1 /* 2 * NAND flash simulator. 3 * 4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 5 * 6 * Copyright (C) 2004 Nokia Corporation 7 * 8 * Note: NS means "NAND Simulator". 9 * Note: Input means input TO flash chip, output means output FROM chip. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2, or (at your option) any later 14 * version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General 19 * Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA 24 */ 25 26 #define pr_fmt(fmt) "[nandsim]" fmt 27 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/vmalloc.h> 33 #include <linux/math64.h> 34 #include <linux/slab.h> 35 #include <linux/errno.h> 36 #include <linux/string.h> 37 #include <linux/mtd/mtd.h> 38 #include <linux/mtd/rawnand.h> 39 #include <linux/mtd/nand_bch.h> 40 #include <linux/mtd/partitions.h> 41 #include <linux/delay.h> 42 #include <linux/list.h> 43 #include <linux/random.h> 44 #include <linux/sched.h> 45 #include <linux/sched/mm.h> 46 #include <linux/fs.h> 47 #include <linux/pagemap.h> 48 #include <linux/seq_file.h> 49 #include <linux/debugfs.h> 50 51 /* Default simulator parameters values */ 52 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 53 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 54 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 55 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 56 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 57 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 58 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 59 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 60 #endif 61 62 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 63 #define CONFIG_NANDSIM_ACCESS_DELAY 25 64 #endif 65 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 66 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 67 #endif 68 #ifndef CONFIG_NANDSIM_ERASE_DELAY 69 #define CONFIG_NANDSIM_ERASE_DELAY 2 70 #endif 71 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 72 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 73 #endif 74 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 75 #define CONFIG_NANDSIM_INPUT_CYCLE 50 76 #endif 77 #ifndef CONFIG_NANDSIM_BUS_WIDTH 78 #define CONFIG_NANDSIM_BUS_WIDTH 8 79 #endif 80 #ifndef CONFIG_NANDSIM_DO_DELAYS 81 #define CONFIG_NANDSIM_DO_DELAYS 0 82 #endif 83 #ifndef CONFIG_NANDSIM_LOG 84 #define CONFIG_NANDSIM_LOG 0 85 #endif 86 #ifndef CONFIG_NANDSIM_DBG 87 #define CONFIG_NANDSIM_DBG 0 88 #endif 89 #ifndef CONFIG_NANDSIM_MAX_PARTS 90 #define CONFIG_NANDSIM_MAX_PARTS 32 91 #endif 92 93 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 94 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 95 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 96 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 97 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 98 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 99 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 100 static uint log = CONFIG_NANDSIM_LOG; 101 static uint dbg = CONFIG_NANDSIM_DBG; 102 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 103 static unsigned int parts_num; 104 static char *badblocks = NULL; 105 static char *weakblocks = NULL; 106 static char *weakpages = NULL; 107 static unsigned int bitflips = 0; 108 static char *gravepages = NULL; 109 static unsigned int overridesize = 0; 110 static char *cache_file = NULL; 111 static unsigned int bbt; 112 static unsigned int bch; 113 static u_char id_bytes[8] = { 114 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 115 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 116 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 117 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 118 [4 ... 7] = 0xFF, 119 }; 120 121 module_param_array(id_bytes, byte, NULL, 0400); 122 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 123 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 124 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 125 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 126 module_param(access_delay, uint, 0400); 127 module_param(programm_delay, uint, 0400); 128 module_param(erase_delay, uint, 0400); 129 module_param(output_cycle, uint, 0400); 130 module_param(input_cycle, uint, 0400); 131 module_param(bus_width, uint, 0400); 132 module_param(do_delays, uint, 0400); 133 module_param(log, uint, 0400); 134 module_param(dbg, uint, 0400); 135 module_param_array(parts, ulong, &parts_num, 0400); 136 module_param(badblocks, charp, 0400); 137 module_param(weakblocks, charp, 0400); 138 module_param(weakpages, charp, 0400); 139 module_param(bitflips, uint, 0400); 140 module_param(gravepages, charp, 0400); 141 module_param(overridesize, uint, 0400); 142 module_param(cache_file, charp, 0400); 143 module_param(bbt, uint, 0400); 144 module_param(bch, uint, 0400); 145 146 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 147 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 148 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 149 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 150 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 151 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 152 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 153 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 154 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 155 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 156 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 157 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 158 MODULE_PARM_DESC(log, "Perform logging if not zero"); 159 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 160 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 161 /* Page and erase block positions for the following parameters are independent of any partitions */ 162 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 163 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 164 " separated by commas e.g. 113:2 means eb 113" 165 " can be erased only twice before failing"); 166 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 167 " separated by commas e.g. 1401:2 means page 1401" 168 " can be written only twice before failing"); 169 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 170 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 171 " separated by commas e.g. 1401:2 means page 1401" 172 " can be read only twice before failing"); 173 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 174 "The size is specified in erase blocks and as the exponent of a power of two" 175 " e.g. 5 means a size of 32 erase blocks"); 176 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 177 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 178 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 179 "be correctable in 512-byte blocks"); 180 181 /* The largest possible page size */ 182 #define NS_LARGEST_PAGE_SIZE 4096 183 184 /* Simulator's output macros (logging, debugging, warning, error) */ 185 #define NS_LOG(args...) \ 186 do { if (log) pr_debug(" log: " args); } while(0) 187 #define NS_DBG(args...) \ 188 do { if (dbg) pr_debug(" debug: " args); } while(0) 189 #define NS_WARN(args...) \ 190 do { pr_warn(" warning: " args); } while(0) 191 #define NS_ERR(args...) \ 192 do { pr_err(" error: " args); } while(0) 193 #define NS_INFO(args...) \ 194 do { pr_info(" " args); } while(0) 195 196 /* Busy-wait delay macros (microseconds, milliseconds) */ 197 #define NS_UDELAY(us) \ 198 do { if (do_delays) udelay(us); } while(0) 199 #define NS_MDELAY(us) \ 200 do { if (do_delays) mdelay(us); } while(0) 201 202 /* Is the nandsim structure initialized ? */ 203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 204 205 /* Good operation completion status */ 206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 207 208 /* Operation failed completion status */ 209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 210 211 /* Calculate the page offset in flash RAM image by (row, column) address */ 212 #define NS_RAW_OFFSET(ns) \ 213 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 214 215 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 217 218 /* After a command is input, the simulator goes to one of the following states */ 219 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 220 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 221 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 222 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 223 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 224 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 225 #define STATE_CMD_STATUS 0x00000007 /* read status */ 226 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 227 #define STATE_CMD_READID 