xref: /openbmc/linux/drivers/mtd/nand/raw/nandsim.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #define pr_fmt(fmt)  "[nandsim]" fmt
27 
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/math64.h>
34 #include <linux/slab.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/rawnand.h>
39 #include <linux/mtd/nand_bch.h>
40 #include <linux/mtd/partitions.h>
41 #include <linux/delay.h>
42 #include <linux/list.h>
43 #include <linux/random.h>
44 #include <linux/sched.h>
45 #include <linux/sched/mm.h>
46 #include <linux/fs.h>
47 #include <linux/pagemap.h>
48 #include <linux/seq_file.h>
49 #include <linux/debugfs.h>
50 
51 /* Default simulator parameters values */
52 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
53     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
54     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
55     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
56 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
57 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
58 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
59 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
60 #endif
61 
62 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
63 #define CONFIG_NANDSIM_ACCESS_DELAY 25
64 #endif
65 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
66 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
67 #endif
68 #ifndef CONFIG_NANDSIM_ERASE_DELAY
69 #define CONFIG_NANDSIM_ERASE_DELAY 2
70 #endif
71 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
72 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
73 #endif
74 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
75 #define CONFIG_NANDSIM_INPUT_CYCLE  50
76 #endif
77 #ifndef CONFIG_NANDSIM_BUS_WIDTH
78 #define CONFIG_NANDSIM_BUS_WIDTH  8
79 #endif
80 #ifndef CONFIG_NANDSIM_DO_DELAYS
81 #define CONFIG_NANDSIM_DO_DELAYS  0
82 #endif
83 #ifndef CONFIG_NANDSIM_LOG
84 #define CONFIG_NANDSIM_LOG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_DBG
87 #define CONFIG_NANDSIM_DBG        0
88 #endif
89 #ifndef CONFIG_NANDSIM_MAX_PARTS
90 #define CONFIG_NANDSIM_MAX_PARTS  32
91 #endif
92 
93 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
94 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
95 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
96 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
97 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
98 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
99 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
100 static uint log            = CONFIG_NANDSIM_LOG;
101 static uint dbg            = CONFIG_NANDSIM_DBG;
102 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
103 static unsigned int parts_num;
104 static char *badblocks = NULL;
105 static char *weakblocks = NULL;
106 static char *weakpages = NULL;
107 static unsigned int bitflips = 0;
108 static char *gravepages = NULL;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113 static u_char id_bytes[8] = {
114 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
115 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
116 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
117 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
118 	[4 ... 7] = 0xFF,
119 };
120 
121 module_param_array(id_bytes, byte, NULL, 0400);
122 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
123 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
124 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
125 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
126 module_param(access_delay,   uint, 0400);
127 module_param(programm_delay, uint, 0400);
128 module_param(erase_delay,    uint, 0400);
129 module_param(output_cycle,   uint, 0400);
130 module_param(input_cycle,    uint, 0400);
131 module_param(bus_width,      uint, 0400);
132 module_param(do_delays,      uint, 0400);
133 module_param(log,            uint, 0400);
134 module_param(dbg,            uint, 0400);
135 module_param_array(parts, ulong, &parts_num, 0400);
136 module_param(badblocks,      charp, 0400);
137 module_param(weakblocks,     charp, 0400);
138 module_param(weakpages,      charp, 0400);
139 module_param(bitflips,       uint, 0400);
140 module_param(gravepages,     charp, 0400);
141 module_param(overridesize,   uint, 0400);
142 module_param(cache_file,     charp, 0400);
143 module_param(bbt,	     uint, 0400);
144 module_param(bch,	     uint, 0400);
145 
146 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
147 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
148 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
149 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
150 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
151 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
152 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
153 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
154 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
155 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
156 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
157 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
158 MODULE_PARM_DESC(log,            "Perform logging if not zero");
159 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
160 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
161 /* Page and erase block positions for the following parameters are independent of any partitions */
162 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
163 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
164 				 " separated by commas e.g. 113:2 means eb 113"
165 				 " can be erased only twice before failing");
166 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
167 				 " separated by commas e.g. 1401:2 means page 1401"
168 				 " can be written only twice before failing");
169 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
170 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
171 				 " separated by commas e.g. 1401:2 means page 1401"
172 				 " can be read only twice before failing");
173 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
174 				 "The size is specified in erase blocks and as the exponent of a power of two"
175 				 " e.g. 5 means a size of 32 erase blocks");
176 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
177 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
178 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
179 				 "be correctable in 512-byte blocks");
180 
181 /* The largest possible page size */
182 #define NS_LARGEST_PAGE_SIZE	4096
183 
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 	do { if (log) pr_debug(" log: " args); } while(0)
187 #define NS_DBG(args...) \
188 	do { if (dbg) pr_debug(" debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 	do { pr_warn(" warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 	do { pr_err(" error: " args); } while(0)
193 #define NS_INFO(args...) \
194 	do { pr_info(" " args); } while(0)
195 
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201 
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204 
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207 
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210 
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214 
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217 
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233 
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240 
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244 
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249 
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252 
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255 
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264 
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267 
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275 
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278 
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285 
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288 
289 /*
290  * A union to represent flash memory contents and flash buffer.
291  */
292 union ns_mem {
293 	u_char *byte;    /* for byte access */
294 	uint16_t *word;  /* for 16-bit word access */
295 };
296 
297 /*
298  * The structure which describes all the internal simulator data.
299  */
300 struct nandsim {
301 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
302 	unsigned int nbparts;
303 
304 	uint busw;              /* flash chip bus width (8 or 16) */
305 	u_char ids[8];          /* chip's ID bytes */
306 	uint32_t options;       /* chip's characteristic bits */
307 	uint32_t state;         /* current chip state */
308 	uint32_t nxstate;       /* next expected state */
309 
310 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
311 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
312 	uint16_t npstates;      /* number of previous states saved */
313 	uint16_t stateidx;      /* current state index */
314 
315 	/* The simulated NAND flash pages array */
316 	union ns_mem *pages;
317 
318 	/* Slab allocator for nand pages */
319 	struct kmem_cache *nand_pages_slab;
320 
321 	/* Internal buffer of page + OOB size bytes */
322 	union ns_mem buf;
323 
324 	/* NAND flash "geometry" */
325 	struct {
326 		uint64_t totsz;     /* total flash size, bytes */
327 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
328 		uint pgsz;          /* NAND flash page size, bytes */
329 		uint oobsz;         /* page OOB area size, bytes */
330 		uint64_t totszoob;  /* total flash size including OOB, bytes */
331 		uint pgszoob;       /* page size including OOB , bytes*/
332 		uint secszoob;      /* sector size including OOB, bytes */
333 		uint pgnum;         /* total number of pages */
334 		uint pgsec;         /* number of pages per sector */
335 		uint secshift;      /* bits number in sector size */
336 		uint pgshift;       /* bits number in page size */
337 		uint pgaddrbytes;   /* bytes per page address */
338 		uint secaddrbytes;  /* bytes per sector address */
339 		uint idbytes;       /* the number ID bytes that this chip outputs */
340 	} geom;
341 
342 	/* NAND flash internal registers */
343 	struct {
344 		unsigned command; /* the command register */
345 		u_char   status;  /* the status register */
346 		uint     row;     /* the page number */
347 		uint     column;  /* the offset within page */
348 		uint     count;   /* internal counter */
349 		uint     num;     /* number of bytes which must be processed */
350 		uint     off;     /* fixed page offset */
351 	} regs;
352 
353 	/* NAND flash lines state */
354         struct {
355                 int ce;  /* chip Enable */
356                 int cle; /* command Latch Enable */
357                 int ale; /* address Latch Enable */
358                 int wp;  /* write Protect */
359         } lines;
360 
361 	/* Fields needed when using a cache file */
362 	struct file *cfile; /* Open file */
363 	unsigned long *pages_written; /* Which pages have been written */
364 	void *file_buf;
365 	struct page *held_pages[NS_MAX_HELD_PAGES];
366 	int held_cnt;
367 };
368 
369 /*
370  * Operations array. To perform any operation the simulator must pass
371  * through the correspondent states chain.
