1 /* 2 * NAND flash simulator. 3 * 4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 5 * 6 * Copyright (C) 2004 Nokia Corporation 7 * 8 * Note: NS means "NAND Simulator". 9 * Note: Input means input TO flash chip, output means output FROM chip. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2, or (at your option) any later 14 * version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General 19 * Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA 24 */ 25 26 #define pr_fmt(fmt) "[nandsim]" fmt 27 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/vmalloc.h> 33 #include <linux/math64.h> 34 #include <linux/slab.h> 35 #include <linux/errno.h> 36 #include <linux/string.h> 37 #include <linux/mtd/mtd.h> 38 #include <linux/mtd/rawnand.h> 39 #include <linux/mtd/nand_bch.h> 40 #include <linux/mtd/partitions.h> 41 #include <linux/delay.h> 42 #include <linux/list.h> 43 #include <linux/random.h> 44 #include <linux/sched.h> 45 #include <linux/sched/mm.h> 46 #include <linux/fs.h> 47 #include <linux/pagemap.h> 48 #include <linux/seq_file.h> 49 #include <linux/debugfs.h> 50 51 /* Default simulator parameters values */ 52 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 53 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 54 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 55 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 56 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 57 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 58 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 59 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 60 #endif 61 62 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 63 #define CONFIG_NANDSIM_ACCESS_DELAY 25 64 #endif 65 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 66 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 67 #endif 68 #ifndef CONFIG_NANDSIM_ERASE_DELAY 69 #define CONFIG_NANDSIM_ERASE_DELAY 2 70 #endif 71 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 72 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 73 #endif 74 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 75 #define CONFIG_NANDSIM_INPUT_CYCLE 50 76 #endif 77 #ifndef CONFIG_NANDSIM_BUS_WIDTH 78 #define CONFIG_NANDSIM_BUS_WIDTH 8 79 #endif 80 #ifndef CONFIG_NANDSIM_DO_DELAYS 81 #define CONFIG_NANDSIM_DO_DELAYS 0 82 #endif 83 #ifndef CONFIG_NANDSIM_LOG 84 #define CONFIG_NANDSIM_LOG 0 85 #endif 86 #ifndef CONFIG_NANDSIM_DBG 87 #define CONFIG_NANDSIM_DBG 0 88 #endif 89 #ifndef CONFIG_NANDSIM_MAX_PARTS 90 #define CONFIG_NANDSIM_MAX_PARTS 32 91 #endif 92 93 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 94 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 95 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 96 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 97 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 98 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 99 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 100 static uint log = CONFIG_NANDSIM_LOG; 101 static uint dbg = CONFIG_NANDSIM_DBG; 102 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 103 static unsigned int parts_num; 104 static char *badblocks = NULL; 105 static char *weakblocks = NULL; 106 static char *weakpages = NULL; 107 static unsigned int bitflips = 0; 108 static char *gravepages = NULL; 109 static unsigned int overridesize = 0; 110 static char *cache_file = NULL; 111 static unsigned int bbt; 112 static unsigned int bch; 113 static u_char id_bytes[8] = { 114 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 115 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 116 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 117 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 118 [4 ... 7] = 0xFF, 119 }; 120 121 module_param_array(id_bytes, byte, NULL, 0400); 122 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 123 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 124 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 125 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 126 module_param(access_delay, uint, 0400); 127 module_param(programm_delay, uint, 0400); 128 module_param(erase_delay, uint, 0400); 129 module_param(output_cycle, uint, 0400); 130 module_param(input_cycle, uint, 0400); 131 module_param(bus_width, uint, 0400); 132 module_param(do_delays, uint, 0400); 133 module_param(log, uint, 0400); 134 module_param(dbg, uint, 0400); 135 module_param_array(parts, ulong, &parts_num, 0400); 136 module_param(badblocks, charp, 0400); 137 module_param(weakblocks, charp, 0400); 138 module_param(weakpages, charp, 0400); 139 module_param(bitflips, uint, 0400); 140 module_param(gravepages, charp, 0400); 141 module_param(overridesize, uint, 0400); 142 module_param(cache_file, charp, 0400); 143 module_param(bbt, uint, 0400); 144 module_param(bch, uint, 0400); 145 146 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 147 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 148 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 149 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 150 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 151 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 152 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 153 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 154 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 155 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 156 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 157 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 158 MODULE_PARM_DESC(log, "Perform logging if not zero"); 159 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 160 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 161 /* Page and erase block positions for the following parameters are independent of any partitions */ 162 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 163 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 164 " separated by commas e.g. 113:2 means eb 113" 165 " can be erased only twice before failing"); 166 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 167 " separated by commas e.g. 1401:2 means page 1401" 168 " can be written only twice before failing"); 169 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 170 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 171 " separated by commas e.g. 1401:2 means page 1401" 172 " can be read only twice before failing"); 173 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 174 "The size is specified in erase blocks and as the exponent of a power of two" 175 " e.g. 5 means a size of 32 erase blocks"); 176 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 177 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 178 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 179 "be correctable in 512-byte blocks"); 180 181 /* The largest possible page size */ 182 #define NS_LARGEST_PAGE_SIZE 4096 183 184 /* Simulator's output macros (logging, debugging, warning, error) */ 185 #define NS_LOG(args...) \ 186 do { if (log) pr_debug(" log: " args); } while(0) 187 #define NS_DBG(args...) \ 188 do { if (dbg) pr_debug(" debug: " args); } while(0) 189 #define NS_WARN(args...) \ 190 do { pr_warn(" warning: " args); } while(0) 191 #define NS_ERR(args...) \ 192 do { pr_err(" error: " args); } while(0) 193 #define NS_INFO(args...) \ 194 do { pr_info(" " args); } while(0) 195 196 /* Busy-wait delay macros (microseconds, milliseconds) */ 197 #define NS_UDELAY(us) \ 198 do { if (do_delays) udelay(us); } while(0) 199 #define NS_MDELAY(us) \ 200 do { if (do_delays) mdelay(us); } while(0) 201 202 /* Is the nandsim structure initialized ? */ 203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 204 205 /* Good operation completion status */ 206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 207 208 /* Operation failed completion status */ 209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 210 211 /* Calculate the page offset in flash RAM image by (row, column) address */ 212 #define NS_RAW_OFFSET(ns) \ 213 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 214 215 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 217 218 /* After a command is input, the simulator goes to one of the following states */ 219 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 220 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 221 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 222 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 223 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 224 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 225 #define STATE_CMD_STATUS 0x00000007 /* read status */ 226 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 227 #define STATE_CMD_READID 0x0000000A /* read ID */ 228 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 229 #define