0x0000000A /* read ID */ 228 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 229 #define STATE_CMD_RESET 0x0000000C /* reset */ 230 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 231 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 232 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 233 234 /* After an address is input, the simulator goes to one of these states */ 235 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 236 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 237 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 238 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 239 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 240 241 /* During data input/output the simulator is in these states */ 242 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 243 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 244 245 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 246 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 247 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 248 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 249 250 /* Previous operation is done, ready to accept new requests */ 251 #define STATE_READY 0x00000000 252 253 /* This state is used to mark that the next state isn't known yet */ 254 #define STATE_UNKNOWN 0x10000000 255 256 /* Simulator's actions bit masks */ 257 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 258 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 259 #define ACTION_SECERASE 0x00300000 /* erase sector */ 260 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 261 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 262 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 263 #define ACTION_MASK 0x00700000 /* action mask */ 264 265 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 266 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 267 268 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 269 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 270 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 274 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 275 276 /* Remove action bits from state */ 277 #define NS_STATE(x) ((x) & ~ACTION_MASK) 278 279 /* 280 * Maximum previous states which need to be saved. Currently saving is 281 * only needed for page program operation with preceded read command 282 * (which is only valid for 512-byte pages). 283 */ 284 #define NS_MAX_PREVSTATES 1 285 286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 287 #define NS_MAX_HELD_PAGES 16 288 289 /* 290 * A union to represent flash memory contents and flash buffer. 291 */ 292 union ns_mem { 293 u_char *byte; /* for byte access */ 294 uint16_t *word; /* for 16-bit word access */ 295 }; 296 297 /* 298 * The structure which describes all the internal simulator data. 299 */ 300 struct nandsim { 301 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 302 unsigned int nbparts; 303 304 uint busw; /* flash chip bus width (8 or 16) */ 305 u_char ids[8]; /* chip's ID bytes */ 306 uint32_t options; /* chip's characteristic bits */ 307 uint32_t state; /* current chip state */ 308 uint32_t nxstate; /* next expected state */ 309 310 uint32_t *op; /* current operation, NULL operations isn't known yet */ 311 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 312 uint16_t npstates; /* number of previous states saved */ 313 uint16_t stateidx; /* current state index */ 314 315 /* The simulated NAND flash pages array */ 316 union ns_mem *pages; 317 318 /* Slab allocator for nand pages */ 319 struct kmem_cache *nand_pages_slab; 320 321 /* Internal buffer of page + OOB size bytes */ 322 union ns_mem buf; 323 324 /* NAND flash "geometry" */ 325 struct { 326 uint64_t totsz; /* total flash size, bytes */ 327 uint32_t secsz; /* flash sector (erase block) size, bytes */ 328 uint pgsz; /* NAND flash page size, bytes */ 329 uint oobsz; /* page OOB area size, bytes */ 330 uint64_t totszoob; /* total flash size including OOB, bytes */ 331 uint pgszoob; /* page size including OOB , bytes*/ 332 uint secszoob; /* sector size including OOB, bytes */ 333 uint pgnum; /* total number of pages */ 334 uint pgsec; /* number of pages per sector */ 335 uint secshift; /* bits number in sector size */ 336 uint pgshift; /* bits number in page size */ 337 uint pgaddrbytes; /* bytes per page address */ 338 uint secaddrbytes; /* bytes per sector address */ 339 uint idbytes; /* the number ID bytes that this chip outputs */ 340 } geom; 341 342 /* NAND flash internal registers */ 343 struct { 344 unsigned command; /* the command register */ 345 u_char status; /* the status register */ 346 uint row; /* the page number */ 347 uint column; /* the offset within page */ 348 uint count; /* internal counter */ 349 uint num; /* number of bytes which must be processed */ 350 uint off; /* fixed page offset */ 351 } regs; 352 353 /* NAND flash lines state */ 354 struct { 355 int ce; /* chip Enable */ 356 int cle; /* command Latch Enable */ 357 int ale; /* address Latch Enable */ 358 int wp; /* write Protect */ 359 } lines; 360 361 /* Fields needed when using a cache file */ 362 struct file *cfile; /* Open file */ 363 unsigned long *pages_written; /* Which pages have been written */ 364 void *file_buf; 365 struct page *held_pages[NS_MAX_HELD_PAGES]; 366 int held_cnt; 367 }; 368 369 /* 370 * Operations array. To perform any operation the simulator must pass 371 * through the correspondent states chain. 372 */ 373 static struct nandsim_operations { 374 uint32_t reqopts; /* options which are required to perform the operation */ 375 uint32_t states[NS_OPER_STATES]; /* operation's states */ 376 } ops[NS_OPER_NUM] = { 377 /* Read page + OOB from the beginning */ 378 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 379 STATE_DATAOUT, STATE_READY}}, 380 /* Read page + OOB from the second half */ 381 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 382 STATE_DATAOUT, STATE_READY}}, 383 /* Read OOB */ 384 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 385 STATE_DATAOUT, STATE_READY}}, 386 /* Program page starting from the beginning */ 387 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 388 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 389 /* Program page starting from the beginning */ 390 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 391 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 392 /* Program page starting from the second half */ 393 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 394 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 395 /* Program OOB */ 396 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 397 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 398 /* Erase sector */ 399 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 400 /* Read status */ 401 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 402 /* Read ID */ 403 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 404 /* Large page devices read page */ 405 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 406 STATE_DATAOUT, STATE_READY}}, 407 /* Large page devices random page read */ 408 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 409 STATE_DATAOUT, STATE_READY}}, 410 }; 411 412 struct weak_block { 413 struct list_head list; 414 unsigned int erase_block_no; 415 unsigned int max_erases; 416 unsigned int erases_done; 417 }; 418 419 static LIST_HEAD(weak_blocks); 420 421 struct weak_page { 422 struct list_head list; 423 unsigned int page_no; 424 unsigned int max_writes; 425 unsigned int writes_done; 426 }; 427 428 static LIST_HEAD(weak_pages); 429 430 struct grave_page { 431 struct list_head list; 432 unsigned int page_no; 433 unsigned int max_reads; 434 unsigned int reads_done; 435 }; 436 437 static LIST_HEAD(grave_pages); 438 439 static unsigned long *erase_block_wear = NULL; 440 static unsigned int wear_eb_count = 0; 441 static unsigned long total_wear = 0; 442 443 /* MTD structure for NAND controller */ 444 static struct mtd_info *nsmtd; 445 446 static int nandsim_show(struct seq_file *m, void *private) 447 { 448 unsigned long wmin = -1, wmax = 0, avg; 449 unsigned long deciles[10], decile_max[10], tot = 0; 450 unsigned int i; 451 452 /* Calc wear stats */ 453 for (i = 0; i < wear_eb_count; ++i) { 454 unsigned long wear = erase_block_wear[i]; 455 if (wear < wmin) 456 wmin = wear; 457 if (wear > wmax) 458 wmax = wear; 459 tot += wear; 460 } 461 462 for (i = 0; i < 9; ++i) { 463 deciles[i] = 0; 464 decile_max[i] = (wmax * (i + 1) + 5) / 10; 465 } 466 deciles[9] = 0; 467 decile_max[9] = wmax; 468 for (i = 0; i < wear_eb_count; ++i) { 469 int d; 470 unsigned long wear = erase_block_wear[i]; 471 for (d = 0; d < 10; ++d) 472 if (wear <= decile_max[d]) { 473 deciles[d] += 1; 474 break; 475 } 476 } 477 avg = tot / wear_eb_count; 478 479 /* Output wear report */ 480 seq_printf(m, "Total numbers of erases: %lu\n", tot); 481 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 482 seq_printf(m, "Average number of erases: %lu\n", avg); 483 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 484 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 485 for (i = 0; i < 10; ++i) { 486 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 487 if (from > decile_max[i]) 488 continue; 489 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 490 from, 491 decile_max[i], 492 deciles[i]); 493 } 494 495 return 0; 496 } 497 DEFINE_SHOW_ATTRIBUTE(nandsim); 498 499 /** 500 * nandsim_debugfs_create - initialize debugfs 501 * @dev: nandsim device description object 502 * 503 * This function creates all debugfs files for UBI device @ubi. Returns zero in 504 * case of success and a negative error code in case of failure. 