xref: /openbmc/linux/drivers/mtd/nand/raw/nandsim.c (revision da2ef666)
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #define pr_fmt(fmt)  "[nandsim]" fmt
27 
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/math64.h>
34 #include <linux/slab.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/rawnand.h>
39 #include <linux/mtd/nand_bch.h>
40 #include <linux/mtd/partitions.h>
41 #include <linux/delay.h>
42 #include <linux/list.h>
43 #include <linux/random.h>
44 #include <linux/sched.h>
45 #include <linux/sched/mm.h>
46 #include <linux/fs.h>
47 #include <linux/pagemap.h>
48 #include <linux/seq_file.h>
49 #include <linux/debugfs.h>
50 
51 /* Default simulator parameters values */
52 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
53     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
54     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
55     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
56 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
57 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
58 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
59 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
60 #endif
61 
62 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
63 #define CONFIG_NANDSIM_ACCESS_DELAY 25
64 #endif
65 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
66 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
67 #endif
68 #ifndef CONFIG_NANDSIM_ERASE_DELAY
69 #define CONFIG_NANDSIM_ERASE_DELAY 2
70 #endif
71 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
72 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
73 #endif
74 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
75 #define CONFIG_NANDSIM_INPUT_CYCLE  50
76 #endif
77 #ifndef CONFIG_NANDSIM_BUS_WIDTH
78 #define CONFIG_NANDSIM_BUS_WIDTH  8
79 #endif
80 #ifndef CONFIG_NANDSIM_DO_DELAYS
81 #define CONFIG_NANDSIM_DO_DELAYS  0
82 #endif
83 #ifndef CONFIG_NANDSIM_LOG
84 #define CONFIG_NANDSIM_LOG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_DBG
87 #define CONFIG_NANDSIM_DBG        0
88 #endif
89 #ifndef CONFIG_NANDSIM_MAX_PARTS
90 #define CONFIG_NANDSIM_MAX_PARTS  32
91 #endif
92 
93 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
94 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
95 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
96 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
97 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
98 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
99 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
100 static uint log            = CONFIG_NANDSIM_LOG;
101 static uint dbg            = CONFIG_NANDSIM_DBG;
102 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
103 static unsigned int parts_num;
104 static char *badblocks = NULL;
105 static char *weakblocks = NULL;
106 static char *weakpages = NULL;
107 static unsigned int bitflips = 0;
108 static char *gravepages = NULL;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113 static u_char id_bytes[8] = {
114 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
115 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
116 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
117 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
118 	[4 ... 7] = 0xFF,
119 };
120 
121 module_param_array(id_bytes, byte, NULL, 0400);
122 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
123 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
124 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
125 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
126 module_param(access_delay,   uint, 0400);
127 module_param(programm_delay, uint, 0400);
128 module_param(erase_delay,    uint, 0400);
129 module_param(output_cycle,   uint, 0400);
130 module_param(input_cycle,    uint, 0400);
131 module_param(bus_width,      uint, 0400);
132 module_param(do_delays,      uint, 0400);
133 module_param(log,            uint, 0400);
134 module_param(dbg,            uint, 0400);
135 module_param_array(parts, ulong, &parts_num, 0400);
136 module_param(badblocks,      charp, 0400);
137 module_param(weakblocks,     charp, 0400);
138 module_param(weakpages,      charp, 0400);
139 module_param(bitflips,       uint, 0400);
140 module_param(gravepages,     charp, 0400);
141 module_param(overridesize,   uint, 0400);
142 module_param(cache_file,     charp, 0400);
143 module_param(bbt,	     uint, 0400);
144 module_param(bch,	     uint, 0400);
145 
146 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
147 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
148 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
149 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
150 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
151 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
152 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
153 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
154 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
155 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
156 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
157 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
158 MODULE_PARM_DESC(log,            "Perform logging if not zero");
159 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
160 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
161 /* Page and erase block positions for the following parameters are independent of any partitions */
162 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
163 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
164 				 " separated by commas e.g. 113:2 means eb 113"
165 				 " can be erased only twice before failing");
166 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
167 				 " separated by commas e.g. 1401:2 means page 1401"
168 				 " can be written only twice before failing");
169 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
170 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
171 				 " separated by commas e.g. 1401:2 means page 1401"
172 				 " can be read only twice before failing");
173 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
174 				 "The size is specified in erase blocks and as the exponent of a power of two"
175 				 " e.g. 5 means a size of 32 erase blocks");
176 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
177 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
178 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
179 				 "be correctable in 512-byte blocks");
180 
181 /* The largest possible page size */
182 #define NS_LARGEST_PAGE_SIZE	4096
183 
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 	do { if (log) pr_debug(" log: " args); } while(0)
187 #define NS_DBG(args...) \
188 	do { if (dbg) pr_debug(" debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 	do { pr_warn(" warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 	do { pr_err(" error: " args); } while(0)
193 #define NS_INFO(args...) \
194 	do { pr_info(" " args); } while(0)
195 
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201 
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204 
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207 
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210 
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214 
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217 
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233 
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240 
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244 
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249 
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252 
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255 
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264 
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267 
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275 
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278 
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285 
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288 
289 /*
290  * A union to represent flash memory contents and flash buffer.
291  */
292 union ns_mem {
293 	u_char *byte;    /* for byte access */
294 	uint16_t *word;  /* for 16-bit word access */
295 };
296 
297 /*
298  * The structure which describes all the internal simulator data.
299  */
300 struct nandsim {
301 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
302 	unsigned int nbparts;
303 
304 	uint busw;              /* flash chip bus width (8 or 16) */
305 	u_char ids[8];          /* chip's ID bytes */
306 	uint32_t options;       /* chip's characteristic bits */
307 	uint32_t state;         /* current chip state */
308 	uint32_t nxstate;       /* next expected state */
309 
310 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
311 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
312 	uint16_t npstates;      /* number of previous states saved */
313 	uint16_t stateidx;      /* current state index */
314 
315 	/* The simulated NAND flash pages array */
316 	union ns_mem *pages;
317 
318 	/* Slab allocator for nand pages */
319 	struct kmem_cache *nand_pages_slab;
320 
321 	/* Internal buffer of page + OOB size bytes */
322 	union ns_mem buf;
323 
324 	/* NAND flash "geometry" */
325 	struct {
326 		uint64_t totsz;     /* total flash size, bytes */
327 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
328 		uint pgsz;          /* NAND flash page size, bytes */
329 		uint oobsz;         /* page OOB area size, bytes */
330 		uint64_t totszoob;  /* total flash size including OOB, bytes */
331 		uint pgszoob;       /* page size including OOB , bytes*/
332 		uint secszoob;      /* sector size including OOB, bytes */
333 		uint pgnum;         /* total number of pages */
334 		uint pgsec;         /* number of pages per sector */
335 		uint secshift;      /* bits number in sector size */
336 		uint pgshift;       /* bits number in page size */
337 		uint pgaddrbytes;   /* bytes per page address */
338 		uint secaddrbytes;  /* bytes per sector address */
339 		uint idbytes;       /* the number ID bytes that this chip outputs */
340 	} geom;
341 
342 	/* NAND flash internal registers */
343 	struct {
344 		unsigned command; /* the command register */
345 		u_char   status;  /* the status register */
346 		uint     row;     /* the page number */
347 		uint     column;  /* the offset within page */
348 		uint     count;   /* internal counter */
349 		uint     num;     /* number of bytes which must be processed */
350 		uint     off;     /* fixed page offset */
351 	} regs;
352 
353 	/* NAND flash lines state */
354         struct {
355                 int ce;  /* chip Enable */
356                 int cle; /* command Latch Enable */
357                 int ale; /* address Latch Enable */
358                 int wp;  /* write Protect */
359         } lines;
360 
361 	/* Fields needed when using a cache file */
362 	struct file *cfile; /* Open file */
363 	unsigned long *pages_written; /* Which pages have been written */
364 	void *file_buf;
365 	struct page *held_pages[NS_MAX_HELD_PAGES];
366 	int held_cnt;
367 };
368 
369 /*
370  * Operations array. To perform any operation the simulator must pass
371  * through the correspondent states chain.
