1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NAND flash simulator. 4 * 5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 6 * 7 * Copyright (C) 2004 Nokia Corporation 8 * 9 * Note: NS means "NAND Simulator". 10 * Note: Input means input TO flash chip, output means output FROM chip. 11 */ 12 13 #define pr_fmt(fmt) "[nandsim]" fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/vmalloc.h> 20 #include <linux/math64.h> 21 #include <linux/slab.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/rawnand.h> 26 #include <linux/mtd/nand_bch.h> 27 #include <linux/mtd/partitions.h> 28 #include <linux/delay.h> 29 #include <linux/list.h> 30 #include <linux/random.h> 31 #include <linux/sched.h> 32 #include <linux/sched/mm.h> 33 #include <linux/fs.h> 34 #include <linux/pagemap.h> 35 #include <linux/seq_file.h> 36 #include <linux/debugfs.h> 37 38 /* Default simulator parameters values */ 39 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 40 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 41 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 42 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 43 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 44 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 45 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 46 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 47 #endif 48 49 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 50 #define CONFIG_NANDSIM_ACCESS_DELAY 25 51 #endif 52 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 53 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 54 #endif 55 #ifndef CONFIG_NANDSIM_ERASE_DELAY 56 #define CONFIG_NANDSIM_ERASE_DELAY 2 57 #endif 58 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 59 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 60 #endif 61 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 62 #define CONFIG_NANDSIM_INPUT_CYCLE 50 63 #endif 64 #ifndef CONFIG_NANDSIM_BUS_WIDTH 65 #define CONFIG_NANDSIM_BUS_WIDTH 8 66 #endif 67 #ifndef CONFIG_NANDSIM_DO_DELAYS 68 #define CONFIG_NANDSIM_DO_DELAYS 0 69 #endif 70 #ifndef CONFIG_NANDSIM_LOG 71 #define CONFIG_NANDSIM_LOG 0 72 #endif 73 #ifndef CONFIG_NANDSIM_DBG 74 #define CONFIG_NANDSIM_DBG 0 75 #endif 76 #ifndef CONFIG_NANDSIM_MAX_PARTS 77 #define CONFIG_NANDSIM_MAX_PARTS 32 78 #endif 79 80 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 81 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 82 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 83 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 84 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 85 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 86 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 87 static uint log = CONFIG_NANDSIM_LOG; 88 static uint dbg = CONFIG_NANDSIM_DBG; 89 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 90 static unsigned int parts_num; 91 static char *badblocks = NULL; 92 static char *weakblocks = NULL; 93 static char *weakpages = NULL; 94 static unsigned int bitflips = 0; 95 static char *gravepages = NULL; 96 static unsigned int overridesize = 0; 97 static char *cache_file = NULL; 98 static unsigned int bbt; 99 static unsigned int bch; 100 static u_char id_bytes[8] = { 101 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 102 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 103 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 104 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 105 [4 ... 7] = 0xFF, 106 }; 107 108 module_param_array(id_bytes, byte, NULL, 0400); 109 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 110 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 111 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 112 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 113 module_param(access_delay, uint, 0400); 114 module_param(programm_delay, uint, 0400); 115 module_param(erase_delay, uint, 0400); 116 module_param(output_cycle, uint, 0400); 117 module_param(input_cycle, uint, 0400); 118 module_param(bus_width, uint, 0400); 119 module_param(do_delays, uint, 0400); 120 module_param(log, uint, 