372  */
373 static struct nandsim_operations {
374 	uint32_t reqopts;  /* options which are required to perform the operation */
375 	uint32_t states[NS_OPER_STATES]; /* operation's states */
376 } ops[NS_OPER_NUM] = {
377 	/* Read page + OOB from the beginning */
378 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
379 			STATE_DATAOUT, STATE_READY}},
380 	/* Read page + OOB from the second half */
381 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
382 			STATE_DATAOUT, STATE_READY}},
383 	/* Read OOB */
384 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
385 			STATE_DATAOUT, STATE_READY}},
386 	/* Program page starting from the beginning */
387 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
388 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389 	/* Program page starting from the beginning */
390 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
391 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392 	/* Program page starting from the second half */
393 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
394 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
395 	/* Program OOB */
396 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
397 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
398 	/* Erase sector */
399 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
400 	/* Read status */
401 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
402 	/* Read ID */
403 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
404 	/* Large page devices read page */
405 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
406 			       STATE_DATAOUT, STATE_READY}},
407 	/* Large page devices random page read */
408 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
409 			       STATE_DATAOUT, STATE_READY}},
410 };
411 
412 struct weak_block {
413 	struct list_head list;
414 	unsigned int erase_block_no;
415 	unsigned int max_erases;
416 	unsigned int erases_done;
417 };
418 
419 static LIST_HEAD(weak_blocks);
420 
421 struct weak_page {
422 	struct list_head list;
423 	unsigned int page_no;
424 	unsigned int max_writes;
425 	unsigned int writes_done;
426 };
427 
428 static LIST_HEAD(weak_pages);
429 
430 struct grave_page {
431 	struct list_head list;
432 	unsigned int page_no;
433 	unsigned int max_reads;
434 	unsigned int reads_done;
435 };
436 
437 static LIST_HEAD(grave_pages);
438 
439 static unsigned long *erase_block_wear = NULL;
440 static unsigned int wear_eb_count = 0;
441 static unsigned long total_wear = 0;
442 
443 /* MTD structure for NAND controller */
444 static struct mtd_info *nsmtd;
445 
446 static int nandsim_debugfs_show(struct seq_file *m, void *private)
447 {
448 	unsigned long wmin = -1, wmax = 0, avg;
449 	unsigned long deciles[10], decile_max[10], tot = 0;
450 	unsigned int i;
451 
452 	/* Calc wear stats */
453 	for (i = 0; i < wear_eb_count; ++i) {
454 		unsigned long wear = erase_block_wear[i];
455 		if (wear < wmin)
456 			wmin = wear;
457 		if (wear > wmax)
458 			wmax = wear;
459 		tot += wear;
460 	}
461 
462 	for (i = 0; i < 9; ++i) {
463 		deciles[i] = 0;
464 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
465 	}
466 	deciles[9] = 0;
467 	decile_max[9] = wmax;
468 	for (i = 0; i < wear_eb_count; ++i) {
469 		int d;
470 		unsigned long wear = erase_block_wear[i];
471 		for (d = 0; d < 10; ++d)
472 			if (wear <= decile_max[d]) {
473 				deciles[d] += 1;
474 				break;
475 			}
476 	}
477 	avg = tot / wear_eb_count;
478 
479 	/* Output wear report */
480 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
481 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
482 	seq_printf(m, "Average number of erases: %lu\n", avg);
483 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
484 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
485 	for (i = 0; i < 10; ++i) {
486 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
487 		if (from > decile_max[i])
488 			continue;
489 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
490 			from,
491 			decile_max[i],
492 			deciles[i]);
493 	}
494 
495 	return 0;
496 }
497 
498 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
499 {
500 	return single_open(file, nandsim_debugfs_show, inode->i_private);
501 }
502 
503 static const struct file_operations dfs_fops = {
504 	.open		= nandsim_debugfs_open,
505 	.read		= seq_read,
506 	.llseek		= seq_lseek,
507 	.release	= single_release,
508 };
509 
510 /**
511  * nandsim_debugfs_create - initialize debugfs
512  * @dev: nandsim device description object
513  *
514  * This function creates all debugfs files for UBI device @ubi. Returns zero in
515  * case of success and a negative error code in case of failure.
516  */
517 static int nandsim_debugfs_create(struct nandsim *dev)
518 {
519 	struct dentry *root = nsmtd->dbg.dfs_dir;
520 	struct dentry *dent;
521 
522 	/*
523 	 * Just skip debugfs initialization when the debugfs directory is
524 	 * missing.
525 	 */
526 	if (IS_ERR_OR_NULL(root)) {
527 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
528 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
529 			NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
530 		return 0;
531 	}
532 
533 	dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
534 				   root, dev, &dfs_fops);
535 	if (IS_ERR_OR_NULL(dent)) {
536 		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
537 		return -1;
538 	}
539 
540 	return 0;
541 }
542 
543 /*
544  * Allocate array of page pointers, create slab allocation for an array
545  * and initialize the array by NULL pointers.
546  *
547  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
548  */
549 static int __init alloc_device(struct nandsim *ns)
550 {
551 	struct file *cfile;
552 	int i, err;
553 
554 	if (cache_file) {
555 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
556 		if (IS_ERR(cfile))
557 			return PTR_ERR(cfile);
558 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
559 			NS_ERR("alloc_device: cache file not readable\n");
560 			err = -EINVAL;
561 			goto err_close;
562 		}
563 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
564 			NS_ERR("alloc_device: cache file not writeable\n");
565 			err = -EINVAL;
566 			goto err_close;
567 		}
568 		ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
569 					    sizeof(unsigned long));
570 		if (!ns->pages_written) {
571 			NS_ERR("alloc_device: unable to allocate pages written array\n");
572 			err = -ENOMEM;
573 			goto err_close;
574 		}
575 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
576 		if (!ns->file_buf) {
577 			NS_ERR("alloc_device: unable to allocate file buf\n");
578 			err = -ENOMEM;
579 			goto err_free;
580 		}
581 		ns->cfile = cfile;
582 		return 0;
583 	}
584 
585 	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
586 	if (!ns->pages) {
587 		NS_ERR("alloc_device: unable to allocate page array\n");
588 		return -ENOMEM;
589 	}
590 	for (i = 0; i < ns->geom.pgnum; i++) {
591 		ns->pages[i].byte = NULL;
592 	}
593 	ns->nand_pages_slab = kmem_cache_create("nandsim",
594 						ns->geom.pgszoob, 0, 0, NULL);
595 	if (!ns->nand_pages_slab) {
596 		NS_ERR("cache_create: unable to create kmem_cache\n");
597 		return -ENOMEM;
598 	}
599 
600 	return 0;
601 
602 err_free:
603 	vfree(ns->pages_written);
604 err_close:
605 	filp_close(cfile, NULL);
606 	return err;
607 }
608 
609 /*
610  * Free any allocated pages, and free the array of page pointers.
611  */
612 static void free_device(struct nandsim *ns)
613 {
614 	int i;
615 
616 	if (ns->cfile) {
617 		kfree(ns->file_buf);
618 		vfree(ns->pages_written);
619 		filp_close(ns->cfile, NULL);
620 		return;
621 	}
622 
623 	if (ns->pages) {
624 		for (i = 0; i < ns->geom.pgnum; i++) {
625 			if (ns->pages[i].byte)
626 				kmem_cache_free(ns->nand_pages_slab,
627 						ns->pages[i].byte);
628 		}
629 		kmem_cache_destroy(ns->nand_pages_slab);
630 		vfree(ns->pages);
631 	}
632 }
633 
634 static char __init *get_partition_name(int i)
635 {
636 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
637 }
638 
639 /*
640  * Initialize the nandsim structure.
641  *
642  * RETURNS: 0 if success, -ERRNO if failure.