372  */
373 static struct nandsim_operations {
374 	uint32_t reqopts;  /* options which are required to perform the operation */
375 	uint32_t states[NS_OPER_STATES]; /* operation's states */
376 } ops[NS_OPER_NUM] = {
377 	/* Read page + OOB from the beginning */
378 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
379 			STATE_DATAOUT, STATE_READY}},
380 	/* Read page + OOB from the second half */
381 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
382 			STATE_DATAOUT, STATE_READY}},
383 	/* Read OOB */
384 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
385 			STATE_DATAOUT, STATE_READY}},
386 	/* Program page starting from the beginning */
387 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
388 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389 	/* Program page starting from the beginning */
390 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
391 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392 	/* Program page starting from the second half */
393 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
394 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
395 	/* Program OOB */
396 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
397 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
398 	/* Erase sector */
399 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
400 	/* Read status */
401 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
402 	/* Read ID */
403 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
404 	/* Large page devices read page */
405 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
406 			       STATE_DATAOUT, STATE_READY}},
407 	/* Large page devices random page read */
408 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
409 			       STATE_DATAOUT, STATE_READY}},
410 };
411 
412 struct weak_block {
413 	struct list_head list;
414 	unsigned int erase_block_no;
415 	unsigned int max_erases;
416 	unsigned int erases_done;
417 };
418 
419 static LIST_HEAD(weak_blocks);
420 
421 struct weak_page {
422 	struct list_head list;
423 	unsigned int page_no;
424 	unsigned int max_writes;
425 	unsigned int writes_done;
426 };
427 
428 static LIST_HEAD(weak_pages);
429 
430 struct grave_page {
431 	struct list_head list;
432 	unsigned int page_no;
433 	unsigned int max_reads;
434 	unsigned int reads_done;
435 };
436 
437 static LIST_HEAD(grave_pages);
438 
439 static unsigned long *erase_block_wear = NULL;
440 static unsigned int wear_eb_count = 0;
441 static unsigned long total_wear = 0;
442 
443 /* MTD structure for NAND controller */
444 static struct mtd_info *nsmtd;
445 
446 static int nandsim_debugfs_show(struct seq_file *m, void *private)
447 {
448 	unsigned long wmin = -1, wmax = 0, avg;
449 	unsigned long deciles[10], decile_max[10], tot = 0;
450 	unsigned int i;
451 
452 	/* Calc wear stats */
453 	for (i = 0; i < wear_eb_count; ++i) {
454 		unsigned long wear = erase_block_wear[i];
455 		if (wear < wmin)
456 			wmin = wear;
457 		if (wear > wmax)
458 			wmax = wear;
459 		tot += wear;
460 	}
461 
462 	for (i = 0; i < 9; ++i) {
463 		deciles[i] = 0;
464 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
465 	}
466 	deciles[9] = 0;
467 	decile_max[9] = wmax;
468 	for (i = 0; i < wear_eb_count; ++i) {
469 		int d;
470 		unsigned long wear = erase_block_wear[i];
471 		for (d = 0; d < 10; ++d)
472 			if (wear <= decile_max[d]) {
473 				deciles[d] += 1;
474 				break;
475 			}
476 	}
477 	avg = tot / wear_eb_count;
478 
479 	/* Output wear report */
480 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
481 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
482 	seq_printf(m, "Average number of erases: %lu\n", avg);
483 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
484 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
485 	for (i = 0; i < 10; ++i) {
486 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
487 		if (from > decile_max[i])
488 			continue;
489 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
490 			from,
491 			decile_max[i],
492 			deciles[i]);
493 	}
494 
495 	return 0;
496 }
497 
498 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
499 {
500 	return single_open(file, nandsim_debugfs_show, inode->i_private);
501 }
502 
503 static const struct file_operations dfs_fops = {
504 	.open		= nandsim_debugfs_open,
505 	.read		= seq_read,
506 	.llseek		= seq_lseek,
507 	.release	= single_release,
508 };
509 
510 /**
511  * nandsim_debugfs_create - initialize debugfs
512  * @dev: nandsim device description object
513  *
514  * This function creates all debugfs files for UBI device @ubi. Returns zero in
515  * case of success and a negative error code in case of failure.
516  */
517 static int nandsim_debugfs_create(struct nandsim *dev)
518 {
519 	struct dentry *root = nsmtd->dbg.dfs_dir;
520 	struct dentry *dent;
521 
522 	/*
523 	 * Just skip debugfs initialization when the debugfs directory is
524 	 * missing.
525 	 */
526 	if (IS_ERR_OR_NULL(root)) {
527 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
528 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
529 			NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
530 		return 0;
531 	}
532 
533 	dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
534 				   root, dev, &dfs_fops);
535 	if (IS_ERR_OR_NULL(dent)) {
536 		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
537 		return -1;
538 	}
539 
540 	return 0;
541 }
542 
543 /*
544  * Allocate array of page pointers, create slab allocation for an array
545  * and initialize the array by NULL pointers.
546  *
547  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
548  */
549 static int __init alloc_device(struct nandsim *ns)
550 {
551 	struct file *cfile;
552 	int i, err;
553 
554 	if (cache_file) {
555 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
556 		if (IS_ERR(cfile))
557 			return PTR_ERR(cfile);
558 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
559 			NS_ERR("alloc_device: cache file not readable\n");
560 			err = -EINVAL;
561 			goto err_close;
562 		}
563 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
564 			NS_ERR("alloc_device: cache file not writeable\n");
565 			err = -EINVAL;
566 			goto err_close;
567 		}
568 		ns->pages_written =
569 			vzalloc(array_size(sizeof(unsigned long),
570 					   BITS_TO_LONGS(ns->geom.pgnum)));
571 		if (!ns->pages_written) {
572 			NS_ERR("alloc_device: unable to allocate pages written array\n");
573 			err = -ENOMEM;
574 			goto err_close;
575 		}
576 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
577 		if (!ns->file_buf) {
578 			NS_ERR("alloc_device: unable to allocate file buf\n");
579 			err = -ENOMEM;
580 			goto err_free;
581 		}
582 		ns->cfile = cfile;
583 		return 0;
584 	}
585 
586 	ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
587 	if (!ns->pages) {
588 		NS_ERR("alloc_device: unable to allocate page array\n");
589 		return -ENOMEM;
590 	}
591 	for (i = 0; i < ns->geom.pgnum; i++) {
592 		ns->pages[i].byte = NULL;
593 	}
594 	ns->nand_pages_slab = kmem_cache_create("nandsim",
595 						ns->geom.pgszoob, 0, 0, NULL);
596 	if (!ns->nand_pages_slab) {
597 		NS_ERR("cache_create: unable to create kmem_cache\n");
598 		return -ENOMEM;
599 	}
600 
601 	return 0;
602 
603 err_free:
604 	vfree(ns->pages_written);
605 err_close:
606 	filp_close(cfile, NULL);
607 	return err;
608 }
609 
610 /*
611  * Free any allocated pages, and free the array of page pointers.
612  */
613 static void free_device(struct nandsim *ns)
614 {
615 	int i;
616 
617 	if (ns->cfile) {
618 		kfree(ns->file_buf);
619 		vfree(ns->pages_written);
620 		filp_close(ns->cfile, NULL);
621 		return;
622 	}
623 
624 	if (ns->pages) {
625 		for (i = 0; i < ns->geom.pgnum; i++) {
626 			if (ns->pages[i].byte)
627 				kmem_cache_free(ns->nand_pages_slab,
628 						ns->pages[i].byte);
629 		}
630 		kmem_cache_destroy(ns->nand_pages_slab);
631 		vfree(ns->pages);
632 	}
633 }
634 
635 static char __init *get_partition_name(int i)
636 {
637 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
638 }
639 
640 /*
641  * Initialize the nandsim structure.
642  *
643  * RETURNS: 0 if success, -ERRNO if failure.
