 222 { 223 u32 config1; 224 225 /* check if the same module/cs is trying to reset */ 226 config1 = readl(info->reg.gpmc_prefetch_config1); 227 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) 228 return -EINVAL; 229 230 /* Stop the PFPW engine */ 231 writel(0x0, info->reg.gpmc_prefetch_control); 232 233 /* Reset/disable the PFPW engine */ 234 writel(0x0, info->reg.gpmc_prefetch_config1); 235 236 return 0; 237 } 238 239 /** 240 * omap_hwcontrol - hardware specific access to control-lines 241 * @chip: NAND chip object 242 * @cmd: command to device 243 * @ctrl: 244 * NAND_NCE: bit 0 -> don't care 245 * NAND_CLE: bit 1 -> Command Latch 246 * NAND_ALE: bit 2 -> Address Latch 247 * 248 * NOTE: boards may use different bits for these!! 249 */ 250 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) 251 { 252 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 253 254 if (cmd != NAND_CMD_NONE) { 255 if (ctrl & NAND_CLE) 256 writeb(cmd, info->reg.gpmc_nand_command); 257 258 else if (ctrl & NAND_ALE) 259 writeb(cmd, info->reg.gpmc_nand_address); 260 261 else /* NAND_NCE */ 262 writeb(cmd, info->reg.gpmc_nand_data); 263 } 264 } 265 266 /** 267 * omap_read_buf8 - read data from NAND controller into buffer 268 * @mtd: MTD device structure 269 * @buf: buffer to store date 270 * @len: number of bytes to read 271 */ 272 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) 273 { 274 struct nand_chip *nand = mtd_to_nand(mtd); 275 276 ioread8_rep(nand->legacy.IO_ADDR_R, buf, len); 277 } 278 279 /** 280 * omap_write_buf8 - write buffer to NAND controller 281 * @mtd: MTD device structure 282 * @buf: data buffer 283 * @len: number of bytes to write 284 */ 285 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) 286 { 287 struct omap_nand_info *info = mtd_to_omap(mtd); 288 u_char *p = (u_char *)buf; 289 bool status; 290 291 while (len--) { 292 iowrite8(*p++, info->nand.legacy.IO_ADDR_W); 293 /* wait until buffer is available for write */ 294 do { 295 status = info->ops->nand_writebuffer_empty(); 296 } while (!status); 297 } 298 } 299 300 /** 301 * omap_read_buf16 - read data from NAND controller into buffer 302 * @mtd: MTD device structure 303 * @buf: buffer to store date 304 * @len: number of bytes to read 305 */ 306 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) 307 { 308 struct nand_chip *nand = mtd_to_nand(mtd); 309 310 ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2); 311 } 312 313 /** 314 * omap_write_buf16 - write buffer to NAND controller 315 * @mtd: MTD device structure 316 * @buf: data buffer 317 * @len: number of bytes to write 318 */ 319 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) 320 { 321 struct omap_nand_info *info = mtd_to_omap(mtd); 322 u16 *p = (u16 *) buf; 323 bool status; 324 /* FIXME try bursts of writesw() or DMA ... */ 325 len >>= 1; 326 327 while (len--) { 328 iowrite16(*p++, info->nand.legacy.IO_ADDR_W); 329 /* wait until buffer is available for write */ 330 do { 331 status = info->ops->nand_writebuffer_empty(); 332 } while (!status); 333 } 334 } 335 336 /** 337 * omap_read_buf_pref - read data from NAND controller into buffer 338 * @chip: NAND chip object 339 * @buf: buffer to store date 340 * @len: number of bytes to read 341 */ 342 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len) 343 { 344 struct mtd_info *mtd = nand_to_mtd(chip); 345 struct omap_nand_info *info = mtd_to_omap(mtd); 346 uint32_t r_count = 0; 347 int ret = 0; 348 u32 *p = (u32 *)buf; 349 350 /* take care of subpage reads */ 351 if (len % 4) { 352 if (info->nand.options & NAND_BUSWIDTH_16) 353 omap_read_buf16(mtd, buf, len % 4); 354 else 355 omap_read_buf8(mtd, buf, len % 4); 356 p = (u32 *) (buf + len % 4); 357 len -= len % 4; 358 } 359 360 /* configure and start prefetch transfer */ 361 ret = omap_prefetch_enable(info->gpmc_cs, 362 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); 363 if (ret) { 364 /* PFPW engine is busy, use cpu copy method */ 365 if (info->nand.options & NAND_BUSWIDTH_16) 366 omap_read_buf16(mtd, (u_char *)p, len); 367 else 368 omap_read_buf8(mtd, (u_char *)p, len); 369 } else { 370 do { 371 r_count = readl(info->reg.gpmc_prefetch_status); 372 r_count = PREFETCH_STATUS_FIFO_CNT(r_count); 373 r_count = r_count >> 2; 374 ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count); 375 p += r_count; 376 len -= r_count << 2; 377 } while (len); 378 /* disable and stop the PFPW engine */ 379 omap_prefetch_reset(info->gpmc_cs, info); 380 } 381 } 382 383 /** 384 * omap_write_buf_pref - write buffer to NAND controller 385 * @chip: NAND chip object 386 * @buf: data buffer 387 * @len: number of bytes to write 388 */ 389 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf, 390 int len) 391 { 392 struct mtd_info *mtd = nand_to_mtd(chip); 393 struct omap_nand_info *info = mtd_to_omap(mtd); 394 uint32_t w_count = 0; 395 int i = 0, ret = 0; 396 u16 *p = (u16 *)buf; 397 unsigned long tim, limit; 398 u32 val; 399 400 /* take care of subpage writes */ 401 if (len % 2 != 0) { 402 writeb(*buf, info->nand.legacy.IO_ADDR_W); 403 p = (u16 *)(buf + 1); 404 len--; 405 } 406 407 /* configure and start prefetch transfer */ 408 ret = omap_prefetch_enable(info->gpmc_cs, 409 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); 410 if (ret) { 411 /* PFPW engine is busy, use cpu copy method */ 412 if (info->nand.options & NAND_BUSWIDTH_16) 413 omap_write_buf16(mtd, (u_char *)p, len); 414 else 415 omap_write_buf8(mtd, (u_char *)p, len); 416 } else { 417 while (len) { 418 w_count = readl(info->reg.gpmc_prefetch_status); 419 w_count = PREFETCH_STATUS_FIFO_CNT(w_count); 420 w_count = w_count >> 1; 421 for (i = 0; (i < w_count) && len; i++, len -= 2) 422 iowrite16(*p++, info->nand.legacy.IO_ADDR_W); 423 } 424 /* wait for data to flushed-out before reset the prefetch */ 425 tim = 0; 426 limit = (loops_per_jiffy * 427 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); 428 do { 429 cpu_relax(); 430 val = readl(info->reg.gpmc_prefetch_status); 431 val = PREFETCH_STATUS_COUNT(val); 432 } while (val && (tim++ < limit)); 433 434 /* disable and stop the PFPW engine */ 435 omap_prefetch_reset(info->gpmc_cs, info); 436 } 437 } 438 439 /* 440 * omap_nand_dma_callback: callback on the completion of dma transfer 441 * @data: pointer to completion data structure 442 */ 443 static void omap_nand_dma_callback(void *data) 444 { 445 complete((struct completion *) data); 446 } 447 448 /* 449 * omap_nand_dma_transfer: configure and start dma transfer 450 * @mtd: MTD device structure 451 * @addr: virtual address in RAM of source/destination 452 * @len: number of data bytes to be transferred 453 * @is_write: flag for read/write operation 454 */ 455 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, 456 unsigned int len, int is_write) 457 { 458 struct omap_nand_info *info = mtd_to_omap(mtd); 459 struct dma_async_tx_descriptor *tx; 460 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : 461 DMA_FROM_DEVICE; 462 struct scatterlist sg; 463 unsigned long tim, limit; 464 unsigned n; 465 int ret; 466 u32 val; 467 468 if (!virt_addr_valid(addr)) 469 goto out_copy; 470 471 sg_init_one(&sg, addr, len); 472 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); 473 if (n == 0) { 474 dev_err(&info->pdev->dev, 475 "Couldn't DMA map a %d byte buffer\n", len); 476 goto out_copy; 477 } 478 479 tx = dmaengine_prep_slave_sg(info->dma, &sg, n, 480 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 481 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 482 if (!tx) 483 goto out_copy_unmap; 484 485 tx->callback = omap_nand_dma_callback; 486 tx->callback_param = &info->comp; 487 dmaengine_submit(tx); 488 489 init_completion(&info->comp); 490 491 /* setup and start DMA using dma_addr */ 492 dma_async_issue_pending(info->dma); 493 494 /* configure and start prefetch transfer */ 495 ret = omap_prefetch_enable(info->gpmc_cs, 496 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); 497 if (ret) 498 /* PFPW engine is busy, use cpu copy