1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NAND flash simulator. 4 * 5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 6 * 7 * Copyright (C) 2004 Nokia Corporation 8 * 9 * Note: NS means "NAND Simulator". 10 * Note: Input means input TO flash chip, output means output FROM chip. 11 */ 12 13 #define pr_fmt(fmt) "[nandsim]" fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/vmalloc.h> 20 #include <linux/math64.h> 21 #include <linux/slab.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/rawnand.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/delay.h> 28 #include <linux/list.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/sched/mm.h> 32 #include <linux/fs.h> 33 #include <linux/pagemap.h> 34 #include <linux/seq_file.h> 35 #include <linux/debugfs.h> 36 37 /* Default simulator parameters values */ 38 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 39 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 40 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 41 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 42 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 43 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 44 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 45 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 46 #endif 47 48 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 49 #define CONFIG_NANDSIM_ACCESS_DELAY 25 50 #endif 51 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 52 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 53 #endif 54 #ifndef CONFIG_NANDSIM_ERASE_DELAY 55 #define CONFIG_NANDSIM_ERASE_DELAY 2 56 #endif 57 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 58 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 59 #endif 60 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 61 #define CONFIG_NANDSIM_INPUT_CYCLE 50 62 #endif 63 #ifndef CONFIG_NANDSIM_BUS_WIDTH 64 #define CONFIG_NANDSIM_BUS_WIDTH 8 65 #endif 66 #ifndef CONFIG_NANDSIM_DO_DELAYS 67 #define CONFIG_NANDSIM_DO_DELAYS 0 68 #endif 69 #ifndef CONFIG_NANDSIM_LOG 70 #define CONFIG_NANDSIM_LOG 0 71 #endif 72 #ifndef CONFIG_NANDSIM_DBG 73 #define CONFIG_NANDSIM_DBG 0 74 #endif 75 #ifndef CONFIG_NANDSIM_MAX_PARTS 76 #define CONFIG_NANDSIM_MAX_PARTS 32 77 #endif 78 79 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 80 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 81 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 82 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 83 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 84 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 85 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 86 static uint log = CONFIG_NANDSIM_LOG; 87 static uint dbg = CONFIG_NANDSIM_DBG; 88 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 89 static unsigned int parts_num; 90 static char *badblocks = NULL; 91 static char *weakblocks = NULL; 92 static char *weakpages = NULL; 93 static unsigned int bitflips = 0; 94 static char *gravepages = NULL; 95 static unsigned int overridesize = 0; 96 static char *cache_file = NULL; 97 static unsigned int bbt; 98 static unsigned int bch; 99 static u_char id_bytes[8] = { 100 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 101 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 102 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 103 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 104 [4 ... 7] = 0xFF, 105 }; 106 107 module_param_array(id_bytes, byte, NULL, 0400); 108 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 109 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 110 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 111 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 112 module_param(access_delay, uint, 0400); 113 module_param(programm_delay, uint, 0400); 114 module_param(erase_delay, uint, 0400); 115 module_param(output_cycle, uint, 0400); 116 module_param(input_cycle, uint, 0400); 117 module_param(bus_width, uint, 0400); 118 module_param(do_delays, uint, 0400); 119 module_param(log, uint, 0400); 120 module_param(dbg, uint, 0400); 121 module_param_array(parts, ulong, &parts_num, 0400); 122 module_param(badblocks, charp, 0400); 123 module_param(weakblocks, charp, 0400); 124 module_param(weakpages, charp, 0400); 125 module_param(bitflips, uint, 0400); 126 module_param(gravepages, charp, 0400); 127 module_param(overridesize, uint, 0400); 128 module_param(cache_file, charp, 0400); 129 module_param(bbt, uint, 0400); 130 module_param(bch, uint, 0400); 131 132 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 133 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 134 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 135 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 136 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 137 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 138 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 139 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 140 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 141 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 142 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 143 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 144 MODULE_PARM_DESC(log, "Perform logging if not zero"); 145 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 146 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 147 /* Page and erase block positions for the following parameters are independent of any partitions */ 148 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 149 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 150 " separated by commas e.g. 113:2 means eb 113" 151 " can be erased only twice before failing"); 152 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 153 " separated by commas e.g. 1401:2 means page 1401" 154 " can be written only twice before failing"); 155 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 156 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 157 " separated by commas e.g. 1401:2 means page 1401" 158 " can be read only twice before failing"); 159 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 160 "The size is specified in erase blocks and as the exponent of a power of two" 161 " e.g. 5 means a size of 32 erase blocks"); 162 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 163 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 164 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 165 "be correctable in 512-byte blocks"); 166 167 /* The largest possible page size */ 168 #define NS_LARGEST_PAGE_SIZE 4096 169 170 /* Simulator's output macros (logging, debugging, warning, error) */ 171 #define NS_LOG(args...) \ 172 do { if (log) pr_debug(" log: " args); } while(0) 173 #define NS_DBG(args...) \ 174 do { if (dbg) pr_debug(" debug: " args); } while(0) 175 #define NS_WARN(args...) \ 176 do { pr_warn(" warning: " args); } while(0) 177 #define NS_ERR(args...) \ 178 do { pr_err(" error: " args); } while(0) 179 #define NS_INFO(args...) \ 180 do { pr_info(" " args); } while(0) 181 182 /* Busy-wait delay macros (microseconds, milliseconds) */ 183 #define NS_UDELAY(us) \ 184 do { if (do_delays) udelay(us); } while(0) 185 #define NS_MDELAY(us) \ 186 do { if (do_delays) mdelay(us); } while(0) 187 188 /* Is the nandsim structure initialized ? */ 189 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 190 191 /* Good operation completion status */ 192 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 193 194 /* Operation failed completion status */ 195 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 196 197 /* Calculate the page offset in flash RAM image by (row, column) address */ 198 #define NS_RAW_OFFSET(ns) \ 199 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 200 201 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 202 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 203 204 /* After a command is input, the simulator goes to one of the following states */ 205 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 206 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 207 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 208 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 209 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 210 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 211 #define STATE_CMD_STATUS 0x00000007 /* read status */ 212 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 213 #define STATE_CMD_READID 0x0000000A /* read ID */ 214 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 215 #define STATE_CMD_RESET 0x0000000C /* reset */ 216 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 217 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 218 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 219 220 /* After an address is input, the simulator goes to one of these states */ 221 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 222 