644  */
645 static int __init init_nandsim(struct mtd_info *mtd)
646 {
647 	struct nand_chip *chip = mtd_to_nand(mtd);
648 	struct nandsim   *ns   = nand_get_controller_data(chip);
649 	int i, ret = 0;
650 	uint64_t remains;
651 	uint64_t next_offset;
652 
653 	if (NS_IS_INITIALIZED(ns)) {
654 		NS_ERR("init_nandsim: nandsim is already initialized\n");
655 		return -EIO;
656 	}
657 
658 	/* Force mtd to not do delays */
659 	chip->chip_delay = 0;
660 
661 	/* Initialize the NAND flash parameters */
662 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
663 	ns->geom.totsz    = mtd->size;
664 	ns->geom.pgsz     = mtd->writesize;
665 	ns->geom.oobsz    = mtd->oobsize;
666 	ns->geom.secsz    = mtd->erasesize;
667 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
668 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
669 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
670 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
671 	ns->geom.pgshift  = chip->page_shift;
672 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
673 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
674 	ns->options = 0;
675 
676 	if (ns->geom.pgsz == 512) {
677 		ns->options |= OPT_PAGE512;
678 		if (ns->busw == 8)
679 			ns->options |= OPT_PAGE512_8BIT;
680 	} else if (ns->geom.pgsz == 2048) {
681 		ns->options |= OPT_PAGE2048;
682 	} else if (ns->geom.pgsz == 4096) {
683 		ns->options |= OPT_PAGE4096;
684 	} else {
685 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
686 		return -EIO;
687 	}
688 
689 	if (ns->options & OPT_SMALLPAGE) {
690 		if (ns->geom.totsz <= (32 << 20)) {
691 			ns->geom.pgaddrbytes  = 3;
692 			ns->geom.secaddrbytes = 2;
693 		} else {
694 			ns->geom.pgaddrbytes  = 4;
695 			ns->geom.secaddrbytes = 3;
696 		}
697 	} else {
698 		if (ns->geom.totsz <= (128 << 20)) {
699 			ns->geom.pgaddrbytes  = 4;
700 			ns->geom.secaddrbytes = 2;
701 		} else {
702 			ns->geom.pgaddrbytes  = 5;
703 			ns->geom.secaddrbytes = 3;
704 		}
705 	}
706 
707 	/* Fill the partition_info structure */
708 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
709 		NS_ERR("too many partitions.\n");
710 		return -EINVAL;
711 	}
712 	remains = ns->geom.totsz;
713 	next_offset = 0;
714 	for (i = 0; i < parts_num; ++i) {
715 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
716 
717 		if (!part_sz || part_sz > remains) {
718 			NS_ERR("bad partition size.\n");
719 			return -EINVAL;
720 		}
721 		ns->partitions[i].name   = get_partition_name(i);
722 		if (!ns->partitions[i].name) {
723 			NS_ERR("unable to allocate memory.\n");
724 			return -ENOMEM;
725 		}
726 		ns->partitions[i].offset = next_offset;
727 		ns->partitions[i].size   = part_sz;
728 		next_offset += ns->partitions[i].size;
729 		remains -= ns->partitions[i].size;
730 	}
731 	ns->nbparts = parts_num;
732 	if (remains) {
733 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
734 			NS_ERR("too many partitions.\n");
735 			return -EINVAL;
736 		}
737 		ns->partitions[i].name   = get_partition_name(i);
738 		if (!ns->partitions[i].name) {
739 			NS_ERR("unable to allocate memory.\n");
740 			return -ENOMEM;
741 		}
742 		ns->partitions[i].offset = next_offset;
743 		ns->partitions[i].size   = remains;
744 		ns->nbparts += 1;
745 	}
746 
747 	if (ns->busw == 16)
748 		NS_WARN("16-bit flashes support wasn't tested\n");
749 
750 	printk("flash size: %llu MiB\n",
751 			(unsigned long long)ns->geom.totsz >> 20);
752 	printk("page size: %u bytes\n",         ns->geom.pgsz);
753 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
754 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
755 	printk("pages number: %u\n",            ns->geom.pgnum);
756 	printk("pages per sector: %u\n",        ns->geom.pgsec);
757 	printk("bus width: %u\n",               ns->busw);
758 	printk("bits in sector size: %u\n",     ns->geom.secshift);
759 	printk("bits in page size: %u\n",       ns->geom.pgshift);
760 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
761 	printk("flash size with OOB: %llu KiB\n",
762 			(unsigned long long)ns->geom.totszoob >> 10);
763 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
764 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
765 	printk("options: %#x\n",                ns->options);
766 
767 	if ((ret = alloc_device(ns)) != 0)
768 		return ret;
769 
770 	/* Allocate / initialize the internal buffer */
771 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
772 	if (!ns->buf.byte) {
773 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
774 			ns->geom.pgszoob);
775 		return -ENOMEM;
776 	}
777 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
778 
779 	return 0;
780 }
781 
782 /*
783  * Free the nandsim structure.
784  */
785 static void free_nandsim(struct nandsim *ns)
786 {
787 	kfree(ns->buf.byte);
788 	free_device(ns);
789 
790 	return;
791 }
792 
793 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
794 {
795 	char *w;
796 	int zero_ok;
797 	unsigned int erase_block_no;
798 	loff_t offset;
799 
800 	if (!badblocks)
801 		return 0;
802 	w = badblocks;
803 	do {
804 		zero_ok = (*w == '0' ? 1 : 0);
805 		erase_block_no = simple_strtoul(w, &w, 0);
806 		if (!zero_ok && !erase_block_no) {
807 			NS_ERR("invalid badblocks.\n");
808 			return -EINVAL;
809 		}
810 		offset = (loff_t)erase_block_no * ns->geom.secsz;
811 		if (mtd_block_markbad(mtd, offset)) {
812 			NS_ERR("invalid badblocks.\n");
813 			return -EINVAL;
814 		}
815 		if (*w == ',')
816 			w += 1;
817 	} while (*w);
818 	return 0;
819 }
820 
821 static int parse_weakblocks(void)
822 {
823 	char *w;
824 	int zero_ok;
825 	unsigned int erase_block_no;
826 	unsigned int max_erases;
827 	struct weak_block *wb;
828 
829 	if (!weakblocks)
830 		return 0;
831 	w = weakblocks;
832 	do {
833 		zero_ok = (*w == '0' ? 1 : 0);
834 		erase_block_no = simple_strtoul(w, &w, 0);
835 		if (!zero_ok && !erase_block_no) {
836 			NS_ERR("invalid weakblocks.\n");
837 			return -EINVAL;
838 		}
839 		max_erases = 3;
840 		if (*w == ':') {
841 			w += 1;
842 			max_erases = simple_strtoul(w, &w, 0);
843 		}
844 		if (*w == ',')
845 			w += 1;
846 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
847 		if (!wb) {
848 			NS_ERR("unable to allocate memory.\n");
849 			return -ENOMEM;
850 		}
851 		wb->erase_block_no = erase_block_no;
852 		wb->max_erases = max_erases;
853 		list_add(&wb->list, &weak_blocks);
854 	} while (*w);
855 	return 0;
856 }
857 
858 static int erase_error(unsigned int erase_block_no)
859 {
860 	struct weak_block *wb;
861 
862 	list_for_each_entry(wb, &weak_blocks, list)
863 		if (wb->erase_block_no == erase_block_no) {
864 			if (wb->erases_done >= wb->max_erases)
865 				return 1;
866 			wb->erases_done += 1;
867 			return 0;
868 		}
869 	return 0;
870 }
871 
872 static int parse_weakpages(void)
873 {
874 	char *w;
875 	int zero_ok;
876 	unsigned int page_no;
877 	unsigned int max_writes;
878 	struct weak_page *wp;
879 
880 	if (!weakpages)
881 		return 0;
882 	w = weakpages;
883 	do {
884 		zero_ok = (*w == '0' ? 1 : 0);
885 		page_no = simple_strtoul(w, &w, 0);
886 		if (!zero_ok && !page_no) {
887 			NS_ERR("invalid weakpages.\n");
888 			return -EINVAL;
889 		}
890 		max_writes = 3;
891 		if (*w == ':') {
892 			w += 1;
893 			max_writes = simple_strtoul(w, &w, 0);
894 		}
895 		if (*w == ',')
896 			w += 1;
897 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
898 		if (!wp) {
899 			NS_ERR("unable to allocate memory.\n");
900 			return -ENOMEM;
901 		}
902 		wp->page_no = page_no;
903 		wp->max_writes = max_writes;
904 		list_add(&wp->list, &weak_pages);
905 	} while (*w);
906 	return 0;
907 }
908 
909 static int write_error(unsigned int page_no)
910 {
911 	struct weak_page *wp;
912 
913 	list_for_each_entry(wp, &weak_pages, list)
914 		if (wp->page_no == page_no) {
915 			if (wp->writes_done >= wp->max_writes)
916 				return 1;
917 			wp->writes_done += 1;
918 			return 0;
919 		}
920 	return 0;
921 }
922 
923 static int parse_gravepages(void)
924 {
925 	char *g;
926 	int zero_ok;
927 	unsigned int page_no;
928 	unsigned int max_reads;
929 	struct grave_page *gp;
930 
931 	if (!gravepages)
932 		return 0;
933 	g = gravepages;
934 	do {
935 		zero_ok = (*g == '0' ? 1 : 0);
936 		page_no = simple_strtoul(g, &g, 0);
937 		if (!zero_ok && !page_no) {
938 			NS_ERR("invalid gravepagess.\n");
939 			return -EINVAL;
940 		}
941 		max_reads = 3;
942 		if (*g == ':') {
943 			g += 1;
944 			max_reads = simple_strtoul(g, &g, 0);
945 		}
946 		if (*g == ',')
947 			g += 1;
948 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
949 		if (!gp) {
950 			NS_ERR("unable to allocate memory.\n");
951 			return -ENOMEM;
952 		}
953 		gp->page_no = page_no;
954 		gp->max_reads = max_reads;
955 		list_add(&gp->list, &grave_pages);
956 	} while (*g);
957 	return 0;
958 }
959 
960 static int read_error(unsigned int page_no)
961 {
962 	struct grave_page *gp;
963 
964 	list_for_each_entry(gp, &grave_pages, list)
965 		if (gp->page_no == page_no) {
966 			if (gp->reads_done >= gp->max_reads)
967 				return 1;
968 			gp->reads_done += 1;
969 			return 0;
970 		}
971 	return 0;
972 }
973 
974 static void free_lists(void)
975 {
976 	struct list_head *pos, *n;
977 	list_for_each_safe(pos, n, &weak_blocks) {
978 		list_del(pos);
979 		kfree(list_entry(pos, struct weak_block, list));
980 	}
981 	list_for_each_safe(pos, n, &weak_pages) {
982 		list_del(pos);
983 		kfree(list_entry(pos, struct weak_page, list));
984 	}
985 	list_for_each_safe(pos, n, &grave_pages) {
986 		list_del(pos);
987 		kfree(list_entry(pos, struct grave_page, list));
988 	}
989 	kfree(erase_block_wear);
990 }
991 
992 static int setup_wear_reporting(struct mtd_info *mtd)
993 {
994 	size_t mem;
995 
996 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
997 	mem = wear_eb_count * sizeof(unsigned long);
998 	if (mem / sizeof(unsigned long) != wear_eb_count) {
999 		NS_ERR("Too many erase blocks for wear reporting\n");
1000 		return -ENOMEM;
1001 	}
1002 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1003 	if (!erase_block_wear) {
1004 		NS_ERR("Too many erase blocks for wear reporting\n");
1005 		return -ENOMEM;
1006 	}
1007 	return 0;
1008 }
1009 
1010 static void update_wear(unsigned int erase_block_no)
1011 {
1012 	if (!erase_block_wear)
1013 		return;
1014 	total_wear += 1;
1015 	/*
1016 	 * TODO: Notify this through a debugfs entry,
1017 	 * instead of showing an error message.