643  */
644 static int __init init_nandsim(struct mtd_info *mtd)
645 {
646 	struct nand_chip *chip = mtd_to_nand(mtd);
647 	struct nandsim   *ns   = nand_get_controller_data(chip);
648 	int i, ret = 0;
649 	uint64_t remains;
650 	uint64_t next_offset;
651 
652 	if (NS_IS_INITIALIZED(ns)) {
653 		NS_ERR("init_nandsim: nandsim is already initialized\n");
654 		return -EIO;
655 	}
656 
657 	/* Force mtd to not do delays */
658 	chip->chip_delay = 0;
659 
660 	/* Initialize the NAND flash parameters */
661 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
662 	ns->geom.totsz    = mtd->size;
663 	ns->geom.pgsz     = mtd->writesize;
664 	ns->geom.oobsz    = mtd->oobsize;
665 	ns->geom.secsz    = mtd->erasesize;
666 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
667 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
668 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
669 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
670 	ns->geom.pgshift  = chip->page_shift;
671 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
672 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
673 	ns->options = 0;
674 
675 	if (ns->geom.pgsz == 512) {
676 		ns->options |= OPT_PAGE512;
677 		if (ns->busw == 8)
678 			ns->options |= OPT_PAGE512_8BIT;
679 	} else if (ns->geom.pgsz == 2048) {
680 		ns->options |= OPT_PAGE2048;
681 	} else if (ns->geom.pgsz == 4096) {
682 		ns->options |= OPT_PAGE4096;
683 	} else {
684 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
685 		return -EIO;
686 	}
687 
688 	if (ns->options & OPT_SMALLPAGE) {
689 		if (ns->geom.totsz <= (32 << 20)) {
690 			ns->geom.pgaddrbytes  = 3;
691 			ns->geom.secaddrbytes = 2;
692 		} else {
693 			ns->geom.pgaddrbytes  = 4;
694 			ns->geom.secaddrbytes = 3;
695 		}
696 	} else {
697 		if (ns->geom.totsz <= (128 << 20)) {
698 			ns->geom.pgaddrbytes  = 4;
699 			ns->geom.secaddrbytes = 2;
700 		} else {
701 			ns->geom.pgaddrbytes  = 5;
702 			ns->geom.secaddrbytes = 3;
703 		}
704 	}
705 
706 	/* Fill the partition_info structure */
707 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
708 		NS_ERR("too many partitions.\n");
709 		return -EINVAL;
710 	}
711 	remains = ns->geom.totsz;
712 	next_offset = 0;
713 	for (i = 0; i < parts_num; ++i) {
714 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
715 
716 		if (!part_sz || part_sz > remains) {
717 			NS_ERR("bad partition size.\n");
718 			return -EINVAL;
719 		}
720 		ns->partitions[i].name   = get_partition_name(i);
721 		if (!ns->partitions[i].name) {
722 			NS_ERR("unable to allocate memory.\n");
723 			return -ENOMEM;
724 		}
725 		ns->partitions[i].offset = next_offset;
726 		ns->partitions[i].size   = part_sz;
727 		next_offset += ns->partitions[i].size;
728 		remains -= ns->partitions[i].size;
729 	}
730 	ns->nbparts = parts_num;
731 	if (remains) {
732 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
733 			NS_ERR("too many partitions.\n");
734 			return -EINVAL;
735 		}
736 		ns->partitions[i].name   = get_partition_name(i);
737 		if (!ns->partitions[i].name) {
738 			NS_ERR("unable to allocate memory.\n");
739 			return -ENOMEM;
740 		}
741 		ns->partitions[i].offset = next_offset;
742 		ns->partitions[i].size   = remains;
743 		ns->nbparts += 1;
744 	}
745 
746 	if (ns->busw == 16)
747 		NS_WARN("16-bit flashes support wasn't tested\n");
748 
749 	printk("flash size: %llu MiB\n",
750 			(unsigned long long)ns->geom.totsz >> 20);
751 	printk("page size: %u bytes\n",         ns->geom.pgsz);
752 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
753 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
754 	printk("pages number: %u\n",            ns->geom.pgnum);
755 	printk("pages per sector: %u\n",        ns->geom.pgsec);
756 	printk("bus width: %u\n",               ns->busw);
757 	printk("bits in sector size: %u\n",     ns->geom.secshift);
758 	printk("bits in page size: %u\n",       ns->geom.pgshift);
759 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
760 	printk("flash size with OOB: %llu KiB\n",
761 			(unsigned long long)ns->geom.totszoob >> 10);
762 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
763 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
764 	printk("options: %#x\n",                ns->options);
765 
766 	if ((ret = alloc_device(ns)) != 0)
767 		return ret;
768 
769 	/* Allocate / initialize the internal buffer */
770 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
771 	if (!ns->buf.byte) {
772 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
773 			ns->geom.pgszoob);
774 		return -ENOMEM;
775 	}
776 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
777 
778 	return 0;
779 }
780 
781 /*
782  * Free the nandsim structure.
783  */
784 static void free_nandsim(struct nandsim *ns)
785 {
786 	kfree(ns->buf.byte);
787 	free_device(ns);
788 
789 	return;
790 }
791 
792 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
793 {
794 	char *w;
795 	int zero_ok;
796 	unsigned int erase_block_no;
797 	loff_t offset;
798 
799 	if (!badblocks)
800 		return 0;
801 	w = badblocks;
802 	do {
803 		zero_ok = (*w == '0' ? 1 : 0);
804 		erase_block_no = simple_strtoul(w, &w, 0);
805 		if (!zero_ok && !erase_block_no) {
806 			NS_ERR("invalid badblocks.\n");
807 			return -EINVAL;
808 		}
809 		offset = (loff_t)erase_block_no * ns->geom.secsz;
810 		if (mtd_block_markbad(mtd, offset)) {
811 			NS_ERR("invalid badblocks.\n");
812 			return -EINVAL;
813 		}
814 		if (*w == ',')
815 			w += 1;
816 	} while (*w);
817 	return 0;
818 }
819 
820 static int parse_weakblocks(void)
821 {
822 	char *w;
823 	int zero_ok;
824 	unsigned int erase_block_no;
825 	unsigned int max_erases;
826 	struct weak_block *wb;
827 
828 	if (!weakblocks)
829 		return 0;
830 	w = weakblocks;
831 	do {
832 		zero_ok = (*w == '0' ? 1 : 0);
833 		erase_block_no = simple_strtoul(w, &w, 0);
834 		if (!zero_ok && !erase_block_no) {
835 			NS_ERR("invalid weakblocks.\n");
836 			return -EINVAL;
837 		}
838 		max_erases = 3;
839 		if (*w == ':') {
840 			w += 1;
841 			max_erases = simple_strtoul(w, &w, 0);
842 		}
843 		if (*w == ',')
844 			w += 1;
845 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
846 		if (!wb) {
847 			NS_ERR("unable to allocate memory.\n");
848 			return -ENOMEM;
849 		}
850 		wb->erase_block_no = erase_block_no;
851 		wb->max_erases = max_erases;
852 		list_add(&wb->list, &weak_blocks);
853 	} while (*w);
854 	return 0;
855 }
856 
857 static int erase_error(unsigned int erase_block_no)
858 {
859 	struct weak_block *wb;
860 
861 	list_for_each_entry(wb, &weak_blocks, list)
862 		if (wb->erase_block_no == erase_block_no) {
863 			if (wb->erases_done >= wb->max_erases)
864 				return 1;
865 			wb->erases_done += 1;
866 			return 0;
867 		}
868 	return 0;
869 }
870 
871 static int parse_weakpages(void)
872 {
873 	char *w;
874 	int zero_ok;
875 	unsigned int page_no;
876 	unsigned int max_writes;
877 	struct weak_page *wp;
878 
879 	if (!weakpages)
880 		return 0;
881 	w = weakpages;
882 	do {
883 		zero_ok = (*w == '0' ? 1 : 0);
884 		page_no = simple_strtoul(w, &w, 0);
885 		if (!zero_ok && !page_no) {
886 			NS_ERR("invalid weakpages.\n");
887 			return -EINVAL;
888 		}
889 		max_writes = 3;
890 		if (*w == ':') {
891 			w += 1;
892 			max_writes = simple_strtoul(w, &w, 0);
893 		}
894 		if (*w == ',')
895 			w += 1;
896 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
897 		if (!wp) {
898 			NS_ERR("unable to allocate memory.\n");
899 			return -ENOMEM;
900 		}
901 		wp->page_no = page_no;
902 		wp->max_writes = max_writes;
903 		list_add(&wp->list, &weak_pages);
904 	} while (*w);
905 	return 0;
906 }
907 
908 static int write_error(unsigned int page_no)
909 {
910 	struct weak_page *wp;
911 
912 	list_for_each_entry(wp, &weak_pages, list)
913 		if (wp->page_no == page_no) {
914 			if (wp->writes_done >= wp->max_writes)
915 				return 1;
916 			wp->writes_done += 1;
917 			return 0;
918 		}
919 	return 0;
920 }
921 
922 static int parse_gravepages(void)
923 {
924 	char *g;
925 	int zero_ok;
926 	unsigned int page_no;
927 	unsigned int max_reads;
928 	struct grave_page *gp;
929 
930 	if (!gravepages)
931 		return 0;
932 	g = gravepages;
933 	do {
934 		zero_ok = (*g == '0' ? 1 : 0);
935 		page_no = simple_strtoul(g, &g, 0);
936 		if (!zero_ok && !page_no) {
937 			NS_ERR("invalid gravepagess.\n");
938 			return -EINVAL;
939 		}
940 		max_reads = 3;
941 		if (*g == ':') {
942 			g += 1;
943 			max_reads = simple_strtoul(g, &g, 0);
944 		}
945 		if (*g == ',')
946 			g += 1;
947 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
948 		if (!gp) {
949 			NS_ERR("unable to allocate memory.\n");
950 			return -ENOMEM;
951 		}
952 		gp->page_no = page_no;
953 		gp->max_reads = max_reads;
954 		list_add(&gp->list, &grave_pages);
955 	} while (*g);
956 	return 0;
957 }
958 
959 static int read_error(unsigned int page_no)
960 {
961 	struct grave_page *gp;
962 
963 	list_for_each_entry(gp, &grave_pages, list)
964 		if (gp->page_no == page_no) {
965 			if (gp->reads_done >= gp->max_reads)
966 				return 1;
967 			gp->reads_done += 1;
968 			return 0;
969 		}
970 	return 0;
971 }
972 
973 static void free_lists(void)
974 {
975 	struct list_head *pos, *n;
976 	list_for_each_safe(pos, n, &weak_blocks) {
977 		list_del(pos);
978 		kfree(list_entry(pos, struct weak_block, list));
979 	}
980 	list_for_each_safe(pos, n, &weak_pages) {
981 		list_del(pos);
982 		kfree(list_entry(pos, struct weak_page, list));
983 	}
984 	list_for_each_safe(pos, n, &grave_pages) {
985 		list_del(pos);
986 		kfree(list_entry(pos, struct grave_page, list));
987 	}
988 	kfree(erase_block_wear);
989 }
990 
991 static int setup_wear_reporting(struct mtd_info *mtd)
992 {
993 	size_t mem;
994 
995 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
996 	mem = wear_eb_count * sizeof(unsigned long);
997 	if (mem / sizeof(unsigned long) != wear_eb_count) {
998 		NS_ERR("Too many erase blocks for wear reporting\n");
999 		return -ENOMEM;
1000 	}
1001 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1002 	if (!erase_block_wear) {
1003 		NS_ERR("Too many erase blocks for wear reporting\n");
1004 		return -ENOMEM;
1005 	}
1006 	return 0;
1007 }
1008 
1009 static void update_wear(unsigned int erase_block_no)
1010 {
1011 	if (!erase_block_wear)
1012 		return;
1013 	total_wear += 1;
1014 	/*
1015 	 * TODO: Notify this through a debugfs entry,
1016 	 * instead of showing an error message.