method */ 499 goto out_copy_unmap; 500 501 wait_for_completion(&info->comp); 502 tim = 0; 503 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); 504 505 do { 506 cpu_relax(); 507 val = readl(info->reg.gpmc_prefetch_status); 508 val = PREFETCH_STATUS_COUNT(val); 509 } while (val && (tim++ < limit)); 510 511 /* disable and stop the PFPW engine */ 512 omap_prefetch_reset(info->gpmc_cs, info); 513 514 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); 515 return 0; 516 517 out_copy_unmap: 518 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); 519 out_copy: 520 if (info->nand.options & NAND_BUSWIDTH_16) 521 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) 522 : omap_write_buf16(mtd, (u_char *) addr, len); 523 else 524 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) 525 : omap_write_buf8(mtd, (u_char *) addr, len); 526 return 0; 527 } 528 529 /** 530 * omap_read_buf_dma_pref - read data from NAND controller into buffer 531 * @chip: NAND chip object 532 * @buf: buffer to store date 533 * @len: number of bytes to read 534 */ 535 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf, 536 int len) 537 { 538 struct mtd_info *mtd = nand_to_mtd(chip); 539 540 if (len <= mtd->oobsize) 541 omap_read_buf_pref(chip, buf, len); 542 else 543 /* start transfer in DMA mode */ 544 omap_nand_dma_transfer(mtd, buf, len, 0x0); 545 } 546 547 /** 548 * omap_write_buf_dma_pref - write buffer to NAND controller 549 * @chip: NAND chip object 550 * @buf: data buffer 551 * @len: number of bytes to write 552 */ 553 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf, 554 int len) 555 { 556 struct mtd_info *mtd = nand_to_mtd(chip); 557 558 if (len <= mtd->oobsize) 559 omap_write_buf_pref(chip, buf, len); 560 else 561 /* start transfer in DMA mode */ 562 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1); 563 } 564 565 /* 566 * omap_nand_irq - GPMC irq handler 567 * @this_irq: gpmc irq number 568 * @dev: omap_nand_info structure pointer is passed here 569 */ 570 static irqreturn_t omap_nand_irq(int this_irq, void *dev) 571 { 572 struct omap_nand_info *info = (struct omap_nand_info *) dev; 573 u32 bytes; 574 575 bytes = readl(info->reg.gpmc_prefetch_status); 576 bytes = PREFETCH_STATUS_FIFO_CNT(bytes); 577 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ 578 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ 579 if (this_irq == info->gpmc_irq_count) 580 goto done; 581 582 if (info->buf_len && (info->buf_len < bytes)) 583 bytes = info->buf_len; 584 else if (!info->buf_len) 585 bytes = 0; 586 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf, 587 bytes >> 2); 588 info->buf = info->buf + bytes; 589 info->buf_len -= bytes; 590 591 } else { 592 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf, 593 bytes >> 2); 594 info->buf = info->buf + bytes; 595 596 if (this_irq == info->gpmc_irq_count) 597 goto done; 598 } 599 600 return IRQ_HANDLED; 601 602 done: 603 complete(&info->comp); 604 605 disable_irq_nosync(info->gpmc_irq_fifo); 606 disable_irq_nosync(info->gpmc_irq_count); 607 608 return IRQ_HANDLED; 609 } 610 611 /* 612 * omap_read_buf_irq_pref - read data from NAND controller into buffer 613 * @chip: NAND chip object 614 * @buf: buffer to store date 615 * @len: number of bytes to read 616 */ 617 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf, 618 int len) 619 { 620 struct mtd_info *mtd = nand_to_mtd(chip); 621 struct omap_nand_info *info = mtd_to_omap(mtd); 622 int ret = 0; 623 624 if (len <= mtd->oobsize) { 625 omap_read_buf_pref(chip, buf, len); 626 return; 627 } 628 629 info->iomode = OMAP_NAND_IO_READ; 630 info->buf = buf; 631 init_completion(&info->comp); 632 633 /* configure and start prefetch transfer */ 634 ret = omap_prefetch_enable(info->gpmc_cs, 635 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); 636 if (ret) 637 /* PFPW engine is busy, use cpu copy method */ 638 goto out_copy; 639 640 info->buf_len = len; 641 642 enable_irq(info->gpmc_irq_count); 643 enable_irq(info->gpmc_irq_fifo); 644 645 /* waiting for read to complete */ 646 wait_for_completion(&info->comp); 647 648 /* disable and stop the PFPW engine */ 649 omap_prefetch_reset(info->gpmc_cs, info); 650 return; 651 652 out_copy: 653 if (info->nand.options & NAND_BUSWIDTH_16) 654 omap_read_buf16(mtd, buf, len); 655 else 656 omap_read_buf8(mtd, buf, len); 657 } 658 659 /* 660 * omap_write_buf_irq_pref - write buffer to NAND controller 661 * @chip: NAND chip object 662 * @buf: data buffer 663 * @len: number of bytes to write 664 */ 665 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf, 666 int len) 667 { 668 struct mtd_info *mtd = nand_to_mtd(chip); 669 struct omap_nand_info *info = mtd_to_omap(mtd); 670 int ret = 0; 671 unsigned long tim, limit; 672 u32 val; 673 674 if (len <= mtd->oobsize) { 675 omap_write_buf_pref(chip, buf, len); 676 return; 677 } 678 679 info->iomode = OMAP_NAND_IO_WRITE; 680 info->buf = (u_char *) buf; 681 init_completion(&info->comp); 682 683 /* configure and start prefetch transfer : size=24 */ 684 ret = omap_prefetch_enable(info->gpmc_cs, 685 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); 686 if (ret) 687 /* PFPW engine is busy, use cpu copy method */ 688 goto out_copy; 689 690 info->buf_len = len; 691 692 enable_irq(info->gpmc_irq_count); 693 enable_irq(info->gpmc_irq_fifo); 694 695 /* waiting for write to complete */ 696 wait_for_completion(&info->comp); 697 698 /* wait for data to flushed-out before reset the prefetch */ 699 tim = 0; 700 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); 701 do { 702 val = readl(info->reg.gpmc_prefetch_status); 703 val = PREFETCH_STATUS_COUNT(val); 704 cpu_relax(); 705 } while (val && (tim++ < limit)); 706 707 /* disable and stop the PFPW engine */ 708 omap_prefetch_reset(info->gpmc_cs, info); 709 return; 710 711 out_copy: 712 if (info->nand.options & NAND_BUSWIDTH_16) 713 omap_write_buf16(mtd, buf, len); 714 else 715 omap_write_buf8(mtd, buf, len); 716 } 717 718 /** 719 * gen_true_ecc - This function will generate true ECC value 720 * @ecc_buf: buffer to store ecc code 721 * 722 * This generated true ECC value can be used when correcting 723 * data read from NAND flash memory core 724 */ 725 static void gen_true_ecc(u8 *ecc_buf) 726 { 727 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | 728 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); 729 730 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | 731 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); 732 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | 733 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); 734 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | 735 P1e(tmp) | P2048o(tmp) | P2048e(tmp)); 736 } 737 738 /** 739 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data 740 * @ecc_data1: ecc code from nand spare area 741 * @ecc_data2: ecc code from hardware register obtained from hardware ecc 742 * @page_data: page data 743 * 744 * This function compares two ECC's and indicates if there is an error. 745 * If the error can be corrected it will be corrected to the buffer. 746 * If there is no error, %0 is returned. If there is an error but it 747 * was corrected, %1 is returned. Otherwise, %-1 is returned. 