1018 	 */
1019 	if (total_wear == 0)
1020 		NS_ERR("Erase counter total overflow\n");
1021 	erase_block_wear[erase_block_no] += 1;
1022 	if (erase_block_wear[erase_block_no] == 0)
1023 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1024 }
1025 
1026 /*
1027  * Returns the string representation of 'state' state.
1028  */
1029 static char *get_state_name(uint32_t state)
1030 {
1031 	switch (NS_STATE(state)) {
1032 		case STATE_CMD_READ0:
1033 			return "STATE_CMD_READ0";
1034 		case STATE_CMD_READ1:
1035 			return "STATE_CMD_READ1";
1036 		case STATE_CMD_PAGEPROG:
1037 			return "STATE_CMD_PAGEPROG";
1038 		case STATE_CMD_READOOB:
1039 			return "STATE_CMD_READOOB";
1040 		case STATE_CMD_READSTART:
1041 			return "STATE_CMD_READSTART";
1042 		case STATE_CMD_ERASE1:
1043 			return "STATE_CMD_ERASE1";
1044 		case STATE_CMD_STATUS:
1045 			return "STATE_CMD_STATUS";
1046 		case STATE_CMD_SEQIN:
1047 			return "STATE_CMD_SEQIN";
1048 		case STATE_CMD_READID:
1049 			return "STATE_CMD_READID";
1050 		case STATE_CMD_ERASE2:
1051 			return "STATE_CMD_ERASE2";
1052 		case STATE_CMD_RESET:
1053 			return "STATE_CMD_RESET";
1054 		case STATE_CMD_RNDOUT:
1055 			return "STATE_CMD_RNDOUT";
1056 		case STATE_CMD_RNDOUTSTART:
1057 			return "STATE_CMD_RNDOUTSTART";
1058 		case STATE_ADDR_PAGE:
1059 			return "STATE_ADDR_PAGE";
1060 		case STATE_ADDR_SEC:
1061 			return "STATE_ADDR_SEC";
1062 		case STATE_ADDR_ZERO:
1063 			return "STATE_ADDR_ZERO";
1064 		case STATE_ADDR_COLUMN:
1065 			return "STATE_ADDR_COLUMN";
1066 		case STATE_DATAIN:
1067 			return "STATE_DATAIN";
1068 		case STATE_DATAOUT:
1069 			return "STATE_DATAOUT";
1070 		case STATE_DATAOUT_ID:
1071 			return "STATE_DATAOUT_ID";
1072 		case STATE_DATAOUT_STATUS:
1073 			return "STATE_DATAOUT_STATUS";
1074 		case STATE_READY:
1075 			return "STATE_READY";
1076 		case STATE_UNKNOWN:
1077 			return "STATE_UNKNOWN";
1078 	}
1079 
1080 	NS_ERR("get_state_name: unknown state, BUG\n");
1081 	return NULL;
1082 }
1083 
1084 /*
1085  * Check if command is valid.
1086  *
1087  * RETURNS: 1 if wrong command, 0 if right.
1088  */
1089 static int check_command(int cmd)
1090 {
1091 	switch (cmd) {
1092 
1093 	case NAND_CMD_READ0:
1094 	case NAND_CMD_READ1:
1095 	case NAND_CMD_READSTART:
1096 	case NAND_CMD_PAGEPROG:
1097 	case NAND_CMD_READOOB:
1098 	case NAND_CMD_ERASE1:
1099 	case NAND_CMD_STATUS:
1100 	case NAND_CMD_SEQIN:
1101 	case NAND_CMD_READID:
1102 	case NAND_CMD_ERASE2:
1103 	case NAND_CMD_RESET:
1104 	case NAND_CMD_RNDOUT:
1105 	case NAND_CMD_RNDOUTSTART:
1106 		return 0;
1107 
1108 	default:
1109 		return 1;
1110 	}
1111 }
1112 
1113 /*
1114  * Returns state after command is accepted by command number.
1115  */
1116 static uint32_t get_state_by_command(unsigned command)
1117 {
1118 	switch (command) {
1119 		case NAND_CMD_READ0:
1120 			return STATE_CMD_READ0;
1121 		case NAND_CMD_READ1:
1122 			return STATE_CMD_READ1;
1123 		case NAND_CMD_PAGEPROG:
1124 			return STATE_CMD_PAGEPROG;
1125 		case NAND_CMD_READSTART:
1126 			return STATE_CMD_READSTART;
1127 		case NAND_CMD_READOOB:
1128 			return STATE_CMD_READOOB;
1129 		case NAND_CMD_ERASE1:
1130 			return STATE_CMD_ERASE1;
1131 		case NAND_CMD_STATUS:
1132 			return STATE_CMD_STATUS;
1133 		case NAND_CMD_SEQIN:
1134 			return STATE_CMD_SEQIN;
1135 		case NAND_CMD_READID:
1136 			return STATE_CMD_READID;
1137 		case NAND_CMD_ERASE2:
1138 			return STATE_CMD_ERASE2;
1139 		case NAND_CMD_RESET:
1140 			return STATE_CMD_RESET;
1141 		case NAND_CMD_RNDOUT:
1142 			return STATE_CMD_RNDOUT;
1143 		case NAND_CMD_RNDOUTSTART:
1144 			return STATE_CMD_RNDOUTSTART;
1145 	}
1146 
1147 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Move an address byte to the correspondent internal register.
1153  */
1154 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1155 {
1156 	uint byte = (uint)bt;
1157 
1158 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1159 		ns->regs.column |= (byte << 8 * ns->regs.count);
1160 	else {
1161 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1162 						ns->geom.pgaddrbytes +
1163 						ns->geom.secaddrbytes));
1164 	}
1165 
1166 	return;
1167 }
1168 
1169 /*
1170  * Switch to STATE_READY state.
1171  */
1172 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1173 {
1174 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1175 
1176 	ns->state       = STATE_READY;
1177 	ns->nxstate     = STATE_UNKNOWN;
1178 	ns->op          = NULL;
1179 	ns->npstates    = 0;
1180 	ns->stateidx    = 0;
1181 	ns->regs.num    = 0;
1182 	ns->regs.count  = 0;
1183 	ns->regs.off    = 0;
1184 	ns->regs.row    = 0;
1185 	ns->regs.column = 0;
1186 	ns->regs.status = status;
1187 }
1188 
1189 /*
1190  * If the operation isn't known yet, try to find it in the global array
1191  * of supported operations.
1192  *
1193  * Operation can be unknown because of the following.
1194  *   1. New command was accepted and this is the first call to find the
1195  *      correspondent states chain. In this case ns->npstates = 0;
1196  *   2. There are several operations which begin with the same command(s)
1197  *      (for example program from the second half and read from the
1198  *      second half operations both begin with the READ1 command). In this
1199  *      case the ns->pstates[] array contains previous states.