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 223 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 224 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 225 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 226 227 /* During data input/output the simulator is in these states */ 228 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 229 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 230 231 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 232 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 233 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 234 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 235 236 /* Previous operation is done, ready to accept new requests */ 237 #define STATE_READY 0x00000000 238 239 /* This state is used to mark that the next state isn't known yet */ 240 #define STATE_UNKNOWN 0x10000000 241 242 /* Simulator's actions bit masks */ 243 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 244 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 245 #define ACTION_SECERASE 0x00300000 /* erase sector */ 246 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 247 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 248 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 249 #define ACTION_MASK 0x00700000 /* action mask */ 250 251 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 252 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 253 254 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 255 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 256 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 257 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 258 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 259 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 260 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 261 262 /* Remove action bits from state */ 263 #define NS_STATE(x) ((x) & ~ACTION_MASK) 264 265 /* 266 * Maximum previous states which need to be saved. Currently saving is 267 * only needed for page program operation with preceded read command 268 * (which is only valid for 512-byte pages). 269 */ 270 #define NS_MAX_PREVSTATES 1 271 272 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 273 #define NS_MAX_HELD_PAGES 16 274 275 /* 276 * A union to represent flash memory contents and flash buffer. 277 */ 278 union ns_mem { 279 u_char *byte; /* for byte access */ 280 uint16_t *word; /* for 16-bit word access */ 281 }; 282 283 /* 284 * The structure which describes all the internal simulator data. 285 */ 286 struct nandsim { 287 struct nand_chip chip; 288 struct nand_controller base; 289 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 290 unsigned int nbparts; 291 292 uint busw; /* flash chip bus width (8 or 16) */ 293 u_char ids[8]; /* chip's ID bytes */ 294 uint32_t options; /* chip's characteristic bits */ 295 uint32_t state; /* current chip state */ 296 uint32_t nxstate; /* next expected state */ 297 298 uint32_t *op; /* current operation, NULL operations isn't known yet */ 299 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 300 uint16_t npstates; /* number of previous states saved */ 301 uint16_t stateidx; /* current state index */ 302 303 /* The simulated NAND flash pages array */ 304 union ns_mem *pages; 305 306 /* Slab allocator for nand pages */ 307 struct kmem_cache *nand_pages_slab; 308 309 /* Internal buffer of page + OOB size bytes */ 310 union ns_mem buf; 311 312 /* NAND flash "geometry" */ 313 struct { 314 uint64_t totsz; /* total flash size, bytes */ 315 uint32_t secsz; /* flash sector (erase block) size, bytes */ 316 uint pgsz; /* NAND flash page size, bytes */ 317 uint oobsz; /* page OOB area size, bytes */ 318 uint64_t totszoob; /* total flash size including OOB, bytes */ 319 uint pgszoob; /* page size including OOB , bytes*/ 320 uint secszoob; /* sector size including OOB, bytes */ 321 uint pgnum; /* total number of pages */ 322 uint pgsec; /* number of pages per sector */ 323 uint secshift; /* bits number in sector size */ 324 uint pgshift; /* bits number in page size */ 325 uint pgaddrbytes; /* bytes per page address */ 326 uint secaddrbytes; /* bytes per sector address */ 327 uint idbytes; /* the number ID bytes that this chip outputs */ 328 } geom; 329 330 /* NAND flash internal registers */ 331 struct { 332 unsigned command; /* the command register */ 333 u_char status; /* the status register */ 334 uint row; /* the page number */ 335 uint column; /* the offset within page */ 336 uint count; /* internal counter */ 337 uint num; /* number of bytes which must be processed */ 338 uint off; /* fixed page offset */ 339 } regs; 340 341 /* NAND flash lines state */ 342 struct { 343 int ce; /* chip Enable */ 344 int cle; /* command Latch Enable */ 345 int ale; /* address Latch Enable */ 346 int wp; /* write Protect */ 347 } lines; 348 349 /* Fields needed when using a cache file */ 350 struct file *cfile; /* Open file */ 351 unsigned long *pages_written; /* Which pages have been written */ 352 void *file_buf; 353 struct page *held_pages[NS_MAX_HELD_PAGES]; 354 int held_cnt; 355 356 /* debugfs entry */ 357 struct dentry *dent; 358 }; 359 360 /* 361 * Operations array. To perform any operation the simulator must pass 362 * through the correspondent states chain. 363 */ 364 static struct nandsim_operations { 365 uint32_t reqopts; /* options which are required to perform the operation */ 366 uint32_t states[NS_OPER_STATES]; /* operation's states */ 367 } ops[NS_OPER_NUM] = { 368 /* Read page + OOB from the beginning */ 369 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 370 STATE_DATAOUT, STATE_READY}}, 371 /* Read page + OOB from the second half */ 372 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 373 STATE_DATAOUT, STATE_READY}}, 374 /* Read OOB */ 375 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 376 STATE_DATAOUT, STATE_READY}}, 377 /* Program page starting from the beginning */ 378 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 379 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 380 /* Program page starting from the beginning */ 381 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 382 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 383 /* Program page starting from the second half */ 384 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 385 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 386 /* Program OOB */ 387 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 388 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 389 /* Erase sector */ 390 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 391 /* Read status */ 392 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 393 /* Read ID */ 394 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 395 /* Large page devices read page */ 396 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 397 STATE_DATAOUT, STATE_READY}}, 398 /* Large page devices random page read */ 399 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 400 STATE_DATAOUT, STATE_READY}}, 401 }; 402 403 struct weak_block { 404 struct list_head list; 405 unsigned int erase_block_no; 406 unsigned int max_erases; 407 unsigned int erases_done; 408 }; 409 410 static LIST_HEAD(weak_blocks); 411 412 struct weak_page { 413 struct list_head list; 414 unsigned int page_no; 415 unsigned int max_writes; 416 unsigned int writes_done; 417 }; 418 419 static LIST_HEAD(weak_pages); 420 421 struct grave_page { 422 struct list_head list; 423 unsigned int page_no; 424 unsigned int max_reads; 425 unsigned int reads_done; 426 }; 427 428 static LIST_HEAD(grave_pages); 429 430 static unsigned long *erase_block_wear = NULL; 431 static unsigned int wear_eb_count = 0; 432 static unsigned long total_wear = 0; 433 434 /* MTD structure for NAND controller */ 435 static struct mtd_info *nsmtd; 436 437 static int ns_show(struct seq_file *m, void *private) 438 { 439 unsigned long wmin = -1, wmax = 0, avg; 440 unsigned long deciles[10], decile_max[10], tot = 0; 441 unsigned int i; 442 443 /* Calc wear stats */ 444 for (i = 0; i < wear_eb_count; ++i) { 445 unsigned long wear = erase_block_wear[i]; 446 if (wear < wmin) 447 wmin = wear; 448 if (wear > wmax) 449 wmax = wear; 450 tot += wear; 451 } 452 453 for (i = 0; i < 9; ++i) { 454 deciles[i] = 0; 455 decile_max[i] = (wmax * (i + 1) + 5) / 10; 456 } 457 deciles[9] = 0; 458 decile_max[9] = wmax; 459 for (i = 0; i < wear_eb_count; ++i) { 460 int d; 461 unsigned long wear = erase_block_wear[i]; 462 for (d = 0; d < 10; ++d) 463 if (wear <= decile_max[d]) { 464 deciles[d] += 1; 465 break; 466 } 467 } 468 avg = tot / wear_eb_count; 469 470 /* Output wear report */ 471 seq_printf(m, "Total numbers of erases: %lu\n", tot); 472 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 473 seq_printf(m, "Average number of erases: %lu\n", avg); 474 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 475 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 476 for (i = 0; i < 10; ++i) { 477 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 478 if (from > decile_max[i]) 479 continue; 480 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 481 from, 482 decile_max[i], 483 deciles[i]); 484 } 485 486 return 0; 487 } 488 DEFINE_SHOW_ATTRIBUTE(ns); 489 490 /** 491 * ns_debugfs_create - initialize debugfs 492 * @ns: nandsim device description object 493 * 494 * This function creates all debugfs files for UBI device @ubi. Returns zero in 495 * case of success and a negative error code in case of failure. 