748 */ 749 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ 750 u8 *ecc_data2, /* read from register */ 751 u8 *page_data) 752 { 753 uint i; 754 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; 755 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; 756 u8 ecc_bit[24]; 757 u8 ecc_sum = 0; 758 u8 find_bit = 0; 759 uint find_byte = 0; 760 int isEccFF; 761 762 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); 763 764 gen_true_ecc(ecc_data1); 765 gen_true_ecc(ecc_data2); 766 767 for (i = 0; i <= 2; i++) { 768 *(ecc_data1 + i) = ~(*(ecc_data1 + i)); 769 *(ecc_data2 + i) = ~(*(ecc_data2 + i)); 770 } 771 772 for (i = 0; i < 8; i++) { 773 tmp0_bit[i] = *ecc_data1 % 2; 774 *ecc_data1 = *ecc_data1 / 2; 775 } 776 777 for (i = 0; i < 8; i++) { 778 tmp1_bit[i] = *(ecc_data1 + 1) % 2; 779 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; 780 } 781 782 for (i = 0; i < 8; i++) { 783 tmp2_bit[i] = *(ecc_data1 + 2) % 2; 784 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; 785 } 786 787 for (i = 0; i < 8; i++) { 788 comp0_bit[i] = *ecc_data2 % 2; 789 *ecc_data2 = *ecc_data2 / 2; 790 } 791 792 for (i = 0; i < 8; i++) { 793 comp1_bit[i] = *(ecc_data2 + 1) % 2; 794 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; 795 } 796 797 for (i = 0; i < 8; i++) { 798 comp2_bit[i] = *(ecc_data2 + 2) % 2; 799 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; 800 } 801 802 for (i = 0; i < 6; i++) 803 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; 804 805 for (i = 0; i < 8; i++) 806 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; 807 808 for (i = 0; i < 8; i++) 809 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; 810 811 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; 812 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; 813 814 for (i = 0; i < 24; i++) 815 ecc_sum += ecc_bit[i]; 816 817 switch (ecc_sum) { 818 case 0: 819 /* Not reached because this function is not called if 820 * ECC values are equal 821 */ 822 return 0; 823 824 case 1: 825 /* Uncorrectable error */ 826 pr_debug("ECC UNCORRECTED_ERROR 1\n"); 827 return -EBADMSG; 828 829 case 11: 830 /* UN-Correctable error */ 831 pr_debug("ECC UNCORRECTED_ERROR B\n"); 832 return -EBADMSG; 833 834 case 12: 835 /* Correctable error */ 836 find_byte = (ecc_bit[23] << 8) + 837 (ecc_bit[21] << 7) + 838 (ecc_bit[19] << 6) + 839 (ecc_bit[17] << 5) + 840 (ecc_bit[15] << 4) + 841 (ecc_bit[13] << 3) + 842 (ecc_bit[11] << 2) + 843 (ecc_bit[9] << 1) + 844 ecc_bit[7]; 845 846 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; 847 848 pr_debug("Correcting single bit ECC error at offset: " 849 "%d, bit: %d\n", find_byte, find_bit); 850 851 page_data[find_byte] ^= (1 << find_bit); 852 853 return 1; 854 default: 855 if (isEccFF) { 856 if (ecc_data2[0] == 0 && 857 ecc_data2[1] == 0 && 858 ecc_data2[2] == 0) 859 return 0; 860 } 861 pr_debug("UNCORRECTED_ERROR default\n"); 862 return -EBADMSG; 863 } 864 } 865 866 /** 867 * omap_correct_data - Compares the ECC read with HW generated ECC 868 * @chip: NAND chip object 869 * @dat: page data 870 * @read_ecc: ecc read from nand flash 871 * @calc_ecc: ecc read from HW ECC registers 872 * 873 * Compares the ecc read from nand spare area with ECC registers values 874 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error 875 * detection and correction. If there are no errors, %0 is returned. If 876 * there were errors and all of the errors were corrected, the number of 877 * corrected errors is returned. If uncorrectable errors exist, %-1 is 878 * returned. 879 */ 880 static int omap_correct_data(struct nand_chip *chip, u_char *dat, 881 u_char *read_ecc, u_char *calc_ecc) 882 { 883 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 884 int blockCnt = 0, i = 0, ret = 0; 885 int stat = 0; 886 887 /* Ex NAND_ECC_HW12_2048 */ 888 if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && 889 info->nand.ecc.size == 2048) 890 blockCnt = 4; 891 else 892 blockCnt = 1; 893 894 for (i = 0; i < blockCnt; i++) { 895 if (memcmp(read_ecc, calc_ecc, 3) != 0) { 896 ret = omap_compare_ecc(read_ecc, calc_ecc, dat); 897 if (ret < 0) 898 return ret; 899 /* keep track of the number of corrected errors */ 900 stat += ret; 901 } 902 read_ecc += 3; 903 calc_ecc += 3; 904 dat += 512; 905 } 906 return stat; 907 } 908 909 /** 910 * omap_calcuate_ecc - Generate non-inverted ECC bytes. 911 * @chip: NAND chip object 912 * @dat: The pointer to data on which ecc is computed 913 * @ecc_code: The ecc_code buffer 914 * 915 * Using noninverted ECC can be considered ugly since writing a blank 916 * page ie. padding will clear the ECC bytes. This is no problem as long 917 * nobody is trying to write data on the seemingly unused page. Reading 918 * an erased page will produce an ECC mismatch between generated and read 919 * ECC bytes that has to be dealt with separately. 920 */ 921 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat, 922 u_char *ecc_code) 923 { 924 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 925 u32 val; 926 927 val = readl(info->reg.gpmc_ecc_config); 928 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) 929 return -EINVAL; 930 931 /* read ecc result */ 932 val = readl(info->reg.gpmc_ecc1_result); 933 *ecc_code++ = val; /* P128e, ..., P1e */ 934 *ecc_code++ = val >> 16; /* P128o, ..., P1o */ 935 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ 936 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); 937 938 return 0; 939 } 940 941 /** 942 * omap_enable_hwecc - This function enables the hardware ecc functionality 943 * @chip: NAND chip object 944 * @mode: Read/Write mode 945 */ 946 static void omap_enable_hwecc(struct nand_chip *chip, int mode) 947 { 948 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 949 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; 950 u32 val; 951 952 /* clear ecc and enable bits */ 953 val = ECCCLEAR | ECC1; 954 writel(val, info->reg.gpmc_ecc_control); 955 956 /* program ecc and result sizes */ 957 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | 958 ECC1RESULTSIZE); 959 writel(val, info->reg.gpmc_ecc_size_config); 960 961 switch (mode) { 962 case NAND_ECC_READ: 963 case NAND_ECC_WRITE: 964 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); 965 break; 966 case NAND_ECC_READSYN: 967 writel(ECCCLEAR, info->reg.gpmc_ecc_control); 968 break; 969 default: 970 dev_info(&info->pdev->dev, 971 "error: unrecognized Mode[%d]!\n", mode); 972 break; 973 } 974 975 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ 976 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); 977 writel(val, info->reg.gpmc_ecc_config); 978 } 979 980 /** 981 * omap_wait - wait until the command is done 982 * @this: NAND Chip structure 983 * 984 * Wait function is called during Program and erase operations and 985 * the way it is called from MTD layer, we should wait till the NAND 986 * chip is ready after the programming/erase operation has completed. 987 * 988 * Erase can take up to 400ms and program up to 20ms according to 989 * general NAND and SmartMedia specs 990 */ 991 static int omap_wait(struct nand_chip *this) 992 { 993 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this)); 994 unsigned long timeo = jiffies; 995 int status; 996 997 timeo += msecs_to_jiffies(400); 998 999 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); 1000 while (time_before(jiffies, timeo)) { 1001 status = readb(info->reg.gpmc_nand_data); 1002 if (status & NAND_STATUS_READY) 1003 break; 1004 cond_resched(); 1005 } 1006 1007 status = readb(info->reg.gpmc_nand_data); 1008 return status; 1009 } 1010 1011 /** 1012 * omap_dev_ready - checks the NAND Ready GPIO line 1013 * @chip: NAND chip object 1014 * 1015 * Returns true if ready and false if busy. 1016 */ 1017 static int omap_dev_ready(struct nand_chip *chip) 1018 { 1019 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 1020 1021 return gpiod_get_value(info->ready_gpiod); 1022 } 1023 1024 /** 1025 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation 1026 * @chip: NAND chip object 1027 * @mode: Read/Write mode 1028 * 1029 * When using BCH with SW correction (i.e. no ELM), sector size is set 1030 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode 1031 * for both reading and writing with: 1032 * eccsize0 = 0 (no additional protected byte in spare area) 1033 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) 1034 */ 1035 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip, 1036 int mode) 1037 { 1038 unsigned int bch_type; 1039 unsigned int dev_width, nsectors; 1040 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 1041 enum omap_ecc ecc_opt = info->ecc_opt; 1042 u32 val, wr_mode; 1043 unsigned int ecc_size1, ecc_size0; 1044 1045 /* GPMC configurations for calculating