STATE_CMD_RESET 0x0000000C /* reset */ 230 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 231 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 232 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 233 234 /* After an address is input, the simulator goes to one of these states */ 235 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 236 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 237 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 238 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 239 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 240 241 /* During data input/output the simulator is in these states */ 242 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 243 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 244 245 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 246 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 247 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 248 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 249 250 /* Previous operation is done, ready to accept new requests */ 251 #define STATE_READY 0x00000000 252 253 /* This state is used to mark that the next state isn't known yet */ 254 #define STATE_UNKNOWN 0x10000000 255 256 /* Simulator's actions bit masks */ 257 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 258 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 259 #define ACTION_SECERASE 0x00300000 /* erase sector */ 260 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 261 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 262 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 263 #define ACTION_MASK 0x00700000 /* action mask */ 264 265 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 266 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 267 268 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 269 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 270 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 274 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 275 276 /* Remove action bits from state */ 277 #define NS_STATE(x) ((x) & ~ACTION_MASK) 278 279 /* 280 * Maximum previous states which need to be saved. Currently saving is 281 * only needed for page program operation with preceded read command 282 * (which is only valid for 512-byte pages). 283 */ 284 #define NS_MAX_PREVSTATES 1 285 286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 287 #define NS_MAX_HELD_PAGES 16 288 289 /* 290 * A union to represent flash memory contents and flash buffer. 291 */ 292 union ns_mem { 293 u_char *byte; /* for byte access */ 294 uint16_t *word; /* for 16-bit word access */ 295 }; 296 297 /* 298 * The structure which describes all the internal simulator data. 299 */ 300 struct nandsim { 301 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 302 unsigned int nbparts; 303 304 uint busw; /* flash chip bus width (8 or 16) */ 305 u_char ids[8]; /* chip's ID bytes */ 306 uint32_t options; /* chip's characteristic bits */ 307 uint32_t state; /* current chip state */ 308 uint32_t nxstate; /* next expected state */ 309 310 uint32_t *op; /* current operation, NULL operations isn't known yet */ 311 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 312 uint16_t npstates; /* number of previous states saved */ 313 uint16_t stateidx; /* current state index */ 314 315 /* The simulated NAND flash pages array */ 316 union ns_mem *pages; 317 318 /* Slab allocator for nand pages */ 319 struct kmem_cache *nand_pages_slab; 320 321 /* Internal buffer of page + OOB size bytes */ 322 union ns_mem buf; 323 324 /* NAND flash "geometry" */ 325 struct { 326 uint64_t totsz; /* total flash size, bytes */ 327 uint32_t secsz; /* flash sector (erase block) size, bytes */ 328 uint pgsz; /* NAND flash page size, bytes */ 329 uint oobsz; /* page OOB area size, bytes */ 330 uint64_t totszoob; /* total flash size including OOB, bytes */ 331 uint pgszoob; /* page size including OOB , bytes*/ 332 uint secszoob; /* sector size including OOB, bytes */ 333 uint pgnum; /* total number of pages */ 334 uint pgsec; /* number of pages per sector */ 335 uint secshift; /* bits number in sector size */ 336 uint pgshift; /* bits number in page size */ 337 uint pgaddrbytes; /* bytes per page address */ 338 uint secaddrbytes; /* bytes per sector address */ 339 uint idbytes; /* the number ID bytes that this chip outputs */ 340 } geom; 341 342 /* NAND flash internal registers */ 343 struct { 344 unsigned command; /* the command register */ 345 u_char status; /* the status register */ 346 uint row; /* the page number */ 347 uint column; /* the offset within page */ 348 uint count; /* internal counter */ 349 uint num; /* number of bytes which must be processed */ 350 uint off; /* fixed page offset */ 351 } regs; 352 353 /* NAND flash lines state */ 354 struct { 355 int ce; /* chip Enable */ 356 int cle; /* command Latch Enable */ 357 int ale; /* address Latch Enable */ 358 int wp; /* write Protect */ 359 } lines; 360 361 /* Fields needed when using a cache file */ 362 struct file *cfile; /* Open file */ 363 unsigned long *pages_written; /* Which pages have been written */ 364 void *file_buf; 365 struct page *held_pages[NS_MAX_HELD_PAGES]; 366 int held_cnt; 367 }; 368 369 /* 370 * Operations array. To perform any operation the simulator must pass 371 * through the correspondent states chain. 372 */ 373 static struct nandsim_operations { 374 uint32_t reqopts; /* options which are required to perform the operation */ 375 uint32_t states[NS_OPER_STATES]; /* operation's states */ 376 } ops[NS_OPER_NUM] = { 377 /* Read page + OOB from the beginning */ 378 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 379 STATE_DATAOUT, STATE_READY}}, 380 /* Read page + OOB from the second half */ 381 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 382 STATE_DATAOUT, STATE_READY}}, 383 /* Read OOB */ 384 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 385 STATE_DATAOUT, STATE_READY}}, 386 /* Program page starting from the beginning */ 387 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 388 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 389 /* Program page starting from the beginning */ 390 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 391 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 392 /* Program page starting from the second half */ 393 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 394 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 395 /* Program OOB */ 396 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 397 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 398 /* Erase sector */ 399 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 400 /* Read status */ 401 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 402 /* Read ID */ 403 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 404 /* Large page devices read page */ 405 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 406 STATE_DATAOUT, STATE_READY}}, 407 /* Large page devices random page read */ 408 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 409 STATE_DATAOUT, STATE_READY}}, 410 }; 411 412 struct weak_block { 413 struct list_head list; 414 unsigned int erase_block_no; 415 unsigned int max_erases; 416 unsigned int erases_done; 417 }; 418 419 static LIST_HEAD(weak_blocks); 420 421 struct weak_page { 422 struct list_head list; 423 unsigned int page_no; 424 unsigned int max_writes; 425 unsigned int writes_done; 426 }; 427 428 static LIST_HEAD(weak_pages); 429 430 struct grave_page { 431 struct list_head list; 432 unsigned int page_no; 433 unsigned int max_reads; 434 unsigned int reads_done; 435 }; 436 437 static LIST_HEAD(grave_pages); 438 439 static unsigned long *erase_block_wear = NULL; 440 static unsigned int wear_eb_count = 0; 441 static unsigned long total_wear = 0; 442 443 /* MTD structure for NAND controller */ 444 static struct mtd_info *nsmtd; 445 446 static int nandsim_debugfs_show(struct seq_file *m, void *private) 447 { 448 unsigned long wmin = -1, wmax = 0, avg; 449 unsigned long deciles[10], decile_max[10], tot = 0; 450 unsigned int i; 451 452 /* Calc wear stats */ 453 for (i = 0; i < wear_eb_count; ++i) { 454 unsigned long wear = erase_block_wear[i]; 455 if (wear < wmin) 456 wmin = wear; 457 if (wear > wmax) 458 wmax = wear; 459 tot += wear; 460 } 461 462 for (i = 0; i < 9; ++i) { 463 deciles[i] = 0; 464 decile_max[i] = (wmax * (i + 1) + 5) / 10; 465 } 466 deciles[9] = 0; 467 decile_max[9] = wmax; 468 for (i = 0; i < wear_eb_count; ++i) { 469 int d; 470 unsigned long wear = erase_block_wear[i]; 471 for (d = 0; d < 10; ++d) 472 if (wear <= decile_max[d]) { 473 deciles[d] += 1; 474 break; 475 } 476 } 477 avg = tot / wear_eb_count; 478 479 /* Output wear report */ 480 seq_printf(m, "Total numbers of erases: %lu\n", tot); 481 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 482 seq_printf(m, "Average number of erases: %lu\n", avg); 483 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 484 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 485 for (i = 0; i < 10; ++i) { 486 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 487 if (from > decile_max[i]) 488 continue; 489 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 490 from, 491 decile_max[i], 492 deciles[i]); 493 } 494 495 return 0; 496 } 497 498 static int nandsim_debugfs_open(struct inode *inode, struct file *file) 499 { 500 return single_open(file, nandsim_debugfs_show, inode->i_private); 501 } 502 503 static const struct file_operations dfs_fops = { 504 .open = nandsim_debugfs_open, 505 .read = seq_read, 506 .llseek = seq_lseek, 507 .release = single_release, 508 }; 509 510 /** 511 * nandsim_debugfs_create - initialize debugfs 512 * @dev: nandsim device description object 513 * 514 * This function creates all debugfs files for UBI device @ubi. Returns zero in 515 * case of success and a negative error code in case of failure. 