0400); 121 module_param(dbg, uint, 0400); 122 module_param_array(parts, ulong, &parts_num, 0400); 123 module_param(badblocks, charp, 0400); 124 module_param(weakblocks, charp, 0400); 125 module_param(weakpages, charp, 0400); 126 module_param(bitflips, uint, 0400); 127 module_param(gravepages, charp, 0400); 128 module_param(overridesize, uint, 0400); 129 module_param(cache_file, charp, 0400); 130 module_param(bbt, uint, 0400); 131 module_param(bch, uint, 0400); 132 133 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 134 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 135 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 136 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 137 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 138 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 139 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 140 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 141 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 142 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 143 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 144 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 145 MODULE_PARM_DESC(log, "Perform logging if not zero"); 146 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 147 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 148 /* Page and erase block positions for the following parameters are independent of any partitions */ 149 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 150 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 151 " separated by commas e.g. 113:2 means eb 113" 152 " can be erased only twice before failing"); 153 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 154 " separated by commas e.g. 1401:2 means page 1401" 155 " can be written only twice before failing"); 156 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 157 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 158 " separated by commas e.g. 1401:2 means page 1401" 159 " can be read only twice before failing"); 160 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 161 "The size is specified in erase blocks and as the exponent of a power of two" 162 " e.g. 5 means a size of 32 erase blocks"); 163 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 164 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 165 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 166 "be correctable in 512-byte blocks"); 167 168 /* The largest possible page size */ 169 #define NS_LARGEST_PAGE_SIZE 4096 170 171 /* Simulator's output macros (logging, debugging, warning, error) */ 172 #define NS_LOG(args...) \ 173 do { if (log) pr_debug(" log: " args); } while(0) 174 #define NS_DBG(args...) \ 175 do { if (dbg) pr_debug(" debug: " args); } while(0) 176 #define NS_WARN(args...) \ 177 do { pr_warn(" warning: " args); } while(0) 178 #define NS_ERR(args...) \ 179 do { pr_err(" error: " args); } while(0) 180 #define NS_INFO(args...) \ 181 do { pr_info(" " args); } while(0) 182 183 /* Busy-wait delay macros (microseconds, milliseconds) */ 184 #define NS_UDELAY(us) \ 185 do { if (do_delays) udelay(us); } while(0) 186 #define NS_MDELAY(us) \ 187 do { if (do_delays) mdelay(us); } while(0) 188 189 /* Is the nandsim structure initialized ? */ 190 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 191 192 /* Good operation completion status */ 193 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 194 195 /* Operation failed completion status */ 196 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 197 198 /* Calculate the page offset in flash RAM image by (row, column) address */ 199 #define NS_RAW_OFFSET(ns) \ 200 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 201 202 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 203 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 204 205 /* After a command is input, the simulator goes to one of the following states */ 206 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 207 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 208 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 209 