ECC */ 1046 switch (ecc_opt) { 1047 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1048 bch_type = 0; 1049 nsectors = 1; 1050 wr_mode = BCH_WRAPMODE_6; 1051 ecc_size0 = BCH_ECC_SIZE0; 1052 ecc_size1 = BCH_ECC_SIZE1; 1053 break; 1054 case OMAP_ECC_BCH4_CODE_HW: 1055 bch_type = 0; 1056 nsectors = chip->ecc.steps; 1057 if (mode == NAND_ECC_READ) { 1058 wr_mode = BCH_WRAPMODE_1; 1059 ecc_size0 = BCH4R_ECC_SIZE0; 1060 ecc_size1 = BCH4R_ECC_SIZE1; 1061 } else { 1062 wr_mode = BCH_WRAPMODE_6; 1063 ecc_size0 = BCH_ECC_SIZE0; 1064 ecc_size1 = BCH_ECC_SIZE1; 1065 } 1066 break; 1067 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1068 bch_type = 1; 1069 nsectors = 1; 1070 wr_mode = BCH_WRAPMODE_6; 1071 ecc_size0 = BCH_ECC_SIZE0; 1072 ecc_size1 = BCH_ECC_SIZE1; 1073 break; 1074 case OMAP_ECC_BCH8_CODE_HW: 1075 bch_type = 1; 1076 nsectors = chip->ecc.steps; 1077 if (mode == NAND_ECC_READ) { 1078 wr_mode = BCH_WRAPMODE_1; 1079 ecc_size0 = BCH8R_ECC_SIZE0; 1080 ecc_size1 = BCH8R_ECC_SIZE1; 1081 } else { 1082 wr_mode = BCH_WRAPMODE_6; 1083 ecc_size0 = BCH_ECC_SIZE0; 1084 ecc_size1 = BCH_ECC_SIZE1; 1085 } 1086 break; 1087 case OMAP_ECC_BCH16_CODE_HW: 1088 bch_type = 0x2; 1089 nsectors = chip->ecc.steps; 1090 if (mode == NAND_ECC_READ) { 1091 wr_mode = 0x01; 1092 ecc_size0 = 52; /* ECC bits in nibbles per sector */ 1093 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ 1094 } else { 1095 wr_mode = 0x01; 1096 ecc_size0 = 0; /* extra bits in nibbles per sector */ 1097 ecc_size1 = 52; /* OOB bits in nibbles per sector */ 1098 } 1099 break; 1100 default: 1101 return; 1102 } 1103 1104 writel(ECC1, info->reg.gpmc_ecc_control); 1105 1106 /* Configure ecc size for BCH */ 1107 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); 1108 writel(val, info->reg.gpmc_ecc_size_config); 1109 1110 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; 1111 1112 /* BCH configuration */ 1113 val = ((1 << 16) | /* enable BCH */ 1114 (bch_type << 12) | /* BCH4/BCH8/BCH16 */ 1115 (wr_mode << 8) | /* wrap mode */ 1116 (dev_width << 7) | /* bus width */ 1117 (((nsectors-1) & 0x7) << 4) | /* number of sectors */ 1118 (info->gpmc_cs << 1) | /* ECC CS */ 1119 (0x1)); /* enable ECC */ 1120 1121 writel(val, info->reg.gpmc_ecc_config); 1122 1123 /* Clear ecc and enable bits */ 1124 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); 1125 } 1126 1127 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; 1128 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, 1129 0x97, 0x79, 0xe5, 0x24, 0xb5}; 1130 1131 /** 1132 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector 1133 * @mtd: MTD device structure 1134 * @dat: The pointer to data on which ecc is computed 1135 * @ecc_calc: The ecc_code buffer 1136 * @i: The sector number (for a multi sector page) 1137 * 1138 * Support calculating of BCH4/8/16 ECC vectors for one sector 1139 * within a page. Sector number is in @i. 1140 */ 1141 static int _omap_calculate_ecc_bch(struct mtd_info *mtd, 1142 const u_char *dat, u_char *ecc_calc, int i) 1143 { 1144 struct omap_nand_info *info = mtd_to_omap(mtd); 1145 int eccbytes = info->nand.ecc.bytes; 1146 struct gpmc_nand_regs *gpmc_regs = &info->reg; 1147 u8 *ecc_code; 1148 unsigned long bch_val1, bch_val2, bch_val3, bch_val4; 1149 u32 val; 1150 int j; 1151 1152 ecc_code = ecc_calc; 1153 switch (info->ecc_opt) { 1154 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1155 case OMAP_ECC_BCH8_CODE_HW: 1156 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); 1157 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); 1158 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); 1159 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); 1160 *ecc_code++ = (bch_val4 & 0xFF); 1161 *ecc_code++ = ((bch_val3 >> 24) & 0xFF); 1162 *ecc_code++ = ((bch_val3 >> 16) & 0xFF); 1163 *ecc_code++ = ((bch_val3 >> 8) & 0xFF); 1164 *ecc_code++ = (bch_val3 & 0xFF); 1165 *ecc_code++ = ((bch_val2 >> 24) & 0xFF); 1166 *ecc_code++ = ((bch_val2 >> 16) & 0xFF); 1167 *ecc_code++ = ((bch_val2 >> 8) & 0xFF); 1168 *ecc_code++ = (bch_val2 & 0xFF); 1169 *ecc_code++ = ((bch_val1 >> 24) & 0xFF); 1170 *ecc_code++ = ((bch_val1 >> 16) & 0xFF); 1171 *ecc_code++ = ((bch_val1 >> 8) & 0xFF); 1172 *ecc_code++ = (bch_val1 & 0xFF); 1173 break; 1174 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1175 case OMAP_ECC_BCH4_CODE_HW: 1176 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); 1177 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); 1178 *ecc_code++ = ((bch_val2 >> 12) & 0xFF); 1179 *ecc_code++ = ((bch_val2 >> 4) & 0xFF); 1180 *ecc_code++ = ((bch_val2 & 0xF) << 4) | 1181 ((bch_val1 >> 28) & 0xF); 1182 *ecc_code++ = ((bch_val1 >> 20) & 0xFF); 1183 *ecc_code++ = ((bch_val1 >> 12) & 0xFF); 1184 *ecc_code++ = ((bch_val1 >> 4) & 0xFF); 1185 *ecc_code++ = ((bch_val1 & 0xF) << 4); 1186 break; 1187 case OMAP_ECC_BCH16_CODE_HW: 1188 val = readl(gpmc_regs->gpmc_bch_result6[i]); 1189 ecc_code[0] = ((val >> 8) & 0xFF); 1190 ecc_code[1] = ((val >> 0) & 0xFF); 1191 val = readl(gpmc_regs->gpmc_bch_result5[i]); 1192 ecc_code[2] = ((val >> 24) & 0xFF); 1193 ecc_code[3] = ((val >> 16) & 0xFF); 1194 ecc_code[4] = ((val >> 8) & 0xFF); 1195 ecc_code[5] = ((val >> 0) & 0xFF); 1196 val = readl(gpmc_regs->gpmc_bch_result4[i]); 1197 ecc_code[6] = ((val >> 24) & 0xFF); 1198 ecc_code[7] = ((val >> 16) & 0xFF); 1199 ecc_code[8] = ((val >> 8) & 0xFF); 1200 ecc_code[9] = ((val >> 0) & 0xFF); 1201 val = readl(gpmc_regs->gpmc_bch_result3[i]); 1202 ecc_code[10] = ((val >> 24) & 0xFF); 1203 ecc_code[11] = ((val >> 16) & 0xFF); 1204 ecc_code[12] = ((val >> 8) & 0xFF); 1205 ecc_code[13] = ((val >> 0) & 0xFF); 1206 val = readl(gpmc_regs->gpmc_bch_result2[i]); 1207 ecc_code[14] = ((val >> 24) & 0xFF); 1208 ecc_code[15] = ((val >> 16) & 0xFF); 1209 ecc_code[16] = ((val >> 8) & 0xFF); 1210 ecc_code[17] = ((val >> 0) & 0xFF); 1211 val = readl(gpmc_regs->gpmc_bch_result1[i]); 1212 ecc_code[18] = ((val >> 24) & 0xFF); 1213 ecc_code[19] = ((val >> 16) & 0xFF); 1214 ecc_code[20] = ((val >> 8) & 0xFF); 1215 ecc_code[21] = ((val >> 0) & 0xFF); 1216 val = readl(gpmc_regs->gpmc_bch_result0[i]); 1217 ecc_code[22] = ((val >> 24) & 0xFF); 1218 ecc_code[23] = ((val >> 16) & 0xFF); 1219 ecc_code[24] = ((val >> 8) & 0xFF); 1220 ecc_code[25] = ((val >> 0) & 0xFF); 1221 break; 1222 default: 1223 return -EINVAL; 1224 } 1225 1226 /* ECC scheme specific syndrome customizations */ 1227 switch (info->ecc_opt) { 1228 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1229 /* Add constant polynomial to remainder, so that 1230 * ECC of blank pages results in 0x0 on reading back 1231 */ 1232 for (j = 0; j < eccbytes; j++) 1233 ecc_calc[j] ^= bch4_polynomial[j]; 1234 break; 1235 case OMAP_ECC_BCH4_CODE_HW: 1236 /* Set 8th ECC byte as 0x0 for ROM compatibility */ 1237 ecc_calc[eccbytes - 1] = 0x0; 1238 break; 1239 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1240 /* Add constant polynomial to remainder, so that 1241 * ECC of blank pages results in 0x0 on reading back 1242 */ 1243 for (j = 0; j < eccbytes; j++) 1244 ecc_calc[j] ^= bch8_polynomial[j]; 1245 break; 1246 case OMAP_ECC_BCH8_CODE_HW: 1247 /* Set 14th ECC byte as 0x0 for ROM compatibility */ 1248 ecc_calc[eccbytes - 1] = 0x0; 1249 break; 1250 case OMAP_ECC_BCH16_CODE_HW: 1251 break; 1252 default: 1253 return -EINVAL; 1254 } 1255 1256 return 0; 1257 } 1258 1259 /** 1260 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction 1261 * @chip: NAND chip object 1262 * @dat: The pointer to data on which ecc is computed 1263 * @ecc_calc: Buffer storing the calculated ECC bytes 1264 * 1265 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used 1266 * when SW based correction is required as ECC is required for one sector 1267 * at a time. 1268 */ 1269 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip, 1270 const u_char *dat, u_char *ecc_calc) 1271 { 1272 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0); 1273 } 1274 1275 /** 1276 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors 1277 * @mtd: MTD device structure 1278 * @dat: The pointer to data on which ecc is computed 1279 * @ecc_calc: Buffer storing the calculated ECC bytes 1280 * 1281 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. 