1017 	 */
1018 	if (total_wear == 0)
1019 		NS_ERR("Erase counter total overflow\n");
1020 	erase_block_wear[erase_block_no] += 1;
1021 	if (erase_block_wear[erase_block_no] == 0)
1022 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1023 }
1024 
1025 /*
1026  * Returns the string representation of 'state' state.
1027  */
1028 static char *get_state_name(uint32_t state)
1029 {
1030 	switch (NS_STATE(state)) {
1031 		case STATE_CMD_READ0:
1032 			return "STATE_CMD_READ0";
1033 		case STATE_CMD_READ1:
1034 			return "STATE_CMD_READ1";
1035 		case STATE_CMD_PAGEPROG:
1036 			return "STATE_CMD_PAGEPROG";
1037 		case STATE_CMD_READOOB:
1038 			return "STATE_CMD_READOOB";
1039 		case STATE_CMD_READSTART:
1040 			return "STATE_CMD_READSTART";
1041 		case STATE_CMD_ERASE1:
1042 			return "STATE_CMD_ERASE1";
1043 		case STATE_CMD_STATUS:
1044 			return "STATE_CMD_STATUS";
1045 		case STATE_CMD_SEQIN:
1046 			return "STATE_CMD_SEQIN";
1047 		case STATE_CMD_READID:
1048 			return "STATE_CMD_READID";
1049 		case STATE_CMD_ERASE2:
1050 			return "STATE_CMD_ERASE2";
1051 		case STATE_CMD_RESET:
1052 			return "STATE_CMD_RESET";
1053 		case STATE_CMD_RNDOUT:
1054 			return "STATE_CMD_RNDOUT";
1055 		case STATE_CMD_RNDOUTSTART:
1056 			return "STATE_CMD_RNDOUTSTART";
1057 		case STATE_ADDR_PAGE:
1058 			return "STATE_ADDR_PAGE";
1059 		case STATE_ADDR_SEC:
1060 			return "STATE_ADDR_SEC";
1061 		case STATE_ADDR_ZERO:
1062 			return "STATE_ADDR_ZERO";
1063 		case STATE_ADDR_COLUMN:
1064 			return "STATE_ADDR_COLUMN";
1065 		case STATE_DATAIN:
1066 			return "STATE_DATAIN";
1067 		case STATE_DATAOUT:
1068 			return "STATE_DATAOUT";
1069 		case STATE_DATAOUT_ID:
1070 			return "STATE_DATAOUT_ID";
1071 		case STATE_DATAOUT_STATUS:
1072 			return "STATE_DATAOUT_STATUS";
1073 		case STATE_READY:
1074 			return "STATE_READY";
1075 		case STATE_UNKNOWN:
1076 			return "STATE_UNKNOWN";
1077 	}
1078 
1079 	NS_ERR("get_state_name: unknown state, BUG\n");
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * Check if command is valid.
1085  *
1086  * RETURNS: 1 if wrong command, 0 if right.
1087  */
1088 static int check_command(int cmd)
1089 {
1090 	switch (cmd) {
1091 
1092 	case NAND_CMD_READ0:
1093 	case NAND_CMD_READ1:
1094 	case NAND_CMD_READSTART:
1095 	case NAND_CMD_PAGEPROG:
1096 	case NAND_CMD_READOOB:
1097 	case NAND_CMD_ERASE1:
1098 	case NAND_CMD_STATUS:
1099 	case NAND_CMD_SEQIN:
1100 	case NAND_CMD_READID:
1101 	case NAND_CMD_ERASE2:
1102 	case NAND_CMD_RESET:
1103 	case NAND_CMD_RNDOUT:
1104 	case NAND_CMD_RNDOUTSTART:
1105 		return 0;
1106 
1107 	default:
1108 		return 1;
1109 	}
1110 }
1111 
1112 /*
1113  * Returns state after command is accepted by command number.
1114  */
1115 static uint32_t get_state_by_command(unsigned command)
1116 {
1117 	switch (command) {
1118 		case NAND_CMD_READ0:
1119 			return STATE_CMD_READ0;
1120 		case NAND_CMD_READ1:
1121 			return STATE_CMD_READ1;
1122 		case NAND_CMD_PAGEPROG:
1123 			return STATE_CMD_PAGEPROG;
1124 		case NAND_CMD_READSTART:
1125 			return STATE_CMD_READSTART;
1126 		case NAND_CMD_READOOB:
1127 			return STATE_CMD_READOOB;
1128 		case NAND_CMD_ERASE1:
1129 			return STATE_CMD_ERASE1;
1130 		case NAND_CMD_STATUS:
1131 			return STATE_CMD_STATUS;
1132 		case NAND_CMD_SEQIN:
1133 			return STATE_CMD_SEQIN;
1134 		case NAND_CMD_READID:
1135 			return STATE_CMD_READID;
1136 		case NAND_CMD_ERASE2:
1137 			return STATE_CMD_ERASE2;
1138 		case NAND_CMD_RESET:
1139 			return STATE_CMD_RESET;
1140 		case NAND_CMD_RNDOUT:
1141 			return STATE_CMD_RNDOUT;
1142 		case NAND_CMD_RNDOUTSTART:
1143 			return STATE_CMD_RNDOUTSTART;
1144 	}
1145 
1146 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1147 	return 0;
1148 }
1149 
1150 /*
1151  * Move an address byte to the correspondent internal register.
1152  */
1153 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1154 {
1155 	uint byte = (uint)bt;
1156 
1157 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1158 		ns->regs.column |= (byte << 8 * ns->regs.count);
1159 	else {
1160 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1161 						ns->geom.pgaddrbytes +
1162 						ns->geom.secaddrbytes));
1163 	}
1164 
1165 	return;
1166 }
1167 
1168 /*
1169  * Switch to STATE_READY state.
1170  */
1171 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1172 {
1173 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1174 
1175 	ns->state       = STATE_READY;
1176 	ns->nxstate     = STATE_UNKNOWN;
1177 	ns->op          = NULL;
1178 	ns->npstates    = 0;
1179 	ns->stateidx    = 0;
1180 	ns->regs.num    = 0;
1181 	ns->regs.count  = 0;
1182 	ns->regs.off    = 0;
1183 	ns->regs.row    = 0;
1184 	ns->regs.column = 0;
1185 	ns->regs.status = status;
1186 }
1187 
1188 /*
1189  * If the operation isn't known yet, try to find it in the global array
1190  * of supported operations.
1191  *
1192  * Operation can be unknown because of the following.
1193  *   1. New command was accepted and this is the first call to find the
1194  *      correspondent states chain. In this case ns->npstates = 0;
1195  *   2. There are several operations which begin with the same command(s)
1196  *      (for example program from the second half and read from the
1197  *      second half operations both begin with the READ1 command). In this
1198  *      case the ns->pstates[] array contains previous states.