1200  *
1201  * Thus, the function tries to find operation containing the following
1202  * states (if the 'flag' parameter is 0):
1203  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1204  *
1205  * If (one and only one) matching operation is found, it is accepted (
1206  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1207  * zeroed).
1208  *
1209  * If there are several matches, the current state is pushed to the
1210  * ns->pstates.
1211  *
1212  * The operation can be unknown only while commands are input to the chip.
1213  * As soon as address command is accepted, the operation must be known.
1214  * In such situation the function is called with 'flag' != 0, and the
1215  * operation is searched using the following pattern:
1216  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1217  *
1218  * It is supposed that this pattern must either match one operation or
1219  * none. There can't be ambiguity in that case.
1220  *
1221  * If no matches found, the function does the following:
1222  *   1. if there are saved states present, try to ignore them and search
1223  *      again only using the last command. If nothing was found, switch
1224  *      to the STATE_READY state.
1225  *   2. if there are no saved states, switch to the STATE_READY state.
1226  *
1227  * RETURNS: -2 - no matched operations found.
1228  *          -1 - several matches.
1229  *           0 - operation is found.
1230  */
1231 static int find_operation(struct nandsim *ns, uint32_t flag)
1232 {
1233 	int opsfound = 0;
1234 	int i, j, idx = 0;
1235 
1236 	for (i = 0; i < NS_OPER_NUM; i++) {
1237 
1238 		int found = 1;
1239 
1240 		if (!(ns->options & ops[i].reqopts))
1241 			/* Ignore operations we can't perform */
1242 			continue;
1243 
1244 		if (flag) {
1245 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1246 				continue;
1247 		} else {
1248 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1249 				continue;
1250 		}
1251 
1252 		for (j = 0; j < ns->npstates; j++)
1253 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1254 				&& (ns->options & ops[idx].reqopts)) {
1255 				found = 0;
1256 				break;
1257 			}
1258 
1259 		if (found) {
1260 			idx = i;
1261 			opsfound += 1;
1262 		}
1263 	}
1264 
1265 	if (opsfound == 1) {
1266 		/* Exact match */
1267 		ns->op = &ops[idx].states[0];
1268 		if (flag) {
1269 			/*
1270 			 * In this case the find_operation function was
1271 			 * called when address has just began input. But it isn't
1272 			 * yet fully input and the current state must
1273 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1274 			 * state must be the next state (ns->nxstate).
1275 			 */
1276 			ns->stateidx = ns->npstates - 1;
1277 		} else {
1278 			ns->stateidx = ns->npstates;
1279 		}
1280 		ns->npstates = 0;
1281 		ns->state = ns->op[ns->stateidx];
1282 		ns->nxstate = ns->op[ns->stateidx + 1];
1283 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1284 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1285 		return 0;
1286 	}
1287 
1288 	if (opsfound == 0) {
1289 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1290 		if (ns->npstates != 0) {
1291 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1292 					get_state_name(ns->state));
1293 			ns->npstates = 0;
1294 			return find_operation(ns, 0);
1295 
1296 		}
1297 		NS_DBG("find_operation: no operations found\n");
1298 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1299 		return -2;
1300 	}
1301 
1302 	if (flag) {
1303 		/* This shouldn't happen */
1304 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1305 		return -2;
1306 	}
1307 
1308 	NS_DBG("find_operation: there is still ambiguity\n");
1309 
1310 	ns->pstates[ns->npstates++] = ns->state;
1311 
1312 	return -1;
1313 }
1314 
1315 static void put_pages(struct nandsim *ns)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < ns->held_cnt; i++)
1320 		put_page(ns->held_pages[i]);
1321 }
1322 
1323 /* Get page cache pages in advance to provide NOFS memory allocation */
1324 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1325 {
1326 	pgoff_t index, start_index, end_index;
1327 	struct page *page;
1328 	struct address_space *mapping = file->f_mapping;
1329 
1330 	start_index = pos >> PAGE_SHIFT;
1331 	end_index = (pos + count - 1) >> PAGE_SHIFT;
1332 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1333 		return -EINVAL;
1334 	ns->held_cnt = 0;
1335 	for (index = start_index; index <= end_index; index++) {
1336 		page = find_get_page(mapping, index);
1337 		if (page == NULL) {
1338 			page = find_or_create_page(mapping, index, GFP_NOFS);
1339 			if (page == NULL) {
1340 				write_inode_now(mapping->host, 1);
1341 				page = find_or_create_page(mapping, index, GFP_NOFS);
1342 			}
1343 			if (page == NULL) {
1344 				put_pages(ns);
1345 				return -ENOMEM;
1346 			}
1347 			unlock_page(page);
1348 		}
1349 		ns->held_pages[ns->held_cnt++] = page;
1350 	}
1351 	return 0;
1352 }
1353 
1354 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1355 {
1356 	ssize_t tx;
1357 	int err;
1358 	unsigned int noreclaim_flag;
1359 
1360 	err = get_pages(ns, file, count, pos);
1361 	if (err)
1362 		return err;
1363 	noreclaim_flag = memalloc_noreclaim_save();
1364 	tx = kernel_read(file, buf, count, &pos);
1365 	memalloc_noreclaim_restore(noreclaim_flag);
1366 	put_pages(ns);
1367 	return tx;
1368 }
1369 
1370 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1371 {
1372 	ssize_t tx;
1373 	int err;
1374 	unsigned int noreclaim_flag;
1375 
1376 	err = get_pages(ns, file, count, pos);
1377 	if (err)
1378 		return err;
1379 	noreclaim_flag = memalloc_noreclaim_save();
1380 	tx = kernel_write(file, buf, count, &pos);
1381 	memalloc_noreclaim_restore(noreclaim_flag);
1382 	put_pages(ns);
1383 	return tx;
1384 }
1385 
1386 /*
1387  * Returns a pointer to the current page.
1388  */
1389 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1390 {
1391 	return &(ns->pages[ns->regs.row]);
1392 }
1393 
1394 /*
1395  * Retuns a pointer to the current byte, within the current page.
1396  */
1397 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1398 {
1399 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1400 }
1401 
1402 static int do_read_error(struct nandsim *ns, int num)
1403 {
1404 	unsigned int page_no = ns->regs.row;
1405 
1406 	if (read_error(page_no)) {
1407 		prandom_bytes(ns->buf.byte, num);
1408 		NS_WARN("simulating read error in page %u\n", page_no);
1409 		return 1;
1410 	}
1411 	return 0;
1412 }
1413 
1414 static void do_bit_flips(struct nandsim *ns, int num)
1415 {
1416 	if (bitflips && prandom_u32() < (1 << 22)) {
1417 		int flips = 1;
1418 		if (bitflips > 1)
1419 			flips = (prandom_u32() % (int) bitflips) + 1;
1420 		while (flips--) {
1421 			int pos = prandom_u32() % (num * 8);
1422 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1423 			NS_WARN("read_page: flipping bit %d in page %d "
1424 				"reading from %d ecc: corrected=%u failed=%u\n",
1425 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1426 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1427 		}
1428 	}
1429 }
1430 
1431 /*
1432  * Fill the NAND buffer with data read from the specified page.
1433  */
1434 static void read_page(struct nandsim *ns, int num)
1435 {
1436 	union ns_mem *mypage;
1437 
1438 	if (ns->cfile) {
1439 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1440 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1441 			memset(ns->buf.byte, 0xFF, num);
1442 		} else {
1443 			loff_t pos;
1444 			ssize_t tx;
1445 
1446 			NS_DBG("read_page: page %d written, reading from %d\n",
1447 				ns->regs.row, ns->regs.column + ns->regs.off);
1448 			if (do_read_error(ns, num))
1449 				return;
1450 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1451 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1452 			if (tx != num) {
1453 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1454 				return;
1455 			}
1456 			do_bit_flips(ns, num);
1457 		}
1458 		return;
1459 	}
1460 
1461 	mypage = NS_GET_PAGE(ns);
1462 	if (mypage->byte == NULL) {
1463 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1464 		memset(ns->buf.byte, 0xFF, num);
1465 	} else {
1466 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1467 			ns->regs.row, ns->regs.column + ns->regs.off);
1468 		if (do_read_error(ns, num))
1469 			return;
1470 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1471 		do_bit_flips(ns, num);
1472 	}
1473 }
1474 
1475 /*
1476  * Erase all pages in the specified sector.