496 */ 497 static int ns_debugfs_create(struct nandsim *ns) 498 { 499 struct dentry *root = nsmtd->dbg.dfs_dir; 500 501 /* 502 * Just skip debugfs initialization when the debugfs directory is 503 * missing. 504 */ 505 if (IS_ERR_OR_NULL(root)) { 506 if (IS_ENABLED(CONFIG_DEBUG_FS) && 507 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 508 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 509 return 0; 510 } 511 512 ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns, 513 &ns_fops); 514 if (IS_ERR_OR_NULL(ns->dent)) { 515 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 516 return -1; 517 } 518 519 return 0; 520 } 521 522 static void ns_debugfs_remove(struct nandsim *ns) 523 { 524 debugfs_remove_recursive(ns->dent); 525 } 526 527 /* 528 * Allocate array of page pointers, create slab allocation for an array 529 * and initialize the array by NULL pointers. 530 * 531 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 532 */ 533 static int __init ns_alloc_device(struct nandsim *ns) 534 { 535 struct file *cfile; 536 int i, err; 537 538 if (cache_file) { 539 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 540 if (IS_ERR(cfile)) 541 return PTR_ERR(cfile); 542 if (!(cfile->f_mode & FMODE_CAN_READ)) { 543 NS_ERR("alloc_device: cache file not readable\n"); 544 err = -EINVAL; 545 goto err_close_filp; 546 } 547 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 548 NS_ERR("alloc_device: cache file not writeable\n"); 549 err = -EINVAL; 550 goto err_close_filp; 551 } 552 ns->pages_written = 553 vzalloc(array_size(sizeof(unsigned long), 554 BITS_TO_LONGS(ns->geom.pgnum))); 555 if (!ns->pages_written) { 556 NS_ERR("alloc_device: unable to allocate pages written array\n"); 557 err = -ENOMEM; 558 goto err_close_filp; 559 } 560 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 561 if (!ns->file_buf) { 562 NS_ERR("alloc_device: unable to allocate file buf\n"); 563 err = -ENOMEM; 564 goto err_free_pw; 565 } 566 ns->cfile = cfile; 567 568 return 0; 569 570 err_free_pw: 571 vfree(ns->pages_written); 572 err_close_filp: 573 filp_close(cfile, NULL); 574 575 return err; 576 } 577 578 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 579 if (!ns->pages) { 580 NS_ERR("alloc_device: unable to allocate page array\n"); 581 return -ENOMEM; 582 } 583 for (i = 0; i < ns->geom.pgnum; i++) { 584 ns->pages[i].byte = NULL; 585 } 586 ns->nand_pages_slab = kmem_cache_create("nandsim", 587 ns->geom.pgszoob, 0, 0, NULL); 588 if (!ns->nand_pages_slab) { 589 NS_ERR("cache_create: unable to create kmem_cache\n"); 590 err = -ENOMEM; 591 goto err_free_pg; 592 } 593 594 return 0; 595 596 err_free_pg: 597 vfree(ns->pages); 598 599 return err; 600 } 601 602 /* 603 * Free any allocated pages, and free the array of page pointers. 604 */ 605 static void ns_free_device(struct nandsim *ns) 606 { 607 int i; 608 609 if (ns->cfile) { 610 kfree(ns->file_buf); 611 vfree(ns->pages_written); 612 filp_close(ns->cfile, NULL); 613 return; 614 } 615 616 if (ns->pages) { 617 for (i = 0; i < ns->geom.pgnum; i++) { 618 if (ns->pages[i].byte) 619 kmem_cache_free(ns->nand_pages_slab, 620 ns->pages[i].byte); 621 } 622 kmem_cache_destroy(ns->nand_pages_slab); 623 vfree(ns->pages); 624 } 625 } 626 627 static char __init *ns_get_partition_name(int i) 628 { 629 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 630 } 631 632 /* 633 * Initialize the nandsim structure. 634 * 635 * RETURNS: 0 if success, -ERRNO if failure. 636 */ 637 static int __init ns_init(struct mtd_info *mtd) 638 { 639 struct nand_chip *chip = mtd_to_nand(mtd); 640 struct nandsim *ns = nand_get_controller_data(chip); 641 int i, ret = 0; 642 uint64_t remains; 643 uint64_t next_offset; 644 645 if (NS_IS_INITIALIZED(ns)) { 646 NS_ERR("init_nandsim: nandsim is already initialized\n"); 647 return -EIO; 648 } 649 650 /* Initialize the NAND flash parameters */ 651 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 652 ns->geom.totsz = mtd->size; 653 ns->geom.pgsz = mtd->writesize; 654 ns->geom.oobsz = mtd->oobsize; 655 ns->geom.secsz = mtd->erasesize; 656 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 657 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 658 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 659 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 660 ns->geom.pgshift = chip->page_shift; 661 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 662 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 663 ns->options = 0; 664 665 if (ns->geom.pgsz == 512) { 666 ns->options |= OPT_PAGE512; 667 if (ns->busw == 8) 668 ns->options |= OPT_PAGE512_8BIT; 669 } else if (ns->geom.pgsz == 2048) { 670 ns->options |= OPT_PAGE2048; 671 } else if (ns->geom.pgsz == 4096) { 672 ns->options |= OPT_PAGE4096; 673 } else { 674 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 675 return -EIO; 676 } 677 678 if (ns->options & OPT_SMALLPAGE) { 679 if (ns->geom.totsz <= (32 << 20)) { 680 ns->geom.pgaddrbytes = 3; 681 ns->geom.secaddrbytes = 2; 682 } else { 683 ns->geom.pgaddrbytes = 4; 684 ns->geom.secaddrbytes = 3; 685 } 686 } else { 687 if (ns->geom.totsz <= (128 << 20)) { 688 ns->geom.pgaddrbytes = 4; 689 ns->geom.secaddrbytes = 2; 690 } else { 691 ns->geom.pgaddrbytes = 5; 692 ns->geom.secaddrbytes = 3; 693 } 694 } 695 696 /* Fill the partition_info structure */ 697 if (parts_num > ARRAY_SIZE(ns->partitions)) { 698 NS_ERR("too many partitions.\n"); 699 return -EINVAL; 700 } 701 remains = ns->geom.totsz; 702 next_offset = 0; 703 for (i = 0; i < parts_num; ++i) { 704 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 705 706 if (!part_sz || part_sz > remains) { 707 NS_ERR("bad partition size.\n"); 708 return -EINVAL; 709 } 710 ns->partitions[i].name = ns_get_partition_name(i); 711 if (!ns->partitions[i].name) { 712 NS_ERR("unable to allocate memory.\n"); 713 return -ENOMEM; 714 } 715 ns->partitions[i].offset = next_offset; 716 ns->partitions[i].size = part_sz; 717 next_offset += ns->partitions[i].size; 718 remains -= ns->partitions[i].size; 719 } 720 ns->nbparts = parts_num; 721 if (remains) { 722 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 723 NS_ERR("too many partitions.\n"); 724 ret = -EINVAL; 725 goto free_partition_names; 726 } 727 ns->partitions[i].name = ns_get_partition_name(i); 728 if (!ns->partitions[i].name) { 729 NS_ERR("unable to allocate memory.\n"); 730 ret = -ENOMEM; 731 goto free_partition_names; 732 } 733 ns->partitions[i].offset = next_offset; 734 ns->partitions[i].size = remains; 735 ns->nbparts += 1; 736 } 737 738 if (ns->busw == 16) 739 NS_WARN("16-bit flashes support wasn't tested\n"); 740 741 printk("flash size: %llu MiB\n", 742 (unsigned long long)ns->geom.totsz >> 20); 743 printk("page size: %u bytes\n", ns->geom.pgsz); 744 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 745 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 746 printk("pages number: %u\n", ns->geom.pgnum); 747 printk("pages per sector: %u\n", ns->geom.pgsec); 748 printk("bus width: %u\n", ns->busw); 749 printk("bits in sector size: %u\n", ns->geom.secshift); 750 printk("bits in page size: %u\n", ns->geom.pgshift); 751 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 752 printk("flash size with OOB: %llu KiB\n", 753 (unsigned long long)ns->geom.totszoob >> 10); 754 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 755 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 756 printk("options: %#x\n", ns->options); 757 758 ret = ns_alloc_device(ns); 759 if (ret) 760 goto free_partition_names; 761 762 /* Allocate / initialize the internal buffer */ 763 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 764 if (!ns->buf.byte) { 765 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 766 ns->geom.pgszoob); 767 ret = -ENOMEM; 768 goto free_device; 769 } 770 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 771 772 return 0; 773 774 free_device: 775 ns_free_device(ns); 776 free_partition_names: 777 for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) 778 kfree(ns->partitions[i].name); 779 780 return ret; 781 } 782 783 /* 784 * Free the nandsim structure. 785 */ 786 static void ns_free(struct nandsim *ns) 787 { 788 int i; 789 790 for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) 791 kfree(ns->partitions[i].name); 792 793 kfree(ns->buf.byte); 794 ns_free_device(ns); 795 796 return; 797 } 798 799 static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 800 { 801 char *w; 802 int zero_ok; 803 unsigned int erase_block_no; 804 loff_t offset; 805 806 if (!badblocks) 807 return 0; 808 w = badblocks; 809 do { 810 zero_ok = (*w == '0' ? 