516 */ 517 static int nandsim_debugfs_create(struct nandsim *dev) 518 { 519 struct dentry *root = nsmtd->dbg.dfs_dir; 520 struct dentry *dent; 521 522 /* 523 * Just skip debugfs initialization when the debugfs directory is 524 * missing. 525 */ 526 if (IS_ERR_OR_NULL(root)) { 527 if (IS_ENABLED(CONFIG_DEBUG_FS) && 528 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 529 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 530 return 0; 531 } 532 533 dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, 534 root, dev, &dfs_fops); 535 if (IS_ERR_OR_NULL(dent)) { 536 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 537 return -1; 538 } 539 540 return 0; 541 } 542 543 /* 544 * Allocate array of page pointers, create slab allocation for an array 545 * and initialize the array by NULL pointers. 546 * 547 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 548 */ 549 static int __init alloc_device(struct nandsim *ns) 550 { 551 struct file *cfile; 552 int i, err; 553 554 if (cache_file) { 555 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 556 if (IS_ERR(cfile)) 557 return PTR_ERR(cfile); 558 if (!(cfile->f_mode & FMODE_CAN_READ)) { 559 NS_ERR("alloc_device: cache file not readable\n"); 560 err = -EINVAL; 561 goto err_close; 562 } 563 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 564 NS_ERR("alloc_device: cache file not writeable\n"); 565 err = -EINVAL; 566 goto err_close; 567 } 568 ns->pages_written = 569 vzalloc(array_size(sizeof(unsigned long), 570 BITS_TO_LONGS(ns->geom.pgnum))); 571 if (!ns->pages_written) { 572 NS_ERR("alloc_device: unable to allocate pages written array\n"); 573 err = -ENOMEM; 574 goto err_close; 575 } 576 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 577 if (!ns->file_buf) { 578 NS_ERR("alloc_device: unable to allocate file buf\n"); 579 err = -ENOMEM; 580 goto err_free; 581 } 582 ns->cfile = cfile; 583 return 0; 584 } 585 586 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 587 if (!ns->pages) { 588 NS_ERR("alloc_device: unable to allocate page array\n"); 589 return -ENOMEM; 590 } 591 for (i = 0; i < ns->geom.pgnum; i++) { 592 ns->pages[i].byte = NULL; 593 } 594 ns->nand_pages_slab = kmem_cache_create("nandsim", 595 ns->geom.pgszoob, 0, 0, NULL); 596 if (!ns->nand_pages_slab) { 597 NS_ERR("cache_create: unable to create kmem_cache\n"); 598 return -ENOMEM; 599 } 600 601 return 0; 602 603 err_free: 604 vfree(ns->pages_written); 605 err_close: 606 filp_close(cfile, NULL); 607 return err; 608 } 609 610 /* 611 * Free any allocated pages, and free the array of page pointers. 612 */ 613 static void free_device(struct nandsim *ns) 614 { 615 int i; 616 617 if (ns->cfile) { 618 kfree(ns->file_buf); 619 vfree(ns->pages_written); 620 filp_close(ns->cfile, NULL); 621 return; 622 } 623 624 if (ns->pages) { 625 for (i = 0; i < ns->geom.pgnum; i++) { 626 if (ns->pages[i].byte) 627 kmem_cache_free(ns->nand_pages_slab, 628 ns->pages[i].byte); 629 } 630 kmem_cache_destroy(ns->nand_pages_slab); 631 vfree(ns->pages); 632 } 633 } 634 635 static char __init *get_partition_name(int i) 636 { 637 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 638 } 639 640 /* 641 * Initialize the nandsim structure. 642 * 643 * RETURNS: 0 if success, -ERRNO if failure. 644 */ 645 static int __init init_nandsim(struct mtd_info *mtd) 646 { 647 struct nand_chip *chip = mtd_to_nand(mtd); 648 struct nandsim *ns = nand_get_controller_data(chip); 649 int i, ret = 0; 650 uint64_t remains; 651 uint64_t next_offset; 652 653 if (NS_IS_INITIALIZED(ns)) { 654 NS_ERR("init_nandsim: nandsim is already initialized\n"); 655 return -EIO; 656 } 657 658 /* Force mtd to not do delays */ 659 chip->chip_delay = 0; 660 661 /* Initialize the NAND flash parameters */ 662 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 663 ns->geom.totsz = mtd->size; 664 ns->geom.pgsz = mtd->writesize; 665 ns->geom.oobsz = mtd->oobsize; 666 ns->geom.secsz = mtd->erasesize; 667 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 668 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 669 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 670 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 671 ns->geom.pgshift = chip->page_shift; 672 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 673 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 674 ns->options = 0; 675 676 if (ns->geom.pgsz == 512) { 677 ns->options |= OPT_PAGE512; 678 if (ns->busw == 8) 679 ns->options |= OPT_PAGE512_8BIT; 680 } else if (ns->geom.pgsz == 2048) { 681 ns->options |= OPT_PAGE2048; 682 } else if (ns->geom.pgsz == 4096) { 683 ns->options |= OPT_PAGE4096; 684 } else { 685 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 686 return -EIO; 687 } 688 689 if (ns->options & OPT_SMALLPAGE) { 690 if (ns->geom.totsz <= (32 << 20)) { 691 ns->geom.pgaddrbytes = 3; 692 ns->geom.secaddrbytes = 2; 693 } else { 694 ns->geom.pgaddrbytes = 4; 695 ns->geom.secaddrbytes = 3; 696 } 697 } else { 698 if (ns->geom.totsz <= (128 << 20)) { 699 ns->geom.pgaddrbytes = 4; 700 ns->geom.secaddrbytes = 2; 701 } else { 702 ns->geom.pgaddrbytes = 5; 703 ns->geom.secaddrbytes = 3; 704 } 705 } 706 707 /* Fill the partition_info structure */ 708 if (parts_num > ARRAY_SIZE(ns->partitions)) { 709 NS_ERR("too many partitions.\n"); 710 return -EINVAL; 711 } 712 remains = ns->geom.totsz; 713 next_offset = 0; 714 for (i = 0; i < parts_num; ++i) { 715 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 716 717 if (!part_sz || part_sz > remains) { 718 NS_ERR("bad partition size.\n"); 719 return -EINVAL; 720 } 721 ns->partitions[i].name = get_partition_name(i); 722 if (!ns->partitions[i].name) { 723 NS_ERR("unable to allocate memory.\n"); 724 return -ENOMEM; 725 } 726 ns->partitions[i].offset = next_offset; 727 ns->partitions[i].size = part_sz; 728 next_offset += ns->partitions[i].size; 729 remains -= ns->partitions[i].size; 730 } 731 ns->nbparts = parts_num; 732 if (remains) { 733 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 734 NS_ERR("too many partitions.\n"); 735 return -EINVAL; 736 } 737 ns->partitions[i].name = get_partition_name(i); 738 if (!ns->partitions[i].name) { 739 NS_ERR("unable to allocate memory.\n"); 740 return -ENOMEM; 741 } 742 ns->partitions[i].offset = next_offset; 743 ns->partitions[i].size = remains; 744 ns->nbparts += 1; 745 } 746 747 if (ns->busw == 16) 748 NS_WARN("16-bit flashes support wasn't tested\n"); 749 750 printk("flash size: %llu MiB\n", 751 (unsigned long long)ns->geom.totsz >> 20); 752 printk("page size: %u bytes\n", ns->geom.pgsz); 753 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 754 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 755 printk("pages number: %u\n", ns->geom.pgnum); 756 printk("pages per sector: %u\n", ns->geom.pgsec); 757 printk("bus width: %u\n", ns->busw); 758 printk("bits in sector size: %u\n", ns->geom.secshift); 759 printk("bits in page size: %u\n", ns->geom.pgshift); 760 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 761 printk("flash size with OOB: %llu KiB\n", 762 (unsigned long long)ns->geom.totszoob >> 10); 763 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 764 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 765 printk("options: %#x\n", ns->options); 766 767 if ((ret = alloc_device(ns)) != 0) 768 return ret; 769 770 /* Allocate / initialize the internal buffer */ 771 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 772 if (!ns->buf.byte) { 773 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 774 ns->geom.pgszoob); 775 return -ENOMEM; 776 } 777 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 778 779 return 0; 780 } 781 782 /* 783 * Free the nandsim structure. 