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 210 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 211 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 212 #define STATE_CMD_STATUS 0x00000007 /* read status */ 213 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 214 #define STATE_CMD_READID 0x0000000A /* read ID */ 215 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 216 #define STATE_CMD_RESET 0x0000000C /* reset */ 217 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 218 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 219 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 220 221 /* After an address is input, the simulator goes to one of these states */ 222 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 223 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 224 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 225 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 226 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 227 228 /* During data input/output the simulator is in these states */ 229 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 230 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 231 232 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 233 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 234 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 235 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 236 237 /* Previous operation is done, ready to accept new requests */ 238 #define STATE_READY 0x00000000 239 240 /* This state is used to mark that the next state isn't known yet */ 241 #define STATE_UNKNOWN 0x10000000 242 243 /* Simulator's actions bit masks */ 244 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 245 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 246 #define ACTION_SECERASE 0x00300000 /* erase sector */ 247 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 248 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 249 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 250 #define ACTION_MASK 0x00700000 /* action mask */ 251 252 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 253 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 254 255 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 256 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 257 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 258 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 259 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 260 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 261 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 262 263 /* Remove action bits from state */ 264 #define NS_STATE(x) ((x) & ~ACTION_MASK) 265 266 /* 267 * Maximum previous states which need to be saved. Currently saving is 268 * only needed for page program operation with preceded read command 269 * (which is only valid for 512-byte pages). 270 */ 271 #define NS_MAX_PREVSTATES 1 272 273 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 274 #define NS_MAX_HELD_PAGES 16 275 276 /* 277 * A union to represent flash memory contents and flash buffer. 278 */ 279 union ns_mem { 280 u_char *byte; /* for byte access */ 281 uint16_t *word; /* for 16-bit word access */ 282 }; 283 284 /* 285 * The structure which describes all the internal simulator data. 286 */ 287 struct nandsim { 288 struct nand_chip chip; 289 struct nand_controller base; 290 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 291 unsigned int nbparts; 292 293 uint busw; /* flash chip bus width (8 or 16) */ 294 u_char ids[8]; /* chip's ID bytes */ 295 uint32_t options; /* chip's characteristic bits */ 296 uint32_t state; /* current chip state */ 297 uint32_t nxstate; /* next expected state */ 298 299 uint32_t *op; /* current operation, NULL operations isn't known yet */ 300 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 301 uint16_t npstates; /* number of previous states saved */ 302 uint16_t stateidx; /* current state index */ 303 304 /* The simulated NAND flash pages array */ 305 union ns_mem *pages; 306 307 /* Slab allocator for nand pages */ 308 