1 : 0); 811 erase_block_no = simple_strtoul(w, &w, 0); 812 if (!zero_ok && !erase_block_no) { 813 NS_ERR("invalid badblocks.\n"); 814 return -EINVAL; 815 } 816 offset = (loff_t)erase_block_no * ns->geom.secsz; 817 if (mtd_block_markbad(mtd, offset)) { 818 NS_ERR("invalid badblocks.\n"); 819 return -EINVAL; 820 } 821 if (*w == ',') 822 w += 1; 823 } while (*w); 824 return 0; 825 } 826 827 static int ns_parse_weakblocks(void) 828 { 829 char *w; 830 int zero_ok; 831 unsigned int erase_block_no; 832 unsigned int max_erases; 833 struct weak_block *wb; 834 835 if (!weakblocks) 836 return 0; 837 w = weakblocks; 838 do { 839 zero_ok = (*w == '0' ? 1 : 0); 840 erase_block_no = simple_strtoul(w, &w, 0); 841 if (!zero_ok && !erase_block_no) { 842 NS_ERR("invalid weakblocks.\n"); 843 return -EINVAL; 844 } 845 max_erases = 3; 846 if (*w == ':') { 847 w += 1; 848 max_erases = simple_strtoul(w, &w, 0); 849 } 850 if (*w == ',') 851 w += 1; 852 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 853 if (!wb) { 854 NS_ERR("unable to allocate memory.\n"); 855 return -ENOMEM; 856 } 857 wb->erase_block_no = erase_block_no; 858 wb->max_erases = max_erases; 859 list_add(&wb->list, &weak_blocks); 860 } while (*w); 861 return 0; 862 } 863 864 static int ns_erase_error(unsigned int erase_block_no) 865 { 866 struct weak_block *wb; 867 868 list_for_each_entry(wb, &weak_blocks, list) 869 if (wb->erase_block_no == erase_block_no) { 870 if (wb->erases_done >= wb->max_erases) 871 return 1; 872 wb->erases_done += 1; 873 return 0; 874 } 875 return 0; 876 } 877 878 static int ns_parse_weakpages(void) 879 { 880 char *w; 881 int zero_ok; 882 unsigned int page_no; 883 unsigned int max_writes; 884 struct weak_page *wp; 885 886 if (!weakpages) 887 return 0; 888 w = weakpages; 889 do { 890 zero_ok = (*w == '0' ? 1 : 0); 891 page_no = simple_strtoul(w, &w, 0); 892 if (!zero_ok && !page_no) { 893 NS_ERR("invalid weakpages.\n"); 894 return -EINVAL; 895 } 896 max_writes = 3; 897 if (*w == ':') { 898 w += 1; 899 max_writes = simple_strtoul(w, &w, 0); 900 } 901 if (*w == ',') 902 w += 1; 903 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 904 if (!wp) { 905 NS_ERR("unable to allocate memory.\n"); 906 return -ENOMEM; 907 } 908 wp->page_no = page_no; 909 wp->max_writes = max_writes; 910 list_add(&wp->list, &weak_pages); 911 } while (*w); 912 return 0; 913 } 914 915 static int ns_write_error(unsigned int page_no) 916 { 917 struct weak_page *wp; 918 919 list_for_each_entry(wp, &weak_pages, list) 920 if (wp->page_no == page_no) { 921 if (wp->writes_done >= wp->max_writes) 922 return 1; 923 wp->writes_done += 1; 924 return 0; 925 } 926 return 0; 927 } 928 929 static int ns_parse_gravepages(void) 930 { 931 char *g; 932 int zero_ok; 933 unsigned int page_no; 934 unsigned int max_reads; 935 struct grave_page *gp; 936 937 if (!gravepages) 938 return 0; 939 g = gravepages; 940 do { 941 zero_ok = (*g == '0' ? 1 : 0); 942 page_no = simple_strtoul(g, &g, 0); 943 if (!zero_ok && !page_no) { 944 NS_ERR("invalid gravepagess.\n"); 945 return -EINVAL; 946 } 947 max_reads = 3; 948 if (*g == ':') { 949 g += 1; 950 max_reads = simple_strtoul(g, &g, 0); 951 } 952 if (*g == ',') 953 g += 1; 954 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 955 if (!gp) { 956 NS_ERR("unable to allocate memory.\n"); 957 return -ENOMEM; 958 } 959 gp->page_no = page_no; 960 gp->max_reads = max_reads; 961 list_add(&gp->list, &grave_pages); 962 } while (*g); 963 return 0; 964 } 965 966 static int ns_read_error(unsigned int page_no) 967 { 968 struct grave_page *gp; 969 970 list_for_each_entry(gp, &grave_pages, list) 971 if (gp->page_no == page_no) { 972 if (gp->reads_done >= gp->max_reads) 973 return 1; 974 gp->reads_done += 1; 975 return 0; 976 } 977 return 0; 978 } 979 980 static int ns_setup_wear_reporting(struct mtd_info *mtd) 981 { 982 size_t mem; 983 984 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 985 mem = wear_eb_count * sizeof(unsigned long); 986 if (mem / sizeof(unsigned long) != wear_eb_count) { 987 NS_ERR("Too many erase blocks for wear reporting\n"); 988 return -ENOMEM; 989 } 990 erase_block_wear = kzalloc(mem, GFP_KERNEL); 991 if (!erase_block_wear) { 992 NS_ERR("Too many erase blocks for wear reporting\n"); 993 return -ENOMEM; 994 } 995 return 0; 996 } 997 998 static void ns_update_wear(unsigned int erase_block_no) 999 { 1000 if (!erase_block_wear) 1001 return; 1002 total_wear += 1; 1003 /* 1004 * TODO: Notify this through a debugfs entry, 1005 * instead of showing an error message. 1006 */ 1007 if (total_wear == 0) 1008 NS_ERR("Erase counter total overflow\n"); 1009 erase_block_wear[erase_block_no] += 1; 1010 if (erase_block_wear[erase_block_no] == 0) 1011 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 1012 } 1013 1014 /* 1015 * Returns the string representation of 'state' state. 1016 */ 1017 static char *ns_get_state_name(uint32_t state) 1018 { 1019 switch (NS_STATE(state)) { 1020 case STATE_CMD_READ0: 1021 return "STATE_CMD_READ0"; 1022 case STATE_CMD_READ1: 1023 return "STATE_CMD_READ1"; 1024 case STATE_CMD_PAGEPROG: 1025 return "STATE_CMD_PAGEPROG"; 1026 case STATE_CMD_READOOB: 1027 return "STATE_CMD_READOOB"; 1028 case STATE_CMD_READSTART: 1029 return "STATE_CMD_READSTART"; 1030 case STATE_CMD_ERASE1: 1031 return "STATE_CMD_ERASE1"; 1032 case STATE_CMD_STATUS: 1033 return "STATE_CMD_STATUS"; 1034 case STATE_CMD_SEQIN: 1035 return "STATE_CMD_SEQIN"; 1036 case STATE_CMD_READID: 1037 return "STATE_CMD_READID"; 1038 case STATE_CMD_ERASE2: 1039 return "STATE_CMD_ERASE2"; 1040 case STATE_CMD_RESET: 1041 return "STATE_CMD_RESET"; 1042 case STATE_CMD_RNDOUT: 1043 return "STATE_CMD_RNDOUT"; 1044 case STATE_CMD_RNDOUTSTART: 1045 return "STATE_CMD_RNDOUTSTART"; 1046 case STATE_ADDR_PAGE: 1047 return "STATE_ADDR_PAGE"; 1048 case STATE_ADDR_SEC: 1049 return "STATE_ADDR_SEC"; 1050 case STATE_ADDR_ZERO: 1051 return "STATE_ADDR_ZERO"; 1052 case STATE_ADDR_COLUMN: 1053 return "STATE_ADDR_COLUMN"; 1054 case STATE_DATAIN: 1055 return "STATE_DATAIN"; 1056 case STATE_DATAOUT: 1057 return "STATE_DATAOUT"; 1058 case STATE_DATAOUT_ID: 1059 return "STATE_DATAOUT_ID"; 1060 case STATE_DATAOUT_STATUS: 1061 return "STATE_DATAOUT_STATUS"; 1062 case STATE_READY: 1063 return "STATE_READY"; 1064 case STATE_UNKNOWN: 1065 return "STATE_UNKNOWN"; 1066 } 1067 1068 NS_ERR("get_state_name: unknown state, BUG\n"); 1069 return NULL; 1070 } 1071 1072 /* 1073 * Check if command is valid. 1074 * 1075 * RETURNS: 1 if wrong command, 0 if right. 1076 */ 1077 static int ns_check_command(int cmd) 1078 { 1079 switch (cmd) { 1080 1081 case NAND_CMD_READ0: 1082 case NAND_CMD_READ1: 1083 case NAND_CMD_READSTART: 1084 case NAND_CMD_PAGEPROG: 1085 case NAND_CMD_READOOB: 1086 case NAND_CMD_ERASE1: 1087 case NAND_CMD_STATUS: 1088 case NAND_CMD_SEQIN: 1089 case NAND_CMD_READID: 1090 case NAND_CMD_ERASE2: 1091 case NAND_CMD_RESET: 1092 case NAND_CMD_RNDOUT: 1093 case NAND_CMD_RNDOUTSTART: 1094 return 0; 1095 1096 default: 1097 return 1; 1098 } 1099 } 1100 1101 /* 1102 * Returns state after command is accepted by command number. 1103 */ 1104 static uint32_t ns_get_state_by_command(unsigned command) 1105 { 1106 switch (command) { 1107 case NAND_CMD_READ0: 1108 return STATE_CMD_READ0; 1109 case NAND_CMD_READ1: 1110 return STATE_CMD_READ1; 1111 case NAND_CMD_PAGEPROG: 1112 return STATE_CMD_PAGEPROG; 1113 case NAND_CMD_READSTART: 1114 return STATE_CMD_READSTART; 1115 case NAND_CMD_READOOB: 1116 return STATE_CMD_READOOB; 1117 case NAND_CMD_ERASE1: 1118 return STATE_CMD_ERASE1; 1119 case NAND_CMD_STATUS: 1120 return STATE_CMD_STATUS; 1121 case NAND_CMD_SEQIN: 1122 return STATE_CMD_SEQIN; 1123 case NAND_CMD_READID: 1124 return STATE_CMD_READID; 1125 case NAND_CMD_ERASE2: 1126 return STATE_CMD_ERASE2; 1127 case NAND_CMD_RESET: 1128 return STATE_CMD_RESET; 1129 case NAND_CMD_RNDOUT: 1130 return STATE_CMD_RNDOUT; 1131 case NAND_CMD_RNDOUTSTART: 1132 return STATE_CMD_RNDOUTSTART; 1133 } 1134 1135 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1136 return 0; 1137 } 1138 1139 /* 1140 * Move an address byte to the correspondent internal register. 1141 */ 1142 static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt) 1143 { 1144 uint byte = (uint)bt; 1145 1146 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1147 ns->regs.column |= (byte << 8 * ns->regs.count); 1148 else { 1149 ns->regs.row |= (byte << 8 * (ns->regs.count - 1150 ns->geom.pgaddrbytes + 1151 ns->geom.secaddrbytes)); 1152 } 1153 1154 return; 1155 } 1156 1157 /* 1158 * Switch to STATE_READY state. 