784 */ 785 static void free_nandsim(struct nandsim *ns) 786 { 787 kfree(ns->buf.byte); 788 free_device(ns); 789 790 return; 791 } 792 793 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 794 { 795 char *w; 796 int zero_ok; 797 unsigned int erase_block_no; 798 loff_t offset; 799 800 if (!badblocks) 801 return 0; 802 w = badblocks; 803 do { 804 zero_ok = (*w == '0' ? 1 : 0); 805 erase_block_no = simple_strtoul(w, &w, 0); 806 if (!zero_ok && !erase_block_no) { 807 NS_ERR("invalid badblocks.\n"); 808 return -EINVAL; 809 } 810 offset = (loff_t)erase_block_no * ns->geom.secsz; 811 if (mtd_block_markbad(mtd, offset)) { 812 NS_ERR("invalid badblocks.\n"); 813 return -EINVAL; 814 } 815 if (*w == ',') 816 w += 1; 817 } while (*w); 818 return 0; 819 } 820 821 static int parse_weakblocks(void) 822 { 823 char *w; 824 int zero_ok; 825 unsigned int erase_block_no; 826 unsigned int max_erases; 827 struct weak_block *wb; 828 829 if (!weakblocks) 830 return 0; 831 w = weakblocks; 832 do { 833 zero_ok = (*w == '0' ? 1 : 0); 834 erase_block_no = simple_strtoul(w, &w, 0); 835 if (!zero_ok && !erase_block_no) { 836 NS_ERR("invalid weakblocks.\n"); 837 return -EINVAL; 838 } 839 max_erases = 3; 840 if (*w == ':') { 841 w += 1; 842 max_erases = simple_strtoul(w, &w, 0); 843 } 844 if (*w == ',') 845 w += 1; 846 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 847 if (!wb) { 848 NS_ERR("unable to allocate memory.\n"); 849 return -ENOMEM; 850 } 851 wb->erase_block_no = erase_block_no; 852 wb->max_erases = max_erases; 853 list_add(&wb->list, &weak_blocks); 854 } while (*w); 855 return 0; 856 } 857 858 static int erase_error(unsigned int erase_block_no) 859 { 860 struct weak_block *wb; 861 862 list_for_each_entry(wb, &weak_blocks, list) 863 if (wb->erase_block_no == erase_block_no) { 864 if (wb->erases_done >= wb->max_erases) 865 return 1; 866 wb->erases_done += 1; 867 return 0; 868 } 869 return 0; 870 } 871 872 static int parse_weakpages(void) 873 { 874 char *w; 875 int zero_ok; 876 unsigned int page_no; 877 unsigned int max_writes; 878 struct weak_page *wp; 879 880 if (!weakpages) 881 return 0; 882 w = weakpages; 883 do { 884 zero_ok = (*w == '0' ? 1 : 0); 885 page_no = simple_strtoul(w, &w, 0); 886 if (!zero_ok && !page_no) { 887 NS_ERR("invalid weakpages.\n"); 888 return -EINVAL; 889 } 890 max_writes = 3; 891 if (*w == ':') { 892 w += 1; 893 max_writes = simple_strtoul(w, &w, 0); 894 } 895 if (*w == ',') 896 w += 1; 897 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 898 if (!wp) { 899 NS_ERR("unable to allocate memory.\n"); 900 return -ENOMEM; 901 } 902 wp->page_no = page_no; 903 wp->max_writes = max_writes; 904 list_add(&wp->list, &weak_pages); 905 } while (*w); 906 return 0; 907 } 908 909 static int write_error(unsigned int page_no) 910 { 911 struct weak_page *wp; 912 913 list_for_each_entry(wp, &weak_pages, list) 914 if (wp->page_no == page_no) { 915 if (wp->writes_done >= wp->max_writes) 916 return 1; 917 wp->writes_done += 1; 918 return 0; 919 } 920 return 0; 921 } 922 923 static int parse_gravepages(void) 924 { 925 char *g; 926 int zero_ok; 927 unsigned int page_no; 928 unsigned int max_reads; 929 struct grave_page *gp; 930 931 if (!gravepages) 932 return 0; 933 g = gravepages; 934 do { 935 zero_ok = (*g == '0' ? 1 : 0); 936 page_no = simple_strtoul(g, &g, 0); 937 if (!zero_ok && !page_no) { 938 NS_ERR("invalid gravepagess.\n"); 939 return -EINVAL; 940 } 941 max_reads = 3; 942 if (*g == ':') { 943 g += 1; 944 max_reads = simple_strtoul(g, &g, 0); 945 } 946 if (*g == ',') 947 g += 1; 948 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 949 if (!gp) { 950 NS_ERR("unable to allocate memory.\n"); 951 return -ENOMEM; 952 } 953 gp->page_no = page_no; 954 gp->max_reads = max_reads; 955 list_add(&gp->list, &grave_pages); 956 } while (*g); 957 return 0; 958 } 959 960 static int read_error(unsigned int page_no) 961 { 962 struct grave_page *gp; 963 964 list_for_each_entry(gp, &grave_pages, list) 965 if (gp->page_no == page_no) { 966 if (gp->reads_done >= gp->max_reads) 967 return 1; 968 gp->reads_done += 1; 969 return 0; 970 } 971 return 0; 972 } 973 974 static void free_lists(void) 975 { 976 struct list_head *pos, *n; 977 list_for_each_safe(pos, n, &weak_blocks) { 978 list_del(pos); 979 kfree(list_entry(pos, struct weak_block, list)); 980 } 981 list_for_each_safe(pos, n, &weak_pages) { 982 list_del(pos); 983 kfree(list_entry(pos, struct weak_page, list)); 984 } 985 list_for_each_safe(pos, n, &grave_pages) { 986 list_del(pos); 987 kfree(list_entry(pos, struct grave_page, list)); 988 } 989 kfree(erase_block_wear); 990 } 991 992 static int setup_wear_reporting(struct mtd_info *mtd) 993 { 994 size_t mem; 995 996 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 997 mem = wear_eb_count * sizeof(unsigned long); 998 if (mem / sizeof(unsigned long) != wear_eb_count) { 999 NS_ERR("Too many erase blocks for wear reporting\n"); 1000 return -ENOMEM; 1001 } 1002 erase_block_wear = kzalloc(mem, GFP_KERNEL); 1003 if (!erase_block_wear) { 1004 NS_ERR("Too many erase blocks for wear reporting\n"); 1005 return -ENOMEM; 1006 } 1007 return 0; 1008 } 1009 1010 static void update_wear(unsigned int erase_block_no) 1011 { 1012 if (!erase_block_wear) 1013 return; 1014 total_wear += 1; 1015 /* 1016 * TODO: Notify this through a debugfs entry, 1017 * instead of showing an error message. 1018 */ 1019 if (total_wear == 0) 1020 NS_ERR("Erase counter total overflow\n"); 1021 erase_block_wear[erase_block_no] += 1; 1022 if (erase_block_wear[erase_block_no] == 0) 1023 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 1024 } 1025 1026 /* 1027 * Returns the string representation of 'state' state. 1028 */ 1029 static char *get_state_name(uint32_t state) 1030 { 1031 switch (NS_STATE(state)) { 1032 case STATE_CMD_READ0: 1033 return "STATE_CMD_READ0"; 1034 case STATE_CMD_READ1: 1035 return "STATE_CMD_READ1"; 1036 case STATE_CMD_PAGEPROG: 1037 return "STATE_CMD_PAGEPROG"; 1038 case STATE_CMD_READOOB: 1039 return "STATE_CMD_READOOB"; 1040 case STATE_CMD_READSTART: 1041 return "STATE_CMD_READSTART"; 1042 case STATE_CMD_ERASE1: 1043 return "STATE_CMD_ERASE1"; 1044 case STATE_CMD_STATUS: 1045 return "STATE_CMD_STATUS"; 1046 case STATE_CMD_SEQIN: 1047 return "STATE_CMD_SEQIN"; 1048 case STATE_CMD_READID: 1049 return "STATE_CMD_READID"; 1050 case STATE_CMD_ERASE2: 1051 return "STATE_CMD_ERASE2"; 1052 case STATE_CMD_RESET: 1053 return "STATE_CMD_RESET"; 1054 case STATE_CMD_RNDOUT: 1055 return "STATE_CMD_RNDOUT"; 1056 case STATE_CMD_RNDOUTSTART: 1057 return "STATE_CMD_RNDOUTSTART"; 1058 case STATE_ADDR_PAGE: 1059 return "STATE_ADDR_PAGE"; 1060 case STATE_ADDR_SEC: 1061 return "STATE_ADDR_SEC"; 1062 case STATE_ADDR_ZERO: 1063 return "STATE_ADDR_ZERO"; 1064 case STATE_ADDR_COLUMN: 1065 return "STATE_ADDR_COLUMN"; 1066 case STATE_DATAIN: 1067 return "STATE_DATAIN"; 1068 case STATE_DATAOUT: 1069 return "STATE_DATAOUT"; 1070 case STATE_DATAOUT_ID: 1071 return "STATE_DATAOUT_ID"; 1072 case STATE_DATAOUT_STATUS: 1073 return "STATE_DATAOUT_STATUS"; 1074 case STATE_READY: 1075 return "STATE_READY"; 1076 case STATE_UNKNOWN: 1077 return "STATE_UNKNOWN"; 1078 } 1079 1080 NS_ERR("get_state_name: unknown state, BUG\n"); 1081 return NULL; 1082 } 1083 1084 /* 1085 * Check if command is valid. 1086 * 1087 * RETURNS: 1 if wrong command, 0 if right. 1088 */ 1089 static int check_command(int cmd) 1090 { 1091 switch (cmd) { 1092 1093 case NAND_CMD_READ0: 1094 case NAND_CMD_READ1: 1095 case NAND_CMD_READSTART: 1096 case NAND_CMD_PAGEPROG: 1097 case NAND_CMD_READOOB: 1098 case NAND_CMD_ERASE1: 1099 case NAND_CMD_STATUS: 1100 case NAND_CMD_SEQIN: 1101 case NAND_CMD_READID: 1102 case NAND_CMD_ERASE2: 1103 case NAND_CMD_RESET: 1104 case NAND_CMD_RNDOUT: 1105 case NAND_CMD_RNDOUTSTART: 1106 return 0; 1107 1108 default: 1109 return 1; 1110 } 1111 } 1112 1113 /* 1114 * Returns state after command is accepted by command number. 1115 */ 1116 static uint32_t get_state_by_command(unsigned command) 1117 { 1118 switch (command) { 1119 case NAND_CMD_READ0: 1120 return STATE_CMD_READ0; 1121 case NAND_CMD_READ1: 1122 return STATE_CMD_READ1; 1123 case NAND_CMD_PAGEPROG: 1124 return STATE_CMD_PAGEPROG; 1125 case NAND_CMD_READSTART: 1126 return STATE_CMD_READSTART; 1127 case NAND_CMD_READOOB: 1128 return STATE_CMD_READOOB; 1129 case NAND_CMD_ERASE1: 1130 return STATE_CMD_ERASE1; 1131 case NAND_CMD_STATUS: 1132 return STATE_CMD_STATUS; 1133 case NAND_CMD_SEQIN: 1134 return STATE_CMD_SEQIN; 1135 case NAND_CMD_READID: 1136 return STATE_CMD_READID; 1137 case NAND_CMD_ERASE2: 1138 return STATE_CMD_ERASE2; 1139 case NAND_CMD_RESET: 1140 return STATE_CMD_RESET; 1141 case NAND_CMD_RNDOUT: 1142 return STATE_CMD_RNDOUT; 1143 case NAND_CMD_RNDOUTSTART: 1144 return STATE_CMD_RNDOUTSTART; 1145 } 1146 1147 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1148 return 0; 1149 } 1150 1151 /* 1152 * Move an address byte to the correspondent internal register. 