1477  */
1478 static void erase_sector(struct nandsim *ns)
1479 {
1480 	union ns_mem *mypage;
1481 	int i;
1482 
1483 	if (ns->cfile) {
1484 		for (i = 0; i < ns->geom.pgsec; i++)
1485 			if (__test_and_clear_bit(ns->regs.row + i,
1486 						 ns->pages_written)) {
1487 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1488 			}
1489 		return;
1490 	}
1491 
1492 	mypage = NS_GET_PAGE(ns);
1493 	for (i = 0; i < ns->geom.pgsec; i++) {
1494 		if (mypage->byte != NULL) {
1495 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1496 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1497 			mypage->byte = NULL;
1498 		}
1499 		mypage++;
1500 	}
1501 }
1502 
1503 /*
1504  * Program the specified page with the contents from the NAND buffer.
1505  */
1506 static int prog_page(struct nandsim *ns, int num)
1507 {
1508 	int i;
1509 	union ns_mem *mypage;
1510 	u_char *pg_off;
1511 
1512 	if (ns->cfile) {
1513 		loff_t off;
1514 		ssize_t tx;
1515 		int all;
1516 
1517 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1518 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1519 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1520 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1521 			all = 1;
1522 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1523 		} else {
1524 			all = 0;
1525 			tx = read_file(ns, ns->cfile, pg_off, num, off);
1526 			if (tx != num) {
1527 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1528 				return -1;
1529 			}
1530 		}
1531 		for (i = 0; i < num; i++)
1532 			pg_off[i] &= ns->buf.byte[i];
1533 		if (all) {
1534 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1535 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1536 			if (tx != ns->geom.pgszoob) {
1537 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1538 				return -1;
1539 			}
1540 			__set_bit(ns->regs.row, ns->pages_written);
1541 		} else {
1542 			tx = write_file(ns, ns->cfile, pg_off, num, off);
1543 			if (tx != num) {
1544 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1545 				return -1;
1546 			}
1547 		}
1548 		return 0;
1549 	}
1550 
1551 	mypage = NS_GET_PAGE(ns);
1552 	if (mypage->byte == NULL) {
1553 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1554 		/*
1555 		 * We allocate memory with GFP_NOFS because a flash FS may
1556 		 * utilize this. If it is holding an FS lock, then gets here,
1557 		 * then kernel memory alloc runs writeback which goes to the FS
1558 		 * again and deadlocks. This was seen in practice.
1559 		 */
1560 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1561 		if (mypage->byte == NULL) {
1562 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1563 			return -1;
1564 		}
1565 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1566 	}
1567 
1568 	pg_off = NS_PAGE_BYTE_OFF(ns);
1569 	for (i = 0; i < num; i++)
1570 		pg_off[i] &= ns->buf.byte[i];
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * If state has any action bit, perform this action.
1577  *
1578  * RETURNS: 0 if success, -1 if error.
1579  */
1580 static int do_state_action(struct nandsim *ns, uint32_t action)
1581 {
1582 	int num;
1583 	int busdiv = ns->busw == 8 ? 1 : 2;
1584 	unsigned int erase_block_no, page_no;
1585 
1586 	action &= ACTION_MASK;
1587 
1588 	/* Check that page address input is correct */
1589 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1590 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1591 		return -1;
1592 	}
1593 
1594 	switch (action) {
1595 
1596 	case ACTION_CPY:
1597 		/*
1598 		 * Copy page data to the internal buffer.
1599 		 */
1600 
1601 		/* Column shouldn't be very large */
1602 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1603 			NS_ERR("do_state_action: column number is too large\n");
1604 			break;
1605 		}
1606 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1607 		read_page(ns, num);
1608 
1609 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1610 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1611 
1612 		if (ns->regs.off == 0)
1613 			NS_LOG("read page %d\n", ns->regs.row);
1614 		else if (ns->regs.off < ns->geom.pgsz)
1615 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1616 		else
1617 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1618 
1619 		NS_UDELAY(access_delay);
1620 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1621 
1622 		break;
1623 
1624 	case ACTION_SECERASE:
1625 		/*
1626 		 * Erase sector.
1627 		 */
1628 
1629 		if (ns->lines.wp) {
1630 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1631 			return -1;
1632 		}
1633 
1634 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1635 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1636 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1637 			return -1;
1638 		}
1639 
1640 		ns->regs.row = (ns->regs.row <<
1641 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1642 		ns->regs.column = 0;
1643 
1644 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1645 
1646 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1647 				ns->regs.row, NS_RAW_OFFSET(ns));
1648 		NS_LOG("erase sector %u\n", erase_block_no);
1649 
1650 		erase_sector(ns);
1651 
1652 		NS_MDELAY(erase_delay);
1653 
1654 		if (erase_block_wear)
1655 			update_wear(erase_block_no);
1656 
1657 		if (erase_error(erase_block_no)) {
1658 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1659 			return -1;
1660 		}
1661 
1662 		break;
1663 
1664 	case ACTION_PRGPAGE:
1665 		/*
1666 		 * Program page - move internal buffer data to the page.
1667 		 */
1668 
1669 		if (ns->lines.wp) {
1670 			NS_WARN("do_state_action: device is write-protected, programm\n");
1671 			return -1;
1672 		}
1673 
1674 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1675 		if (num != ns->regs.count) {
1676 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1677 					ns->regs.count, num);
1678 			return -1;
1679 		}
1680 
1681 		if (prog_page(ns, num) == -1)
1682 			return -1;
1683 
1684 		page_no = ns->regs.row;
1685 
1686 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1687 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1688 		NS_LOG("programm page %d\n", ns->regs.row);
1689 
1690 		NS_UDELAY(programm_delay);
1691 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1692 
1693 		if (write_error(page_no)) {
1694 			NS_WARN("simulating write failure in page %u\n", page_no);
1695 			return -1;
1696 		}
1697 
1698 		break;
1699 
1700 	case ACTION_ZEROOFF:
1701 		NS_DBG("do_state_action: set internal offset to 0\n");
1702 		ns->regs.off = 0;
1703 		break;
1704 
1705 	case ACTION_HALFOFF:
1706 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1707 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1708 				"byte page size 8x chips\n");
1709 			return -1;
1710 		}
1711 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1712 		ns->regs.off = ns->geom.pgsz/2;
1713 		break;
1714 
1715 	case ACTION_OOBOFF:
1716 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1717 		ns->regs.off = ns->geom.pgsz;
1718 		break;
1719 
1720 	default:
1721 		NS_DBG("do_state_action: BUG! unknown action\n");
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * Switch simulator's state.
1729  */
1730 static void switch_state(struct nandsim *ns)
1731 {
1732 	if (ns->op) {
1733 		/*
1734 		 * The current operation have already been identified.
1735 		 * Just follow the states chain.
1736 		 */
1737 
1738 		ns->stateidx += 1;
1739 		ns->state = ns->nxstate;
1740 		ns->nxstate = ns->op[ns->stateidx + 1];
1741 
1742 		NS_DBG("switch_state: operation is known, switch to the next state, "
1743 			"state: %s, nxstate: %s\n",
1744 			get_state_name(ns->state), get_state_name(ns->nxstate));
1745 
1746 		/* See, whether we need to do some action */
1747 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1748 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1749 			return;
1750 		}
1751 
1752 	} else {
1753 		/*
1754 		 * We don't yet know which operation we perform.
1755 		 * Try to identify it.
1756 		 */
1757 
1758 		/*
1759 		 *  The only event causing the switch_state function to
1760 		 *  be called with yet unknown operation is new command.