struct kmem_cache *nand_pages_slab; 309 310 /* Internal buffer of page + OOB size bytes */ 311 union ns_mem buf; 312 313 /* NAND flash "geometry" */ 314 struct { 315 uint64_t totsz; /* total flash size, bytes */ 316 uint32_t secsz; /* flash sector (erase block) size, bytes */ 317 uint pgsz; /* NAND flash page size, bytes */ 318 uint oobsz; /* page OOB area size, bytes */ 319 uint64_t totszoob; /* total flash size including OOB, bytes */ 320 uint pgszoob; /* page size including OOB , bytes*/ 321 uint secszoob; /* sector size including OOB, bytes */ 322 uint pgnum; /* total number of pages */ 323 uint pgsec; /* number of pages per sector */ 324 uint secshift; /* bits number in sector size */ 325 uint pgshift; /* bits number in page size */ 326 uint pgaddrbytes; /* bytes per page address */ 327 uint secaddrbytes; /* bytes per sector address */ 328 uint idbytes; /* the number ID bytes that this chip outputs */ 329 } geom; 330 331 /* NAND flash internal registers */ 332 struct { 333 unsigned command; /* the command register */ 334 u_char status; /* the status register */ 335 uint row; /* the page number */ 336 uint column; /* the offset within page */ 337 uint count; /* internal counter */ 338 uint num; /* number of bytes which must be processed */ 339 uint off; /* fixed page offset */ 340 } regs; 341 342 /* NAND flash lines state */ 343 struct { 344 int ce; /* chip Enable */ 345 int cle; /* command Latch Enable */ 346 int ale; /* address Latch Enable */ 347 int wp; /* write Protect */ 348 } lines; 349 350 /* Fields needed when using a cache file */ 351 struct file *cfile; /* Open file */ 352 unsigned long *pages_written; /* Which pages have been written */ 353 void *file_buf; 354 struct page *held_pages[NS_MAX_HELD_PAGES]; 355 int held_cnt; 356 357 /* debugfs entry */ 358 struct dentry *dent; 359 }; 360 361 /* 362 * Operations array. To perform any operation the simulator must pass 363 * through the correspondent states chain. 364 */ 365 static struct nandsim_operations { 366 uint32_t reqopts; /* options which are required to perform the operation */ 367 uint32_t states[NS_OPER_STATES]; /* operation's states */ 368 } ops[NS_OPER_NUM] = { 369 /* Read page + OOB from the beginning */ 370 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 371 STATE_DATAOUT, STATE_READY}}, 372 /* Read page + OOB from the second half */ 373 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 374 STATE_DATAOUT, STATE_READY}}, 375 /* Read OOB */ 376 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 377 STATE_DATAOUT, STATE_READY}}, 378 /* Program page starting from the beginning */ 379 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 380 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 381 /* Program page starting from the beginning */ 382 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 383 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 384 /* Program page starting from the second half */ 385 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 386 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 387 /* Program OOB */ 388 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 389 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 390 /* Erase sector */ 391 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 392 /* Read status */ 393 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 394 /* Read ID */ 395 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 396 /* Large page devices read page */ 397 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 398 STATE_DATAOUT, STATE_READY}}, 399 /* Large page devices random page read */ 400 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 401 STATE_DATAOUT, STATE_READY}}, 402 }; 403 404 struct weak_block { 405 struct list_head list; 406 unsigned int erase_block_no; 407 unsigned int max_erases; 408 unsigned int erases_done; 409 }; 410 411 static LIST_HEAD(weak_blocks); 412 413 struct weak_page { 414 struct list_head list; 415 unsigned int page_no; 416 unsigned int max_writes; 417 unsigned int writes_done; 418 }; 419 420 static LIST_HEAD(weak_pages); 421 422 struct grave_page { 423 struct list_head list; 424 unsigned int page_no; 425 unsigned int max_reads; 426 unsigned int reads_done; 427 }; 428 429 static LIST_HEAD(grave_pages); 430 431 static unsigned long *erase_block_wear = NULL; 432 static unsigned int wear_eb_count = 0; 433 static unsigned long total_wear = 0; 434 435 /* MTD structure for NAND controller */ 436 static struct mtd_info *nsmtd; 437 438 static int ns_show(struct seq_file *m, void *private) 439 { 440 unsigned long wmin = -1, wmax = 0, avg; 441 unsigned long deciles[10], decile_max[10], tot = 0; 442 unsigned int i; 443 444 /* Calc wear stats */ 445 for (i = 0; i < wear_eb_count; ++i) { 446 unsigned long wear = erase_block_wear[i]; 447 if (wear < wmin) 448 wmin = wear; 449 if (wear > wmax) 450 wmax = wear; 451 tot += wear; 452 } 453 454 for (i = 0; i < 9; ++i) { 455 deciles[i] = 0; 456 decile_max[i] = (wmax * (i + 1) + 5) / 10; 457 } 458 deciles[9] = 0; 459 decile_max[9] = wmax; 460 for (i = 0; i < wear_eb_count; ++i) { 461 int d; 462 unsigned long wear = erase_block_wear[i]; 463 for (d = 0; d < 10; ++d) 464 if (wear <= decile_max[d]) { 465 deciles[d] += 1; 466 break; 467 } 468 } 469 avg = tot / wear_eb_count; 470 471 /* Output wear report */ 472 seq_printf(m, "Total numbers of erases: %lu\n", tot); 473 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 474 seq_printf(m, "Average number of erases: %lu\n", avg); 475 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 476 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 477 for (i = 0; i < 10; ++i) { 478 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 479 if (from > decile_max[i]) 480 continue; 481 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 482 from, 483 decile_max[i], 484 deciles[i]); 485 } 486 487 return 0; 488 } 489 DEFINE_SHOW_ATTRIBUTE(ns); 490 491 /** 492 * ns_debugfs_create - initialize debugfs 493 * @ns: nandsim device description object 494 * 495 * This function creates all debugfs files for UBI device @ubi. Returns zero in 496 * case of success and a negative error code in case of failure. 497 */ 498 static int ns_debugfs_create(struct nandsim *ns) 499 { 500 struct dentry *root = nsmtd->dbg.dfs_dir; 501 502 /* 503 * Just skip debugfs initialization when the debugfs directory is 504 * missing. 505 */ 506 if (IS_ERR_OR_NULL(root)) { 507 if (IS_ENABLED(CONFIG_DEBUG_FS) && 508 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 509 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 510 return 0; 511 } 512 513 ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns, 514 &ns_fops); 515 if (IS_ERR_OR_NULL(ns->dent)) { 516 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 517 return -1; 518 } 519 520 return 0; 521 } 522 523 static void ns_debugfs_remove(struct nandsim *ns) 524 { 525 debugfs_remove_recursive(ns->dent); 526 } 527 528 /* 529 * Allocate array of page pointers, create slab allocation for an array 530 * and initialize the array by NULL pointers. 531 * 532 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 533 */ 534 static int __init ns_alloc_device(struct nandsim *ns) 535 { 536 struct file *cfile; 537 int i, err; 538 539 if (cache_file) { 540 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 541 if (IS_ERR(cfile)) 542 return PTR_ERR(cfile); 543 if (!(cfile->f_mode & FMODE_CAN_READ)) { 544 NS_ERR("alloc_device: cache file not readable\n"); 545 err = -EINVAL; 546 goto err_close_filp; 547 } 548 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 549 NS_ERR("alloc_device: cache file not writeable\n"); 550 err = -EINVAL; 551 goto err_close_filp; 552 } 553 ns->pages_written = 554 vzalloc(array_size(sizeof(unsigned long), 555 BITS_TO_LONGS(ns->geom.pgnum))); 556 if (!ns->pages_written) { 557 NS_ERR("alloc_device: unable to allocate pages written array\n"); 558 err = -ENOMEM; 559 goto err_close_filp; 560 } 561 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 562 if (!ns->file_buf) { 563 NS_ERR("alloc_device: unable to allocate file buf\n"); 564 err = -ENOMEM; 565 goto err_free_pw; 566 } 567 ns->cfile = cfile; 568 569 return 0; 570 571 err_free_pw: 572 vfree(ns->pages_written); 573 