1199  *
1200  * Thus, the function tries to find operation containing the following
1201  * states (if the 'flag' parameter is 0):
1202  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1203  *
1204  * If (one and only one) matching operation is found, it is accepted (
1205  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1206  * zeroed).
1207  *
1208  * If there are several matches, the current state is pushed to the
1209  * ns->pstates.
1210  *
1211  * The operation can be unknown only while commands are input to the chip.
1212  * As soon as address command is accepted, the operation must be known.
1213  * In such situation the function is called with 'flag' != 0, and the
1214  * operation is searched using the following pattern:
1215  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1216  *
1217  * It is supposed that this pattern must either match one operation or
1218  * none. There can't be ambiguity in that case.
1219  *
1220  * If no matches found, the function does the following:
1221  *   1. if there are saved states present, try to ignore them and search
1222  *      again only using the last command. If nothing was found, switch
1223  *      to the STATE_READY state.
1224  *   2. if there are no saved states, switch to the STATE_READY state.
1225  *
1226  * RETURNS: -2 - no matched operations found.
1227  *          -1 - several matches.
1228  *           0 - operation is found.
1229  */
1230 static int find_operation(struct nandsim *ns, uint32_t flag)
1231 {
1232 	int opsfound = 0;
1233 	int i, j, idx = 0;
1234 
1235 	for (i = 0; i < NS_OPER_NUM; i++) {
1236 
1237 		int found = 1;
1238 
1239 		if (!(ns->options & ops[i].reqopts))
1240 			/* Ignore operations we can't perform */
1241 			continue;
1242 
1243 		if (flag) {
1244 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1245 				continue;
1246 		} else {
1247 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1248 				continue;
1249 		}
1250 
1251 		for (j = 0; j < ns->npstates; j++)
1252 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1253 				&& (ns->options & ops[idx].reqopts)) {
1254 				found = 0;
1255 				break;
1256 			}
1257 
1258 		if (found) {
1259 			idx = i;
1260 			opsfound += 1;
1261 		}
1262 	}
1263 
1264 	if (opsfound == 1) {
1265 		/* Exact match */
1266 		ns->op = &ops[idx].states[0];
1267 		if (flag) {
1268 			/*
1269 			 * In this case the find_operation function was
1270 			 * called when address has just began input. But it isn't
1271 			 * yet fully input and the current state must
1272 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1273 			 * state must be the next state (ns->nxstate).
1274 			 */
1275 			ns->stateidx = ns->npstates - 1;
1276 		} else {
1277 			ns->stateidx = ns->npstates;
1278 		}
1279 		ns->npstates = 0;
1280 		ns->state = ns->op[ns->stateidx];
1281 		ns->nxstate = ns->op[ns->stateidx + 1];
1282 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1283 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1284 		return 0;
1285 	}
1286 
1287 	if (opsfound == 0) {
1288 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1289 		if (ns->npstates != 0) {
1290 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1291 					get_state_name(ns->state));
1292 			ns->npstates = 0;
1293 			return find_operation(ns, 0);
1294 
1295 		}
1296 		NS_DBG("find_operation: no operations found\n");
1297 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1298 		return -2;
1299 	}
1300 
1301 	if (flag) {
1302 		/* This shouldn't happen */
1303 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1304 		return -2;
1305 	}
1306 
1307 	NS_DBG("find_operation: there is still ambiguity\n");
1308 
1309 	ns->pstates[ns->npstates++] = ns->state;
1310 
1311 	return -1;
1312 }
1313 
1314 static void put_pages(struct nandsim *ns)
1315 {
1316 	int i;
1317 
1318 	for (i = 0; i < ns->held_cnt; i++)
1319 		put_page(ns->held_pages[i]);
1320 }
1321 
1322 /* Get page cache pages in advance to provide NOFS memory allocation */
1323 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1324 {
1325 	pgoff_t index, start_index, end_index;
1326 	struct page *page;
1327 	struct address_space *mapping = file->f_mapping;
1328 
1329 	start_index = pos >> PAGE_SHIFT;
1330 	end_index = (pos + count - 1) >> PAGE_SHIFT;
1331 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1332 		return -EINVAL;
1333 	ns->held_cnt = 0;
1334 	for (index = start_index; index <= end_index; index++) {
1335 		page = find_get_page(mapping, index);
1336 		if (page == NULL) {
1337 			page = find_or_create_page(mapping, index, GFP_NOFS);
1338 			if (page == NULL) {
1339 				write_inode_now(mapping->host, 1);
1340 				page = find_or_create_page(mapping, index, GFP_NOFS);
1341 			}
1342 			if (page == NULL) {
1343 				put_pages(ns);
1344 				return -ENOMEM;
1345 			}
1346 			unlock_page(page);
1347 		}
1348 		ns->held_pages[ns->held_cnt++] = page;
1349 	}
1350 	return 0;
1351 }
1352 
1353 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1354 {
1355 	ssize_t tx;
1356 	int err;
1357 	unsigned int noreclaim_flag;
1358 
1359 	err = get_pages(ns, file, count, pos);
1360 	if (err)
1361 		return err;
1362 	noreclaim_flag = memalloc_noreclaim_save();
1363 	tx = kernel_read(file, buf, count, &pos);
1364 	memalloc_noreclaim_restore(noreclaim_flag);
1365 	put_pages(ns);
1366 	return tx;
1367 }
1368 
1369 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1370 {
1371 	ssize_t tx;
1372 	int err;
1373 	unsigned int noreclaim_flag;
1374 
1375 	err = get_pages(ns, file, count, pos);
1376 	if (err)
1377 		return err;
1378 	noreclaim_flag = memalloc_noreclaim_save();
1379 	tx = kernel_write(file, buf, count, &pos);
1380 	memalloc_noreclaim_restore(noreclaim_flag);
1381 	put_pages(ns);
1382 	return tx;
1383 }
1384 
1385 /*
1386  * Returns a pointer to the current page.
1387  */
1388 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1389 {
1390 	return &(ns->pages[ns->regs.row]);
1391 }
1392 
1393 /*
1394  * Retuns a pointer to the current byte, within the current page.
1395  */
1396 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1397 {
1398 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1399 }
1400 
1401 static int do_read_error(struct nandsim *ns, int num)
1402 {
1403 	unsigned int page_no = ns->regs.row;
1404 
1405 	if (read_error(page_no)) {
1406 		prandom_bytes(ns->buf.byte, num);
1407 		NS_WARN("simulating read error in page %u\n", page_no);
1408 		return 1;
1409 	}
1410 	return 0;
1411 }
1412 
1413 static void do_bit_flips(struct nandsim *ns, int num)
1414 {
1415 	if (bitflips && prandom_u32() < (1 << 22)) {
1416 		int flips = 1;
1417 		if (bitflips > 1)
1418 			flips = (prandom_u32() % (int) bitflips) + 1;
1419 		while (flips--) {
1420 			int pos = prandom_u32() % (num * 8);
1421 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1422 			NS_WARN("read_page: flipping bit %d in page %d "
1423 				"reading from %d ecc: corrected=%u failed=%u\n",
1424 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1425 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1426 		}
1427 	}
1428 }
1429 
1430 /*
1431  * Fill the NAND buffer with data read from the specified page.
1432  */
1433 static void read_page(struct nandsim *ns, int num)
1434 {
1435 	union ns_mem *mypage;
1436 
1437 	if (ns->cfile) {
1438 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1439 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1440 			memset(ns->buf.byte, 0xFF, num);
1441 		} else {
1442 			loff_t pos;
1443 			ssize_t tx;
1444 
1445 			NS_DBG("read_page: page %d written, reading from %d\n",
1446 				ns->regs.row, ns->regs.column + ns->regs.off);
1447 			if (do_read_error(ns, num))
1448 				return;
1449 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1450 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1451 			if (tx != num) {
1452 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1453 				return;
1454 			}
1455 			do_bit_flips(ns, num);
1456 		}
1457 		return;
1458 	}
1459 
1460 	mypage = NS_GET_PAGE(ns);
1461 	if (mypage->byte == NULL) {
1462 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1463 		memset(ns->buf.byte, 0xFF, num);
1464 	} else {
1465 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1466 			ns->regs.row, ns->regs.column + ns->regs.off);
1467 		if (do_read_error(ns, num))
1468 			return;
1469 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1470 		do_bit_flips(ns, num);
1471 	}
1472 }
1473 
1474 /*
1475  * Erase all pages in the specified sector.