1761 		 */
1762 		ns->state = get_state_by_command(ns->regs.command);
1763 
1764 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1765 
1766 		if (find_operation(ns, 0) != 0)
1767 			return;
1768 
1769 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1770 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1771 			return;
1772 		}
1773 	}
1774 
1775 	/* For 16x devices column means the page offset in words */
1776 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1777 		NS_DBG("switch_state: double the column number for 16x device\n");
1778 		ns->regs.column <<= 1;
1779 	}
1780 
1781 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1782 		/*
1783 		 * The current state is the last. Return to STATE_READY
1784 		 */
1785 
1786 		u_char status = NS_STATUS_OK(ns);
1787 
1788 		/* In case of data states, see if all bytes were input/output */
1789 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1790 			&& ns->regs.count != ns->regs.num) {
1791 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1792 					ns->regs.num - ns->regs.count);
1793 			status = NS_STATUS_FAILED(ns);
1794 		}
1795 
1796 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1797 
1798 		switch_to_ready_state(ns, status);
1799 
1800 		return;
1801 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1802 		/*
1803 		 * If the next state is data input/output, switch to it now
1804 		 */
1805 
1806 		ns->state      = ns->nxstate;
1807 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1808 		ns->regs.num   = ns->regs.count = 0;
1809 
1810 		NS_DBG("switch_state: the next state is data I/O, switch, "
1811 			"state: %s, nxstate: %s\n",
1812 			get_state_name(ns->state), get_state_name(ns->nxstate));
1813 
1814 		/*
1815 		 * Set the internal register to the count of bytes which
1816 		 * are expected to be input or output
1817 		 */
1818 		switch (NS_STATE(ns->state)) {
1819 			case STATE_DATAIN:
1820 			case STATE_DATAOUT:
1821 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1822 				break;
1823 
1824 			case STATE_DATAOUT_ID:
1825 				ns->regs.num = ns->geom.idbytes;
1826 				break;
1827 
1828 			case STATE_DATAOUT_STATUS:
1829 				ns->regs.count = ns->regs.num = 0;
1830 				break;
1831 
1832 			default:
1833 				NS_ERR("switch_state: BUG! unknown data state\n");
1834 		}
1835 
1836 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1837 		/*
1838 		 * If the next state is address input, set the internal
1839 		 * register to the number of expected address bytes
1840 		 */
1841 
1842 		ns->regs.count = 0;
1843 
1844 		switch (NS_STATE(ns->nxstate)) {
1845 			case STATE_ADDR_PAGE:
1846 				ns->regs.num = ns->geom.pgaddrbytes;
1847 
1848 				break;
1849 			case STATE_ADDR_SEC:
1850 				ns->regs.num = ns->geom.secaddrbytes;
1851 				break;
1852 
1853 			case STATE_ADDR_ZERO:
1854 				ns->regs.num = 1;
1855 				break;
1856 
1857 			case STATE_ADDR_COLUMN:
1858 				/* Column address is always 2 bytes */
1859 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1860 				break;
1861 
1862 			default:
1863 				NS_ERR("switch_state: BUG! unknown address state\n");
1864 		}
1865 	} else {
1866 		/*
1867 		 * Just reset internal counters.
1868 		 */
1869 
1870 		ns->regs.num = 0;
1871 		ns->regs.count = 0;
1872 	}
1873 }
1874 
1875 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1876 {
1877 	struct nand_chip *chip = mtd_to_nand(mtd);
1878 	struct nandsim *ns = nand_get_controller_data(chip);
1879 	u_char outb = 0x00;
1880 
1881 	/* Sanity and correctness checks */
1882 	if (!ns->lines.ce) {
1883 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1884 		return outb;
1885 	}
1886 	if (ns->lines.ale || ns->lines.cle) {
1887 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1888 		return outb;
1889 	}
1890 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1891 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1892 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1893 		return outb;
1894 	}
1895 
1896 	/* Status register may be read as many times as it is wanted */
1897 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1898 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1899 		return ns->regs.status;
1900 	}
1901 
1902 	/* Check if there is any data in the internal buffer which may be read */
1903 	if (ns->regs.count == ns->regs.num) {
1904 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1905 		return outb;
1906 	}
1907 
1908 	switch (NS_STATE(ns->state)) {
1909 		case STATE_DATAOUT:
1910 			if (ns->busw == 8) {
1911 				outb = ns->buf.byte[ns->regs.count];
1912 				ns->regs.count += 1;
1913 			} else {
1914 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1915 				ns->regs.count += 2;
1916 			}
1917 			break;
1918 		case STATE_DATAOUT_ID:
1919 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1920 			outb = ns->ids[ns->regs.count];
1921 			ns->regs.count += 1;
1922 			break;
1923 		default:
1924 			BUG();
1925 	}
1926 
1927 	if (ns->regs.count == ns->regs.num) {
1928 		NS_DBG("read_byte: all bytes were read\n");
1929 
1930 		if (NS_STATE(ns->nxstate) == STATE_READY)
1931 			switch_state(ns);
1932 	}
1933 
1934 	return outb;
1935 }
1936 
1937 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1938 {
1939 	struct nand_chip *chip = mtd_to_nand(mtd);
1940 	struct nandsim *ns = nand_get_controller_data(chip);
1941 
1942 	/* Sanity and correctness checks */
1943 	if (!ns->lines.ce) {
1944 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1945 		return;
1946 	}
1947 	if (ns->lines.ale && ns->lines.cle) {
1948 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1949 		return;
1950 	}
1951 
1952 	if (ns->lines.cle == 1) {
1953 		/*
1954 		 * The byte written is a command.
1955 		 */
1956 
1957 		if (byte == NAND_CMD_RESET) {
1958 			NS_LOG("reset chip\n");
1959 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1960 			return;
1961 		}
1962 
1963 		/* Check that the command byte is correct */
1964 		if (check_command(byte)) {
1965 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1966 			return;
1967 		}
1968 
1969 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1970 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1971 			int row = ns->regs.row;
1972 
1973 			switch_state(ns);
1974 			if (byte == NAND_CMD_RNDOUT)
1975 				ns->regs.row = row;
1976 		}
1977 
1978 		/* Check if chip is expecting command */
1979 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1980 			/* Do not warn if only 2 id bytes are read */
1981 			if (!(ns->regs.command == NAND_CMD_READID &&
1982 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1983 				/*
1984 				 * We are in situation when something else (not command)
1985 				 * was expected but command was input. In this case ignore
1986 				 * previous command(s)/state(s) and accept the last one.
1987 				 */
1988 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1989 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1990 			}
1991 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1992 		}
1993 
1994 		NS_DBG("command byte corresponding to %s state accepted\n",
1995 			get_state_name(get_state_by_command(byte)));
1996 		ns->regs.command = byte;
1997 		switch_state(ns);
1998 
1999 	} else if (ns->lines.ale == 1) {
2000 		/*
2001 		 * The byte written is an address.
2002 		 */
2003 
2004 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2005 
2006 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2007 
2008 			if (find_operation(ns, 1) < 0)
2009 				return;
2010 
2011 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2012 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2013 				return;
2014 			}
2015 
2016 			ns->regs.count = 0;
2017 			switch (NS_STATE(ns->nxstate)) {
2018 				case STATE_ADDR_PAGE:
2019 					ns->regs.num = ns->geom.pgaddrbytes;
2020 					break;
2021 				case STATE_ADDR_SEC:
2022 					ns->regs.num = ns->geom.secaddrbytes;
2023 					break;
2024 				case STATE_ADDR_ZERO:
2025 					ns->regs.num = 1;
2026 					break;
2027 				default:
2028 					BUG();
2029 			}
2030 		}
2031 
2032 		/* Check that chip is expecting address */
2033 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2034 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2035 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2036 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2037 			return;
2038 		}
2039 
2040 		/* Check if this is expected byte */
2041 		if (ns->regs.count == ns->regs.num) {
2042 			NS_ERR("write_byte: no more address bytes expected\n");
2043 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2044 			return;
2045 		}
2046 
2047 		accept_addr_byte(ns, byte);
2048 
2049 		ns->regs.count += 1;
2050 
2051 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2052 				(uint)byte, ns->regs.count, ns->regs.num);
2053 
2054 		if (ns->regs.count == ns->regs.num) {
2055 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2056 			switch_state(ns);
2057 		}
2058 
2059 	} else {
2060 		/*
2061 		 * The byte written is an input data.