1153 */ 1154 static inline void accept_addr_byte(struct nandsim *ns, u_char bt) 1155 { 1156 uint byte = (uint)bt; 1157 1158 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1159 ns->regs.column |= (byte << 8 * ns->regs.count); 1160 else { 1161 ns->regs.row |= (byte << 8 * (ns->regs.count - 1162 ns->geom.pgaddrbytes + 1163 ns->geom.secaddrbytes)); 1164 } 1165 1166 return; 1167 } 1168 1169 /* 1170 * Switch to STATE_READY state. 1171 */ 1172 static inline void switch_to_ready_state(struct nandsim *ns, u_char status) 1173 { 1174 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); 1175 1176 ns->state = STATE_READY; 1177 ns->nxstate = STATE_UNKNOWN; 1178 ns->op = NULL; 1179 ns->npstates = 0; 1180 ns->stateidx = 0; 1181 ns->regs.num = 0; 1182 ns->regs.count = 0; 1183 ns->regs.off = 0; 1184 ns->regs.row = 0; 1185 ns->regs.column = 0; 1186 ns->regs.status = status; 1187 } 1188 1189 /* 1190 * If the operation isn't known yet, try to find it in the global array 1191 * of supported operations. 1192 * 1193 * Operation can be unknown because of the following. 1194 * 1. New command was accepted and this is the first call to find the 1195 * correspondent states chain. In this case ns->npstates = 0; 1196 * 2. There are several operations which begin with the same command(s) 1197 * (for example program from the second half and read from the 1198 * second half operations both begin with the READ1 command). In this 1199 * case the ns->pstates[] array contains previous states. 1200 * 1201 * Thus, the function tries to find operation containing the following 1202 * states (if the 'flag' parameter is 0): 1203 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1204 * 1205 * If (one and only one) matching operation is found, it is accepted ( 1206 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1207 * zeroed). 1208 * 1209 * If there are several matches, the current state is pushed to the 1210 * ns->pstates. 1211 * 1212 * The operation can be unknown only while commands are input to the chip. 1213 * As soon as address command is accepted, the operation must be known. 1214 * In such situation the function is called with 'flag' != 0, and the 1215 * operation is searched using the following pattern: 1216 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1217 * 1218 * It is supposed that this pattern must either match one operation or 1219 * none. There can't be ambiguity in that case. 1220 * 1221 * If no matches found, the function does the following: 1222 * 1. if there are saved states present, try to ignore them and search 1223 * again only using the last command. If nothing was found, switch 1224 * to the STATE_READY state. 1225 * 2. if there are no saved states, switch to the STATE_READY state. 1226 * 1227 * RETURNS: -2 - no matched operations found. 1228 * -1 - several matches. 1229 * 0 - operation is found. 1230 */ 1231 static int find_operation(struct nandsim *ns, uint32_t flag) 1232 { 1233 int opsfound = 0; 1234 int i, j, idx = 0; 1235 1236 for (i = 0; i < NS_OPER_NUM; i++) { 1237 1238 int found = 1; 1239 1240 if (!(ns->options & ops[i].reqopts)) 1241 /* Ignore operations we can't perform */ 1242 continue; 1243 1244 if (flag) { 1245 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1246 continue; 1247 } else { 1248 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1249 continue; 1250 } 1251 1252 for (j = 0; j < ns->npstates; j++) 1253 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1254 && (ns->options & ops[idx].reqopts)) { 1255 found = 0; 1256 break; 1257 } 1258 1259 if (found) { 1260 idx = i; 1261 opsfound += 1; 1262 } 1263 } 1264 1265 if (opsfound == 1) { 1266 /* Exact match */ 1267 ns->op = &ops[idx].states[0]; 1268 if (flag) { 1269 /* 1270 * In this case the find_operation function was 1271 * called when address has just began input. But it isn't 1272 * yet fully input and the current state must 1273 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1274 * state must be the next state (ns->nxstate). 1275 */ 1276 ns->stateidx = ns->npstates - 1; 1277 } else { 1278 ns->stateidx = ns->npstates; 1279 } 1280 ns->npstates = 0; 1281 ns->state = ns->op[ns->stateidx]; 1282 ns->nxstate = ns->op[ns->stateidx + 1]; 1283 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1284 idx, get_state_name(ns->state), get_state_name(ns->nxstate)); 1285 return 0; 1286 } 1287 1288 if (opsfound == 0) { 1289 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1290 if (ns->npstates != 0) { 1291 NS_DBG("find_operation: no operation found, try again with state %s\n", 1292 get_state_name(ns->state)); 1293 ns->npstates = 0; 1294 return find_operation(ns, 0); 1295 1296 } 1297 NS_DBG("find_operation: no operations found\n"); 1298 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1299 return -2; 1300 } 1301 1302 if (flag) { 1303 /* This shouldn't happen */ 1304 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1305 return -2; 1306 } 1307 1308 NS_DBG("find_operation: there is still ambiguity\n"); 1309 1310 ns->pstates[ns->npstates++] = ns->state; 1311 1312 return -1; 1313 } 1314 1315 static void put_pages(struct nandsim *ns) 1316 { 1317 int i; 1318 1319 for (i = 0; i < ns->held_cnt; i++) 1320 put_page(ns->held_pages[i]); 1321 } 1322 1323 /* Get page cache pages in advance to provide NOFS memory allocation */ 1324 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) 1325 { 1326 pgoff_t index, start_index, end_index; 1327 struct page *page; 1328 struct address_space *mapping = file->f_mapping; 1329 1330 start_index = pos >> PAGE_SHIFT; 1331 end_index = (pos + count - 1) >> PAGE_SHIFT; 1332 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1333 return -EINVAL; 1334 ns->held_cnt = 0; 1335 for (index = start_index; index <= end_index; index++) { 1336 page = find_get_page(mapping, index); 1337 if (page == NULL) { 1338 page = find_or_create_page(mapping, index, GFP_NOFS); 1339 if (page == NULL) { 1340 write_inode_now(mapping->host, 1); 1341 page = find_or_create_page(mapping, index, GFP_NOFS); 1342 } 1343 if (page == NULL) { 1344 put_pages(ns); 1345 return -ENOMEM; 1346 } 1347 unlock_page(page); 1348 } 1349 ns->held_pages[ns->held_cnt++] = page; 1350 } 1351 return 0; 1352 } 1353 1354 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1355 { 1356 ssize_t tx; 1357 int err; 1358 unsigned int noreclaim_flag; 1359 1360 err = get_pages(ns, file, count, pos); 1361 if (err) 1362 return err; 1363 noreclaim_flag = memalloc_noreclaim_save(); 1364 tx = kernel_read(file, buf, count, &pos); 1365 memalloc_noreclaim_restore(noreclaim_flag); 1366 put_pages(ns); 1367 return tx; 1368 } 1369 1370 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1371 { 1372 ssize_t tx; 1373 int err; 1374 unsigned int noreclaim_flag; 1375 1376 err = get_pages(ns, file, count, pos); 1377 if (err) 1378 return err; 1379 noreclaim_flag = memalloc_noreclaim_save(); 1380 tx = kernel_write(file, buf, count, &pos); 1381 memalloc_noreclaim_restore(noreclaim_flag); 1382 put_pages(ns); 1383 return tx; 1384 } 1385 1386 /* 1387 * Returns a pointer to the current page. 1388 */ 1389 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1390 { 1391 return &(ns->pages[ns->regs.row]); 1392 } 1393 1394 /* 1395 * Retuns a pointer to the current byte, within the current page. 1396 */ 1397 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1398 { 1399 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; 1400 } 1401 1402 static int do_read_error(struct nandsim *ns, int num) 1403 { 1404 unsigned int page_no = ns->regs.row; 1405 1406 if (read_error(page_no)) { 1407 prandom_bytes(ns->buf.byte, num); 1408 NS_WARN("simulating read error in page %u\n", page_no); 1409 return 1; 1410 } 1411 return 0; 1412 } 1413 1414 static void do_bit_flips(struct nandsim *ns, int num) 1415 { 1416 if (bitflips && prandom_u32() < (1 << 22)) { 1417 int flips = 1; 1418 if (bitflips > 1) 1419 flips = (prandom_u32() % (int) bitflips) + 1; 1420 while (flips--) { 1421 int pos = prandom_u32() % (num * 8); 1422 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1423 NS_WARN("read_page: flipping bit %d in page %d " 1424 "reading from %d ecc: corrected=%u failed=%u\n", 1425 pos, ns->regs.row, ns->regs.column + ns->regs.off, 1426 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1427 } 1428 } 1429 } 1430 1431 /* 1432 * Fill the NAND buffer with data read from the specified page. 1433 */ 1434 static void read_page(struct nandsim *ns, int num) 1435 { 1436 union ns_mem *mypage; 1437 1438 if (ns->cfile) { 1439 if (!test_bit(ns->regs.row, ns->pages_written)) { 1440 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1441 memset(ns->buf.byte, 0xFF, num); 1442 } else { 1443 loff_t pos; 1444 ssize_t tx; 1445 1446 NS_DBG("read_page: page %d written, reading from %d\n", 1447 ns->regs.row, ns->regs.column + ns->regs.off); 1448 if (do_read_error(ns, num)) 1449 return; 1450 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1451 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); 1452 if (tx != num) { 1453 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1454 return; 1455 } 1456 do_bit_flips(ns, num); 1457 } 1458 return; 1459 } 1460 1461 mypage = NS_GET_PAGE(ns); 1462 if (mypage->byte == NULL) { 1463 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1464 memset(ns->buf.byte, 0xFF, num); 1465 } else { 1466 NS_DBG("read_page: page %d allocated, reading from %d\n", 1467 ns->regs.row, ns->regs.column + ns->regs.off); 1468 if (do_read_error(ns, num)) 1469 return; 1470 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1471 do_bit_flips(ns, num); 1472 } 1473 } 1474 1475 /* 1476 * Erase all pages in the specified sector. 