505 */ 506 static int nandsim_debugfs_create(struct nandsim *dev) 507 { 508 struct dentry *root = nsmtd->dbg.dfs_dir; 509 struct dentry *dent; 510 511 /* 512 * Just skip debugfs initialization when the debugfs directory is 513 * missing. 514 */ 515 if (IS_ERR_OR_NULL(root)) { 516 if (IS_ENABLED(CONFIG_DEBUG_FS) && 517 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 518 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 519 return 0; 520 } 521 522 dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, 523 root, dev, &nandsim_fops); 524 if (IS_ERR_OR_NULL(dent)) { 525 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 526 return -1; 527 } 528 529 return 0; 530 } 531 532 /* 533 * Allocate array of page pointers, create slab allocation for an array 534 * and initialize the array by NULL pointers. 535 * 536 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 537 */ 538 static int __init alloc_device(struct nandsim *ns) 539 { 540 struct file *cfile; 541 int i, err; 542 543 if (cache_file) { 544 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 545 if (IS_ERR(cfile)) 546 return PTR_ERR(cfile); 547 if (!(cfile->f_mode & FMODE_CAN_READ)) { 548 NS_ERR("alloc_device: cache file not readable\n"); 549 err = -EINVAL; 550 goto err_close; 551 } 552 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 553 NS_ERR("alloc_device: cache file not writeable\n"); 554 err = -EINVAL; 555 goto err_close; 556 } 557 ns->pages_written = 558 vzalloc(array_size(sizeof(unsigned long), 559 BITS_TO_LONGS(ns->geom.pgnum))); 560 if (!ns->pages_written) { 561 NS_ERR("alloc_device: unable to allocate pages written array\n"); 562 err = -ENOMEM; 563 goto err_close; 564 } 565 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 566 if (!ns->file_buf) { 567 NS_ERR("alloc_device: unable to allocate file buf\n"); 568 err = -ENOMEM; 569 goto err_free; 570 } 571 ns->cfile = cfile; 572 return 0; 573 } 574 575 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 576 if (!ns->pages) { 577 NS_ERR("alloc_device: unable to allocate page array\n"); 578 return -ENOMEM; 579 } 580 for (i = 0; i < ns->geom.pgnum; i++) { 581 ns->pages[i].byte = NULL; 582 } 583 ns->nand_pages_slab = kmem_cache_create("nandsim", 584 ns->geom.pgszoob, 0, 0, NULL); 585 if (!ns->nand_pages_slab) { 586 NS_ERR("cache_create: unable to create kmem_cache\n"); 587 return -ENOMEM; 588 } 589 590 return 0; 591 592 err_free: 593 vfree(ns->pages_written); 594 err_close: 595 filp_close(cfile, NULL); 596 return err; 597 } 598 599 /* 600 * Free any allocated pages, and free the array of page pointers. 601 */ 602 static void free_device(struct nandsim *ns) 603 { 604 int i; 605 606 if (ns->cfile) { 607 kfree(ns->file_buf); 608 vfree(ns->pages_written); 609 filp_close(ns->cfile, NULL); 610 return; 611 } 612 613 if (ns->pages) { 614 for (i = 0; i < ns->geom.pgnum; i++) { 615 if (ns->pages[i].byte) 616 kmem_cache_free(ns->nand_pages_slab, 617 ns->pages[i].byte); 618 } 619 kmem_cache_destroy(ns->nand_pages_slab); 620 vfree(ns->pages); 621 } 622 } 623 624 static char __init *get_partition_name(int i) 625 { 626 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 627 } 628 629 /* 630 * Initialize the nandsim structure. 631 * 632 * RETURNS: 0 if success, -ERRNO if failure. 633 */ 634 static int __init init_nandsim(struct mtd_info *mtd) 635 { 636 struct nand_chip *chip = mtd_to_nand(mtd); 637 struct nandsim *ns = nand_get_controller_data(chip); 638 int i, ret = 0; 639 uint64_t remains; 640 uint64_t next_offset; 641 642 if (NS_IS_INITIALIZED(ns)) { 643 NS_ERR("init_nandsim: nandsim is already initialized\n"); 644 return -EIO; 645 } 646 647 /* Force mtd to not do delays */ 648 chip->legacy.chip_delay = 0; 649 650 /* Initialize the NAND flash parameters */ 651 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 652 ns->geom.totsz = mtd->size; 653 ns->geom.pgsz = mtd->writesize; 654 ns->geom.oobsz = mtd->oobsize; 655 ns->geom.secsz = mtd->erasesize; 656 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 657 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 658 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 659 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 660 ns->geom.pgshift = chip->page_shift; 661 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 662 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 663 ns->options = 0; 664 665 if (ns->geom.pgsz == 512) { 666 ns->options |= OPT_PAGE512; 667 if (ns->busw == 8) 668 ns->options |= OPT_PAGE512_8BIT; 669 } else if (ns->geom.pgsz == 2048) { 670 ns->options |= OPT_PAGE2048; 671 } else if (ns->geom.pgsz == 4096) { 672 ns->options |= OPT_PAGE4096; 673 } else { 674 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 675 return -EIO; 676 } 677 678 if (ns->options & OPT_SMALLPAGE) { 679 if (ns->geom.totsz <= (32 << 20)) { 680 ns->geom.pgaddrbytes = 3; 681 ns->geom.secaddrbytes = 2; 682 } else { 683 ns->geom.pgaddrbytes = 4; 684 ns->geom.secaddrbytes = 3; 685 } 686 } else { 687 if (ns->geom.totsz <= (128 << 20)) { 688 ns->geom.pgaddrbytes = 4; 689 ns->geom.secaddrbytes = 2; 690 } else { 691 ns->geom.pgaddrbytes = 5; 692 ns->geom.secaddrbytes = 3; 693 } 694 } 695 696 /* Fill the partition_info structure */ 697 if (parts_num > ARRAY_SIZE(ns->partitions)) { 698 NS_ERR("too many partitions.\n"); 699 return -EINVAL; 700 } 701 remains = ns->geom.totsz; 702 next_offset = 0; 703 for (i = 0; i < parts_num; ++i) { 704 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 705 706 if (!part_sz || part_sz > remains) { 707 NS_ERR("bad partition size.\n"); 708 return -EINVAL; 709 } 710 ns->partitions[i].name = get_partition_name(i); 711 if (!ns->partitions[i].name) { 712 NS_ERR("unable to allocate memory.\n"); 713 return -ENOMEM; 714 } 715 ns->partitions[i].offset = next_offset; 716 ns->partitions[i].size = part_sz; 717 next_offset += ns->partitions[i].size; 718 remains -= ns->partitions[i].size; 719 } 720 ns->nbparts = parts_num; 721 if (remains) { 722 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 723 NS_ERR("too many partitions.\n"); 724 return -EINVAL; 725 } 726 ns->partitions[i].name = get_partition_name(i); 727 if (!ns->partitions[i].name) { 728 NS_ERR("unable to allocate memory.\n"); 729 return -ENOMEM; 730 } 731 ns->partitions[i].offset = next_offset; 732 ns->partitions[i].size = remains; 733 ns->nbparts += 1; 734 } 735 736 if (ns->busw == 16) 737 NS_WARN("16-bit flashes support wasn't tested\n"); 738 739 printk("flash size: %llu MiB\n", 740 (unsigned long long)ns->geom.totsz >> 20); 741 printk("page size: %u bytes\n", ns->geom.pgsz); 742 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 743 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 744 printk("pages number: %u\n", ns->geom.pgnum); 745 printk("pages per sector: %u\n", ns->geom.pgsec); 746 printk("bus width: %u\n", ns->busw); 747 printk("bits in sector size: %u\n", ns->geom.secshift); 748 printk("bits in page size: %u\n", ns->geom.pgshift); 749 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 750 printk("flash size with OOB: %llu KiB\n", 751 (unsigned long long)ns->geom.totszoob >> 10); 752 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 753 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 754 printk("options: %#x\n", ns->options); 755 756 if ((ret = alloc_device(ns)) != 0) 757 return ret; 758 759 /* Allocate / initialize the internal buffer */ 760 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 761 if (!ns->buf.byte) { 762 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 763 ns->geom.pgszoob); 764 return -ENOMEM; 765 } 766 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 767 768 return 0; 769 } 770 771 /* 772 * Free the nandsim structure. 