err_close_filp: 574 filp_close(cfile, NULL); 575 576 return err; 577 } 578 579 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 580 if (!ns->pages) { 581 NS_ERR("alloc_device: unable to allocate page array\n"); 582 return -ENOMEM; 583 } 584 for (i = 0; i < ns->geom.pgnum; i++) { 585 ns->pages[i].byte = NULL; 586 } 587 ns->nand_pages_slab = kmem_cache_create("nandsim", 588 ns->geom.pgszoob, 0, 0, NULL); 589 if (!ns->nand_pages_slab) { 590 NS_ERR("cache_create: unable to create kmem_cache\n"); 591 err = -ENOMEM; 592 goto err_free_pg; 593 } 594 595 return 0; 596 597 err_free_pg: 598 vfree(ns->pages); 599 600 return err; 601 } 602 603 /* 604 * Free any allocated pages, and free the array of page pointers. 605 */ 606 static void ns_free_device(struct nandsim *ns) 607 { 608 int i; 609 610 if (ns->cfile) { 611 kfree(ns->file_buf); 612 vfree(ns->pages_written); 613 filp_close(ns->cfile, NULL); 614 return; 615 } 616 617 if (ns->pages) { 618 for (i = 0; i < ns->geom.pgnum; i++) { 619 if (ns->pages[i].byte) 620 kmem_cache_free(ns->nand_pages_slab, 621 ns->pages[i].byte); 622 } 623 kmem_cache_destroy(ns->nand_pages_slab); 624 vfree(ns->pages); 625 } 626 } 627 628 static char __init *ns_get_partition_name(int i) 629 { 630 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 631 } 632 633 /* 634 * Initialize the nandsim structure. 635 * 636 * RETURNS: 0 if success, -ERRNO if failure. 637 */ 638 static int __init ns_init(struct mtd_info *mtd) 639 { 640 struct nand_chip *chip = mtd_to_nand(mtd); 641 struct nandsim *ns = nand_get_controller_data(chip); 642 int i, ret = 0; 643 uint64_t remains; 644 uint64_t next_offset; 645 646 if (NS_IS_INITIALIZED(ns)) { 647 NS_ERR("init_nandsim: nandsim is already initialized\n"); 648 return -EIO; 649 } 650 651 /* Initialize the NAND flash parameters */ 652 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 653 ns->geom.totsz = mtd->size; 654 ns->geom.pgsz = mtd->writesize; 655 ns->geom.oobsz = mtd->oobsize; 656 ns->geom.secsz = mtd->erasesize; 657 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 658 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 659 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 660 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 661 ns->geom.pgshift = chip->page_shift; 662 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 663 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 664 ns->options = 0; 665 666 if (ns->geom.pgsz == 512) { 667 ns->options |= OPT_PAGE512; 668 if (ns->busw == 8) 669 ns->options |= OPT_PAGE512_8BIT; 670 } else if (ns->geom.pgsz == 2048) { 671 ns->options |= OPT_PAGE2048; 672 } else if (ns->geom.pgsz == 4096) { 673 ns->options |= OPT_PAGE4096; 674 } else { 675 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 676 return -EIO; 677 } 678 679 if (ns->options & OPT_SMALLPAGE) { 680 if (ns->geom.totsz <= (32 << 20)) { 681 ns->geom.pgaddrbytes = 3; 682 ns->geom.secaddrbytes = 2; 683 } else { 684 ns->geom.pgaddrbytes = 4; 685 ns->geom.secaddrbytes = 3; 686 } 687 } else { 688 if (ns->geom.totsz <= (128 << 20)) { 689 ns->geom.pgaddrbytes = 4; 690 ns->geom.secaddrbytes = 2; 691 } else { 692 ns->geom.pgaddrbytes = 5; 693 ns->geom.secaddrbytes = 3; 694 } 695 } 696 697 /* Fill the partition_info structure */ 698 if (parts_num > ARRAY_SIZE(ns->partitions)) { 699 NS_ERR("too many partitions.\n"); 700 return -EINVAL; 701 } 702 remains = ns->geom.totsz; 703 next_offset = 0; 704 for (i = 0; i < parts_num; ++i) { 705 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 706 707 if (!part_sz || part_sz > remains) { 708 NS_ERR("bad partition size.\n"); 709 return -EINVAL; 710 } 711 ns->partitions[i].name = ns_get_partition_name(i); 712 if (!ns->partitions[i].name) { 713 NS_ERR("unable to allocate memory.\n"); 714 return -ENOMEM; 715 } 716 ns->partitions[i].offset = next_offset; 717 ns->partitions[i].size = part_sz; 718 next_offset += ns->partitions[i].size; 719 remains -= ns->partitions[i].size; 720 } 721 ns->nbparts = parts_num; 722 if (remains) { 723 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 724 NS_ERR("too many partitions.