1477 */ 1478 static void erase_sector(struct nandsim *ns) 1479 { 1480 union ns_mem *mypage; 1481 int i; 1482 1483 if (ns->cfile) { 1484 for (i = 0; i < ns->geom.pgsec; i++) 1485 if (__test_and_clear_bit(ns->regs.row + i, 1486 ns->pages_written)) { 1487 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1488 } 1489 return; 1490 } 1491 1492 mypage = NS_GET_PAGE(ns); 1493 for (i = 0; i < ns->geom.pgsec; i++) { 1494 if (mypage->byte != NULL) { 1495 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1496 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1497 mypage->byte = NULL; 1498 } 1499 mypage++; 1500 } 1501 } 1502 1503 /* 1504 * Program the specified page with the contents from the NAND buffer. 1505 */ 1506 static int prog_page(struct nandsim *ns, int num) 1507 { 1508 int i; 1509 union ns_mem *mypage; 1510 u_char *pg_off; 1511 1512 if (ns->cfile) { 1513 loff_t off; 1514 ssize_t tx; 1515 int all; 1516 1517 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1518 pg_off = ns->file_buf + ns->regs.column + ns->regs.off; 1519 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1520 if (!test_bit(ns->regs.row, ns->pages_written)) { 1521 all = 1; 1522 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1523 } else { 1524 all = 0; 1525 tx = read_file(ns, ns->cfile, pg_off, num, off); 1526 if (tx != num) { 1527 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1528 return -1; 1529 } 1530 } 1531 for (i = 0; i < num; i++) 1532 pg_off[i] &= ns->buf.byte[i]; 1533 if (all) { 1534 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1535 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); 1536 if (tx != ns->geom.pgszoob) { 1537 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1538 return -1; 1539 } 1540 __set_bit(ns->regs.row, ns->pages_written); 1541 } else { 1542 tx = write_file(ns, ns->cfile, pg_off, num, off); 1543 if (tx != num) { 1544 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1545 return -1; 1546 } 1547 } 1548 return 0; 1549 } 1550 1551 mypage = NS_GET_PAGE(ns); 1552 if (mypage->byte == NULL) { 1553 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1554 /* 1555 * We allocate memory with GFP_NOFS because a flash FS may 1556 * utilize this. If it is holding an FS lock, then gets here, 1557 * then kernel memory alloc runs writeback which goes to the FS 1558 * again and deadlocks. This was seen in practice. 1559 */ 1560 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1561 if (mypage->byte == NULL) { 1562 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1563 return -1; 1564 } 1565 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1566 } 1567 1568 pg_off = NS_PAGE_BYTE_OFF(ns); 1569 for (i = 0; i < num; i++) 1570 pg_off[i] &= ns->buf.byte[i]; 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * If state has any action bit, perform this action. 1577 * 1578 * RETURNS: 0 if success, -1 if error. 1579 */ 1580 static int do_state_action(struct nandsim *ns, uint32_t action) 1581 { 1582 int num; 1583 int busdiv = ns->busw == 8 ? 1 : 2; 1584 unsigned int erase_block_no, page_no; 1585 1586 action &= ACTION_MASK; 1587 1588 /* Check that page address input is correct */ 1589 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1590 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1591 return -1; 1592 } 1593 1594 switch (action) { 1595 1596 case ACTION_CPY: 1597 /* 1598 * Copy page data to the internal buffer. 1599 */ 1600 1601 /* Column shouldn't be very large */ 1602 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1603 NS_ERR("do_state_action: column number is too large\n"); 1604 break; 1605 } 1606 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1607 read_page(ns, num); 1608 1609 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1610 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1611 1612 if (ns->regs.off == 0) 1613 NS_LOG("read page %d\n", ns->regs.row); 1614 else if (ns->regs.off < ns->geom.pgsz) 1615 NS_LOG("read page %d (second half)\n", ns->regs.row); 1616 else 1617 NS_LOG("read OOB of page %d\n", ns->regs.row); 1618 1619 NS_UDELAY(access_delay); 1620 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1621 1622 break; 1623 1624 case ACTION_SECERASE: 1625 /* 1626 * Erase sector. 1627 */ 1628 1629 if (ns->lines.wp) { 1630 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1631 return -1; 1632 } 1633 1634 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1635 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1636 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1637 return -1; 1638 } 1639 1640 ns->regs.row = (ns->regs.row << 1641 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1642 ns->regs.column = 0; 1643 1644 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1645 1646 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1647 ns->regs.row, NS_RAW_OFFSET(ns)); 1648 NS_LOG("erase sector %u\n", erase_block_no); 1649 1650 erase_sector(ns); 1651 1652 NS_MDELAY(erase_delay); 1653 1654 if (erase_block_wear) 1655 update_wear(erase_block_no); 1656 1657 if (erase_error(erase_block_no)) { 1658 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1659 return -1; 1660 } 1661 1662 break; 1663 1664 case ACTION_PRGPAGE: 1665 /* 1666 * Program page - move internal buffer data to the page. 1667 */ 1668 1669 if (ns->lines.wp) { 1670 NS_WARN("do_state_action: device is write-protected, programm\n"); 1671 return -1; 1672 } 1673 1674 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1675 if (num != ns->regs.count) { 1676 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1677 ns->regs.count, num); 1678 return -1; 1679 } 1680 1681 if (prog_page(ns, num) == -1) 1682 return -1; 1683 1684 page_no = ns->regs.row; 1685 1686 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1687 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1688 NS_LOG("programm page %d\n", ns->regs.row); 1689 1690 NS_UDELAY(programm_delay); 1691 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1692 1693 if (write_error(page_no)) { 1694 NS_WARN("simulating write failure in page %u\n", page_no); 1695 return -1; 1696 } 1697 1698 break; 1699 1700 case ACTION_ZEROOFF: 1701 NS_DBG("do_state_action: set internal offset to 0\n"); 1702 ns->regs.off = 0; 1703 break; 1704 1705 case ACTION_HALFOFF: 1706 if (!(ns->options & OPT_PAGE512_8BIT)) { 1707 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1708 "byte page size 8x chips\n"); 1709 return -1; 1710 } 1711 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1712 ns->regs.off = ns->geom.pgsz/2; 1713 break; 1714 1715 case ACTION_OOBOFF: 1716 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1717 ns->regs.off = ns->geom.pgsz; 1718 break; 1719 1720 default: 1721 NS_DBG("do_state_action: BUG! unknown action\n"); 1722 } 1723 1724 return 0; 1725 } 1726 1727 /* 1728 * Switch simulator's state. 1729 */ 1730 static void switch_state(struct nandsim *ns) 1731 { 1732 if (ns->op) { 1733 /* 1734 * The current operation have already been identified. 1735 * Just follow the states chain. 1736 */ 1737 1738 ns->stateidx += 1; 1739 ns->state = ns->nxstate; 1740 ns->nxstate = ns->op[ns->stateidx + 1]; 1741 1742 NS_DBG("switch_state: operation is known, switch to the next state, " 1743 "state: %s, nxstate: %s\n", 1744 get_state_name(ns->state), get_state_name(ns->nxstate)); 1745 1746 /* See, whether we need to do some action */ 1747 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1748 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1749 return; 1750 } 1751 1752 } else { 1753 /* 1754 * We don't yet know which operation we perform. 1755 * Try to identify it. 1756 */ 1757 1758 /* 1759 * The only event causing the switch_state function to 1760 * be called with yet unknown operation is new command. 