773 */ 774 static void free_nandsim(struct nandsim *ns) 775 { 776 kfree(ns->buf.byte); 777 free_device(ns); 778 779 return; 780 } 781 782 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 783 { 784 char *w; 785 int zero_ok; 786 unsigned int erase_block_no; 787 loff_t offset; 788 789 if (!badblocks) 790 return 0; 791 w = badblocks; 792 do { 793 zero_ok = (*w == '0' ? 1 : 0); 794 erase_block_no = simple_strtoul(w, &w, 0); 795 if (!zero_ok && !erase_block_no) { 796 NS_ERR("invalid badblocks.\n"); 797 return -EINVAL; 798 } 799 offset = (loff_t)erase_block_no * ns->geom.secsz; 800 if (mtd_block_markbad(mtd, offset)) { 801 NS_ERR("invalid badblocks.\n"); 802 return -EINVAL; 803 } 804 if (*w == ',') 805 w += 1; 806 } while (*w); 807 return 0; 808 } 809 810 static int parse_weakblocks(void) 811 { 812 char *w; 813 int zero_ok; 814 unsigned int erase_block_no; 815 unsigned int max_erases; 816 struct weak_block *wb; 817 818 if (!weakblocks) 819 return 0; 820 w = weakblocks; 821 do { 822 zero_ok = (*w == '0' ? 1 : 0); 823 erase_block_no = simple_strtoul(w, &w, 0); 824 if (!zero_ok && !erase_block_no) { 825 NS_ERR("invalid weakblocks.\n"); 826 return -EINVAL; 827 } 828 max_erases = 3; 829 if (*w == ':') { 830 w += 1; 831 max_erases = simple_strtoul(w, &w, 0); 832 } 833 if (*w == ',') 834 w += 1; 835 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 836 if (!wb) { 837 NS_ERR("unable to allocate memory.\n"); 838 return -ENOMEM; 839 } 840 wb->erase_block_no = erase_block_no; 841 wb->max_erases = max_erases; 842 list_add(&wb->list, &weak_blocks); 843 } while (*w); 844 return 0; 845 } 846 847 static int erase_error(unsigned int erase_block_no) 848 { 849 struct weak_block *wb; 850 851 list_for_each_entry(wb, &weak_blocks, list) 852 if (wb->erase_block_no == erase_block_no) { 853 if (wb->erases_done >= wb->max_erases) 854 return 1; 855 wb->erases_done += 1; 856 return 0; 857 } 858 return 0; 859 } 860 861 static int parse_weakpages(void) 862 { 863 char *w; 864 int zero_ok; 865 unsigned int page_no; 866 unsigned int max_writes; 867 struct weak_page *wp; 868 869 if (!weakpages) 870 return 0; 871 w = weakpages; 872 do { 873 zero_ok = (*w == '0' ? 1 : 0); 874 page_no = simple_strtoul(w, &w, 0); 875 if (!zero_ok && !page_no) { 876 NS_ERR("invalid weakpages.\n"); 877 return -EINVAL; 878 } 879 max_writes = 3; 880 if (*w == ':') { 881 w += 1; 882 max_writes = simple_strtoul(w, &w, 0); 883 } 884 if (*w == ',') 885 w += 1; 886 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 887 if (!wp) { 888 NS_ERR("unable to allocate memory.\n"); 889 return -ENOMEM; 890 } 891 wp->page_no = page_no; 892 wp->max_writes = max_writes; 893 list_add(&wp->list, &weak_pages); 894 } while (*w); 895 return 0; 896 } 897 898 static int write_error(unsigned int page_no) 899 { 900 struct weak_page *wp; 901 902 list_for_each_entry(wp, &weak_pages, list) 903 if (wp->page_no == page_no) { 904 if (wp->writes_done >= wp->max_writes) 905 return 1; 906 wp->writes_done += 1; 907 return 0; 908 } 909 return 0; 910 } 911 912 static int parse_gravepages(void) 913 { 914 char *g; 915 int zero_ok; 916 unsigned int page_no; 917 unsigned int max_reads; 918 struct grave_page *gp; 919 920 if (!gravepages) 921 return 0; 922 g = gravepages; 923 do { 924 zero_ok = (*g == '0' ? 1 : 0); 925 page_no = simple_strtoul(g, &g, 0); 926 if (!zero_ok && !page_no) { 927 NS_ERR("invalid gravepagess.\n"); 928 return -EINVAL; 929 } 930 max_reads = 3; 931 if (*g == ':') { 932 g += 1; 933 max_reads = simple_strtoul(g, &g, 0); 934 } 935 if (*g == ',') 936 g += 1; 937 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 938 if (!gp) { 939 NS_ERR("unable to allocate memory.\n"); 940 return -ENOMEM; 941 } 942 gp->page_no = page_no; 943 gp->max_reads = max_reads; 944 list_add(&gp->list, &grave_pages); 945 } while (*g); 946 return 0; 947 } 948 949 static int read_error(unsigned int page_no) 950 { 951 struct grave_page *gp; 952 953 list_for_each_entry(gp, &grave_pages, list) 954 if (gp->page_no == page_no) { 955 if (gp->reads_done >= gp->max_reads) 956 return 1; 957 gp->reads_done += 1; 958 return 0; 959 } 960 return 0; 961 } 962 963 static void free_lists(void) 964 { 965 struct list_head *pos, *n; 966 list_for_each_safe(pos, n, &weak_blocks) { 967 list_del(pos); 968 kfree(list_entry(pos, struct weak_block, list)); 969 } 970 list_for_each_safe(pos, n, &weak_pages) { 971 list_del(pos); 972 kfree(list_entry(pos, struct weak_page, list)); 973 } 974 list_for_each_safe(pos, n, &grave_pages) { 975 list_del(pos); 976 kfree(list_entry(pos, struct grave_page, list)); 977 } 978 kfree(erase_block_wear); 979 } 980 981 static int setup_wear_reporting(struct mtd_info *mtd) 982 { 983 size_t mem; 984 985 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 986 mem = wear_eb_count * sizeof(unsigned long); 987 if (mem / sizeof(unsigned long) != wear_eb_count) { 988 NS_ERR("Too many erase blocks for wear reporting\n"); 989 return -ENOMEM; 990 } 991 erase_block_wear = kzalloc(mem, GFP_KERNEL); 992 if (!erase_block_wear) { 993 NS_ERR("Too many erase blocks for wear reporting\n"); 994 return -ENOMEM; 995 } 996 return 0; 997 } 998 999 static void update_wear(unsigned int erase_block_no) 1000 { 1001 if (!erase_block_wear) 1002 return; 1003 total_wear += 1; 1004 /* 1005 * TODO: Notify this through a debugfs entry, 1006 * instead of showing an error message. 1007 */ 1008 if (total_wear == 0) 1009 NS_ERR("Erase counter total overflow\n"); 1010 erase_block_wear[erase_block_no] += 1; 1011 if (erase_block_wear[erase_block_no] == 0) 1012 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 1013 } 1014 1015 /* 1016 * Returns the string representation of 'state' state. 1017 */ 1018 static char *get_state_name(uint32_t state) 1019 { 1020 switch (NS_STATE(state)) { 1021 case STATE_CMD_READ0: 1022 return "STATE_CMD_READ0"; 1023 case STATE_CMD_READ1: 1024 return "STATE_CMD_READ1"; 1025 case STATE_CMD_PAGEPROG: 1026 return "STATE_CMD_PAGEPROG"; 1027 case STATE_CMD_READOOB: 1028 return "STATE_CMD_READOOB"; 1029 case STATE_CMD_READSTART: 1030 return "STATE_CMD_READSTART"; 1031 case STATE_CMD_ERASE1: 1032 return "STATE_CMD_ERASE1"; 1033 case STATE_CMD_STATUS: 1034 return "STATE_CMD_STATUS"; 1035 case STATE_CMD_SEQIN: 1036 return "STATE_CMD_SEQIN"; 1037 case STATE_CMD_READID: 1038 return "STATE_CMD_READID"; 1039 case STATE_CMD_ERASE2: 1040 return "STATE_CMD_ERASE2"; 1041 case STATE_CMD_RESET: 1042 return "STATE_CMD_RESET"; 1043 case STATE_CMD_RNDOUT: 1044 return "STATE_CMD_RNDOUT"; 1045 case STATE_CMD_RNDOUTSTART: 1046 return "STATE_CMD_RNDOUTSTART"; 1047 case STATE_ADDR_PAGE: 1048 return "STATE_ADDR_PAGE"; 1049 case STATE_ADDR_SEC: 1050 return "STATE_ADDR_SEC"; 1051 case STATE_ADDR_ZERO: 1052 return "STATE_ADDR_ZERO"; 1053 case STATE_ADDR_COLUMN: 1054 return "STATE_ADDR_COLUMN"; 1055 case STATE_DATAIN: 1056 return "STATE_DATAIN"; 1057 case STATE_DATAOUT: 1058 return "STATE_DATAOUT"; 1059 case STATE_DATAOUT_ID: 1060 return "STATE_DATAOUT_ID"; 1061 case STATE_DATAOUT_STATUS: 1062 return "STATE_DATAOUT_STATUS"; 1063 case STATE_READY: 1064 return "STATE_READY"; 1065 case STATE_UNKNOWN: 1066 return "STATE_UNKNOWN"; 1067 } 1068 1069 NS_ERR("get_state_name: unknown state, BUG\n"); 1070 return NULL; 1071 } 1072 1073 /* 1074 * Check if command is valid. 1075 * 1076 * RETURNS: 1 if wrong command, 0 if right. 1077 */ 1078 static int check_command(int cmd) 1079 { 1080 switch (cmd) { 1081 1082 case NAND_CMD_READ0: 1083 case NAND_CMD_READ1: 1084 case NAND_CMD_READSTART: 1085 case NAND_CMD_PAGEPROG: 1086 case NAND_CMD_READOOB: 1087 case NAND_CMD_ERASE1: 1088 case NAND_CMD_STATUS: 1089 case NAND_CMD_SEQIN: 1090 case NAND_CMD_READID: 1091 case NAND_CMD_ERASE2: 1092 case NAND_CMD_RESET: 1093 case NAND_CMD_RNDOUT: 1094 case NAND_CMD_RNDOUTSTART: 1095 return 0; 1096 1097 default: 1098 return 1; 1099 } 1100 } 1101 1102 /* 1103 * Returns state after command is accepted by command number. 1104 */ 1105 static uint32_t get_state_by_command(unsigned command) 1106 { 1107 switch (command) { 1108 case NAND_CMD_READ0: 1109 return STATE_CMD_READ0; 1110 case NAND_CMD_READ1: 1111 return STATE_CMD_READ1; 1112 case NAND_CMD_PAGEPROG: 1113 return STATE_CMD_PAGEPROG; 1114 case NAND_CMD_READSTART: 1115 return STATE_CMD_READSTART; 1116 case NAND_CMD_READOOB: 1117 return STATE_CMD_READOOB; 1118 case NAND_CMD_ERASE1: 1119 return STATE_CMD_ERASE1; 1120 case NAND_CMD_STATUS: 1121 return STATE_CMD_STATUS; 1122 case NAND_CMD_SEQIN: 1123 return STATE_CMD_SEQIN; 1124 case NAND_CMD_READID: 1125 return STATE_CMD_READID; 1126 case NAND_CMD_ERASE2: 1127 return STATE_CMD_ERASE2; 1128 case NAND_CMD_RESET: 1129 return STATE_CMD_RESET; 1130 case NAND_CMD_RNDOUT: 1131 return STATE_CMD_RNDOUT; 1132 case NAND_CMD_RNDOUTSTART: 1133 return STATE_CMD_RNDOUTSTART; 1134 } 1135 1136 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1137 return 0; 1138 } 1139 1140 /* 1141 * Move an address byte to the correspondent internal register. 