\n"); 725 ret = -EINVAL; 726 goto free_partition_names; 727 } 728 ns->partitions[i].name = ns_get_partition_name(i); 729 if (!ns->partitions[i].name) { 730 NS_ERR("unable to allocate memory.\n"); 731 ret = -ENOMEM; 732 goto free_partition_names; 733 } 734 ns->partitions[i].offset = next_offset; 735 ns->partitions[i].size = remains; 736 ns->nbparts += 1; 737 } 738 739 if (ns->busw == 16) 740 NS_WARN("16-bit flashes support wasn't tested\n"); 741 742 printk("flash size: %llu MiB\n", 743 (unsigned long long)ns->geom.totsz >> 20); 744 printk("page size: %u bytes\n", ns->geom.pgsz); 745 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 746 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 747 printk("pages number: %u\n", ns->geom.pgnum); 748 printk("pages per sector: %u\n", ns->geom.pgsec); 749 printk("bus width: %u\n", ns->busw); 750 printk("bits in sector size: %u\n", ns->geom.secshift); 751 printk("bits in page size: %u\n", ns->geom.pgshift); 752 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 753 printk("flash size with OOB: %llu KiB\n", 754 (unsigned long long)ns->geom.totszoob >> 10); 755 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 756 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 757 printk("options: %#x\n", ns->options); 758 759 ret = ns_alloc_device(ns); 760 if (ret) 761 goto free_partition_names; 762 763 /* Allocate / initialize the internal buffer */ 764 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 765 if (!ns->buf.byte) { 766 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 767 ns->geom.pgszoob); 768 ret = -ENOMEM; 769 goto free_device; 770 } 771 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 772 773 return 0; 774 775 free_device: 776 ns_free_device(ns); 777 free_partition_names: 778 for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) 779 kfree(ns->partitions[i].name); 780 781 return ret; 782 } 783 784 /* 785 * Free the nandsim structure. 786 */ 787 static void ns_free(struct nandsim *ns) 788 { 789 int i; 790 791 for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i) 792 kfree(ns->partitions[i].name); 793 794 kfree(ns->buf.byte); 795 ns_free_device(ns); 796 797 return; 798 } 799 800 static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 801 { 802 char *w; 803 int zero_ok; 804 unsigned int erase_block_no; 805 loff_t offset; 806 807 if (!badblocks) 808 return 0; 809 w = badblocks; 810 do { 811 zero_ok = (*w == '0' ? 1 : 0); 812 erase_block_no = simple_strtoul(w, &w, 0); 813 if (!zero_ok && !erase_block_no) { 814 NS_ERR("invalid badblocks.\n"); 815 return -EINVAL; 816 } 817 offset = (loff_t)erase_block_no * ns->geom.secsz; 818 if (mtd_block_markbad(mtd, offset)) { 819 NS_ERR("invalid badblocks.\n"); 820 return -EINVAL; 821 } 822 if (*w == ',') 823 w += 1; 824 } while (*w); 825 return 0; 826 } 827 828 static int ns_parse_weakblocks(void) 829 { 830 char *w; 831 int zero_ok; 832 unsigned int erase_block_no; 833 unsigned int max_erases; 834 struct weak_block *wb; 835 836 if (!weakblocks) 837 return 0; 838 w = weakblocks; 839 do { 840 zero_ok = (*w == '0' ? 1 : 0); 841 erase_block_no = simple_strtoul(w, &w, 0); 842 if (!zero_ok && !erase_block_no) { 843 NS_ERR("invalid weakblocks.\n"); 844 return -EINVAL; 845 } 846 max_erases = 3; 847 if (*w == ':') { 848 w += 1; 849 max_erases = simple_strtoul(w, &w, 0); 850 } 851 if (*w == ',') 852 w += 1; 853 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 854 if (!wb) { 855 NS_ERR("unable to allocate memory.\n"); 856 return -ENOMEM; 857 } 858 wb->erase_block_no = erase_block_no; 859 wb->max_erases = max_erases; 860 list_add(&wb->list, &weak_blocks); 861 } while (*w); 862 return 0; 863 } 864 865 static int ns_erase_error(unsigned int erase_block_no) 866 { 867 struct weak_block *wb; 868 869 list_for_each_entry(wb, &weak_blocks, list) 870 if (wb->erase_block_no == erase_block_no) { 871 if (wb->erases_done >= wb->max_erases) 872 return 1; 873 wb->erases_done += 1; 874 return 0; 875 } 876 return 0; 877 } 878 879 static int ns_parse_weakpages(void) 880 { 881 char *w; 882 int zero_ok; 883 unsigned int page_no; 884 unsigned int max_writes; 885 struct weak_page *wp; 886 887 if (!weakpages) 888 return 0; 889 w = weakpages; 890 do { 891 zero_ok = (*w == '0' ? 