1282 */ 1283 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, 1284 const u_char *dat, u_char *ecc_calc) 1285 { 1286 struct omap_nand_info *info = mtd_to_omap(mtd); 1287 int eccbytes = info->nand.ecc.bytes; 1288 unsigned long nsectors; 1289 int i, ret; 1290 1291 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; 1292 for (i = 0; i < nsectors; i++) { 1293 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); 1294 if (ret) 1295 return ret; 1296 1297 ecc_calc += eccbytes; 1298 } 1299 1300 return 0; 1301 } 1302 1303 /** 1304 * erased_sector_bitflips - count bit flips 1305 * @data: data sector buffer 1306 * @oob: oob buffer 1307 * @info: omap_nand_info 1308 * 1309 * Check the bit flips in erased page falls below correctable level. 1310 * If falls below, report the page as erased with correctable bit 1311 * flip, else report as uncorrectable page. 1312 */ 1313 static int erased_sector_bitflips(u_char *data, u_char *oob, 1314 struct omap_nand_info *info) 1315 { 1316 int flip_bits = 0, i; 1317 1318 for (i = 0; i < info->nand.ecc.size; i++) { 1319 flip_bits += hweight8(~data[i]); 1320 if (flip_bits > info->nand.ecc.strength) 1321 return 0; 1322 } 1323 1324 for (i = 0; i < info->nand.ecc.bytes - 1; i++) { 1325 flip_bits += hweight8(~oob[i]); 1326 if (flip_bits > info->nand.ecc.strength) 1327 return 0; 1328 } 1329 1330 /* 1331 * Bit flips falls in correctable level. 1332 * Fill data area with 0xFF 1333 */ 1334 if (flip_bits) { 1335 memset(data, 0xFF, info->nand.ecc.size); 1336 memset(oob, 0xFF, info->nand.ecc.bytes); 1337 } 1338 1339 return flip_bits; 1340 } 1341 1342 /** 1343 * omap_elm_correct_data - corrects page data area in case error reported 1344 * @chip: NAND chip object 1345 * @data: page data 1346 * @read_ecc: ecc read from nand flash 1347 * @calc_ecc: ecc read from HW ECC registers 1348 * 1349 * Calculated ecc vector reported as zero in case of non-error pages. 1350 * In case of non-zero ecc vector, first filter out erased-pages, and 1351 * then process data via ELM to detect bit-flips. 1352 */ 1353 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data, 1354 u_char *read_ecc, u_char *calc_ecc) 1355 { 1356 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); 1357 struct nand_ecc_ctrl *ecc = &info->nand.ecc; 1358 int eccsteps = info->nand.ecc.steps; 1359 int i , j, stat = 0; 1360 int eccflag, actual_eccbytes; 1361 struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; 1362 u_char *ecc_vec = calc_ecc; 1363 u_char *spare_ecc = read_ecc; 1364 u_char *erased_ecc_vec; 1365 u_char *buf; 1366 int bitflip_count; 1367 bool is_error_reported = false; 1368 u32 bit_pos, byte_pos, error_max, pos; 1369 int err; 1370 1371 switch (info->ecc_opt) { 1372 case OMAP_ECC_BCH4_CODE_HW: 1373 /* omit 7th ECC byte reserved for ROM code compatibility */ 1374 actual_eccbytes = ecc->bytes - 1; 1375 erased_ecc_vec = bch4_vector; 1376 break; 1377 case OMAP_ECC_BCH8_CODE_HW: 1378 /* omit 14th ECC byte reserved for ROM code compatibility */ 1379 actual_eccbytes = ecc->bytes - 1; 1380 erased_ecc_vec = bch8_vector; 1381 break; 1382 case OMAP_ECC_BCH16_CODE_HW: 1383 actual_eccbytes = ecc->bytes; 1384 erased_ecc_vec = bch16_vector; 1385 break; 1386 default: 1387 dev_err(&info->pdev->dev, "invalid driver configuration\n"); 1388 return -EINVAL; 1389 } 1390 1391 /* Initialize elm error vector to zero */ 1392 memset(err_vec, 0, sizeof(err_vec)); 1393 1394 for (i = 0; i < eccsteps ; i++) { 1395 eccflag = 0; /* initialize eccflag */ 1396 1397 /* 1398 * Check any error reported, 1399 * In case of error, non zero ecc reported. 1400 */ 1401 for (j = 0; j < actual_eccbytes; j++) { 1402 if (calc_ecc[j] != 0) { 1403 eccflag = 1; /* non zero ecc, error present */ 1404 break; 1405 } 1406 } 1407 1408 if (eccflag == 1) { 1409 if (memcmp(calc_ecc, erased_ecc_vec, 1410 actual_eccbytes) == 0) { 1411 /* 1412 * calc_ecc[] matches pattern for ECC(all 0xff) 1413 * so this is definitely an erased-page 1414 */ 1415 } else { 1416 buf = &data[info->nand.ecc.size * i]; 1417 /* 1418 * count number of 0-bits in read_buf. 1419 * This check can be removed once a similar 1420 * check is introduced in generic NAND driver 1421 */ 1422 bitflip_count = erased_sector_bitflips( 1423 buf, read_ecc, info); 1424 if (bitflip_count) { 1425 /* 1426 * number of 0-bits within ECC limits 1427 * So this may be an erased-page 1428 */ 1429 stat += bitflip_count; 1430 } else { 1431 /* 1432 * Too many 0-bits. It may be a 1433 * - programmed-page, OR 1434 * - erased-page with many bit-flips 1435 * So this page requires check by ELM 1436 */ 1437 err_vec[i].error_reported = true; 1438 is_error_reported = true; 1439 } 1440 } 1441 } 1442 1443 /* Update the ecc vector */ 1444 calc_ecc += ecc->bytes; 1445 read_ecc += ecc->bytes; 1446 } 1447 1448 /* Check if any error reported */ 1449 if (!is_error_reported) 1450 return stat; 1451 1452 /* Decode BCH error using ELM module */ 1453 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); 1454 1455 err = 0; 1456 for (i = 0; i < eccsteps; i++) { 1457 if (err_vec[i].error_uncorrectable) { 1458 dev_err(&info->pdev->dev, 1459 "uncorrectable bit-flips found\n"); 1460 err = -EBADMSG; 1461 } else if (err_vec[i].error_reported) { 1462 for (j = 0; j < err_vec[i].error_count; j++) { 1463 switch (info->ecc_opt) { 1464 case OMAP_ECC_BCH4_CODE_HW: 1465 /* Add 4 bits to take care of padding */ 1466 pos = err_vec[i].error_loc[j] + 1467 BCH4_BIT_PAD; 1468 break; 1469 case OMAP_ECC_BCH8_CODE_HW: 1470 case OMAP_ECC_BCH16_CODE_HW: 1471 pos = err_vec[i].error_loc[j]; 1472 break; 1473 default: 1474 return -EINVAL; 1475 } 1476 error_max = (ecc->size + actual_eccbytes) * 8; 1477 /* Calculate bit position of error */ 1478 bit_pos = pos % 8; 1479 1480 /* Calculate byte position of error */ 1481 byte_pos = (error_max - pos - 1) / 8; 1482 1483 if (pos < error_max) { 1484 if (byte_pos < 512) { 1485 pr_debug("bitflip@dat[%d]=%x\n", 1486 byte_pos, data[byte_pos]); 1487 data[byte_pos] ^= 1 << bit_pos; 1488 } else { 1489 pr_debug("bitflip@oob[%d]=%x\n", 1490 (byte_pos - 512), 1491 spare_ecc[byte_pos - 512]); 1492 spare_ecc[byte_pos - 512] ^= 1493 1 << bit_pos; 1494 } 1495 } else { 1496 dev_err(&info->pdev->dev, 1497 "invalid bit-flip @ %d:%d\n", 1498 byte_pos, bit_pos); 1499 err = -EBADMSG; 1500 } 1501 } 1502 } 1503 1504 /* Update number of correctable errors */ 1505 stat = max_t(unsigned int, stat, err_vec[i].error_count); 1506 1507 /* Update page data with sector size */ 1508 data += ecc->size; 1509 spare_ecc += ecc->bytes; 1510 } 1511 1512 return (err) ? err : stat; 1513 } 1514 1515 /** 1516 * omap_write_page_bch - BCH ecc based write page function for entire page 1517 * @chip: nand chip info structure 1518 * @buf: data buffer 1519 * @oob_required: must write chip->oob_poi to OOB 1520 * @page: page 1521 * 1522 * Custom write page method evolved to support multi sector writing in one shot 1523 */ 1524 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf, 1525 int oob_required, int page) 1526 { 1527 struct mtd_info *mtd = nand_to_mtd(chip); 1528 int ret; 1529 uint8_t *ecc_calc = chip->ecc.calc_buf; 1530 1531 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1532 1533 /* Enable GPMC ecc engine */ 1534 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 1535 1536 /* Write data */ 1537 chip->legacy.write_buf(chip, buf, mtd->writesize); 1538 1539 /* Update ecc vector from GPMC result registers */ 1540 omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]); 1541 1542 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 1543 chip->ecc.total); 1544 if (ret) 1545 return ret; 1546 1547 /* Write ecc vector to OOB area */ 1548 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); 1549 1550 return nand_prog_page_end_op(chip); 1551 } 1552 1553 /** 1554 * omap_write_subpage_bch - BCH hardware ECC based subpage write 1555 * @chip: nand chip info structure 1556 * @offset: column address of subpage within the page 1557 * @data_len: data length 1558 * @buf: data buffer 1559 * @oob_required: must write chip->oob_poi to OOB 1560 * @page: page number to write 1561 * 1562 * OMAP optimized subpage write method. 