1142 */ 1143 static inline void accept_addr_byte(struct nandsim *ns, u_char bt) 1144 { 1145 uint byte = (uint)bt; 1146 1147 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1148 ns->regs.column |= (byte << 8 * ns->regs.count); 1149 else { 1150 ns->regs.row |= (byte << 8 * (ns->regs.count - 1151 ns->geom.pgaddrbytes + 1152 ns->geom.secaddrbytes)); 1153 } 1154 1155 return; 1156 } 1157 1158 /* 1159 * Switch to STATE_READY state. 1160 */ 1161 static inline void switch_to_ready_state(struct nandsim *ns, u_char status) 1162 { 1163 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); 1164 1165 ns->state = STATE_READY; 1166 ns->nxstate = STATE_UNKNOWN; 1167 ns->op = NULL; 1168 ns->npstates = 0; 1169 ns->stateidx = 0; 1170 ns->regs.num = 0; 1171 ns->regs.count = 0; 1172 ns->regs.off = 0; 1173 ns->regs.row = 0; 1174 ns->regs.column = 0; 1175 ns->regs.status = status; 1176 } 1177 1178 /* 1179 * If the operation isn't known yet, try to find it in the global array 1180 * of supported operations. 1181 * 1182 * Operation can be unknown because of the following. 1183 * 1. New command was accepted and this is the first call to find the 1184 * correspondent states chain. In this case ns->npstates = 0; 1185 * 2. There are several operations which begin with the same command(s) 1186 * (for example program from the second half and read from the 1187 * second half operations both begin with the READ1 command). In this 1188 * case the ns->pstates[] array contains previous states. 1189 * 1190 * Thus, the function tries to find operation containing the following 1191 * states (if the 'flag' parameter is 0): 1192 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1193 * 1194 * If (one and only one) matching operation is found, it is accepted ( 1195 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1196 * zeroed). 1197 * 1198 * If there are several matches, the current state is pushed to the 1199 * ns->pstates. 1200 * 1201 * The operation can be unknown only while commands are input to the chip. 1202 * As soon as address command is accepted, the operation must be known. 1203 * In such situation the function is called with 'flag' != 0, and the 1204 * operation is searched using the following pattern: 1205 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1206 * 1207 * It is supposed that this pattern must either match one operation or 1208 * none. There can't be ambiguity in that case. 1209 * 1210 * If no matches found, the function does the following: 1211 * 1. if there are saved states present, try to ignore them and search 1212 * again only using the last command. If nothing was found, switch 1213 * to the STATE_READY state. 1214 * 2. if there are no saved states, switch to the STATE_READY state. 1215 * 1216 * RETURNS: -2 - no matched operations found. 1217 * -1 - several matches. 1218 * 0 - operation is found. 1219 */ 1220 static int find_operation(struct nandsim *ns, uint32_t flag) 1221 { 1222 int opsfound = 0; 1223 int i, j, idx = 0; 1224 1225 for (i = 0; i < NS_OPER_NUM; i++) { 1226 1227 int found = 1; 1228 1229 if (!(ns->options & ops[i].reqopts)) 1230 /* Ignore operations we can't perform */ 1231 continue; 1232 1233 if (flag) { 1234 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1235 continue; 1236 } else { 1237 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1238 continue; 1239 } 1240 1241 for (j = 0; j < ns->npstates; j++) 1242 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1243 && (ns->options & ops[idx].reqopts)) { 1244 found = 0; 1245 break; 1246 } 1247 1248 if (found) { 1249 idx = i; 1250 opsfound += 1; 1251 } 1252 } 1253 1254 if (opsfound == 1) { 1255 /* Exact match */ 1256 ns->op = &ops[idx].states[0]; 1257 if (flag) { 1258 /* 1259 * In this case the find_operation function was 1260 * called when address has just began input. But it isn't 1261 * yet fully input and the current state must 1262 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1263 * state must be the next state (ns->nxstate). 1264 */ 1265 ns->stateidx = ns->npstates - 1; 1266 } else { 1267 ns->stateidx = ns->npstates; 1268 } 1269 ns->npstates = 0; 1270 ns->state = ns->op[ns->stateidx]; 1271 ns->nxstate = ns->op[ns->stateidx + 1]; 1272 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1273 idx, get_state_name(ns->state), get_state_name(ns->nxstate)); 1274 return 0; 1275 } 1276 1277 if (opsfound == 0) { 1278 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1279 if (ns->npstates != 0) { 1280 NS_DBG("find_operation: no operation found, try again with state %s\n", 1281 get_state_name(ns->state)); 1282 ns->npstates = 0; 1283 return find_operation(ns, 0); 1284 1285 } 1286 NS_DBG("find_operation: no operations found\n"); 1287 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1288 return -2; 1289 } 1290 1291 if (flag) { 1292 /* This shouldn't happen */ 1293 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1294 return -2; 1295 } 1296 1297 NS_DBG("find_operation: there is still ambiguity\n"); 1298 1299 ns->pstates[ns->npstates++] = ns->state; 1300 1301 return -1; 1302 } 1303 1304 static void put_pages(struct nandsim *ns) 1305 { 1306 int i; 1307 1308 for (i = 0; i < ns->held_cnt; i++) 1309 put_page(ns->held_pages[i]); 1310 } 1311 1312 /* Get page cache pages in advance to provide NOFS memory allocation */ 1313 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) 1314 { 1315 pgoff_t index, start_index, end_index; 1316 struct page *page; 1317 struct address_space *mapping = file->f_mapping; 1318 1319 start_index = pos >> PAGE_SHIFT; 1320 end_index = (pos + count - 1) >> PAGE_SHIFT; 1321 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1322 return -EINVAL; 1323 ns->held_cnt = 0; 1324 for (index = start_index; index <= end_index; index++) { 1325 page = find_get_page(mapping, index); 1326 if (page == NULL) { 1327 page = find_or_create_page(mapping, index, GFP_NOFS); 1328 if (page == NULL) { 1329 write_inode_now(mapping->host, 1); 1330 page = find_or_create_page(mapping, index, GFP_NOFS); 1331 } 1332 if (page == NULL) { 1333 put_pages(ns); 1334 return -ENOMEM; 1335 } 1336 unlock_page(page); 1337 } 1338 ns->held_pages[ns->held_cnt++] = page; 1339 } 1340 return 0; 1341 } 1342 1343 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1344 { 1345 ssize_t tx; 1346 int err; 1347 unsigned int noreclaim_flag; 1348 1349 err = get_pages(ns, file, count, pos); 1350 if (err) 1351 return err; 1352 noreclaim_flag = memalloc_noreclaim_save(); 1353 tx = kernel_read(file, buf, count, &pos); 1354 memalloc_noreclaim_restore(noreclaim_flag); 1355 put_pages(ns); 1356 return tx; 1357 } 1358 1359 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1360 { 1361 ssize_t tx; 1362 int err; 1363 unsigned int noreclaim_flag; 1364 1365 err = get_pages(ns, file, count, pos); 1366 if (err) 1367 return err; 1368 noreclaim_flag = memalloc_noreclaim_save(); 1369 tx = kernel_write(file, buf, count, &pos); 1370 memalloc_noreclaim_restore(noreclaim_flag); 1371 put_pages(ns); 1372 return tx; 1373 } 1374 1375 /* 1376 * Returns a pointer to the current page. 1377 */ 1378 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1379 { 1380 return &(ns->pages[ns->regs.row]); 1381 } 1382 1383 /* 1384 * Retuns a pointer to the current byte, within the current page. 1385 */ 1386 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1387 { 1388 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; 1389 } 1390 1391 static int do_read_error(struct nandsim *ns, int num) 1392 { 1393 unsigned int page_no = ns->regs.row; 1394 1395 if (read_error(page_no)) { 1396 prandom_bytes(ns->buf.byte, num); 1397 NS_WARN("simulating read error in page %u\n", page_no); 1398 return 1; 1399 } 1400 return 0; 1401 } 1402 1403 static void do_bit_flips(struct nandsim *ns, int num) 1404 { 1405 if (bitflips && prandom_u32() < (1 << 22)) { 1406 int flips = 1; 1407 if (bitflips > 1) 1408 flips = (prandom_u32() % (int) bitflips) + 1; 1409 while (flips--) { 1410 int pos = prandom_u32() % (num * 8); 1411 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1412 NS_WARN("read_page: flipping bit %d in page %d " 1413 "reading from %d ecc: corrected=%u failed=%u\n", 1414 pos, ns->regs.row, ns->regs.column + ns->regs.off, 1415 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1416 } 1417 } 1418 } 1419 1420 /* 1421 * Fill the NAND buffer with data read from the specified page. 1422 */ 1423 static void read_page(struct nandsim *ns, int num) 1424 { 1425 union ns_mem *mypage; 1426 1427 if (ns->cfile) { 1428 if (!test_bit(ns->regs.row, ns->pages_written)) { 1429 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1430 memset(ns->buf.byte, 0xFF, num); 1431 } else { 1432 loff_t pos; 1433 ssize_t tx; 1434 1435 NS_DBG("read_page: page %d written, reading from %d\n", 1436 ns->regs.row, ns->regs.column + ns->regs.off); 1437 if (do_read_error(ns, num)) 1438 return; 1439 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1440 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); 1441 if (tx != num) { 1442 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1443 return; 1444 } 1445 do_bit_flips(ns, num); 1446 } 1447 return; 1448 } 1449 1450 mypage = NS_GET_PAGE(ns); 1451 if (mypage->byte == NULL) { 1452 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1453 memset(ns->buf.byte, 0xFF, num); 1454 } else { 1455 NS_DBG("read_page: page %d allocated, reading from %d\n", 1456 ns->regs.row, ns->regs.column + ns->regs.off); 1457 if (do_read_error(ns, num)) 1458 return; 1459 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1460 do_bit_flips(ns, num); 1461 } 1462 } 1463 1464 /* 1465 * Erase all pages in the specified sector. 