1159 */ 1160 static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status) 1161 { 1162 NS_DBG("switch_to_ready_state: switch to %s state\n", 1163 ns_get_state_name(STATE_READY)); 1164 1165 ns->state = STATE_READY; 1166 ns->nxstate = STATE_UNKNOWN; 1167 ns->op = NULL; 1168 ns->npstates = 0; 1169 ns->stateidx = 0; 1170 ns->regs.num = 0; 1171 ns->regs.count = 0; 1172 ns->regs.off = 0; 1173 ns->regs.row = 0; 1174 ns->regs.column = 0; 1175 ns->regs.status = status; 1176 } 1177 1178 /* 1179 * If the operation isn't known yet, try to find it in the global array 1180 * of supported operations. 1181 * 1182 * Operation can be unknown because of the following. 1183 * 1. New command was accepted and this is the first call to find the 1184 * correspondent states chain. In this case ns->npstates = 0; 1185 * 2. There are several operations which begin with the same command(s) 1186 * (for example program from the second half and read from the 1187 * second half operations both begin with the READ1 command). In this 1188 * case the ns->pstates[] array contains previous states. 1189 * 1190 * Thus, the function tries to find operation containing the following 1191 * states (if the 'flag' parameter is 0): 1192 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1193 * 1194 * If (one and only one) matching operation is found, it is accepted ( 1195 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1196 * zeroed). 1197 * 1198 * If there are several matches, the current state is pushed to the 1199 * ns->pstates. 1200 * 1201 * The operation can be unknown only while commands are input to the chip. 1202 * As soon as address command is accepted, the operation must be known. 1203 * In such situation the function is called with 'flag' != 0, and the 1204 * operation is searched using the following pattern: 1205 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1206 * 1207 * It is supposed that this pattern must either match one operation or 1208 * none. There can't be ambiguity in that case. 1209 * 1210 * If no matches found, the function does the following: 1211 * 1. if there are saved states present, try to ignore them and search 1212 * again only using the last command. If nothing was found, switch 1213 * to the STATE_READY state. 1214 * 2. if there are no saved states, switch to the STATE_READY state. 1215 * 1216 * RETURNS: -2 - no matched operations found. 1217 * -1 - several matches. 1218 * 0 - operation is found. 1219 */ 1220 static int ns_find_operation(struct nandsim *ns, uint32_t flag) 1221 { 1222 int opsfound = 0; 1223 int i, j, idx = 0; 1224 1225 for (i = 0; i < NS_OPER_NUM; i++) { 1226 1227 int found = 1; 1228 1229 if (!(ns->options & ops[i].reqopts)) 1230 /* Ignore operations we can't perform */ 1231 continue; 1232 1233 if (flag) { 1234 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1235 continue; 1236 } else { 1237 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1238 continue; 1239 } 1240 1241 for (j = 0; j < ns->npstates; j++) 1242 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1243 && (ns->options & ops[idx].reqopts)) { 1244 found = 0; 1245 break; 1246 } 1247 1248 if (found) { 1249 idx = i; 1250 opsfound += 1; 1251 } 1252 } 1253 1254 if (opsfound == 1) { 1255 /* Exact match */ 1256 ns->op = &ops[idx].states[0]; 1257 if (flag) { 1258 /* 1259 * In this case the find_operation function was 1260 * called when address has just began input. But it isn't 1261 * yet fully input and the current state must 1262 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1263 * state must be the next state (ns->nxstate). 1264 */ 1265 ns->stateidx = ns->npstates - 1; 1266 } else { 1267 ns->stateidx = ns->npstates; 1268 } 1269 ns->npstates = 0; 1270 ns->state = ns->op[ns->stateidx]; 1271 ns->nxstate = ns->op[ns->stateidx + 1]; 1272 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1273 idx, ns_get_state_name(ns->state), 1274 ns_get_state_name(ns->nxstate)); 1275 return 0; 1276 } 1277 1278 if (opsfound == 0) { 1279 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1280 if (ns->npstates != 0) { 1281 NS_DBG("find_operation: no operation found, try again with state %s\n", 1282 ns_get_state_name(ns->state)); 1283 ns->npstates = 0; 1284 return ns_find_operation(ns, 0); 1285 1286 } 1287 NS_DBG("find_operation: no operations found\n"); 1288 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1289 return -2; 1290 } 1291 1292 if (flag) { 1293 /* This shouldn't happen */ 1294 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1295 return -2; 1296 } 1297 1298 NS_DBG("find_operation: there is still ambiguity\n"); 1299 1300 ns->pstates[ns->npstates++] = ns->state; 1301 1302 return -1; 1303 } 1304 1305 static void ns_put_pages(struct nandsim *ns) 1306 { 1307 int i; 1308 1309 for (i = 0; i < ns->held_cnt; i++) 1310 put_page(ns->held_pages[i]); 1311 } 1312 1313 /* Get page cache pages in advance to provide NOFS memory allocation */ 1314 static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count, 1315 loff_t pos) 1316 { 1317 pgoff_t index, start_index, end_index; 1318 struct page *page; 1319 struct address_space *mapping = file->f_mapping; 1320 1321 start_index = pos >> PAGE_SHIFT; 1322 end_index = (pos + count - 1) >> PAGE_SHIFT; 1323 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1324 return -EINVAL; 1325 ns->held_cnt = 0; 1326 for (index = start_index; index <= end_index; index++) { 1327 page = find_get_page(mapping, index); 1328 if (page == NULL) { 1329 page = find_or_create_page(mapping, index, GFP_NOFS); 1330 if (page == NULL) { 1331 write_inode_now(mapping->host, 1); 1332 page = find_or_create_page(mapping, index, GFP_NOFS); 1333 } 1334 if (page == NULL) { 1335 ns_put_pages(ns); 1336 return -ENOMEM; 1337 } 1338 unlock_page(page); 1339 } 1340 ns->held_pages[ns->held_cnt++] = page; 1341 } 1342 return 0; 1343 } 1344 1345 static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf, 1346 size_t count, loff_t pos) 1347 { 1348 ssize_t tx; 1349 int err; 1350 unsigned int noreclaim_flag; 1351 1352 err = ns_get_pages(ns, file, count, pos); 1353 if (err) 1354 return err; 1355 noreclaim_flag = memalloc_noreclaim_save(); 1356 tx = kernel_read(file, buf, count, &pos); 1357 memalloc_noreclaim_restore(noreclaim_flag); 1358 ns_put_pages(ns); 1359 return tx; 1360 } 1361 1362 static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf, 1363 size_t count, loff_t pos) 1364 { 1365 ssize_t tx; 1366 int err; 1367 unsigned int noreclaim_flag; 1368 1369 err = ns_get_pages(ns, file, count, pos); 1370 if (err) 1371 return err; 1372 noreclaim_flag = memalloc_noreclaim_save(); 1373 tx = kernel_write(file, buf, count, &pos); 1374 memalloc_noreclaim_restore(noreclaim_flag); 1375 ns_put_pages(ns); 1376 return tx; 1377 } 1378 1379 /* 1380 * Returns a pointer to the current page. 1381 */ 1382 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1383 { 1384 return &(ns->pages[ns->regs.row]); 1385 } 1386 1387 /* 1388 * Retuns a pointer to the current byte, within the current page. 1389 */ 1390 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1391 { 1392 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; 1393 } 1394 1395 static int ns_do_read_error(struct nandsim *ns, int num) 1396 { 1397 unsigned int page_no = ns->regs.row; 1398 1399 if (ns_read_error(page_no)) { 1400 prandom_bytes(ns->buf.byte, num); 1401 NS_WARN("simulating read error in page %u\n", page_no); 1402 return 1; 1403 } 1404 return 0; 1405 } 1406 1407 static void ns_do_bit_flips(struct nandsim *ns, int num) 1408 { 1409 if (bitflips && prandom_u32() < (1 << 22)) { 1410 int flips = 1; 1411 if (bitflips > 1) 1412 flips = (prandom_u32() % (int) bitflips) + 1; 1413 while (flips--) { 1414 int pos = prandom_u32() % (num * 8); 1415 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1416 NS_WARN("read_page: flipping bit %d in page %d " 1417 "reading from %d ecc: corrected=%u failed=%u\n", 1418 pos, ns->regs.row, ns->regs.column + ns->regs.off, 1419 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1420 } 1421 } 1422 } 1423 1424 /* 1425 * Fill the NAND buffer with data read from the specified page. 1426 */ 1427 static void ns_read_page(struct nandsim *ns, int num) 1428 { 1429 union ns_mem *mypage; 1430 1431 if (ns->cfile) { 1432 if (!test_bit(ns->regs.row, ns->pages_written)) { 1433 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1434 memset(ns->buf.byte, 0xFF, num); 1435 } else { 1436 loff_t pos; 1437 ssize_t tx; 1438 1439 NS_DBG("read_page: page %d written, reading from %d\n", 1440 ns->regs.row, ns->regs.column + ns->regs.off); 1441 if (ns_do_read_error(ns, num)) 1442 return; 1443 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1444 tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num, 1445 pos); 1446 if (tx != num) { 1447 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1448 return; 1449 } 1450 ns_do_bit_flips(ns, num); 1451 } 1452 return; 1453 } 1454 1455 mypage = NS_GET_PAGE(ns); 1456 if (mypage->byte == NULL) { 1457 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1458 memset(ns->buf.byte, 0xFF, num); 1459 } else { 1460 NS_DBG("read_page: page %d allocated, reading from %d\n", 1461 ns->regs.row, ns->regs.column + ns->regs.off); 1462 if (ns_do_read_error(ns, num)) 1463 return; 1464 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1465 ns_do_bit_flips(ns, num); 1466 } 1467 } 1468 1469 /* 1470 * Erase all pages in the specified sector. 