1563 */ 1564 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset, 1565 u32 data_len, const u8 *buf, 1566 int oob_required, int page) 1567 { 1568 struct mtd_info *mtd = nand_to_mtd(chip); 1569 u8 *ecc_calc = chip->ecc.calc_buf; 1570 int ecc_size = chip->ecc.size; 1571 int ecc_bytes = chip->ecc.bytes; 1572 int ecc_steps = chip->ecc.steps; 1573 u32 start_step = offset / ecc_size; 1574 u32 end_step = (offset + data_len - 1) / ecc_size; 1575 int step, ret = 0; 1576 1577 /* 1578 * Write entire page at one go as it would be optimal 1579 * as ECC is calculated by hardware. 1580 * ECC is calculated for all subpages but we choose 1581 * only what we want. 1582 */ 1583 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1584 1585 /* Enable GPMC ECC engine */ 1586 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 1587 1588 /* Write data */ 1589 chip->legacy.write_buf(chip, buf, mtd->writesize); 1590 1591 for (step = 0; step < ecc_steps; step++) { 1592 /* mask ECC of un-touched subpages by padding 0xFF */ 1593 if (step < start_step || step > end_step) 1594 memset(ecc_calc, 0xff, ecc_bytes); 1595 else 1596 ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step); 1597 1598 if (ret) 1599 return ret; 1600 1601 buf += ecc_size; 1602 ecc_calc += ecc_bytes; 1603 } 1604 1605 /* copy calculated ECC for whole page to chip->buffer->oob */ 1606 /* this include masked-value(0xFF) for unwritten subpages */ 1607 ecc_calc = chip->ecc.calc_buf; 1608 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 1609 chip->ecc.total); 1610 if (ret) 1611 return ret; 1612 1613 /* write OOB buffer to NAND device */ 1614 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); 1615 1616 return nand_prog_page_end_op(chip); 1617 } 1618 1619 /** 1620 * omap_read_page_bch - BCH ecc based page read function for entire page 1621 * @chip: nand chip info structure 1622 * @buf: buffer to store read data 1623 * @oob_required: caller requires OOB data read to chip->oob_poi 1624 * @page: page number to read 1625 * 1626 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module 1627 * used for error correction. 1628 * Custom method evolved to support ELM error correction & multi sector 1629 * reading. On reading page data area is read along with OOB data with 1630 * ecc engine enabled. ecc vector updated after read of OOB data. 1631 * For non error pages ecc vector reported as zero. 1632 */ 1633 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf, 1634 int oob_required, int page) 1635 { 1636 struct mtd_info *mtd = nand_to_mtd(chip); 1637 uint8_t *ecc_calc = chip->ecc.calc_buf; 1638 uint8_t *ecc_code = chip->ecc.code_buf; 1639 int stat, ret; 1640 unsigned int max_bitflips = 0; 1641 1642 nand_read_page_op(chip, page, 0, NULL, 0); 1643 1644 /* Enable GPMC ecc engine */ 1645 chip->ecc.hwctl(chip, NAND_ECC_READ); 1646 1647 /* Read data */ 1648 chip->legacy.read_buf(chip, buf, mtd->writesize); 1649 1650 /* Read oob bytes */ 1651 nand_change_read_column_op(chip, 1652 mtd->writesize + BADBLOCK_MARKER_LENGTH, 1653 chip->oob_poi + BADBLOCK_MARKER_LENGTH, 1654 chip->ecc.total, false); 1655 1656 /* Calculate ecc bytes */ 1657 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); 1658 1659 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 1660 chip->ecc.total); 1661 if (ret) 1662 return ret; 1663 1664 stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc); 1665 1666 if (stat < 0) { 1667 mtd->ecc_stats.failed++; 1668 } else { 1669 mtd->ecc_stats.corrected += stat; 1670 max_bitflips = max_t(unsigned int, max_bitflips, stat); 1671 } 1672 1673 return max_bitflips; 1674 } 1675 1676 /** 1677 * is_elm_present - checks for presence of ELM module by scanning DT nodes 1678 * @info: NAND device structure containing platform data 1679 * @elm_node: ELM's DT node 1680 */ 1681 static bool is_elm_present(struct omap_nand_info *info, 1682 struct device_node *elm_node) 1683 { 1684 struct platform_device *pdev; 1685 1686 /* check whether elm-id is passed via DT */ 1687 if (!elm_node) { 1688 dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); 1689 return false; 1690 } 1691 pdev = of_find_device_by_node(elm_node); 1692 /* check whether ELM device is registered */ 1693 if (!pdev) { 1694 dev_err(&info->pdev->dev, "ELM device not found\n"); 1695 return false; 1696 } 1697 /* ELM module available, now configure it */ 1698 info->elm_dev = &pdev->dev; 1699 return true; 1700 } 1701 1702 static bool omap2_nand_ecc_check(struct omap_nand_info *info) 1703 { 1704 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; 1705 1706 switch (info->ecc_opt) { 1707 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 1708 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 1709 ecc_needs_omap_bch = false; 1710 ecc_needs_bch = true; 1711 ecc_needs_elm = false; 1712 break; 1713 case OMAP_ECC_BCH4_CODE_HW: 1714 case OMAP_ECC_BCH8_CODE_HW: 1715 case OMAP_ECC_BCH16_CODE_HW: 1716 ecc_needs_omap_bch = true; 1717 ecc_needs_bch = false; 1718 ecc_needs_elm = true; 1719 break; 1720 default: 1721 ecc_needs_omap_bch = false; 1722 ecc_needs_bch = false; 1723 ecc_needs_elm = false; 1724 break; 1725 } 1726 1727 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 1728 dev_err(&info->pdev->dev, 1729 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 1730 return false; 1731 } 1732 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { 1733 dev_err(&info->pdev->dev, 1734 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); 1735 return false; 1736 } 1737 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { 1738 dev_err(&info->pdev->dev, "ELM not available\n"); 1739 return false; 1740 } 1741 1742 return true; 1743 } 1744 1745 static const char * const nand_xfer_types[] = { 1746 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", 1747 [NAND_OMAP_POLLED] = "polled", 1748 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", 1749 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", 1750 }; 1751 1752 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) 1753 { 1754 struct device_node *child = dev->of_node; 1755 int i; 1756 const char *s; 1757 u32 cs; 1758 1759 if (of_property_read_u32(child, "reg", &cs) < 0) { 1760 dev_err(dev, "reg not found in DT\n"); 1761 return -EINVAL; 1762 } 1763 1764 info->gpmc_cs = cs; 1765 1766 /* detect availability of ELM module. Won't be present pre-OMAP4 */ 1767 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); 1768 if (!info->elm_of_node) { 1769 info->elm_of_node = of_parse_phandle(child, "elm_id", 0); 1770 if (!info->elm_of_node) 1771 dev_dbg(dev, "ti,elm-id not in DT\n"); 1772 } 1773 1774 /* select ecc-scheme for NAND */ 1775 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { 1776 dev_err(dev, "ti,nand-ecc-opt not found\n"); 1777 return -EINVAL; 1778 } 1779 1780 if (!strcmp(s, "sw")) { 1781 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; 1782 } else if (!strcmp(s, "ham1") || 1783 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { 1784 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; 1785 } else if (!strcmp(s, "bch4")) { 1786 if (info->elm_of_node) 1787 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; 1788 else 1789 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; 1790 } else if (!strcmp(s, "bch8")) { 1791 if (info->elm_of_node) 1792 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; 1793 else 1794 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; 1795 } else if (!strcmp(s, "bch16")) { 1796 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; 1797 } else { 1798 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); 1799 return -EINVAL; 1800 } 1801 1802 /* select data transfer mode */ 1803 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { 1804 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { 1805 if (!strcasecmp(s, nand_xfer_types[i])) { 1806 info->xfer_type = i; 1807 return 0; 1808 } 1809 } 1810 1811 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); 1812 return -EINVAL; 1813 } 1814 1815 return 0; 1816 } 1817 1818 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, 1819 struct mtd_oob_region *oobregion) 1820 { 1821 struct omap_nand_info *info = mtd_to_omap(mtd); 1822 struct nand_chip *chip = &info->nand; 1823 int off = BADBLOCK_MARKER_LENGTH; 1824 1825 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && 1826 !