1466 */ 1467 static void erase_sector(struct nandsim *ns) 1468 { 1469 union ns_mem *mypage; 1470 int i; 1471 1472 if (ns->cfile) { 1473 for (i = 0; i < ns->geom.pgsec; i++) 1474 if (__test_and_clear_bit(ns->regs.row + i, 1475 ns->pages_written)) { 1476 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1477 } 1478 return; 1479 } 1480 1481 mypage = NS_GET_PAGE(ns); 1482 for (i = 0; i < ns->geom.pgsec; i++) { 1483 if (mypage->byte != NULL) { 1484 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1485 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1486 mypage->byte = NULL; 1487 } 1488 mypage++; 1489 } 1490 } 1491 1492 /* 1493 * Program the specified page with the contents from the NAND buffer. 1494 */ 1495 static int prog_page(struct nandsim *ns, int num) 1496 { 1497 int i; 1498 union ns_mem *mypage; 1499 u_char *pg_off; 1500 1501 if (ns->cfile) { 1502 loff_t off; 1503 ssize_t tx; 1504 int all; 1505 1506 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1507 pg_off = ns->file_buf + ns->regs.column + ns->regs.off; 1508 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1509 if (!test_bit(ns->regs.row, ns->pages_written)) { 1510 all = 1; 1511 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1512 } else { 1513 all = 0; 1514 tx = read_file(ns, ns->cfile, pg_off, num, off); 1515 if (tx != num) { 1516 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1517 return -1; 1518 } 1519 } 1520 for (i = 0; i < num; i++) 1521 pg_off[i] &= ns->buf.byte[i]; 1522 if (all) { 1523 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1524 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); 1525 if (tx != ns->geom.pgszoob) { 1526 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1527 return -1; 1528 } 1529 __set_bit(ns->regs.row, ns->pages_written); 1530 } else { 1531 tx = write_file(ns, ns->cfile, pg_off, num, off); 1532 if (tx != num) { 1533 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1534 return -1; 1535 } 1536 } 1537 return 0; 1538 } 1539 1540 mypage = NS_GET_PAGE(ns); 1541 if (mypage->byte == NULL) { 1542 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1543 /* 1544 * We allocate memory with GFP_NOFS because a flash FS may 1545 * utilize this. If it is holding an FS lock, then gets here, 1546 * then kernel memory alloc runs writeback which goes to the FS 1547 * again and deadlocks. This was seen in practice. 1548 */ 1549 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1550 if (mypage->byte == NULL) { 1551 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1552 return -1; 1553 } 1554 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1555 } 1556 1557 pg_off = NS_PAGE_BYTE_OFF(ns); 1558 for (i = 0; i < num; i++) 1559 pg_off[i] &= ns->buf.byte[i]; 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * If state has any action bit, perform this action. 1566 * 1567 * RETURNS: 0 if success, -1 if error. 1568 */ 1569 static int do_state_action(struct nandsim *ns, uint32_t action) 1570 { 1571 int num; 1572 int busdiv = ns->busw == 8 ? 1 : 2; 1573 unsigned int erase_block_no, page_no; 1574 1575 action &= ACTION_MASK; 1576 1577 /* Check that page address input is correct */ 1578 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1579 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1580 return -1; 1581 } 1582 1583 switch (action) { 1584 1585 case ACTION_CPY: 1586 /* 1587 * Copy page data to the internal buffer. 1588 */ 1589 1590 /* Column shouldn't be very large */ 1591 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1592 NS_ERR("do_state_action: column number is too large\n"); 1593 break; 1594 } 1595 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1596 read_page(ns, num); 1597 1598 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1599 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1600 1601 if (ns->regs.off == 0) 1602 NS_LOG("read page %d\n", ns->regs.row); 1603 else if (ns->regs.off < ns->geom.pgsz) 1604 NS_LOG("read page %d (second half)\n", ns->regs.row); 1605 else 1606 NS_LOG("read OOB of page %d\n", ns->regs.row); 1607 1608 NS_UDELAY(access_delay); 1609 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1610 1611 break; 1612 1613 case ACTION_SECERASE: 1614 /* 1615 * Erase sector. 1616 */ 1617 1618 if (ns->lines.wp) { 1619 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1620 return -1; 1621 } 1622 1623 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1624 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1625 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1626 return -1; 1627 } 1628 1629 ns->regs.row = (ns->regs.row << 1630 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1631 ns->regs.column = 0; 1632 1633 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1634 1635 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1636 ns->regs.row, NS_RAW_OFFSET(ns)); 1637 NS_LOG("erase sector %u\n", erase_block_no); 1638 1639 erase_sector(ns); 1640 1641 NS_MDELAY(erase_delay); 1642 1643 if (erase_block_wear) 1644 update_wear(erase_block_no); 1645 1646 if (erase_error(erase_block_no)) { 1647 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1648 return -1; 1649 } 1650 1651 break; 1652 1653 case ACTION_PRGPAGE: 1654 /* 1655 * Program page - move internal buffer data to the page. 1656 */ 1657 1658 if (ns->lines.wp) { 1659 NS_WARN("do_state_action: device is write-protected, programm\n"); 1660 return -1; 1661 } 1662 1663 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1664 if (num != ns->regs.count) { 1665 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1666 ns->regs.count, num); 1667 return -1; 1668 } 1669 1670 if (prog_page(ns, num) == -1) 1671 return -1; 1672 1673 page_no = ns->regs.row; 1674 1675 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1676 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1677 NS_LOG("programm page %d\n", ns->regs.row); 1678 1679 NS_UDELAY(programm_delay); 1680 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1681 1682 if (write_error(page_no)) { 1683 NS_WARN("simulating write failure in page %u\n", page_no); 1684 return -1; 1685 } 1686 1687 break; 1688 1689 case ACTION_ZEROOFF: 1690 NS_DBG("do_state_action: set internal offset to 0\n"); 1691 ns->regs.off = 0; 1692 break; 1693 1694 case ACTION_HALFOFF: 1695 if (!(ns->options & OPT_PAGE512_8BIT)) { 1696 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1697 "byte page size 8x chips\n"); 1698 return -1; 1699 } 1700 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1701 ns->regs.off = ns->geom.pgsz/2; 1702 break; 1703 1704 case ACTION_OOBOFF: 1705 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1706 ns->regs.off = ns->geom.pgsz; 1707 break; 1708 1709 default: 1710 NS_DBG("do_state_action: BUG! unknown action\n"); 1711 } 1712 1713 return 0; 1714 } 1715 1716 /* 1717 * Switch simulator's state. 1718 */ 1719 static void switch_state(struct nandsim *ns) 1720 { 1721 if (ns->op) { 1722 /* 1723 * The current operation have already been identified. 1724 * Just follow the states chain. 1725 */ 1726 1727 ns->stateidx += 1; 1728 ns->state = ns->nxstate; 1729 ns->nxstate = ns->op[ns->stateidx + 1]; 1730 1731 NS_DBG("switch_state: operation is known, switch to the next state, " 1732 "state: %s, nxstate: %s\n", 1733 get_state_name(ns->state), get_state_name(ns->nxstate)); 1734 1735 /* See, whether we need to do some action */ 1736 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1737 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1738 return; 1739 } 1740 1741 } else { 1742 /* 1743 * We don't yet know which operation we perform. 1744 * Try to identify it. 1745 */ 1746 1747 /* 1748 * The only event causing the switch_state function to 1749 * be called with yet unknown operation is new command. 