1476  */
1477 static void erase_sector(struct nandsim *ns)
1478 {
1479 	union ns_mem *mypage;
1480 	int i;
1481 
1482 	if (ns->cfile) {
1483 		for (i = 0; i < ns->geom.pgsec; i++)
1484 			if (__test_and_clear_bit(ns->regs.row + i,
1485 						 ns->pages_written)) {
1486 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1487 			}
1488 		return;
1489 	}
1490 
1491 	mypage = NS_GET_PAGE(ns);
1492 	for (i = 0; i < ns->geom.pgsec; i++) {
1493 		if (mypage->byte != NULL) {
1494 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1495 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1496 			mypage->byte = NULL;
1497 		}
1498 		mypage++;
1499 	}
1500 }
1501 
1502 /*
1503  * Program the specified page with the contents from the NAND buffer.
1504  */
1505 static int prog_page(struct nandsim *ns, int num)
1506 {
1507 	int i;
1508 	union ns_mem *mypage;
1509 	u_char *pg_off;
1510 
1511 	if (ns->cfile) {
1512 		loff_t off;
1513 		ssize_t tx;
1514 		int all;
1515 
1516 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1517 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1518 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1519 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1520 			all = 1;
1521 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1522 		} else {
1523 			all = 0;
1524 			tx = read_file(ns, ns->cfile, pg_off, num, off);
1525 			if (tx != num) {
1526 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1527 				return -1;
1528 			}
1529 		}
1530 		for (i = 0; i < num; i++)
1531 			pg_off[i] &= ns->buf.byte[i];
1532 		if (all) {
1533 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1534 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1535 			if (tx != ns->geom.pgszoob) {
1536 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1537 				return -1;
1538 			}
1539 			__set_bit(ns->regs.row, ns->pages_written);
1540 		} else {
1541 			tx = write_file(ns, ns->cfile, pg_off, num, off);
1542 			if (tx != num) {
1543 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1544 				return -1;
1545 			}
1546 		}
1547 		return 0;
1548 	}
1549 
1550 	mypage = NS_GET_PAGE(ns);
1551 	if (mypage->byte == NULL) {
1552 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1553 		/*
1554 		 * We allocate memory with GFP_NOFS because a flash FS may
1555 		 * utilize this. If it is holding an FS lock, then gets here,
1556 		 * then kernel memory alloc runs writeback which goes to the FS
1557 		 * again and deadlocks. This was seen in practice.
1558 		 */
1559 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1560 		if (mypage->byte == NULL) {
1561 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1562 			return -1;
1563 		}
1564 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1565 	}
1566 
1567 	pg_off = NS_PAGE_BYTE_OFF(ns);
1568 	for (i = 0; i < num; i++)
1569 		pg_off[i] &= ns->buf.byte[i];
1570 
1571 	return 0;
1572 }
1573 
1574 /*
1575  * If state has any action bit, perform this action.
1576  *
1577  * RETURNS: 0 if success, -1 if error.
1578  */
1579 static int do_state_action(struct nandsim *ns, uint32_t action)
1580 {
1581 	int num;
1582 	int busdiv = ns->busw == 8 ? 1 : 2;
1583 	unsigned int erase_block_no, page_no;
1584 
1585 	action &= ACTION_MASK;
1586 
1587 	/* Check that page address input is correct */
1588 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1589 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1590 		return -1;
1591 	}
1592 
1593 	switch (action) {
1594 
1595 	case ACTION_CPY:
1596 		/*
1597 		 * Copy page data to the internal buffer.
1598 		 */
1599 
1600 		/* Column shouldn't be very large */
1601 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1602 			NS_ERR("do_state_action: column number is too large\n");
1603 			break;
1604 		}
1605 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1606 		read_page(ns, num);
1607 
1608 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1609 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1610 
1611 		if (ns->regs.off == 0)
1612 			NS_LOG("read page %d\n", ns->regs.row);
1613 		else if (ns->regs.off < ns->geom.pgsz)
1614 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1615 		else
1616 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1617 
1618 		NS_UDELAY(access_delay);
1619 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1620 
1621 		break;
1622 
1623 	case ACTION_SECERASE:
1624 		/*
1625 		 * Erase sector.
1626 		 */
1627 
1628 		if (ns->lines.wp) {
1629 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1630 			return -1;
1631 		}
1632 
1633 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1634 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1635 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1636 			return -1;
1637 		}
1638 
1639 		ns->regs.row = (ns->regs.row <<
1640 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1641 		ns->regs.column = 0;
1642 
1643 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1644 
1645 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1646 				ns->regs.row, NS_RAW_OFFSET(ns));
1647 		NS_LOG("erase sector %u\n", erase_block_no);
1648 
1649 		erase_sector(ns);
1650 
1651 		NS_MDELAY(erase_delay);
1652 
1653 		if (erase_block_wear)
1654 			update_wear(erase_block_no);
1655 
1656 		if (erase_error(erase_block_no)) {
1657 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1658 			return -1;
1659 		}
1660 
1661 		break;
1662 
1663 	case ACTION_PRGPAGE:
1664 		/*
1665 		 * Program page - move internal buffer data to the page.
1666 		 */
1667 
1668 		if (ns->lines.wp) {
1669 			NS_WARN("do_state_action: device is write-protected, programm\n");
1670 			return -1;
1671 		}
1672 
1673 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1674 		if (num != ns->regs.count) {
1675 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1676 					ns->regs.count, num);
1677 			return -1;
1678 		}
1679 
1680 		if (prog_page(ns, num) == -1)
1681 			return -1;
1682 
1683 		page_no = ns->regs.row;
1684 
1685 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1686 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1687 		NS_LOG("programm page %d\n", ns->regs.row);
1688 
1689 		NS_UDELAY(programm_delay);
1690 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1691 
1692 		if (write_error(page_no)) {
1693 			NS_WARN("simulating write failure in page %u\n", page_no);
1694 			return -1;
1695 		}
1696 
1697 		break;
1698 
1699 	case ACTION_ZEROOFF:
1700 		NS_DBG("do_state_action: set internal offset to 0\n");
1701 		ns->regs.off = 0;
1702 		break;
1703 
1704 	case ACTION_HALFOFF:
1705 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1706 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1707 				"byte page size 8x chips\n");
1708 			return -1;
1709 		}
1710 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1711 		ns->regs.off = ns->geom.pgsz/2;
1712 		break;
1713 
1714 	case ACTION_OOBOFF:
1715 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1716 		ns->regs.off = ns->geom.pgsz;
1717 		break;
1718 
1719 	default:
1720 		NS_DBG("do_state_action: BUG! unknown action\n");
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 /*
1727  * Switch simulator's state.
1728  */
1729 static void switch_state(struct nandsim *ns)
1730 {
1731 	if (ns->op) {
1732 		/*
1733 		 * The current operation have already been identified.
1734 		 * Just follow the states chain.
1735 		 */
1736 
1737 		ns->stateidx += 1;
1738 		ns->state = ns->nxstate;
1739 		ns->nxstate = ns->op[ns->stateidx + 1];
1740 
1741 		NS_DBG("switch_state: operation is known, switch to the next state, "
1742 			"state: %s, nxstate: %s\n",
1743 			get_state_name(ns->state), get_state_name(ns->nxstate));
1744 
1745 		/* See, whether we need to do some action */
1746 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1747 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1748 			return;
1749 		}
1750 
1751 	} else {
1752 		/*
1753 		 * We don't yet know which operation we perform.
1754 		 * Try to identify it.
1755 		 */
1756 
1757 		/*
1758 		 *  The only event causing the switch_state function to
1759 		 *  be called with yet unknown operation is new command.
