xref: /openbmc/linux/drivers/mtd/nand/raw/ndfc.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Overview:
4  *   Platform independent driver for NDFC (NanD Flash Controller)
5  *   integrated into EP440 cores
6  *
7  *   Ported to an OF platform driver by Sean MacLennan
8  *
9  *   The NDFC supports multiple chips, but this driver only supports a
10  *   single chip since I do not have access to any boards with
11  *   multiple chips.
12  *
13  *  Author: Thomas Gleixner
14  *
15  *  Copyright 2006 IBM
16  *  Copyright 2008 PIKA Technologies
17  *    Sean MacLennan <smaclennan@pikatech.com>
18  */
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/mtd/ndfc.h>
23 #include <linux/slab.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/of_address.h>
26 #include <linux/of_platform.h>
27 #include <asm/io.h>
28 
29 #define NDFC_MAX_CS    4
30 
31 struct ndfc_controller {
32 	struct platform_device *ofdev;
33 	void __iomem *ndfcbase;
34 	struct nand_chip chip;
35 	int chip_select;
36 	struct nand_controller ndfc_control;
37 };
38 
39 static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS];
40 
41 static void ndfc_select_chip(struct nand_chip *nchip, int chip)
42 {
43 	uint32_t ccr;
44 	struct ndfc_controller *ndfc = nand_get_controller_data(nchip);
45 
46 	ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
47 	if (chip >= 0) {
48 		ccr &= ~NDFC_CCR_BS_MASK;
49 		ccr |= NDFC_CCR_BS(chip + ndfc->chip_select);
50 	} else
51 		ccr |= NDFC_CCR_RESET_CE;
52 	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
53 }
54 
55 static void ndfc_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
56 {
57 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
58 
59 	if (cmd == NAND_CMD_NONE)
60 		return;
61 
62 	if (ctrl & NAND_CLE)
63 		writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD);
64 	else
65 		writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE);
66 }
67 
68 static int ndfc_ready(struct nand_chip *chip)
69 {
70 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
71 
72 	return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY;
73 }
74 
75 static void ndfc_enable_hwecc(struct nand_chip *chip, int mode)
76 {
77 	uint32_t ccr;
78 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
79 
80 	ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
81 	ccr |= NDFC_CCR_RESET_ECC;
82 	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
83 	wmb();
84 }
85 
86 static int ndfc_calculate_ecc(struct nand_chip *chip,
87 			      const u_char *dat, u_char *ecc_code)
88 {
89 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
90 	uint32_t ecc;
91 	uint8_t *p = (uint8_t *)&ecc;
92 
93 	wmb();
94 	ecc = in_be32(ndfc->ndfcbase + NDFC_ECC);
95 	/* The NDFC uses Smart Media (SMC) bytes order */
96 	ecc_code[0] = p[1];
97 	ecc_code[1] = p[2];
98 	ecc_code[2] = p[3];
99 
100 	return 0;
101 }
102 
103 /*
104  * Speedups for buffer read/write/verify
105  *
106  * NDFC allows 32bit read/write of data. So we can speed up the buffer
107  * functions. No further checking, as nand_base will always read/write
108  * page aligned.