(chip->options & NAND_BUSWIDTH_16)) 1827 off = 1; 1828 1829 if (section) 1830 return -ERANGE; 1831 1832 oobregion->offset = off; 1833 oobregion->length = chip->ecc.total; 1834 1835 return 0; 1836 } 1837 1838 static int omap_ooblayout_free(struct mtd_info *mtd, int section, 1839 struct mtd_oob_region *oobregion) 1840 { 1841 struct omap_nand_info *info = mtd_to_omap(mtd); 1842 struct nand_chip *chip = &info->nand; 1843 int off = BADBLOCK_MARKER_LENGTH; 1844 1845 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && 1846 !(chip->options & NAND_BUSWIDTH_16)) 1847 off = 1; 1848 1849 if (section) 1850 return -ERANGE; 1851 1852 off += chip->ecc.total; 1853 if (off >= mtd->oobsize) 1854 return -ERANGE; 1855 1856 oobregion->offset = off; 1857 oobregion->length = mtd->oobsize - off; 1858 1859 return 0; 1860 } 1861 1862 static const struct mtd_ooblayout_ops omap_ooblayout_ops = { 1863 .ecc = omap_ooblayout_ecc, 1864 .free = omap_ooblayout_free, 1865 }; 1866 1867 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, 1868 struct mtd_oob_region *oobregion) 1869 { 1870 struct nand_device *nand = mtd_to_nanddev(mtd); 1871 unsigned int nsteps = nanddev_get_ecc_nsteps(nand); 1872 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand); 1873 int off = BADBLOCK_MARKER_LENGTH; 1874 1875 if (section >= nsteps) 1876 return -ERANGE; 1877 1878 /* 1879 * When SW correction is employed, one OMAP specific marker byte is 1880 * reserved after each ECC step. 1881 */ 1882 oobregion->offset = off + (section * (ecc_bytes + 1)); 1883 oobregion->length = ecc_bytes; 1884 1885 return 0; 1886 } 1887 1888 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, 1889 struct mtd_oob_region *oobregion) 1890 { 1891 struct nand_device *nand = mtd_to_nanddev(mtd); 1892 unsigned int nsteps = nanddev_get_ecc_nsteps(nand); 1893 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand); 1894 int off = BADBLOCK_MARKER_LENGTH; 1895 1896 if (section) 1897 return -ERANGE; 1898 1899 /* 1900 * When SW correction is employed, one OMAP specific marker byte is 1901 * reserved after each ECC step. 1902 */ 1903 off += ((ecc_bytes + 1) * nsteps); 1904 if (off >= mtd->oobsize) 1905 return -ERANGE; 1906 1907 oobregion->offset = off; 1908 oobregion->length = mtd->oobsize - off; 1909 1910 return 0; 1911 } 1912 1913 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { 1914 .ecc = omap_sw_ooblayout_ecc, 1915 .free = omap_sw_ooblayout_free, 1916 }; 1917 1918 static int omap_nand_attach_chip(struct nand_chip *chip) 1919 { 1920 struct mtd_info *mtd = nand_to_mtd(chip); 1921 struct omap_nand_info *info = mtd_to_omap(mtd); 1922 struct device *dev = &info->pdev->dev; 1923 int min_oobbytes = BADBLOCK_MARKER_LENGTH; 1924 int oobbytes_per_step; 1925 dma_cap_mask_t mask; 1926 int err; 1927 1928 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1929 chip->bbt_options |= NAND_BBT_NO_OOB; 1930 else 1931 chip->options |= NAND_SKIP_BBTSCAN; 1932 1933 /* Re-populate low-level callbacks based on xfer modes */ 1934 switch (info->xfer_type) { 1935 case NAND_OMAP_PREFETCH_POLLED: 1936 chip->legacy.read_buf = omap_read_buf_pref; 1937 chip->legacy.write_buf = omap_write_buf_pref; 1938 break; 1939 1940 case NAND_OMAP_POLLED: 1941 /* Use nand_base defaults for {read,write}_buf */ 1942 break; 1943 1944 case NAND_OMAP_PREFETCH_DMA: 1945 dma_cap_zero(mask); 1946 dma_cap_set(DMA_SLAVE, mask); 1947 info->dma = dma_request_chan(dev->parent, "rxtx"); 1948 1949 if (IS_ERR(info->dma)) { 1950 dev_err(dev, "DMA engine request failed\n"); 1951 return PTR_ERR(info->dma); 1952 } else { 1953 struct dma_slave_config cfg; 1954 1955 memset(&cfg, 0, sizeof(cfg)); 1956 cfg.src_addr = info->phys_base; 1957 cfg.dst_addr = info->phys_base; 1958 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1959 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1960 cfg.src_maxburst = 16; 1961 cfg.dst_maxburst = 16; 1962 err = dmaengine_slave_config(info->dma, &cfg); 1963 if (err) { 1964 dev_err(dev, 1965 "DMA engine slave config failed: %d\n", 1966 err); 1967 return err; 1968 } 1969 chip->legacy.read_buf = omap_read_buf_dma_pref; 1970 chip->legacy.write_buf = omap_write_buf_dma_pref; 1971 } 1972 break; 1973 1974 case NAND_OMAP_PREFETCH_IRQ: 1975 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0); 1976 if (info->gpmc_irq_fifo <= 0) 1977 return -ENODEV; 1978 err = devm_request_irq(dev, info->gpmc_irq_fifo, 1979 omap_nand_irq, IRQF_SHARED, 1980 "gpmc-nand-fifo", info); 1981 if (err) { 1982 dev_err(dev, "Requesting IRQ %d, error %d\n", 1983 info->gpmc_irq_fifo, err); 1984 info->gpmc_irq_fifo = 0; 1985 return err; 1986 } 1987 1988 info->gpmc_irq_count = platform_get_irq(info->pdev, 1); 1989 if (info->gpmc_irq_count <= 0) 1990 return -ENODEV; 1991 err = devm_request_irq(dev, info->gpmc_irq_count, 1992 omap_nand_irq, IRQF_SHARED, 1993 "gpmc-nand-count", info); 1994 if (err) { 1995 dev_err(dev, "Requesting IRQ %d, error %d\n", 1996 info->gpmc_irq_count, err); 1997 info->gpmc_irq_count = 0; 1998 return err; 1999 } 2000 2001 chip->legacy.read_buf = omap_read_buf_irq_pref; 2002 chip->legacy.write_buf = omap_write_buf_irq_pref; 2003 2004 break; 2005 2006 default: 2007 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type); 2008 return -EINVAL; 2009 } 2010 2011 if (!omap2_nand_ecc_check(info)) 2012 return -EINVAL; 2013 2014 /* 2015 * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own 2016 * ooblayout instead of using ours. 2017 */ 2018 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { 2019 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 2020 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2021 return 0; 2022 } 2023 2024 /* Populate MTD interface based on ECC scheme */ 2025 switch (info->ecc_opt) { 2026 case OMAP_ECC_HAM1_CODE_HW: 2027 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n"); 2028 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2029 chip->ecc.bytes = 3; 2030 chip->ecc.size = 512; 2031 chip->ecc.strength = 1; 2032 chip->ecc.calculate = omap_calculate_ecc; 2033 chip->ecc.hwctl = omap_enable_hwecc; 2034 chip->ecc.correct = omap_correct_data; 2035 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 2036 oobbytes_per_step = chip->ecc.bytes; 2037 2038 if (!