1761 */ 1762 ns->state = get_state_by_command(ns->regs.command); 1763 1764 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1765 1766 if (find_operation(ns, 0) != 0) 1767 return; 1768 1769 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1770 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1771 return; 1772 } 1773 } 1774 1775 /* For 16x devices column means the page offset in words */ 1776 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1777 NS_DBG("switch_state: double the column number for 16x device\n"); 1778 ns->regs.column <<= 1; 1779 } 1780 1781 if (NS_STATE(ns->nxstate) == STATE_READY) { 1782 /* 1783 * The current state is the last. Return to STATE_READY 1784 */ 1785 1786 u_char status = NS_STATUS_OK(ns); 1787 1788 /* In case of data states, see if all bytes were input/output */ 1789 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1790 && ns->regs.count != ns->regs.num) { 1791 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1792 ns->regs.num - ns->regs.count); 1793 status = NS_STATUS_FAILED(ns); 1794 } 1795 1796 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1797 1798 switch_to_ready_state(ns, status); 1799 1800 return; 1801 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1802 /* 1803 * If the next state is data input/output, switch to it now 1804 */ 1805 1806 ns->state = ns->nxstate; 1807 ns->nxstate = ns->op[++ns->stateidx + 1]; 1808 ns->regs.num = ns->regs.count = 0; 1809 1810 NS_DBG("switch_state: the next state is data I/O, switch, " 1811 "state: %s, nxstate: %s\n", 1812 get_state_name(ns->state), get_state_name(ns->nxstate)); 1813 1814 /* 1815 * Set the internal register to the count of bytes which 1816 * are expected to be input or output 1817 */ 1818 switch (NS_STATE(ns->state)) { 1819 case STATE_DATAIN: 1820 case STATE_DATAOUT: 1821 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1822 break; 1823 1824 case STATE_DATAOUT_ID: 1825 ns->regs.num = ns->geom.idbytes; 1826 break; 1827 1828 case STATE_DATAOUT_STATUS: 1829 ns->regs.count = ns->regs.num = 0; 1830 break; 1831 1832 default: 1833 NS_ERR("switch_state: BUG! unknown data state\n"); 1834 } 1835 1836 } else if (ns->nxstate & STATE_ADDR_MASK) { 1837 /* 1838 * If the next state is address input, set the internal 1839 * register to the number of expected address bytes 1840 */ 1841 1842 ns->regs.count = 0; 1843 1844 switch (NS_STATE(ns->nxstate)) { 1845 case STATE_ADDR_PAGE: 1846 ns->regs.num = ns->geom.pgaddrbytes; 1847 1848 break; 1849 case STATE_ADDR_SEC: 1850 ns->regs.num = ns->geom.secaddrbytes; 1851 break; 1852 1853 case STATE_ADDR_ZERO: 1854 ns->regs.num = 1; 1855 break; 1856 1857 case STATE_ADDR_COLUMN: 1858 /* Column address is always 2 bytes */ 1859 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1860 break; 1861 1862 default: 1863 NS_ERR("switch_state: BUG! unknown address state\n"); 1864 } 1865 } else { 1866 /* 1867 * Just reset internal counters. 1868 */ 1869 1870 ns->regs.num = 0; 1871 ns->regs.count = 0; 1872 } 1873 } 1874 1875 static u_char ns_nand_read_byte(struct mtd_info *mtd) 1876 { 1877 struct nand_chip *chip = mtd_to_nand(mtd); 1878 struct nandsim *ns = nand_get_controller_data(chip); 1879 u_char outb = 0x00; 1880 1881 /* Sanity and correctness checks */ 1882 if (!ns->lines.ce) { 1883 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1884 return outb; 1885 } 1886 if (ns->lines.ale || ns->lines.cle) { 1887 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1888 return outb; 1889 } 1890 if (!(ns->state & STATE_DATAOUT_MASK)) { 1891 NS_WARN("read_byte: unexpected data output cycle, state is %s " 1892 "return %#x\n", get_state_name(ns->state), (uint)outb); 1893 return outb; 1894 } 1895 1896 /* Status register may be read as many times as it is wanted */ 1897 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1898 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1899 return ns->regs.status; 1900 } 1901 1902 /* Check if there is any data in the internal buffer which may be read */ 1903 if (ns->regs.count == ns->regs.num) { 1904 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1905 return outb; 1906 } 1907 1908 switch (NS_STATE(ns->state)) { 1909 case STATE_DATAOUT: 1910 if (ns->busw == 8) { 1911 outb = ns->buf.byte[ns->regs.count]; 1912 ns->regs.count += 1; 1913 } else { 1914 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1915 ns->regs.count += 2; 1916 } 1917 break; 1918 case STATE_DATAOUT_ID: 1919 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1920 outb = ns->ids[ns->regs.count]; 1921 ns->regs.count += 1; 1922 break; 1923 default: 1924 BUG(); 1925 } 1926 1927 if (ns->regs.count == ns->regs.num) { 1928 NS_DBG("read_byte: all bytes were read\n"); 1929 1930 if (NS_STATE(ns->nxstate) == STATE_READY) 1931 switch_state(ns); 1932 } 1933 1934 return outb; 1935 } 1936 1937 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) 1938 { 1939 struct nand_chip *chip = mtd_to_nand(mtd); 1940 struct nandsim *ns = nand_get_controller_data(chip); 1941 1942 /* Sanity and correctness checks */ 1943 if (!ns->lines.ce) { 1944 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1945 return; 1946 } 1947 if (ns->lines.ale && ns->lines.cle) { 1948 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1949 return; 1950 } 1951 1952 if (ns->lines.cle == 1) { 1953 /* 1954 * The byte written is a command. 1955 */ 1956 1957 if (byte == NAND_CMD_RESET) { 1958 NS_LOG("reset chip\n"); 1959 switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1960 return; 1961 } 1962 1963 /* Check that the command byte is correct */ 1964 if (check_command(byte)) { 1965 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1966 return; 1967 } 1968 1969 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1970 || NS_STATE(ns->state) == STATE_DATAOUT) { 1971 int row = ns->regs.row; 1972 1973 switch_state(ns); 1974 if (byte == NAND_CMD_RNDOUT) 1975 ns->regs.row = row; 1976 } 1977 1978 /* Check if chip is expecting command */ 1979 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1980 /* Do not warn if only 2 id bytes are read */ 1981 if (!(ns->regs.command == NAND_CMD_READID && 1982 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1983 /* 1984 * We are in situation when something else (not command) 1985 * was expected but command was input. In this case ignore 1986 * previous command(s)/state(s) and accept the last one. 1987 */ 1988 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " 1989 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); 1990 } 1991 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1992 } 1993 1994 NS_DBG("command byte corresponding to %s state accepted\n", 1995 get_state_name(get_state_by_command(byte))); 1996 ns->regs.command = byte; 1997 switch_state(ns); 1998 1999 } else if (ns->lines.ale == 1) { 2000 /* 2001 * The byte written is an address. 2002 */ 2003 2004 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 2005 2006 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 2007 2008 if (find_operation(ns, 1) < 0) 2009 return; 2010 2011 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 2012 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2013 return; 2014 } 2015 2016 ns->regs.count = 0; 2017 switch (NS_STATE(ns->nxstate)) { 2018 case STATE_ADDR_PAGE: 2019 ns->regs.num = ns->geom.pgaddrbytes; 2020 break; 2021 case STATE_ADDR_SEC: 2022 ns->regs.num = ns->geom.secaddrbytes; 2023 break; 2024 case STATE_ADDR_ZERO: 2025 ns->regs.num = 1; 2026 break; 2027 default: 2028 BUG(); 2029 } 2030 } 2031 2032 /* Check that chip is expecting address */ 2033 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2034 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " 2035 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); 2036 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2037 return; 2038 } 2039 2040 /* Check if this is expected byte */ 2041 if (ns->regs.count == ns->regs.num) { 2042 NS_ERR("write_byte: no more address bytes expected\n"); 2043 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2044 return; 2045 } 2046 2047 accept_addr_byte(ns, byte); 2048 2049 ns->regs.count += 1; 2050 2051 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2052 (uint)byte, ns->regs.count, ns->regs.num); 2053 2054 if (ns->regs.count == ns->regs.num) { 2055 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2056 switch_state(ns); 2057 } 2058 2059 } else { 2060 /* 2061 * The byte written is an input data. 2062 */ 2063 2064 /* Check that chip is expecting data input */ 2065 if (!