1471 */ 1472 static void ns_erase_sector(struct nandsim *ns) 1473 { 1474 union ns_mem *mypage; 1475 int i; 1476 1477 if (ns->cfile) { 1478 for (i = 0; i < ns->geom.pgsec; i++) 1479 if (__test_and_clear_bit(ns->regs.row + i, 1480 ns->pages_written)) { 1481 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1482 } 1483 return; 1484 } 1485 1486 mypage = NS_GET_PAGE(ns); 1487 for (i = 0; i < ns->geom.pgsec; i++) { 1488 if (mypage->byte != NULL) { 1489 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1490 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1491 mypage->byte = NULL; 1492 } 1493 mypage++; 1494 } 1495 } 1496 1497 /* 1498 * Program the specified page with the contents from the NAND buffer. 1499 */ 1500 static int ns_prog_page(struct nandsim *ns, int num) 1501 { 1502 int i; 1503 union ns_mem *mypage; 1504 u_char *pg_off; 1505 1506 if (ns->cfile) { 1507 loff_t off; 1508 ssize_t tx; 1509 int all; 1510 1511 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1512 pg_off = ns->file_buf + ns->regs.column + ns->regs.off; 1513 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1514 if (!test_bit(ns->regs.row, ns->pages_written)) { 1515 all = 1; 1516 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1517 } else { 1518 all = 0; 1519 tx = ns_read_file(ns, ns->cfile, pg_off, num, off); 1520 if (tx != num) { 1521 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1522 return -1; 1523 } 1524 } 1525 for (i = 0; i < num; i++) 1526 pg_off[i] &= ns->buf.byte[i]; 1527 if (all) { 1528 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1529 tx = ns_write_file(ns, ns->cfile, ns->file_buf, 1530 ns->geom.pgszoob, pos); 1531 if (tx != ns->geom.pgszoob) { 1532 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1533 return -1; 1534 } 1535 __set_bit(ns->regs.row, ns->pages_written); 1536 } else { 1537 tx = ns_write_file(ns, ns->cfile, pg_off, num, off); 1538 if (tx != num) { 1539 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1540 return -1; 1541 } 1542 } 1543 return 0; 1544 } 1545 1546 mypage = NS_GET_PAGE(ns); 1547 if (mypage->byte == NULL) { 1548 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1549 /* 1550 * We allocate memory with GFP_NOFS because a flash FS may 1551 * utilize this. If it is holding an FS lock, then gets here, 1552 * then kernel memory alloc runs writeback which goes to the FS 1553 * again and deadlocks. This was seen in practice. 1554 */ 1555 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1556 if (mypage->byte == NULL) { 1557 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1558 return -1; 1559 } 1560 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1561 } 1562 1563 pg_off = NS_PAGE_BYTE_OFF(ns); 1564 for (i = 0; i < num; i++) 1565 pg_off[i] &= ns->buf.byte[i]; 1566 1567 return 0; 1568 } 1569 1570 /* 1571 * If state has any action bit, perform this action. 1572 * 1573 * RETURNS: 0 if success, -1 if error. 1574 */ 1575 static int ns_do_state_action(struct nandsim *ns, uint32_t action) 1576 { 1577 int num; 1578 int busdiv = ns->busw == 8 ? 1 : 2; 1579 unsigned int erase_block_no, page_no; 1580 1581 action &= ACTION_MASK; 1582 1583 /* Check that page address input is correct */ 1584 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1585 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1586 return -1; 1587 } 1588 1589 switch (action) { 1590 1591 case ACTION_CPY: 1592 /* 1593 * Copy page data to the internal buffer. 1594 */ 1595 1596 /* Column shouldn't be very large */ 1597 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1598 NS_ERR("do_state_action: column number is too large\n"); 1599 break; 1600 } 1601 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1602 ns_read_page(ns, num); 1603 1604 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1605 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1606 1607 if (ns->regs.off == 0) 1608 NS_LOG("read page %d\n", ns->regs.row); 1609 else if (ns->regs.off < ns->geom.pgsz) 1610 NS_LOG("read page %d (second half)\n", ns->regs.row); 1611 else 1612 NS_LOG("read OOB of page %d\n", ns->regs.row); 1613 1614 NS_UDELAY(access_delay); 1615 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1616 1617 break; 1618 1619 case ACTION_SECERASE: 1620 /* 1621 * Erase sector. 1622 */ 1623 1624 if (ns->lines.wp) { 1625 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1626 return -1; 1627 } 1628 1629 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1630 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1631 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1632 return -1; 1633 } 1634 1635 ns->regs.row = (ns->regs.row << 1636 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1637 ns->regs.column = 0; 1638 1639 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1640 1641 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1642 ns->regs.row, NS_RAW_OFFSET(ns)); 1643 NS_LOG("erase sector %u\n", erase_block_no); 1644 1645 ns_erase_sector(ns); 1646 1647 NS_MDELAY(erase_delay); 1648 1649 if (erase_block_wear) 1650 ns_update_wear(erase_block_no); 1651 1652 if (ns_erase_error(erase_block_no)) { 1653 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1654 return -1; 1655 } 1656 1657 break; 1658 1659 case ACTION_PRGPAGE: 1660 /* 1661 * Program page - move internal buffer data to the page. 1662 */ 1663 1664 if (ns->lines.wp) { 1665 NS_WARN("do_state_action: device is write-protected, programm\n"); 1666 return -1; 1667 } 1668 1669 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1670 if (num != ns->regs.count) { 1671 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1672 ns->regs.count, num); 1673 return -1; 1674 } 1675 1676 if (ns_prog_page(ns, num) == -1) 1677 return -1; 1678 1679 page_no = ns->regs.row; 1680 1681 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1682 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1683 NS_LOG("programm page %d\n", ns->regs.row); 1684 1685 NS_UDELAY(programm_delay); 1686 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1687 1688 if (ns_write_error(page_no)) { 1689 NS_WARN("simulating write failure in page %u\n", page_no); 1690 return -1; 1691 } 1692 1693 break; 1694 1695 case ACTION_ZEROOFF: 1696 NS_DBG("do_state_action: set internal offset to 0\n"); 1697 ns->regs.off = 0; 1698 break; 1699 1700 case ACTION_HALFOFF: 1701 if (!(ns->options & OPT_PAGE512_8BIT)) { 1702 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1703 "byte page size 8x chips\n"); 1704 return -1; 1705 } 1706 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1707 ns->regs.off = ns->geom.pgsz/2; 1708 break; 1709 1710 case ACTION_OOBOFF: 1711 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1712 ns->regs.off = ns->geom.pgsz; 1713 break; 1714 1715 default: 1716 NS_DBG("do_state_action: BUG! unknown action\n"); 1717 } 1718 1719 return 0; 1720 } 1721 1722 /* 1723 * Switch simulator's state. 1724 */ 1725 static void ns_switch_state(struct nandsim *ns) 1726 { 1727 if (ns->op) { 1728 /* 1729 * The current operation have already been identified. 1730 * Just follow the states chain. 1731 */ 1732 1733 ns->stateidx += 1; 1734 ns->state = ns->nxstate; 1735 ns->nxstate = ns->op[ns->stateidx + 1]; 1736 1737 NS_DBG("switch_state: operation is known, switch to the next state, " 1738 "state: %s, nxstate: %s\n", 1739 ns_get_state_name(ns->state), 1740 ns_get_state_name(ns->nxstate)); 1741 1742 /* See, whether we need to do some action */ 1743 if ((ns->state & ACTION_MASK) && 1744 ns_do_state_action(ns, ns->state) < 0) { 1745 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1746 return; 1747 } 1748 1749 } else { 1750 /* 1751 * We don't yet know which operation we perform. 1752 * Try to identify it. 1753 */ 1754 1755 /* 1756 * The only event causing the switch_state function to 1757 * be called with yet unknown operation is new command. 