109  */
110 static void ndfc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
111 {
112 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
113 	uint32_t *p = (uint32_t *) buf;
114 
115 	for(;len > 0; len -= 4)
116 		*p++ = in_be32(ndfc->ndfcbase + NDFC_DATA);
117 }
118 
119 static void ndfc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
120 {
121 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
122 	uint32_t *p = (uint32_t *) buf;
123 
124 	for(;len > 0; len -= 4)
125 		out_be32(ndfc->ndfcbase + NDFC_DATA, *p++);
126 }
127 
128 /*
129  * Initialize chip structure
130  */
131 static int ndfc_chip_init(struct ndfc_controller *ndfc,
132 			  struct device_node *node)
133 {
134 	struct device_node *flash_np;
135 	struct nand_chip *chip = &ndfc->chip;
136 	struct mtd_info *mtd = nand_to_mtd(chip);
137 	int ret;
138 
139 	chip->legacy.IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
140 	chip->legacy.IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
141 	chip->legacy.cmd_ctrl = ndfc_hwcontrol;
142 	chip->legacy.dev_ready = ndfc_ready;
143 	chip->legacy.select_chip = ndfc_select_chip;
144 	chip->legacy.chip_delay = 50;
145 	chip->controller = &ndfc->ndfc_control;
146 	chip->legacy.read_buf = ndfc_read_buf;
147 	chip->legacy.write_buf = ndfc_write_buf;
148 	chip->ecc.correct = rawnand_sw_hamming_correct;
149 	chip->ecc.hwctl = ndfc_enable_hwecc;
150 	chip->ecc.calculate = ndfc_calculate_ecc;
151 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
152 	chip->ecc.size = 256;
153 	chip->ecc.bytes = 3;
154 	chip->ecc.strength = 1;
155 	nand_set_controller_data(chip, ndfc);
156 
157 	mtd->dev.parent = &ndfc->ofdev->dev;
158 
159 	flash_np = of_get_next_child(node, NULL);
160 	if (!flash_np)
161 		return -ENODEV;
162 	nand_set_flash_node(chip, flash_np);
163 
164 	mtd->name = kasprintf(GFP_KERNEL, "%s.%pOFn", dev_name(&ndfc->ofdev->dev),
165 			      flash_np);
166 	if (!mtd->name) {
167 		ret = -ENOMEM;
168 		goto err;
169 	}
170 
171 	ret = nand_scan(chip, 1);
172 	if (ret)
173 		goto err;
174 
175 	ret = mtd_device_register(mtd, NULL, 0);
176 
177 err:
178 	of_node_put(flash_np);
179 	if (ret)
180 		kfree(mtd->name);
181 	return ret;
182 }
183 
184 static int ndfc_probe(struct platform_device *ofdev)
185 {
186 	struct ndfc_controller *ndfc;
187 	const __be32 *reg;
188 	u32 ccr;
189 	u32 cs;
190 	int err, len;
191 
192 	/* Read the reg property to get the chip select */
193 	reg = of_get_property(ofdev->dev.of_node, "reg", &len);
194 	if (reg == NULL || len != 12) {
195 		dev_err(&ofdev->dev, "unable read reg property (%d)\n", len);
196 		return -ENOENT;
197 	}
198 
199 	cs = be32_to_cpu(reg[0]);
200 	if (cs >= NDFC_MAX_CS) {
201 		dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs);
202 		return -EINVAL;
203 	}
204 
205 	ndfc = &ndfc_ctrl[cs];
206 	ndfc->chip_select = cs;
207 
208 	nand_controller_init(&ndfc->ndfc_control);
209 	ndfc->ofdev = ofdev;
210 	dev_set_drvdata(&ofdev->dev, ndfc);
211 
212 	ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0);
213 	if (!ndfc->ndfcbase) {
214 		dev_err(&ofdev->dev, "failed to get memory\n");
215 		return -EIO;
216 	}
217 
218 	ccr = NDFC_CCR_BS(ndfc->chip_select);
219 
220 	/* It is ok if ccr does not exist - just default to 0 */
221 	reg = of_get_property(ofdev->dev.of_node, "ccr", NULL);
222 	if (reg)
223 		ccr |= be32_to_cpup(reg);
224 
225 	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
226 
227 	/* Set the bank settings if given */
228 	reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL);
229 	if (reg) {
230 		int offset = NDFC_BCFG0 + (ndfc->chip_select << 2);
231 		out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg));
232 	}
233 
234 	err = ndfc_chip_init(ndfc, ofdev->dev.of_node);
235 	if (err) {
236 		iounmap(ndfc->ndfcbase);
237 		return err;
238 	}
239 
240 	return 0;
241 }
242 
243 static int ndfc_remove(struct platform_device *ofdev)
244 {
245 	struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev);
246 	struct nand_chip *chip = &ndfc->chip;
247 	struct mtd_info *mtd = nand_to_mtd(chip);
248 	int ret;
249 
250 	ret = mtd_device_unregister(mtd);
251 	WARN_ON(ret);
252 	nand_cleanup(chip);
253 	kfree(mtd->name);
254 
255 	return 0;
256 }
257 
258 static const struct of_device_id ndfc_match[] = {
259 	{ .compatible = "ibm,ndfc", },
260 	{}
261 };
262 MODULE_DEVICE_TABLE(of, ndfc_match);
263 
264 static struct platform_driver ndfc_driver = {
265 	.driver = {
266 		.name = "ndfc",
267 		.of_match_table = ndfc_match,
268 	},
269 	.probe = ndfc_probe,
270 	.remove = ndfc_remove,
271 };
272 
273 module_platform_driver(ndfc_driver);
274 
275 MODULE_LICENSE("GPL");
276 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
277 MODULE_DESCRIPTION("OF Platform driver for NDFC");
278