1750 */ 1751 ns->state = get_state_by_command(ns->regs.command); 1752 1753 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1754 1755 if (find_operation(ns, 0) != 0) 1756 return; 1757 1758 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1759 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1760 return; 1761 } 1762 } 1763 1764 /* For 16x devices column means the page offset in words */ 1765 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1766 NS_DBG("switch_state: double the column number for 16x device\n"); 1767 ns->regs.column <<= 1; 1768 } 1769 1770 if (NS_STATE(ns->nxstate) == STATE_READY) { 1771 /* 1772 * The current state is the last. Return to STATE_READY 1773 */ 1774 1775 u_char status = NS_STATUS_OK(ns); 1776 1777 /* In case of data states, see if all bytes were input/output */ 1778 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1779 && ns->regs.count != ns->regs.num) { 1780 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1781 ns->regs.num - ns->regs.count); 1782 status = NS_STATUS_FAILED(ns); 1783 } 1784 1785 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1786 1787 switch_to_ready_state(ns, status); 1788 1789 return; 1790 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1791 /* 1792 * If the next state is data input/output, switch to it now 1793 */ 1794 1795 ns->state = ns->nxstate; 1796 ns->nxstate = ns->op[++ns->stateidx + 1]; 1797 ns->regs.num = ns->regs.count = 0; 1798 1799 NS_DBG("switch_state: the next state is data I/O, switch, " 1800 "state: %s, nxstate: %s\n", 1801 get_state_name(ns->state), get_state_name(ns->nxstate)); 1802 1803 /* 1804 * Set the internal register to the count of bytes which 1805 * are expected to be input or output 1806 */ 1807 switch (NS_STATE(ns->state)) { 1808 case STATE_DATAIN: 1809 case STATE_DATAOUT: 1810 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1811 break; 1812 1813 case STATE_DATAOUT_ID: 1814 ns->regs.num = ns->geom.idbytes; 1815 break; 1816 1817 case STATE_DATAOUT_STATUS: 1818 ns->regs.count = ns->regs.num = 0; 1819 break; 1820 1821 default: 1822 NS_ERR("switch_state: BUG! unknown data state\n"); 1823 } 1824 1825 } else if (ns->nxstate & STATE_ADDR_MASK) { 1826 /* 1827 * If the next state is address input, set the internal 1828 * register to the number of expected address bytes 1829 */ 1830 1831 ns->regs.count = 0; 1832 1833 switch (NS_STATE(ns->nxstate)) { 1834 case STATE_ADDR_PAGE: 1835 ns->regs.num = ns->geom.pgaddrbytes; 1836 1837 break; 1838 case STATE_ADDR_SEC: 1839 ns->regs.num = ns->geom.secaddrbytes; 1840 break; 1841 1842 case STATE_ADDR_ZERO: 1843 ns->regs.num = 1; 1844 break; 1845 1846 case STATE_ADDR_COLUMN: 1847 /* Column address is always 2 bytes */ 1848 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1849 break; 1850 1851 default: 1852 NS_ERR("switch_state: BUG! unknown address state\n"); 1853 } 1854 } else { 1855 /* 1856 * Just reset internal counters. 1857 */ 1858 1859 ns->regs.num = 0; 1860 ns->regs.count = 0; 1861 } 1862 } 1863 1864 static u_char ns_nand_read_byte(struct nand_chip *chip) 1865 { 1866 struct nandsim *ns = nand_get_controller_data(chip); 1867 u_char outb = 0x00; 1868 1869 /* Sanity and correctness checks */ 1870 if (!ns->lines.ce) { 1871 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1872 return outb; 1873 } 1874 if (ns->lines.ale || ns->lines.cle) { 1875 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1876 return outb; 1877 } 1878 if (!(ns->state & STATE_DATAOUT_MASK)) { 1879 NS_WARN("read_byte: unexpected data output cycle, state is %s " 1880 "return %#x\n", get_state_name(ns->state), (uint)outb); 1881 return outb; 1882 } 1883 1884 /* Status register may be read as many times as it is wanted */ 1885 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1886 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1887 return ns->regs.status; 1888 } 1889 1890 /* Check if there is any data in the internal buffer which may be read */ 1891 if (ns->regs.count == ns->regs.num) { 1892 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1893 return outb; 1894 } 1895 1896 switch (NS_STATE(ns->state)) { 1897 case STATE_DATAOUT: 1898 if (ns->busw == 8) { 1899 outb = ns->buf.byte[ns->regs.count]; 1900 ns->regs.count += 1; 1901 } else { 1902 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1903 ns->regs.count += 2; 1904 } 1905 break; 1906 case STATE_DATAOUT_ID: 1907 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1908 outb = ns->ids[ns->regs.count]; 1909 ns->regs.count += 1; 1910 break; 1911 default: 1912 BUG(); 1913 } 1914 1915 if (ns->regs.count == ns->regs.num) { 1916 NS_DBG("read_byte: all bytes were read\n"); 1917 1918 if (NS_STATE(ns->nxstate) == STATE_READY) 1919 switch_state(ns); 1920 } 1921 1922 return outb; 1923 } 1924 1925 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) 1926 { 1927 struct nandsim *ns = nand_get_controller_data(chip); 1928 1929 /* Sanity and correctness checks */ 1930 if (!ns->lines.ce) { 1931 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1932 return; 1933 } 1934 if (ns->lines.ale && ns->lines.cle) { 1935 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1936 return; 1937 } 1938 1939 if (ns->lines.cle == 1) { 1940 /* 1941 * The byte written is a command. 1942 */ 1943 1944 if (byte == NAND_CMD_RESET) { 1945 NS_LOG("reset chip\n"); 1946 switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1947 return; 1948 } 1949 1950 /* Check that the command byte is correct */ 1951 if (check_command(byte)) { 1952 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1953 return; 1954 } 1955 1956 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1957 || NS_STATE(ns->state) == STATE_DATAOUT) { 1958 int row = ns->regs.row; 1959 1960 switch_state(ns); 1961 if (byte == NAND_CMD_RNDOUT) 1962 ns->regs.row = row; 1963 } 1964 1965 /* Check if chip is expecting command */ 1966 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1967 /* Do not warn if only 2 id bytes are read */ 1968 if (!(ns->regs.command == NAND_CMD_READID && 1969 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1970 /* 1971 * We are in situation when something else (not command) 1972 * was expected but command was input. In this case ignore 1973 * previous command(s)/state(s) and accept the last one. 1974 */ 1975 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " 1976 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); 1977 } 1978 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1979 } 1980 1981 NS_DBG("command byte corresponding to %s state accepted\n", 1982 get_state_name(get_state_by_command(byte))); 1983 ns->regs.command = byte; 1984 switch_state(ns); 1985 1986 } else if (ns->lines.ale == 1) { 1987 /* 1988 * The byte written is an address. 1989 */ 1990 1991 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 1992 1993 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 1994 1995 if (find_operation(ns, 1) < 0) 1996 return; 1997 1998 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1999 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2000 return; 2001 } 2002 2003 ns->regs.count = 0; 2004 switch (NS_STATE(ns->nxstate)) { 2005 case STATE_ADDR_PAGE: 2006 ns->regs.num = ns->geom.pgaddrbytes; 2007 break; 2008 case STATE_ADDR_SEC: 2009 ns->regs.num = ns->geom.secaddrbytes; 2010 break; 2011 case STATE_ADDR_ZERO: 2012 ns->regs.num = 1; 2013 break; 2014 default: 2015 BUG(); 2016 } 2017 } 2018 2019 /* Check that chip is expecting address */ 2020 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2021 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " 2022 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); 2023 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2024 return; 2025 } 2026 2027 /* Check if this is expected byte */ 2028 if (ns->regs.count == ns->regs.num) { 2029 NS_ERR("write_byte: no more address bytes expected\n"); 2030 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2031 return; 2032 } 2033 2034 accept_addr_byte(ns, byte); 2035 2036 ns->regs.count += 1; 2037 2038 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2039 (uint)byte, ns->regs.count, ns->regs.num); 2040 2041 if (ns->regs.count == ns->regs.num) { 2042 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2043 switch_state(ns); 2044 } 2045 2046 } else { 2047 /* 2048 * The byte written is an input data. 2049 */ 2050 2051 /* Check that chip is expecting data input */ 2052 if (!