1758 */ 1759 ns->state = ns_get_state_by_command(ns->regs.command); 1760 1761 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1762 1763 if (ns_find_operation(ns, 0)) 1764 return; 1765 1766 if ((ns->state & ACTION_MASK) && 1767 ns_do_state_action(ns, ns->state) < 0) { 1768 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1769 return; 1770 } 1771 } 1772 1773 /* For 16x devices column means the page offset in words */ 1774 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1775 NS_DBG("switch_state: double the column number for 16x device\n"); 1776 ns->regs.column <<= 1; 1777 } 1778 1779 if (NS_STATE(ns->nxstate) == STATE_READY) { 1780 /* 1781 * The current state is the last. Return to STATE_READY 1782 */ 1783 1784 u_char status = NS_STATUS_OK(ns); 1785 1786 /* In case of data states, see if all bytes were input/output */ 1787 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1788 && ns->regs.count != ns->regs.num) { 1789 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1790 ns->regs.num - ns->regs.count); 1791 status = NS_STATUS_FAILED(ns); 1792 } 1793 1794 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1795 1796 ns_switch_to_ready_state(ns, status); 1797 1798 return; 1799 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1800 /* 1801 * If the next state is data input/output, switch to it now 1802 */ 1803 1804 ns->state = ns->nxstate; 1805 ns->nxstate = ns->op[++ns->stateidx + 1]; 1806 ns->regs.num = ns->regs.count = 0; 1807 1808 NS_DBG("switch_state: the next state is data I/O, switch, " 1809 "state: %s, nxstate: %s\n", 1810 ns_get_state_name(ns->state), 1811 ns_get_state_name(ns->nxstate)); 1812 1813 /* 1814 * Set the internal register to the count of bytes which 1815 * are expected to be input or output 1816 */ 1817 switch (NS_STATE(ns->state)) { 1818 case STATE_DATAIN: 1819 case STATE_DATAOUT: 1820 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1821 break; 1822 1823 case STATE_DATAOUT_ID: 1824 ns->regs.num = ns->geom.idbytes; 1825 break; 1826 1827 case STATE_DATAOUT_STATUS: 1828 ns->regs.count = ns->regs.num = 0; 1829 break; 1830 1831 default: 1832 NS_ERR("switch_state: BUG! unknown data state\n"); 1833 } 1834 1835 } else if (ns->nxstate & STATE_ADDR_MASK) { 1836 /* 1837 * If the next state is address input, set the internal 1838 * register to the number of expected address bytes 1839 */ 1840 1841 ns->regs.count = 0; 1842 1843 switch (NS_STATE(ns->nxstate)) { 1844 case STATE_ADDR_PAGE: 1845 ns->regs.num = ns->geom.pgaddrbytes; 1846 1847 break; 1848 case STATE_ADDR_SEC: 1849 ns->regs.num = ns->geom.secaddrbytes; 1850 break; 1851 1852 case STATE_ADDR_ZERO: 1853 ns->regs.num = 1; 1854 break; 1855 1856 case STATE_ADDR_COLUMN: 1857 /* Column address is always 2 bytes */ 1858 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1859 break; 1860 1861 default: 1862 NS_ERR("switch_state: BUG! unknown address state\n"); 1863 } 1864 } else { 1865 /* 1866 * Just reset internal counters. 1867 */ 1868 1869 ns->regs.num = 0; 1870 ns->regs.count = 0; 1871 } 1872 } 1873 1874 static u_char ns_nand_read_byte(struct nand_chip *chip) 1875 { 1876 struct nandsim *ns = nand_get_controller_data(chip); 1877 u_char outb = 0x00; 1878 1879 /* Sanity and correctness checks */ 1880 if (!ns->lines.ce) { 1881 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1882 return outb; 1883 } 1884 if (ns->lines.ale || ns->lines.cle) { 1885 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1886 return outb; 1887 } 1888 if (!(ns->state & STATE_DATAOUT_MASK)) { 1889 NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n", 1890 ns_get_state_name(ns->state), (uint)outb); 1891 return outb; 1892 } 1893 1894 /* Status register may be read as many times as it is wanted */ 1895 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1896 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1897 return ns->regs.status; 1898 } 1899 1900 /* Check if there is any data in the internal buffer which may be read */ 1901 if (ns->regs.count == ns->regs.num) { 1902 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1903 return outb; 1904 } 1905 1906 switch (NS_STATE(ns->state)) { 1907 case STATE_DATAOUT: 1908 if (ns->busw == 8) { 1909 outb = ns->buf.byte[ns->regs.count]; 1910 ns->regs.count += 1; 1911 } else { 1912 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1913 ns->regs.count += 2; 1914 } 1915 break; 1916 case STATE_DATAOUT_ID: 1917 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1918 outb = ns->ids[ns->regs.count]; 1919 ns->regs.count += 1; 1920 break; 1921 default: 1922 BUG(); 1923 } 1924 1925 if (ns->regs.count == ns->regs.num) { 1926 NS_DBG("read_byte: all bytes were read\n"); 1927 1928 if (NS_STATE(ns->nxstate) == STATE_READY) 1929 ns_switch_state(ns); 1930 } 1931 1932 return outb; 1933 } 1934 1935 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) 1936 { 1937 struct nandsim *ns = nand_get_controller_data(chip); 1938 1939 /* Sanity and correctness checks */ 1940 if (!ns->lines.ce) { 1941 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1942 return; 1943 } 1944 if (ns->lines.ale && ns->lines.cle) { 1945 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1946 return; 1947 } 1948 1949 if (ns->lines.cle == 1) { 1950 /* 1951 * The byte written is a command. 1952 */ 1953 1954 if (byte == NAND_CMD_RESET) { 1955 NS_LOG("reset chip\n"); 1956 ns_switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1957 return; 1958 } 1959 1960 /* Check that the command byte is correct */ 1961 if (ns_check_command(byte)) { 1962 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1963 return; 1964 } 1965 1966 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1967 || NS_STATE(ns->state) == STATE_DATAOUT) { 1968 int row = ns->regs.row; 1969 1970 ns_switch_state(ns); 1971 if (byte == NAND_CMD_RNDOUT) 1972 ns->regs.row = row; 1973 } 1974 1975 /* Check if chip is expecting command */ 1976 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1977 /* Do not warn if only 2 id bytes are read */ 1978 if (!(ns->regs.command == NAND_CMD_READID && 1979 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1980 /* 1981 * We are in situation when something else (not command) 1982 * was expected but command was input. In this case ignore 1983 * previous command(s)/state(s) and accept the last one. 1984 */ 1985 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n", 1986 (uint)byte, 1987 ns_get_state_name(ns->nxstate)); 1988 } 1989 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1990 } 1991 1992 NS_DBG("command byte corresponding to %s state accepted\n", 1993 ns_get_state_name(ns_get_state_by_command(byte))); 1994 ns->regs.command = byte; 1995 ns_switch_state(ns); 1996 1997 } else if (ns->lines.ale == 1) { 1998 /* 1999 * The byte written is an address. 2000 */ 2001 2002 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 2003 2004 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 2005 2006 if (ns_find_operation(ns, 1) < 0) 2007 return; 2008 2009 if ((ns->state & ACTION_MASK) && 2010 ns_do_state_action(ns, ns->state) < 0) { 2011 ns_switch_to_ready_state(ns, 2012 NS_STATUS_FAILED(ns)); 2013 return; 2014 } 2015 2016 ns->regs.count = 0; 2017 switch (NS_STATE(ns->nxstate)) { 2018 case STATE_ADDR_PAGE: 2019 ns->regs.num = ns->geom.pgaddrbytes; 2020 break; 2021 case STATE_ADDR_SEC: 2022 ns->regs.num = ns->geom.secaddrbytes; 2023 break; 2024 case STATE_ADDR_ZERO: 2025 ns->regs.num = 1; 2026 break; 2027 default: 2028 BUG(); 2029 } 2030 } 2031 2032 /* Check that chip is expecting address */ 2033 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2034 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n", 2035 (uint)byte, ns_get_state_name(ns->nxstate)); 2036 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2037 return; 2038 } 2039 2040 /* Check if this is expected byte */ 2041 if (ns->regs.count == ns->regs.num) { 2042 NS_ERR("write_byte: no more address bytes expected\n"); 2043 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2044 return; 2045 } 2046 2047 ns_accept_addr_byte(ns, byte); 2048 2049 ns->regs.count += 1; 2050 2051 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2052 (uint)byte, ns->regs.count, ns->regs.num); 2053 2054 if (ns->regs.count == ns->regs.num) { 2055 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2056 ns_switch_state(ns); 2057 } 2058 2059 } else { 2060 /* 2061 * The byte written is an input data. 2062 */ 2063 2064 /* Check that chip is expecting data input */ 2065 if (!(ns->state & STATE_DATAIN_MASK)) { 2066 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n", 2067 (uint)byte, ns_get_state_name(ns->state), 2068 ns_get_state_name(STATE_READY)); 2069 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2070 return; 2071 } 2072 2073 /* Check if this is expected byte */ 2074 if (ns->regs.count == ns->regs.num) { 2075 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2076 ns->regs.num); 2077 return; 2078 } 2079 2080 if (ns->busw == 8) { 2081 ns->buf.byte[ns->regs.count] = byte; 2082 ns->regs.count += 1; 2083 } else { 2084 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2085 ns->regs.count += 2; 2086 } 2087 } 2088 2089 return; 2090 } 2091 2092 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, 2093 int len) 2094 { 2095 struct nandsim *ns = nand_get_controller_data(chip); 2096 2097 /* Check that chip is expecting data input */ 2098 if (!