1760 		 */
1761 		ns->state = get_state_by_command(ns->regs.command);
1762 
1763 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1764 
1765 		if (find_operation(ns, 0) != 0)
1766 			return;
1767 
1768 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1769 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1770 			return;
1771 		}
1772 	}
1773 
1774 	/* For 16x devices column means the page offset in words */
1775 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1776 		NS_DBG("switch_state: double the column number for 16x device\n");
1777 		ns->regs.column <<= 1;
1778 	}
1779 
1780 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1781 		/*
1782 		 * The current state is the last. Return to STATE_READY
1783 		 */
1784 
1785 		u_char status = NS_STATUS_OK(ns);
1786 
1787 		/* In case of data states, see if all bytes were input/output */
1788 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1789 			&& ns->regs.count != ns->regs.num) {
1790 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1791 					ns->regs.num - ns->regs.count);
1792 			status = NS_STATUS_FAILED(ns);
1793 		}
1794 
1795 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1796 
1797 		switch_to_ready_state(ns, status);
1798 
1799 		return;
1800 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1801 		/*
1802 		 * If the next state is data input/output, switch to it now
1803 		 */
1804 
1805 		ns->state      = ns->nxstate;
1806 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1807 		ns->regs.num   = ns->regs.count = 0;
1808 
1809 		NS_DBG("switch_state: the next state is data I/O, switch, "
1810 			"state: %s, nxstate: %s\n",
1811 			get_state_name(ns->state), get_state_name(ns->nxstate));
1812 
1813 		/*
1814 		 * Set the internal register to the count of bytes which
1815 		 * are expected to be input or output
1816 		 */
1817 		switch (NS_STATE(ns->state)) {
1818 			case STATE_DATAIN:
1819 			case STATE_DATAOUT:
1820 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1821 				break;
1822 
1823 			case STATE_DATAOUT_ID:
1824 				ns->regs.num = ns->geom.idbytes;
1825 				break;
1826 
1827 			case STATE_DATAOUT_STATUS:
1828 				ns->regs.count = ns->regs.num = 0;
1829 				break;
1830 
1831 			default:
1832 				NS_ERR("switch_state: BUG! unknown data state\n");
1833 		}
1834 
1835 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1836 		/*
1837 		 * If the next state is address input, set the internal
1838 		 * register to the number of expected address bytes
1839 		 */
1840 
1841 		ns->regs.count = 0;
1842 
1843 		switch (NS_STATE(ns->nxstate)) {
1844 			case STATE_ADDR_PAGE:
1845 				ns->regs.num = ns->geom.pgaddrbytes;
1846 
1847 				break;
1848 			case STATE_ADDR_SEC:
1849 				ns->regs.num = ns->geom.secaddrbytes;
1850 				break;
1851 
1852 			case STATE_ADDR_ZERO:
1853 				ns->regs.num = 1;
1854 				break;
1855 
1856 			case STATE_ADDR_COLUMN:
1857 				/* Column address is always 2 bytes */
1858 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1859 				break;
1860 
1861 			default:
1862 				NS_ERR("switch_state: BUG! unknown address state\n");
1863 		}
1864 	} else {
1865 		/*
1866 		 * Just reset internal counters.
1867 		 */
1868 
1869 		ns->regs.num = 0;
1870 		ns->regs.count = 0;
1871 	}
1872 }
1873 
1874 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1875 {
1876 	struct nand_chip *chip = mtd_to_nand(mtd);
1877 	struct nandsim *ns = nand_get_controller_data(chip);
1878 	u_char outb = 0x00;
1879 
1880 	/* Sanity and correctness checks */
1881 	if (!ns->lines.ce) {
1882 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1883 		return outb;
1884 	}
1885 	if (ns->lines.ale || ns->lines.cle) {
1886 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1887 		return outb;
1888 	}
1889 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1890 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1891 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1892 		return outb;
1893 	}
1894 
1895 	/* Status register may be read as many times as it is wanted */
1896 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1897 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1898 		return ns->regs.status;
1899 	}
1900 
1901 	/* Check if there is any data in the internal buffer which may be read */
1902 	if (ns->regs.count == ns->regs.num) {
1903 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1904 		return outb;
1905 	}
1906 
1907 	switch (NS_STATE(ns->state)) {
1908 		case STATE_DATAOUT:
1909 			if (ns->busw == 8) {
1910 				outb = ns->buf.byte[ns->regs.count];
1911 				ns->regs.count += 1;
1912 			} else {
1913 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1914 				ns->regs.count += 2;
1915 			}
1916 			break;
1917 		case STATE_DATAOUT_ID:
1918 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1919 			outb = ns->ids[ns->regs.count];
1920 			ns->regs.count += 1;
1921 			break;
1922 		default:
1923 			BUG();
1924 	}
1925 
1926 	if (ns->regs.count == ns->regs.num) {
1927 		NS_DBG("read_byte: all bytes were read\n");
1928 
1929 		if (NS_STATE(ns->nxstate) == STATE_READY)
1930 			switch_state(ns);
1931 	}
1932 
1933 	return outb;
1934 }
1935 
1936 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1937 {
1938 	struct nand_chip *chip = mtd_to_nand(mtd);
1939 	struct nandsim *ns = nand_get_controller_data(chip);
1940 
1941 	/* Sanity and correctness checks */
1942 	if (!ns->lines.ce) {
1943 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1944 		return;
1945 	}
1946 	if (ns->lines.ale && ns->lines.cle) {
1947 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1948 		return;
1949 	}
1950 
1951 	if (ns->lines.cle == 1) {
1952 		/*
1953 		 * The byte written is a command.
1954 		 */
1955 
1956 		if (byte == NAND_CMD_RESET) {
1957 			NS_LOG("reset chip\n");
1958 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1959 			return;
1960 		}
1961 
1962 		/* Check that the command byte is correct */
1963 		if (check_command(byte)) {
1964 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1965 			return;
1966 		}
1967 
1968 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1969 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1970 			int row = ns->regs.row;
1971 
1972 			switch_state(ns);
1973 			if (byte == NAND_CMD_RNDOUT)
1974 				ns->regs.row = row;
1975 		}
1976 
1977 		/* Check if chip is expecting command */
1978 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1979 			/* Do not warn if only 2 id bytes are read */
1980 			if (!(ns->regs.command == NAND_CMD_READID &&
1981 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1982 				/*
1983 				 * We are in situation when something else (not command)
1984 				 * was expected but command was input. In this case ignore
1985 				 * previous command(s)/state(s) and accept the last one.
1986 				 */
1987 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1988 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1989 			}
1990 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1991 		}
1992 
1993 		NS_DBG("command byte corresponding to %s state accepted\n",
1994 			get_state_name(get_state_by_command(byte)));
1995 		ns->regs.command = byte;
1996 		switch_state(ns);
1997 
1998 	} else if (ns->lines.ale == 1) {
1999 		/*
2000 		 * The byte written is an address.
2001 		 */
2002 
2003 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2004 
2005 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2006 
2007 			if (find_operation(ns, 1) < 0)
2008 				return;
2009 
2010 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2011 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2012 				return;
2013 			}
2014 
2015 			ns->regs.count = 0;
2016 			switch (NS_STATE(ns->nxstate)) {
2017 				case STATE_ADDR_PAGE:
2018 					ns->regs.num = ns->geom.pgaddrbytes;
2019 					break;
2020 				case STATE_ADDR_SEC:
2021 					ns->regs.num = ns->geom.secaddrbytes;
2022 					break;
2023 				case STATE_ADDR_ZERO:
2024 					ns->regs.num = 1;
2025 					break;
2026 				default:
2027 					BUG();
2028 			}
2029 		}
2030 
2031 		/* Check that chip is expecting address */
2032 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2033 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2034 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2035 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2036 			return;
2037 		}
2038 
2039 		/* Check if this is expected byte */
2040 		if (ns->regs.count == ns->regs.num) {
2041 			NS_ERR("write_byte: no more address bytes expected\n");
2042 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2043 			return;
2044 		}
2045 
2046 		accept_addr_byte(ns, byte);
2047 
2048 		ns->regs.count += 1;
2049 
2050 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2051 				(uint)byte, ns->regs.count, ns->regs.num);
2052 
2053 		if (ns->regs.count == ns->regs.num) {
2054 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2055 			switch_state(ns);
2056 		}
2057 
2058 	} else {
2059 		/*
2060 		 * The byte written is an input data.