2062 		 */
2063 
2064 		/* Check that chip is expecting data input */
2065 		if (!(ns->state & STATE_DATAIN_MASK)) {
2066 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2067 				"switch to %s\n", (uint)byte,
2068 				get_state_name(ns->state), get_state_name(STATE_READY));
2069 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070 			return;
2071 		}
2072 
2073 		/* Check if this is expected byte */
2074 		if (ns->regs.count == ns->regs.num) {
2075 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2076 					ns->regs.num);
2077 			return;
2078 		}
2079 
2080 		if (ns->busw == 8) {
2081 			ns->buf.byte[ns->regs.count] = byte;
2082 			ns->regs.count += 1;
2083 		} else {
2084 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2085 			ns->regs.count += 2;
2086 		}
2087 	}
2088 
2089 	return;
2090 }
2091 
2092 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2093 {
2094 	struct nand_chip *chip = mtd_to_nand(mtd);
2095 	struct nandsim *ns = nand_get_controller_data(chip);
2096 
2097 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2098 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2099 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2100 
2101 	if (cmd != NAND_CMD_NONE)
2102 		ns_nand_write_byte(mtd, cmd);
2103 }
2104 
2105 static int ns_device_ready(struct mtd_info *mtd)
2106 {
2107 	NS_DBG("device_ready\n");
2108 	return 1;
2109 }
2110 
2111 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2112 {
2113 	struct nand_chip *chip = mtd_to_nand(mtd);
2114 
2115 	NS_DBG("read_word\n");
2116 
2117 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2118 }
2119 
2120 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2121 {
2122 	struct nand_chip *chip = mtd_to_nand(mtd);
2123 	struct nandsim *ns = nand_get_controller_data(chip);
2124 
2125 	/* Check that chip is expecting data input */
2126 	if (!(ns->state & STATE_DATAIN_MASK)) {
2127 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2128 			"switch to STATE_READY\n", get_state_name(ns->state));
2129 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2130 		return;
2131 	}
2132 
2133 	/* Check if these are expected bytes */
2134 	if (ns->regs.count + len > ns->regs.num) {
2135 		NS_ERR("write_buf: too many input bytes\n");
2136 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2137 		return;
2138 	}
2139 
2140 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2141 	ns->regs.count += len;
2142 
2143 	if (ns->regs.count == ns->regs.num) {
2144 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2145 	}
2146 }
2147 
2148 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2149 {
2150 	struct nand_chip *chip = mtd_to_nand(mtd);
2151 	struct nandsim *ns = nand_get_controller_data(chip);
2152 
2153 	/* Sanity and correctness checks */
2154 	if (!ns->lines.ce) {
2155 		NS_ERR("read_buf: chip is disabled\n");
2156 		return;
2157 	}
2158 	if (ns->lines.ale || ns->lines.cle) {
2159 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2160 		return;
2161 	}
2162 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2163 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2164 			get_state_name(ns->state));
2165 		return;
2166 	}
2167 
2168 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2169 		int i;
2170 
2171 		for (i = 0; i < len; i++)
2172 			buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
2173 
2174 		return;
2175 	}
2176 
2177 	/* Check if these are expected bytes */
2178 	if (ns->regs.count + len > ns->regs.num) {
2179 		NS_ERR("read_buf: too many bytes to read\n");
2180 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2181 		return;
2182 	}
2183 
2184 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2185 	ns->regs.count += len;
2186 
2187 	if (ns->regs.count == ns->regs.num) {
2188 		if (NS_STATE(ns->nxstate) == STATE_READY)
2189 			switch_state(ns);
2190 	}
2191 
2192 	return;
2193 }
2194 
2195 static int ns_attach_chip(struct nand_chip *chip)
2196 {
2197 	unsigned int eccsteps, eccbytes;
2198 
2199 	if (!bch)
2200 		return 0;
2201 
2202 	if (!mtd_nand_has_bch()) {
2203 		NS_ERR("BCH ECC support is disabled\n");
2204 		return -EINVAL;
2205 	}
2206 
2207 	/* Use 512-byte ecc blocks */
2208 	eccsteps = nsmtd->writesize / 512;
2209 	eccbytes = ((bch * 13) + 7) / 8;
2210 
2211 	/* Do not bother supporting small page devices */
2212 	if (nsmtd->oobsize < 64 || !eccsteps) {
2213 		NS_ERR("BCH not available on small page devices\n");
2214 		return -EINVAL;
2215 	}
2216 
2217 	if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2218 		NS_ERR("Invalid BCH value %u\n", bch);
2219 		return -EINVAL;
2220 	}
2221 
2222 	chip->ecc.mode = NAND_ECC_SOFT;
2223 	chip->ecc.algo = NAND_ECC_BCH;
2224 	chip->ecc.size = 512;
2225 	chip->ecc.strength = bch;
2226 	chip->ecc.bytes = eccbytes;
2227 
2228 	NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2229 
2230 	return 0;
2231 }
2232 
2233 static const struct nand_controller_ops ns_controller_ops = {
2234 	.attach_chip = ns_attach_chip,
2235 };
2236 
2237 /*
2238  * Module initialization function
2239  */
2240 static int __init ns_init_module(void)
2241 {
2242 	struct nand_chip *chip;
2243 	struct nandsim *nand;
2244 	int retval = -ENOMEM, i;
2245 
2246 	if (bus_width != 8 && bus_width != 16) {
2247 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2248 		return -EINVAL;
2249 	}
2250 
2251 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2252 	chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
2253 		       GFP_KERNEL);
2254 	if (!chip) {
2255 		NS_ERR("unable to allocate core structures.\n");
2256 		return -ENOMEM;
2257 	}
2258 	nsmtd       = nand_to_mtd(chip);
2259 	nand        = (struct nandsim *)(chip + 1);
2260 	nand_set_controller_data(chip, (void *)nand);
2261 
2262 	/*
2263 	 * Register simulator's callbacks.
2264 	 */
2265 	chip->cmd_ctrl	 = ns_hwcontrol;
2266 	chip->read_byte  = ns_nand_read_byte;
2267 	chip->dev_ready  = ns_device_ready;
2268 	chip->write_buf  = ns_nand_write_buf;
2269 	chip->read_buf   = ns_nand_read_buf;
2270 	chip->read_word  = ns_nand_read_word;
2271 	chip->ecc.mode   = NAND_ECC_SOFT;
2272 	chip->ecc.algo   = NAND_ECC_HAMMING;
2273 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2274 	/* and 'badblocks' parameters to work */
2275 	chip->options   |= NAND_SKIP_BBTSCAN;
2276 
2277 	switch (bbt) {
2278 	case 2:
2279 		 chip->bbt_options |= NAND_BBT_NO_OOB;
2280 	case 1:
2281 		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2282 	case 0:
2283 		break;
2284 	default:
2285 		NS_ERR("bbt has to be 0..2\n");
2286 		retval = -EINVAL;
2287 		goto error;
2288 	}
2289 	/*
2290 	 * Perform minimum nandsim structure initialization to handle
2291 	 * the initial ID read command correctly
2292 	 */
2293 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2294 		nand->geom.idbytes = 8;
2295 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2296 		nand->geom.idbytes = 6;
2297 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2298 		nand->geom.idbytes = 4;
2299 	else
2300 		nand->geom.idbytes = 2;
2301 	nand->regs.status = NS_STATUS_OK(nand);
2302 	nand->nxstate = STATE_UNKNOWN;
2303 	nand->options |= OPT_PAGE512; /* temporary value */
2304 	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2305 	if (bus_width == 16) {
2306 		nand->busw = 16;
2307 		chip->options |= NAND_BUSWIDTH_16;
2308 	}
2309 
2310 	nsmtd->owner = THIS_MODULE;
2311 
2312 	if ((retval = parse_weakblocks()) != 0)
2313 		goto error;
2314 
2315 	if ((retval = parse_weakpages()) != 0)
2316 		goto error;
2317 
2318 	if ((retval = parse_gravepages()) != 0)
2319 		goto error;
2320 
2321 	chip->dummy_controller.ops = &ns_controller_ops;
2322 	retval = nand_scan(nsmtd, 1);
2323 	if (retval) {
2324 		NS_ERR("Could not scan NAND Simulator device\n");
2325 		goto error;
2326 	}
2327 
2328 	if (overridesize) {
2329 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2330 		if (new_size >> overridesize != nsmtd->erasesize) {
2331 			NS_ERR("overridesize is too big\n");
2332 			retval = -EINVAL;
2333 			goto err_exit;
2334 		}
2335 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2336 		nsmtd->size = new_size;
2337 		chip->chipsize = new_size;
2338 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2339 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2340 	}
2341 
2342 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2343 		goto err_exit;
2344 
2345 	if ((retval = init_nandsim(nsmtd)) != 0)
2346 		goto err_exit;
2347 
2348 	if ((retval = nand_create_bbt(chip)) != 0)
2349 		goto err_exit;
2350 
2351 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2352 		goto err_exit;
2353 
2354 	/* Register NAND partitions */
2355 	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2356 				     nand->nbparts);
2357 	if (retval != 0)
2358 		goto err_exit;
2359 
2360 	if ((retval = nandsim_debugfs_create(nand)) != 0)
2361 		goto err_exit;
2362 
2363         return 0;
2364 
2365 err_exit:
2366 	free_nandsim(nand);
2367 	nand_release(nsmtd);
2368 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2369 		kfree(nand->partitions[i].name);
2370 error:
2371 	kfree(chip);
2372 	free_lists();
2373 
2374 	return retval;
2375 }
2376 
2377 module_init(ns_init_module);
2378 
2379 /*
2380  * Module clean-up function
2381  */
2382 static void __exit ns_cleanup_module(void)
2383 {
2384 	struct nand_chip *chip = mtd_to_nand(nsmtd);
2385 	struct nandsim *ns = nand_get_controller_data(chip);
2386 	int i;
2387 
2388 	free_nandsim(ns);    /* Free nandsim private resources */
2389 	nand_release(nsmtd); /* Unregister driver */
2390 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2391 		kfree(ns->partitions[i].name);
2392 	kfree(mtd_to_nand(nsmtd));        /* Free other structures */
2393 	free_lists();
2394 }
2395 
2396 module_exit(ns_cleanup_module);
2397 
2398 MODULE_LICENSE ("GPL");
2399 MODULE_AUTHOR ("Artem B. Bityuckiy");
2400 MODULE_DESCRIPTION ("The NAND flash simulator");
2401