(ns->state & STATE_DATAIN_MASK)) { 2099 NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n", 2100 ns_get_state_name(ns->state)); 2101 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2102 return; 2103 } 2104 2105 /* Check if these are expected bytes */ 2106 if (ns->regs.count + len > ns->regs.num) { 2107 NS_ERR("write_buf: too many input bytes\n"); 2108 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2109 return; 2110 } 2111 2112 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2113 ns->regs.count += len; 2114 2115 if (ns->regs.count == ns->regs.num) { 2116 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2117 } 2118 } 2119 2120 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 2121 { 2122 struct nandsim *ns = nand_get_controller_data(chip); 2123 2124 /* Sanity and correctness checks */ 2125 if (!ns->lines.ce) { 2126 NS_ERR("read_buf: chip is disabled\n"); 2127 return; 2128 } 2129 if (ns->lines.ale || ns->lines.cle) { 2130 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2131 return; 2132 } 2133 if (!(ns->state & STATE_DATAOUT_MASK)) { 2134 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2135 ns_get_state_name(ns->state)); 2136 return; 2137 } 2138 2139 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2140 int i; 2141 2142 for (i = 0; i < len; i++) 2143 buf[i] = ns_nand_read_byte(chip); 2144 2145 return; 2146 } 2147 2148 /* Check if these are expected bytes */ 2149 if (ns->regs.count + len > ns->regs.num) { 2150 NS_ERR("read_buf: too many bytes to read\n"); 2151 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2152 return; 2153 } 2154 2155 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2156 ns->regs.count += len; 2157 2158 if (ns->regs.count == ns->regs.num) { 2159 if (NS_STATE(ns->nxstate) == STATE_READY) 2160 ns_switch_state(ns); 2161 } 2162 2163 return; 2164 } 2165 2166 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op, 2167 bool check_only) 2168 { 2169 int i; 2170 unsigned int op_id; 2171 const struct nand_op_instr *instr = NULL; 2172 struct nandsim *ns = nand_get_controller_data(chip); 2173 2174 if (check_only) 2175 return 0; 2176 2177 ns->lines.ce = 1; 2178 2179 for (op_id = 0; op_id < op->ninstrs; op_id++) { 2180 instr = &op->instrs[op_id]; 2181 ns->lines.cle = 0; 2182 ns->lines.ale = 0; 2183 2184 switch (instr->type) { 2185 case NAND_OP_CMD_INSTR: 2186 ns->lines.cle = 1; 2187 ns_nand_write_byte(chip, instr->ctx.cmd.opcode); 2188 break; 2189 case NAND_OP_ADDR_INSTR: 2190 ns->lines.ale = 1; 2191 for (i = 0; i < instr->ctx.addr.naddrs; i++) 2192 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]); 2193 break; 2194 case NAND_OP_DATA_IN_INSTR: 2195 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); 2196 break; 2197 case NAND_OP_DATA_OUT_INSTR: 2198 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); 2199 break; 2200 case NAND_OP_WAITRDY_INSTR: 2201 /* we are always ready */ 2202 break; 2203 } 2204 } 2205 2206 return 0; 2207 } 2208 2209 static int ns_attach_chip(struct nand_chip *chip) 2210 { 2211 unsigned int eccsteps, eccbytes; 2212 2213 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 2214 chip->ecc.algo = bch ? NAND_ECC_ALGO_BCH : NAND_ECC_ALGO_HAMMING; 2215 2216 if (!bch) 2217 return 0; 2218 2219 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 2220 NS_ERR("BCH ECC support is disabled\n"); 2221 return -EINVAL; 2222 } 2223 2224 /* Use 512-byte ecc blocks */ 2225 eccsteps = nsmtd->writesize / 512; 2226 eccbytes = ((bch * 13) + 7) / 8; 2227 2228 /* Do not bother supporting small page devices */ 2229 if (nsmtd->oobsize < 64 || !eccsteps) { 2230 NS_ERR("BCH not available on small page devices\n"); 2231 return -EINVAL; 2232 } 2233 2234 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2235 NS_ERR("Invalid BCH value %u\n", bch); 2236 return -EINVAL; 2237 } 2238 2239 chip->ecc.size = 512; 2240 chip->ecc.strength = bch; 2241 chip->ecc.bytes = eccbytes; 2242 2243 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2244 2245 return 0; 2246 } 2247 2248 static const struct nand_controller_ops ns_controller_ops = { 2249 .attach_chip = ns_attach_chip, 2250 .exec_op = ns_exec_op, 2251 }; 2252 2253 /* 2254 * Module initialization function 2255 */ 2256 static int __init ns_init_module(void) 2257 { 2258 struct list_head *pos, *n; 2259 struct nand_chip *chip; 2260 struct nandsim *ns; 2261 int ret; 2262 2263 if (bus_width != 8 && bus_width != 16) { 2264 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2265 return -EINVAL; 2266 } 2267 2268 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL); 2269 if (!ns) { 2270 NS_ERR("unable to allocate core structures.\n"); 2271 return -ENOMEM; 2272 } 2273 chip = &ns->chip; 2274 nsmtd = nand_to_mtd(chip); 2275 nand_set_controller_data(chip, (void *)ns); 2276 2277 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2278 /* and 'badblocks' parameters to work */ 2279 chip->options |= NAND_SKIP_BBTSCAN; 2280 2281 switch (bbt) { 2282 case 2: 2283 chip->bbt_options |= NAND_BBT_NO_OOB; 2284 fallthrough; 2285 case 1: 2286 chip->bbt_options |= NAND_BBT_USE_FLASH; 2287 fallthrough; 2288 case 0: 2289 break; 2290 default: 2291 NS_ERR("bbt has to be 0..2\n"); 2292 ret = -EINVAL; 2293 goto free_ns_struct; 2294 } 2295 /* 2296 * Perform minimum nandsim structure initialization to handle 2297 * the initial ID read command correctly 2298 */ 2299 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2300 ns->geom.idbytes = 8; 2301 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2302 ns->geom.idbytes = 6; 2303 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2304 ns->geom.idbytes = 4; 2305 else 2306 ns->geom.idbytes = 2; 2307 ns->regs.status = NS_STATUS_OK(ns); 2308 ns->nxstate = STATE_UNKNOWN; 2309 ns->options |= OPT_PAGE512; /* temporary value */ 2310 memcpy(ns->ids, id_bytes, sizeof(ns->ids)); 2311 if (bus_width == 16) { 2312 ns->busw = 16; 2313 chip->options |= NAND_BUSWIDTH_16; 2314 } 2315 2316 nsmtd->owner = THIS_MODULE; 2317 2318 ret = ns_parse_weakblocks(); 2319 if (ret) 2320 goto free_ns_struct; 2321 2322 ret = ns_parse_weakpages(); 2323 if (ret) 2324 goto free_wb_list; 2325 2326 ret = ns_parse_gravepages(); 2327 if (ret) 2328 goto free_wp_list; 2329 2330 nand_controller_init(&ns->base); 2331 ns->base.ops = &ns_controller_ops; 2332 chip->controller = &ns->base; 2333 2334 ret = nand_scan(chip, 1); 2335 if (ret) { 2336 NS_ERR("Could not scan NAND Simulator device\n"); 2337 goto free_gp_list; 2338 } 2339 2340 if (overridesize) { 2341 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2342 struct nand_memory_organization *memorg; 2343 u64 targetsize; 2344 2345 memorg = nanddev_get_memorg(&chip->base); 2346 2347 if (new_size >> overridesize != nsmtd->erasesize) { 2348 NS_ERR("overridesize is too big\n"); 2349 ret = -EINVAL; 2350 goto cleanup_nand; 2351 } 2352 2353 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2354 nsmtd->size = new_size; 2355 memorg->eraseblocks_per_lun = 1 << overridesize; 2356 targetsize = nanddev_target_size(&chip->base); 2357 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2358 chip->pagemask = (targetsize >> chip->page_shift) - 1; 2359 } 2360 2361 ret = ns_setup_wear_reporting(nsmtd); 2362 if (ret) 2363 goto cleanup_nand; 2364 2365 ret = ns_init(nsmtd); 2366 if (ret) 2367 goto free_ebw; 2368 2369 ret = nand_create_bbt(chip); 2370 if (ret) 2371 goto free_ns_object; 2372 2373 ret = ns_parse_badblocks(ns, nsmtd); 2374 if (ret) 2375 goto free_ns_object; 2376 2377 /* Register NAND partitions */ 2378 ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts); 2379 if (ret) 2380 goto free_ns_object; 2381 2382 ret = ns_debugfs_create(ns); 2383 if (ret) 2384 goto unregister_mtd; 2385 2386 return 0; 2387 2388 unregister_mtd: 2389 WARN_ON(mtd_device_unregister(nsmtd)); 2390 free_ns_object: 2391 ns_free(ns); 2392 free_ebw: 2393 kfree(erase_block_wear); 2394 cleanup_nand: 2395 nand_cleanup(chip); 2396 free_gp_list: 2397 list_for_each_safe(pos, n, &grave_pages) { 2398 list_del(pos); 2399 kfree(list_entry(pos, struct grave_page, list)); 2400 } 2401 free_wp_list: 2402 list_for_each_safe(pos, n, &weak_pages) { 2403 list_del(pos); 2404 kfree(list_entry(pos, struct weak_page, list)); 2405 } 2406 free_wb_list: 2407 list_for_each_safe(pos, n, &weak_blocks) { 2408 list_del(pos); 2409 kfree(list_entry(pos, struct weak_block, list)); 2410 } 2411 free_ns_struct: 2412 kfree(ns); 2413 2414 return ret; 2415 } 2416 2417 module_init(ns_init_module); 2418 2419 /* 2420 * Module clean-up function 2421 */ 2422 static void __exit ns_cleanup_module(void) 2423 { 2424 struct nand_chip *chip = mtd_to_nand(nsmtd); 2425 struct nandsim *ns = nand_get_controller_data(chip); 2426 struct list_head *pos, *n; 2427 2428 ns_debugfs_remove(ns); 2429 WARN_ON(mtd_device_unregister(nsmtd)); 2430 ns_free(ns); 2431 kfree(erase_block_wear); 2432 nand_cleanup(chip); 2433 2434 list_for_each_safe(pos, n, &grave_pages) { 2435 list_del(pos); 2436 kfree(list_entry(pos, struct grave_page, list)); 2437 } 2438 2439 list_for_each_safe(pos, n, &weak_pages) { 2440 list_del(pos); 2441 kfree(list_entry(pos, struct weak_page, list)); 2442 } 2443 2444 list_for_each_safe(pos, n, &weak_blocks) { 2445 list_del(pos); 2446 kfree(list_entry(pos, struct weak_block, list)); 2447 } 2448 2449 kfree(ns); 2450 } 2451 2452 module_exit(ns_cleanup_module); 2453 2454 MODULE_LICENSE ("GPL"); 2455 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2456 MODULE_DESCRIPTION ("The NAND flash simulator"); 2457