(chip->options & NAND_BUSWIDTH_16)) 2039 min_oobbytes = 1; 2040 2041 break; 2042 2043 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: 2044 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); 2045 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2046 chip->ecc.size = 512; 2047 chip->ecc.bytes = 7; 2048 chip->ecc.strength = 4; 2049 chip->ecc.hwctl = omap_enable_hwecc_bch; 2050 chip->ecc.correct = rawnand_sw_bch_correct; 2051 chip->ecc.calculate = omap_calculate_ecc_bch_sw; 2052 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); 2053 /* Reserve one byte for the OMAP marker */ 2054 oobbytes_per_step = chip->ecc.bytes + 1; 2055 /* Software BCH library is used for locating errors */ 2056 err = rawnand_sw_bch_init(chip); 2057 if (err) { 2058 dev_err(dev, "Unable to use BCH library\n"); 2059 return err; 2060 } 2061 break; 2062 2063 case OMAP_ECC_BCH4_CODE_HW: 2064 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); 2065 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2066 chip->ecc.size = 512; 2067 /* 14th bit is kept reserved for ROM-code compatibility */ 2068 chip->ecc.bytes = 7 + 1; 2069 chip->ecc.strength = 4; 2070 chip->ecc.hwctl = omap_enable_hwecc_bch; 2071 chip->ecc.correct = omap_elm_correct_data; 2072 chip->ecc.read_page = omap_read_page_bch; 2073 chip->ecc.write_page = omap_write_page_bch; 2074 chip->ecc.write_subpage = omap_write_subpage_bch; 2075 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 2076 oobbytes_per_step = chip->ecc.bytes; 2077 2078 err = elm_config(info->elm_dev, BCH4_ECC, 2079 mtd->writesize / chip->ecc.size, 2080 chip->ecc.size, chip->ecc.bytes); 2081 if (err < 0) 2082 return err; 2083 break; 2084 2085 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: 2086 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); 2087 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2088 chip->ecc.size = 512; 2089 chip->ecc.bytes = 13; 2090 chip->ecc.strength = 8; 2091 chip->ecc.hwctl = omap_enable_hwecc_bch; 2092 chip->ecc.correct = rawnand_sw_bch_correct; 2093 chip->ecc.calculate = omap_calculate_ecc_bch_sw; 2094 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); 2095 /* Reserve one byte for the OMAP marker */ 2096 oobbytes_per_step = chip->ecc.bytes + 1; 2097 /* Software BCH library is used for locating errors */ 2098 err = rawnand_sw_bch_init(chip); 2099 if (err) { 2100 dev_err(dev, "unable to use BCH library\n"); 2101 return err; 2102 } 2103 break; 2104 2105 case OMAP_ECC_BCH8_CODE_HW: 2106 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); 2107 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2108 chip->ecc.size = 512; 2109 /* 14th bit is kept reserved for ROM-code compatibility */ 2110 chip->ecc.bytes = 13 + 1; 2111 chip->ecc.strength = 8; 2112 chip->ecc.hwctl = omap_enable_hwecc_bch; 2113 chip->ecc.correct = omap_elm_correct_data; 2114 chip->ecc.read_page = omap_read_page_bch; 2115 chip->ecc.write_page = omap_write_page_bch; 2116 chip->ecc.write_subpage = omap_write_subpage_bch; 2117 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 2118 oobbytes_per_step = chip->ecc.bytes; 2119 2120 err = elm_config(info->elm_dev, BCH8_ECC, 2121 mtd->writesize / chip->ecc.size, 2122 chip->ecc.size, chip->ecc.bytes); 2123 if (err < 0) 2124 return err; 2125 2126 break; 2127 2128 case OMAP_ECC_BCH16_CODE_HW: 2129 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); 2130 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2131 chip->ecc.size = 512; 2132 chip->ecc.bytes = 26; 2133 chip->ecc.strength = 16; 2134 chip->ecc.hwctl = omap_enable_hwecc_bch; 2135 chip->ecc.correct = omap_elm_correct_data; 2136 chip->ecc.read_page = omap_read_page_bch; 2137 chip->ecc.write_page = omap_write_page_bch; 2138 chip->ecc.write_subpage = omap_write_subpage_bch; 2139 mtd_set_ooblayout(mtd, &omap_ooblayout_ops); 2140 oobbytes_per_step = chip->ecc.bytes; 2141 2142 err = elm_config(info->elm_dev, BCH16_ECC, 2143 mtd->writesize / chip->ecc.size, 2144 chip->ecc.size, chip->ecc.bytes); 2145 if (err < 0) 2146 return err; 2147 2148 break; 2149 default: 2150 dev_err(dev, "Invalid or unsupported ECC scheme\n"); 2151 return -EINVAL; 2152 } 2153 2154 /* Check if NAND device's OOB is enough to store ECC signatures */ 2155 min_oobbytes += (oobbytes_per_step * 2156 (mtd->writesize / chip->ecc.size)); 2157 if (mtd->oobsize < min_oobbytes) { 2158 dev_err(dev, 2159 "Not enough OOB bytes: required = %d, available=%d\n", 2160 min_oobbytes, mtd->oobsize); 2161 return -EINVAL; 2162 } 2163 2164 return 0; 2165 } 2166 2167 static const struct nand_controller_ops omap_nand_controller_ops = { 2168 .attach_chip = omap_nand_attach_chip, 2169 }; 2170 2171 /* Shared among all NAND instances to synchronize access to the ECC Engine */ 2172 static struct nand_controller omap_gpmc_controller; 2173 static bool omap_gpmc_controller_initialized; 2174 2175 static int omap_nand_probe(struct platform_device *pdev) 2176 { 2177 struct omap_nand_info *info; 2178 struct mtd_info *mtd; 2179 struct nand_chip *nand_chip; 2180 int err; 2181 struct resource *res; 2182 struct device *dev = &pdev->dev; 2183 2184 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), 2185 GFP_KERNEL); 2186 if (!info) 2187 return -ENOMEM; 2188 2189 info->pdev = pdev; 2190 2191 err = omap_get_dt_info(dev, info); 2192 if (err) 2193 return err; 2194 2195 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); 2196 if (!info->ops) { 2197 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); 2198 return -ENODEV; 2199 } 2200 2201 nand_chip = &info->nand; 2202 mtd = nand_to_mtd(nand_chip); 2203 mtd->dev.parent = &pdev->dev; 2204 nand_set_flash_node(nand_chip, dev->of_node); 2205 2206 if (!mtd->name) { 2207 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 2208 "omap2-nand.%d", info->gpmc_cs); 2209 if (!mtd->name) { 2210 dev_err(&pdev->dev, "Failed to set MTD name\n"); 2211 return -ENOMEM; 2212 } 2213 } 2214 2215 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2216 nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); 2217 if (IS_ERR(nand_chip->legacy.IO_ADDR_R)) 2218 return PTR_ERR(nand_chip->legacy.IO_ADDR_R); 2219 2220 info->phys_base = res->start; 2221 2222 if (!omap_gpmc_controller_initialized) { 2223 omap_gpmc_controller.ops = &omap_nand_controller_ops; 2224 nand_controller_init(&omap_gpmc_controller); 2225 omap_gpmc_controller_initialized = true; 2226 } 2227 2228 nand_chip->controller = &omap_gpmc_controller; 2229 2230 nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R; 2231 nand_chip->legacy.cmd_ctrl = omap_hwcontrol; 2232 2233 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", 2234 GPIOD_IN); 2235 if (IS_ERR(info->ready_gpiod)) { 2236 dev_err(dev, "failed to get ready gpio\n"); 2237 return PTR_ERR(info->ready_gpiod); 2238 } 2239 2240 /* 2241 * If RDY/BSY line is connected to OMAP then use the omap ready 2242 * function and the generic nand_wait function which reads the status 2243 * register after monitoring the RDY/BSY line. Otherwise use a standard 2244 * chip delay which is slightly more than tR (AC Timing) of the NAND 2245 * device and read status register until you get a failure or success 2246 */ 2247 if (info->ready_gpiod) { 2248 nand_chip->legacy.dev_ready = omap_dev_ready; 2249 nand_chip->legacy.chip_delay = 0; 2250 } else { 2251 nand_chip->legacy.waitfunc = omap_wait; 2252 nand_chip->legacy.chip_delay = 50; 2253 } 2254 2255 if (info->flash_bbt) 2256 nand_chip->bbt_options |= NAND_BBT_USE_FLASH; 2257 2258 /* scan NAND device connected to chip controller */ 2259 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; 2260 2261 err = nand_scan(nand_chip, 1); 2262 if (err) 2263 goto return_error; 2264 2265 err = mtd_device_register(mtd, NULL, 0); 2266 if (err) 2267 goto cleanup_nand; 2268 2269 platform_set_drvdata(pdev, mtd); 2270 2271 return 0; 2272 2273 cleanup_nand: 2274 nand_cleanup(nand_chip); 2275 2276 return_error: 2277 if (!IS_ERR_OR_NULL(info->dma)) 2278 dma_release_channel(info->dma); 2279 2280 rawnand_sw_bch_cleanup(nand_chip); 2281 2282 return err; 2283 } 2284 2285 static int omap_nand_remove(struct platform_device *pdev) 2286 { 2287 struct mtd_info *mtd = platform_get_drvdata(pdev); 2288 struct nand_chip *nand_chip = mtd_to_nand(mtd); 2289 struct omap_nand_info *info = mtd_to_omap(mtd); 2290 int ret; 2291 2292 rawnand_sw_bch_cleanup(nand_chip); 2293 2294 if (info->dma) 2295 dma_release_channel(info->dma); 2296 ret = mtd_device_unregister(mtd); 2297 WARN_ON(ret); 2298 nand_cleanup(nand_chip); 2299 return ret; 2300 } 2301 2302 static const struct of_device_id omap_nand_ids[] = { 2303 { .compatible = "ti,omap2-nand", }, 2304 {}, 2305 }; 2306 MODULE_DEVICE_TABLE(of, omap_nand_ids); 2307 2308 static struct platform_driver omap_nand_driver = { 2309 .probe = omap_nand_probe, 2310 .remove = omap_nand_remove, 2311 .driver = { 2312 .name = DRIVER_NAME, 2313 .of_match_table = of_match_ptr(omap_nand_ids), 2314 }, 2315 }; 2316 2317 module_platform_driver(omap_nand_driver); 2318 2319 MODULE_ALIAS("platform:" DRIVER_NAME); 2320 MODULE_LICENSE("GPL"); 2321 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); 2322