(ns->state & STATE_DATAIN_MASK)) { 2066 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " 2067 "switch to %s\n", (uint)byte, 2068 get_state_name(ns->state), get_state_name(STATE_READY)); 2069 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2070 return; 2071 } 2072 2073 /* Check if this is expected byte */ 2074 if (ns->regs.count == ns->regs.num) { 2075 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2076 ns->regs.num); 2077 return; 2078 } 2079 2080 if (ns->busw == 8) { 2081 ns->buf.byte[ns->regs.count] = byte; 2082 ns->regs.count += 1; 2083 } else { 2084 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2085 ns->regs.count += 2; 2086 } 2087 } 2088 2089 return; 2090 } 2091 2092 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) 2093 { 2094 struct nand_chip *chip = mtd_to_nand(mtd); 2095 struct nandsim *ns = nand_get_controller_data(chip); 2096 2097 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; 2098 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; 2099 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; 2100 2101 if (cmd != NAND_CMD_NONE) 2102 ns_nand_write_byte(mtd, cmd); 2103 } 2104 2105 static int ns_device_ready(struct mtd_info *mtd) 2106 { 2107 NS_DBG("device_ready\n"); 2108 return 1; 2109 } 2110 2111 static uint16_t ns_nand_read_word(struct mtd_info *mtd) 2112 { 2113 struct nand_chip *chip = mtd_to_nand(mtd); 2114 2115 NS_DBG("read_word\n"); 2116 2117 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); 2118 } 2119 2120 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) 2121 { 2122 struct nand_chip *chip = mtd_to_nand(mtd); 2123 struct nandsim *ns = nand_get_controller_data(chip); 2124 2125 /* Check that chip is expecting data input */ 2126 if (!(ns->state & STATE_DATAIN_MASK)) { 2127 NS_ERR("write_buf: data input isn't expected, state is %s, " 2128 "switch to STATE_READY\n", get_state_name(ns->state)); 2129 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2130 return; 2131 } 2132 2133 /* Check if these are expected bytes */ 2134 if (ns->regs.count + len > ns->regs.num) { 2135 NS_ERR("write_buf: too many input bytes\n"); 2136 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2137 return; 2138 } 2139 2140 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2141 ns->regs.count += len; 2142 2143 if (ns->regs.count == ns->regs.num) { 2144 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2145 } 2146 } 2147 2148 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) 2149 { 2150 struct nand_chip *chip = mtd_to_nand(mtd); 2151 struct nandsim *ns = nand_get_controller_data(chip); 2152 2153 /* Sanity and correctness checks */ 2154 if (!ns->lines.ce) { 2155 NS_ERR("read_buf: chip is disabled\n"); 2156 return; 2157 } 2158 if (ns->lines.ale || ns->lines.cle) { 2159 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2160 return; 2161 } 2162 if (!(ns->state & STATE_DATAOUT_MASK)) { 2163 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2164 get_state_name(ns->state)); 2165 return; 2166 } 2167 2168 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2169 int i; 2170 2171 for (i = 0; i < len; i++) 2172 buf[i] = mtd_to_nand(mtd)->read_byte(mtd); 2173 2174 return; 2175 } 2176 2177 /* Check if these are expected bytes */ 2178 if (ns->regs.count + len > ns->regs.num) { 2179 NS_ERR("read_buf: too many bytes to read\n"); 2180 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2181 return; 2182 } 2183 2184 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2185 ns->regs.count += len; 2186 2187 if (ns->regs.count == ns->regs.num) { 2188 if (NS_STATE(ns->nxstate) == STATE_READY) 2189 switch_state(ns); 2190 } 2191 2192 return; 2193 } 2194 2195 static int ns_attach_chip(struct nand_chip *chip) 2196 { 2197 unsigned int eccsteps, eccbytes; 2198 2199 if (!bch) 2200 return 0; 2201 2202 if (!mtd_nand_has_bch()) { 2203 NS_ERR("BCH ECC support is disabled\n"); 2204 return -EINVAL; 2205 } 2206 2207 /* Use 512-byte ecc blocks */ 2208 eccsteps = nsmtd->writesize / 512; 2209 eccbytes = ((bch * 13) + 7) / 8; 2210 2211 /* Do not bother supporting small page devices */ 2212 if (nsmtd->oobsize < 64 || !eccsteps) { 2213 NS_ERR("BCH not available on small page devices\n"); 2214 return -EINVAL; 2215 } 2216 2217 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2218 NS_ERR("Invalid BCH value %u\n", bch); 2219 return -EINVAL; 2220 } 2221 2222 chip->ecc.mode = NAND_ECC_SOFT; 2223 chip->ecc.algo = NAND_ECC_BCH; 2224 chip->ecc.size = 512; 2225 chip->ecc.strength = bch; 2226 chip->ecc.bytes = eccbytes; 2227 2228 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2229 2230 return 0; 2231 } 2232 2233 static const struct nand_controller_ops ns_controller_ops = { 2234 .attach_chip = ns_attach_chip, 2235 }; 2236 2237 /* 2238 * Module initialization function 2239 */ 2240 static int __init ns_init_module(void) 2241 { 2242 struct nand_chip *chip; 2243 struct nandsim *nand; 2244 int retval = -ENOMEM, i; 2245 2246 if (bus_width != 8 && bus_width != 16) { 2247 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2248 return -EINVAL; 2249 } 2250 2251 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ 2252 chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim), 2253 GFP_KERNEL); 2254 if (!chip) { 2255 NS_ERR("unable to allocate core structures.\n"); 2256 return -ENOMEM; 2257 } 2258 nsmtd = nand_to_mtd(chip); 2259 nand = (struct nandsim *)(chip + 1); 2260 nand_set_controller_data(chip, (void *)nand); 2261 2262 /* 2263 * Register simulator's callbacks. 2264 */ 2265 chip->cmd_ctrl = ns_hwcontrol; 2266 chip->read_byte = ns_nand_read_byte; 2267 chip->dev_ready = ns_device_ready; 2268 chip->write_buf = ns_nand_write_buf; 2269 chip->read_buf = ns_nand_read_buf; 2270 chip->read_word = ns_nand_read_word; 2271 chip->ecc.mode = NAND_ECC_SOFT; 2272 chip->ecc.algo = NAND_ECC_HAMMING; 2273 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2274 /* and 'badblocks' parameters to work */ 2275 chip->options |= NAND_SKIP_BBTSCAN; 2276 2277 switch (bbt) { 2278 case 2: 2279 chip->bbt_options |= NAND_BBT_NO_OOB; 2280 case 1: 2281 chip->bbt_options |= NAND_BBT_USE_FLASH; 2282 case 0: 2283 break; 2284 default: 2285 NS_ERR("bbt has to be 0..2\n"); 2286 retval = -EINVAL; 2287 goto error; 2288 } 2289 /* 2290 * Perform minimum nandsim structure initialization to handle 2291 * the initial ID read command correctly 2292 */ 2293 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2294 nand->geom.idbytes = 8; 2295 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2296 nand->geom.idbytes = 6; 2297 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2298 nand->geom.idbytes = 4; 2299 else 2300 nand->geom.idbytes = 2; 2301 nand->regs.status = NS_STATUS_OK(nand); 2302 nand->nxstate = STATE_UNKNOWN; 2303 nand->options |= OPT_PAGE512; /* temporary value */ 2304 memcpy(nand->ids, id_bytes, sizeof(nand->ids)); 2305 if (bus_width == 16) { 2306 nand->busw = 16; 2307 chip->options |= NAND_BUSWIDTH_16; 2308 } 2309 2310 nsmtd->owner = THIS_MODULE; 2311 2312 if ((retval = parse_weakblocks()) != 0) 2313 goto error; 2314 2315 if ((retval = parse_weakpages()) != 0) 2316 goto error; 2317 2318 if ((retval = parse_gravepages()) != 0) 2319 goto error; 2320 2321 chip->dummy_controller.ops = &ns_controller_ops; 2322 retval = nand_scan(nsmtd, 1); 2323 if (retval) { 2324 NS_ERR("Could not scan NAND Simulator device\n"); 2325 goto error; 2326 } 2327 2328 if (overridesize) { 2329 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2330 if (new_size >> overridesize != nsmtd->erasesize) { 2331 NS_ERR("overridesize is too big\n"); 2332 retval = -EINVAL; 2333 goto err_exit; 2334 } 2335 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2336 nsmtd->size = new_size; 2337 chip->chipsize = new_size; 2338 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2339 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; 2340 } 2341 2342 if ((retval = setup_wear_reporting(nsmtd)) != 0) 2343 goto err_exit; 2344 2345 if ((retval = init_nandsim(nsmtd)) != 0) 2346 goto err_exit; 2347 2348 if ((retval = nand_create_bbt(chip)) != 0) 2349 goto err_exit; 2350 2351 if ((retval = parse_badblocks(nand, nsmtd)) != 0) 2352 goto err_exit; 2353 2354 /* Register NAND partitions */ 2355 retval = mtd_device_register(nsmtd, &nand->partitions[0], 2356 nand->nbparts); 2357 if (retval != 0) 2358 goto err_exit; 2359 2360 if ((retval = nandsim_debugfs_create(nand)) != 0) 2361 goto err_exit; 2362 2363 return 0; 2364 2365 err_exit: 2366 free_nandsim(nand); 2367 nand_release(nsmtd); 2368 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) 2369 kfree(nand->partitions[i].name); 2370 error: 2371 kfree(chip); 2372 free_lists(); 2373 2374 return retval; 2375 } 2376 2377 module_init(ns_init_module); 2378 2379 /* 2380 * Module clean-up function 2381 */ 2382 static void __exit ns_cleanup_module(void) 2383 { 2384 struct nand_chip *chip = mtd_to_nand(nsmtd); 2385 struct nandsim *ns = nand_get_controller_data(chip); 2386 int i; 2387 2388 free_nandsim(ns); /* Free nandsim private resources */ 2389 nand_release(nsmtd); /* Unregister driver */ 2390 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) 2391 kfree(ns->partitions[i].name); 2392 kfree(mtd_to_nand(nsmtd)); /* Free other structures */ 2393 free_lists(); 2394 } 2395 2396 module_exit(ns_cleanup_module); 2397 2398 MODULE_LICENSE ("GPL"); 2399 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2400 MODULE_DESCRIPTION ("The NAND flash simulator"); 2401