(ns->state & STATE_DATAIN_MASK)) { 2053 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " 2054 "switch to %s\n", (uint)byte, 2055 get_state_name(ns->state), get_state_name(STATE_READY)); 2056 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2057 return; 2058 } 2059 2060 /* Check if this is expected byte */ 2061 if (ns->regs.count == ns->regs.num) { 2062 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2063 ns->regs.num); 2064 return; 2065 } 2066 2067 if (ns->busw == 8) { 2068 ns->buf.byte[ns->regs.count] = byte; 2069 ns->regs.count += 1; 2070 } else { 2071 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2072 ns->regs.count += 2; 2073 } 2074 } 2075 2076 return; 2077 } 2078 2079 static void ns_hwcontrol(struct nand_chip *chip, int cmd, unsigned int bitmask) 2080 { 2081 struct nandsim *ns = nand_get_controller_data(chip); 2082 2083 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; 2084 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; 2085 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; 2086 2087 if (cmd != NAND_CMD_NONE) 2088 ns_nand_write_byte(chip, cmd); 2089 } 2090 2091 static int ns_device_ready(struct nand_chip *chip) 2092 { 2093 NS_DBG("device_ready\n"); 2094 return 1; 2095 } 2096 2097 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, 2098 int len) 2099 { 2100 struct nandsim *ns = nand_get_controller_data(chip); 2101 2102 /* Check that chip is expecting data input */ 2103 if (!(ns->state & STATE_DATAIN_MASK)) { 2104 NS_ERR("write_buf: data input isn't expected, state is %s, " 2105 "switch to STATE_READY\n", get_state_name(ns->state)); 2106 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2107 return; 2108 } 2109 2110 /* Check if these are expected bytes */ 2111 if (ns->regs.count + len > ns->regs.num) { 2112 NS_ERR("write_buf: too many input bytes\n"); 2113 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2114 return; 2115 } 2116 2117 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2118 ns->regs.count += len; 2119 2120 if (ns->regs.count == ns->regs.num) { 2121 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2122 } 2123 } 2124 2125 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 2126 { 2127 struct nandsim *ns = nand_get_controller_data(chip); 2128 2129 /* Sanity and correctness checks */ 2130 if (!ns->lines.ce) { 2131 NS_ERR("read_buf: chip is disabled\n"); 2132 return; 2133 } 2134 if (ns->lines.ale || ns->lines.cle) { 2135 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2136 return; 2137 } 2138 if (!(ns->state & STATE_DATAOUT_MASK)) { 2139 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2140 get_state_name(ns->state)); 2141 return; 2142 } 2143 2144 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2145 int i; 2146 2147 for (i = 0; i < len; i++) 2148 buf[i] = chip->legacy.read_byte(chip); 2149 2150 return; 2151 } 2152 2153 /* Check if these are expected bytes */ 2154 if (ns->regs.count + len > ns->regs.num) { 2155 NS_ERR("read_buf: too many bytes to read\n"); 2156 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2157 return; 2158 } 2159 2160 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2161 ns->regs.count += len; 2162 2163 if (ns->regs.count == ns->regs.num) { 2164 if (NS_STATE(ns->nxstate) == STATE_READY) 2165 switch_state(ns); 2166 } 2167 2168 return; 2169 } 2170 2171 static int ns_attach_chip(struct nand_chip *chip) 2172 { 2173 unsigned int eccsteps, eccbytes; 2174 2175 if (!bch) 2176 return 0; 2177 2178 if (!mtd_nand_has_bch()) { 2179 NS_ERR("BCH ECC support is disabled\n"); 2180 return -EINVAL; 2181 } 2182 2183 /* Use 512-byte ecc blocks */ 2184 eccsteps = nsmtd->writesize / 512; 2185 eccbytes = ((bch * 13) + 7) / 8; 2186 2187 /* Do not bother supporting small page devices */ 2188 if (nsmtd->oobsize < 64 || !eccsteps) { 2189 NS_ERR("BCH not available on small page devices\n"); 2190 return -EINVAL; 2191 } 2192 2193 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2194 NS_ERR("Invalid BCH value %u\n", bch); 2195 return -EINVAL; 2196 } 2197 2198 chip->ecc.mode = NAND_ECC_SOFT; 2199 chip->ecc.algo = NAND_ECC_BCH; 2200 chip->ecc.size = 512; 2201 chip->ecc.strength = bch; 2202 chip->ecc.bytes = eccbytes; 2203 2204 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2205 2206 return 0; 2207 } 2208 2209 static const struct nand_controller_ops ns_controller_ops = { 2210 .attach_chip = ns_attach_chip, 2211 }; 2212 2213 /* 2214 * Module initialization function 2215 */ 2216 static int __init ns_init_module(void) 2217 { 2218 struct nand_chip *chip; 2219 struct nandsim *nand; 2220 int retval = -ENOMEM, i; 2221 2222 if (bus_width != 8 && bus_width != 16) { 2223 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2224 return -EINVAL; 2225 } 2226 2227 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ 2228 chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim), 2229 GFP_KERNEL); 2230 if (!chip) { 2231 NS_ERR("unable to allocate core structures.\n"); 2232 return -ENOMEM; 2233 } 2234 nsmtd = nand_to_mtd(chip); 2235 nand = (struct nandsim *)(chip + 1); 2236 nand_set_controller_data(chip, (void *)nand); 2237 2238 /* 2239 * Register simulator's callbacks. 2240 */ 2241 chip->legacy.cmd_ctrl = ns_hwcontrol; 2242 chip->legacy.read_byte = ns_nand_read_byte; 2243 chip->legacy.dev_ready = ns_device_ready; 2244 chip->legacy.write_buf = ns_nand_write_buf; 2245 chip->legacy.read_buf = ns_nand_read_buf; 2246 chip->ecc.mode = NAND_ECC_SOFT; 2247 chip->ecc.algo = NAND_ECC_HAMMING; 2248 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2249 /* and 'badblocks' parameters to work */ 2250 chip->options |= NAND_SKIP_BBTSCAN; 2251 2252 switch (bbt) { 2253 case 2: 2254 chip->bbt_options |= NAND_BBT_NO_OOB; 2255 case 1: 2256 chip->bbt_options |= NAND_BBT_USE_FLASH; 2257 case 0: 2258 break; 2259 default: 2260 NS_ERR("bbt has to be 0..2\n"); 2261 retval = -EINVAL; 2262 goto error; 2263 } 2264 /* 2265 * Perform minimum nandsim structure initialization to handle 2266 * the initial ID read command correctly 2267 */ 2268 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2269 nand->geom.idbytes = 8; 2270 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2271 nand->geom.idbytes = 6; 2272 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2273 nand->geom.idbytes = 4; 2274 else 2275 nand->geom.idbytes = 2; 2276 nand->regs.status = NS_STATUS_OK(nand); 2277 nand->nxstate = STATE_UNKNOWN; 2278 nand->options |= OPT_PAGE512; /* temporary value */ 2279 memcpy(nand->ids, id_bytes, sizeof(nand->ids)); 2280 if (bus_width == 16) { 2281 nand->busw = 16; 2282 chip->options |= NAND_BUSWIDTH_16; 2283 } 2284 2285 nsmtd->owner = THIS_MODULE; 2286 2287 if ((retval = parse_weakblocks()) != 0) 2288 goto error; 2289 2290 if ((retval = parse_weakpages()) != 0) 2291 goto error; 2292 2293 if ((retval = parse_gravepages()) != 0) 2294 goto error; 2295 2296 chip->legacy.dummy_controller.ops = &ns_controller_ops; 2297 retval = nand_scan(chip, 1); 2298 if (retval) { 2299 NS_ERR("Could not scan NAND Simulator device\n"); 2300 goto error; 2301 } 2302 2303 if (overridesize) { 2304 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2305 if (new_size >> overridesize != nsmtd->erasesize) { 2306 NS_ERR("overridesize is too big\n"); 2307 retval = -EINVAL; 2308 goto err_exit; 2309 } 2310 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2311 nsmtd->size = new_size; 2312 chip->chipsize = new_size; 2313 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2314 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; 2315 } 2316 2317 if ((retval = setup_wear_reporting(nsmtd)) != 0) 2318 goto err_exit; 2319 2320 if ((retval = init_nandsim(nsmtd)) != 0) 2321 goto err_exit; 2322 2323 if ((retval = nand_create_bbt(chip)) != 0) 2324 goto err_exit; 2325 2326 if ((retval = parse_badblocks(nand, nsmtd)) != 0) 2327 goto err_exit; 2328 2329 /* Register NAND partitions */ 2330 retval = mtd_device_register(nsmtd, &nand->partitions[0], 2331 nand->nbparts); 2332 if (retval != 0) 2333 goto err_exit; 2334 2335 if ((retval = nandsim_debugfs_create(nand)) != 0) 2336 goto err_exit; 2337 2338 return 0; 2339 2340 err_exit: 2341 free_nandsim(nand); 2342 nand_release(chip); 2343 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) 2344 kfree(nand->partitions[i].name); 2345 error: 2346 kfree(chip); 2347 free_lists(); 2348 2349 return retval; 2350 } 2351 2352 module_init(ns_init_module); 2353 2354 /* 2355 * Module clean-up function 2356 */ 2357 static void __exit ns_cleanup_module(void) 2358 { 2359 struct nand_chip *chip = mtd_to_nand(nsmtd); 2360 struct nandsim *ns = nand_get_controller_data(chip); 2361 int i; 2362 2363 free_nandsim(ns); /* Free nandsim private resources */ 2364 nand_release(chip); /* Unregister driver */ 2365 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) 2366 kfree(ns->partitions[i].name); 2367 kfree(mtd_to_nand(nsmtd)); /* Free other structures */ 2368 free_lists(); 2369 } 2370 2371 module_exit(ns_cleanup_module); 2372 2373 MODULE_LICENSE ("GPL"); 2374 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2375 MODULE_DESCRIPTION ("The NAND flash simulator"); 2376