2061 		 */
2062 
2063 		/* Check that chip is expecting data input */
2064 		if (!(ns->state & STATE_DATAIN_MASK)) {
2065 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2066 				"switch to %s\n", (uint)byte,
2067 				get_state_name(ns->state), get_state_name(STATE_READY));
2068 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2069 			return;
2070 		}
2071 
2072 		/* Check if this is expected byte */
2073 		if (ns->regs.count == ns->regs.num) {
2074 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2075 					ns->regs.num);
2076 			return;
2077 		}
2078 
2079 		if (ns->busw == 8) {
2080 			ns->buf.byte[ns->regs.count] = byte;
2081 			ns->regs.count += 1;
2082 		} else {
2083 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2084 			ns->regs.count += 2;
2085 		}
2086 	}
2087 
2088 	return;
2089 }
2090 
2091 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2092 {
2093 	struct nand_chip *chip = mtd_to_nand(mtd);
2094 	struct nandsim *ns = nand_get_controller_data(chip);
2095 
2096 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2097 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2098 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2099 
2100 	if (cmd != NAND_CMD_NONE)
2101 		ns_nand_write_byte(mtd, cmd);
2102 }
2103 
2104 static int ns_device_ready(struct mtd_info *mtd)
2105 {
2106 	NS_DBG("device_ready\n");
2107 	return 1;
2108 }
2109 
2110 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2111 {
2112 	struct nand_chip *chip = mtd_to_nand(mtd);
2113 
2114 	NS_DBG("read_word\n");
2115 
2116 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2117 }
2118 
2119 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2120 {
2121 	struct nand_chip *chip = mtd_to_nand(mtd);
2122 	struct nandsim *ns = nand_get_controller_data(chip);
2123 
2124 	/* Check that chip is expecting data input */
2125 	if (!(ns->state & STATE_DATAIN_MASK)) {
2126 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2127 			"switch to STATE_READY\n", get_state_name(ns->state));
2128 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2129 		return;
2130 	}
2131 
2132 	/* Check if these are expected bytes */
2133 	if (ns->regs.count + len > ns->regs.num) {
2134 		NS_ERR("write_buf: too many input bytes\n");
2135 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2136 		return;
2137 	}
2138 
2139 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2140 	ns->regs.count += len;
2141 
2142 	if (ns->regs.count == ns->regs.num) {
2143 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2144 	}
2145 }
2146 
2147 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2148 {
2149 	struct nand_chip *chip = mtd_to_nand(mtd);
2150 	struct nandsim *ns = nand_get_controller_data(chip);
2151 
2152 	/* Sanity and correctness checks */
2153 	if (!ns->lines.ce) {
2154 		NS_ERR("read_buf: chip is disabled\n");
2155 		return;
2156 	}
2157 	if (ns->lines.ale || ns->lines.cle) {
2158 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2159 		return;
2160 	}
2161 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2162 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2163 			get_state_name(ns->state));
2164 		return;
2165 	}
2166 
2167 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2168 		int i;
2169 
2170 		for (i = 0; i < len; i++)
2171 			buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
2172 
2173 		return;
2174 	}
2175 
2176 	/* Check if these are expected bytes */
2177 	if (ns->regs.count + len > ns->regs.num) {
2178 		NS_ERR("read_buf: too many bytes to read\n");
2179 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2180 		return;
2181 	}
2182 
2183 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2184 	ns->regs.count += len;
2185 
2186 	if (ns->regs.count == ns->regs.num) {
2187 		if (NS_STATE(ns->nxstate) == STATE_READY)
2188 			switch_state(ns);
2189 	}
2190 
2191 	return;
2192 }
2193 
2194 /*
2195  * Module initialization function
2196  */
2197 static int __init ns_init_module(void)
2198 {
2199 	struct nand_chip *chip;
2200 	struct nandsim *nand;
2201 	int retval = -ENOMEM, i;
2202 
2203 	if (bus_width != 8 && bus_width != 16) {
2204 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2205 		return -EINVAL;
2206 	}
2207 
2208 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2209 	chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
2210 		       GFP_KERNEL);
2211 	if (!chip) {
2212 		NS_ERR("unable to allocate core structures.\n");
2213 		return -ENOMEM;
2214 	}
2215 	nsmtd       = nand_to_mtd(chip);
2216 	nand        = (struct nandsim *)(chip + 1);
2217 	nand_set_controller_data(chip, (void *)nand);
2218 
2219 	/*
2220 	 * Register simulator's callbacks.
2221 	 */
2222 	chip->cmd_ctrl	 = ns_hwcontrol;
2223 	chip->read_byte  = ns_nand_read_byte;
2224 	chip->dev_ready  = ns_device_ready;
2225 	chip->write_buf  = ns_nand_write_buf;
2226 	chip->read_buf   = ns_nand_read_buf;
2227 	chip->read_word  = ns_nand_read_word;
2228 	chip->ecc.mode   = NAND_ECC_SOFT;
2229 	chip->ecc.algo   = NAND_ECC_HAMMING;
2230 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2231 	/* and 'badblocks' parameters to work */
2232 	chip->options   |= NAND_SKIP_BBTSCAN;
2233 
2234 	switch (bbt) {
2235 	case 2:
2236 		 chip->bbt_options |= NAND_BBT_NO_OOB;
2237 	case 1:
2238 		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2239 	case 0:
2240 		break;
2241 	default:
2242 		NS_ERR("bbt has to be 0..2\n");
2243 		retval = -EINVAL;
2244 		goto error;
2245 	}
2246 	/*
2247 	 * Perform minimum nandsim structure initialization to handle
2248 	 * the initial ID read command correctly
2249 	 */
2250 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2251 		nand->geom.idbytes = 8;
2252 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2253 		nand->geom.idbytes = 6;
2254 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2255 		nand->geom.idbytes = 4;
2256 	else
2257 		nand->geom.idbytes = 2;
2258 	nand->regs.status = NS_STATUS_OK(nand);
2259 	nand->nxstate = STATE_UNKNOWN;
2260 	nand->options |= OPT_PAGE512; /* temporary value */
2261 	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2262 	if (bus_width == 16) {
2263 		nand->busw = 16;
2264 		chip->options |= NAND_BUSWIDTH_16;
2265 	}
2266 
2267 	nsmtd->owner = THIS_MODULE;
2268 
2269 	if ((retval = parse_weakblocks()) != 0)
2270 		goto error;
2271 
2272 	if ((retval = parse_weakpages()) != 0)
2273 		goto error;
2274 
2275 	if ((retval = parse_gravepages()) != 0)
2276 		goto error;
2277 
2278 	retval = nand_scan_ident(nsmtd, 1, NULL);
2279 	if (retval) {
2280 		NS_ERR("cannot scan NAND Simulator device\n");
2281 		goto error;
2282 	}
2283 
2284 	if (bch) {
2285 		unsigned int eccsteps, eccbytes;
2286 		if (!mtd_nand_has_bch()) {
2287 			NS_ERR("BCH ECC support is disabled\n");
2288 			retval = -EINVAL;
2289 			goto error;
2290 		}
2291 		/* use 512-byte ecc blocks */
2292 		eccsteps = nsmtd->writesize/512;
2293 		eccbytes = (bch*13+7)/8;
2294 		/* do not bother supporting small page devices */
2295 		if ((nsmtd->oobsize < 64) || !eccsteps) {
2296 			NS_ERR("bch not available on small page devices\n");
2297 			retval = -EINVAL;
2298 			goto error;
2299 		}
2300 		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2301 			NS_ERR("invalid bch value %u\n", bch);
2302 			retval = -EINVAL;
2303 			goto error;
2304 		}
2305 		chip->ecc.mode = NAND_ECC_SOFT;
2306 		chip->ecc.algo = NAND_ECC_BCH;
2307 		chip->ecc.size = 512;
2308 		chip->ecc.strength = bch;
2309 		chip->ecc.bytes = eccbytes;
2310 		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2311 	}
2312 
2313 	retval = nand_scan_tail(nsmtd);
2314 	if (retval) {
2315 		NS_ERR("can't register NAND Simulator\n");
2316 		goto error;
2317 	}
2318 
2319 	if (overridesize) {
2320 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2321 		if (new_size >> overridesize != nsmtd->erasesize) {
2322 			NS_ERR("overridesize is too big\n");
2323 			retval = -EINVAL;
2324 			goto err_exit;
2325 		}
2326 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2327 		nsmtd->size = new_size;
2328 		chip->chipsize = new_size;
2329 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2330 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2331 	}
2332 
2333 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2334 		goto err_exit;
2335 
2336 	if ((retval = init_nandsim(nsmtd)) != 0)
2337 		goto err_exit;
2338 
2339 	if ((retval = chip->scan_bbt(nsmtd)) != 0)
2340 		goto err_exit;
2341 
2342 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2343 		goto err_exit;
2344 
2345 	/* Register NAND partitions */
2346 	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2347 				     nand->nbparts);
2348 	if (retval != 0)
2349 		goto err_exit;
2350 
2351 	if ((retval = nandsim_debugfs_create(nand)) != 0)
2352 		goto err_exit;
2353 
2354         return 0;
2355 
2356 err_exit:
2357 	free_nandsim(nand);
2358 	nand_release(nsmtd);
2359 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2360 		kfree(nand->partitions[i].name);
2361 error:
2362 	kfree(chip);
2363 	free_lists();
2364 
2365 	return retval;
2366 }
2367 
2368 module_init(ns_init_module);
2369 
2370 /*
2371  * Module clean-up function
2372  */
2373 static void __exit ns_cleanup_module(void)
2374 {
2375 	struct nand_chip *chip = mtd_to_nand(nsmtd);
2376 	struct nandsim *ns = nand_get_controller_data(chip);
2377 	int i;
2378 
2379 	free_nandsim(ns);    /* Free nandsim private resources */
2380 	nand_release(nsmtd); /* Unregister driver */
2381 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2382 		kfree(ns->partitions[i].name);
2383 	kfree(mtd_to_nand(nsmtd));        /* Free other structures */
2384 	free_lists();
2385 }
2386 
2387 module_exit(ns_cleanup_module);
2388 
2389 MODULE_LICENSE ("GPL");
2390 MODULE_AUTHOR ("Artem B. Bityuckiy");
2391 MODULE_DESCRIPTION ("The NAND flash simulator");
2392