1 : 0); 892 page_no = simple_strtoul(w, &w, 0); 893 if (!zero_ok && !page_no) { 894 NS_ERR("invalid weakpages.\n"); 895 return -EINVAL; 896 } 897 max_writes = 3; 898 if (*w == ':') { 899 w += 1; 900 max_writes = simple_strtoul(w, &w, 0); 901 } 902 if (*w == ',') 903 w += 1; 904 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 905 if (!wp) { 906 NS_ERR("unable to allocate memory.\n"); 907 return -ENOMEM; 908 } 909 wp->page_no = page_no; 910 wp->max_writes = max_writes; 911 list_add(&wp->list, &weak_pages); 912 } while (*w); 913 return 0; 914 } 915 916 static int ns_write_error(unsigned int page_no) 917 { 918 struct weak_page *wp; 919 920 list_for_each_entry(wp, &weak_pages, list) 921 if (wp->page_no == page_no) { 922 if (wp->writes_done >= wp->max_writes) 923 return 1; 924 wp->writes_done += 1; 925 return 0; 926 } 927 return 0; 928 } 929 930 static int ns_parse_gravepages(void) 931 { 932 char *g; 933 int zero_ok; 934 unsigned int page_no; 935 unsigned int max_reads; 936 struct grave_page *gp; 937 938 if (!gravepages) 939 return 0; 940 g = gravepages; 941 do { 942 zero_ok = (*g == '0' ? 1 : 0); 943 page_no = simple_strtoul(g, &g, 0); 944 if (!zero_ok && !page_no) { 945 NS_ERR("invalid gravepagess.\n"); 946 return -EINVAL; 947 } 948 max_reads = 3; 949 if (*g == ':') { 950 g += 1; 951 max_reads = simple_strtoul(g, &g, 0); 952 } 953 if (*g == ',') 954 g += 1; 955 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 956 if (!gp) { 957 NS_ERR("unable to allocate memory.\n"); 958 return -ENOMEM; 959 } 960 gp->page_no = page_no; 961 gp->max_reads = max_reads; 962 list_add(&gp->list, &grave_pages); 963 } while (*g); 964 return 0; 965 } 966 967 static int ns_read_error(unsigned int page_no) 968 { 969 struct grave_page *gp; 970 971 list_for_each_entry(gp, &grave_pages, list) 972 if (gp->page_no == page_no) { 973 if (gp->reads_done >= gp->max_reads) 974 return 1; 975 gp->reads_done += 1; 976 return 0; 977 } 978 return 0; 979 } 980 981 static int ns_setup_wear_reporting(struct mtd_info *mtd) 982 { 983 size_t mem; 984 985 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 986 mem = wear_eb_count * sizeof(unsigned long); 987 if (mem / sizeof(unsigned long) != wear_eb_count) { 988 NS_ERR("Too many erase blocks for wear reporting\n"); 989 return -ENOMEM; 990 } 991 erase_block_wear = kzalloc(mem, GFP_KERNEL); 992 if (!erase_block_wear) { 993 NS_ERR("Too many erase blocks for wear reporting\n"); 994 return -ENOMEM; 995 } 996 return 0; 997 } 998 999 static void ns_update_wear(unsigned int erase_block_no) 1000 { 1001 if (!erase_block_wear) 1002 return; 1003 total_wear += 1; 1004 /* 1005 * TODO: Notify this through a debugfs entry, 1006 * instead of showing an error message. 1007 */ 1008 if (total_wear == 0) 1009 NS_ERR("Erase counter total overflow\n"); 1010 erase_block_wear[erase_block_no] += 1; 1011 if (erase_block_wear[erase_block_no] == 0) 1012 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 1013 } 1014 1015 /* 1016 * Returns the string representation of 'state' state. 1017 */ 1018 static char *ns_get_state_name(uint32_t state) 1019 { 1020 switch (NS_STATE(state)) { 1021 case STATE_CMD_READ0: 1022 return "STATE_CMD_READ0"; 1023 case STATE_CMD_READ1: 1024 return "STATE_CMD_READ1"; 1025 case STATE_CMD_PAGEPROG: 1026 return "STATE_CMD_PAGEPROG"; 1027 case STATE_CMD_READOOB: 1028 return "STATE_CMD_READOOB"; 1029 case STATE_CMD_READSTART: 1030 return "STATE_CMD_READSTART"; 1031 case STATE_CMD_ERASE1: 1032 return "STATE_CMD_ERASE1"; 1033 case STATE_CMD_STATUS: 1034 return "STATE_CMD_STATUS"; 1035 case STATE_CMD_SEQIN: 1036 return "STATE_CMD_SEQIN"; 1037 case STATE_CMD_READID: 1038 return "STATE_CMD_READID"; 1039 case STATE_CMD_ERASE2: 1040 return "STATE_CMD_ERASE2"; 1041 case STATE_CMD_RESET: 1042 return "STATE_CMD_RESET"; 1043 case STATE_CMD_RNDOUT: 1044 return "STATE_CMD_RNDOUT"; 1045 case STATE_CMD_RNDOUTSTART: 1046 return "STATE_CMD_RNDOUTSTART"; 1047 case STATE_ADDR_PAGE: 1048 return "STATE_ADDR_PAGE"; 1049 case STATE_ADDR_SEC: 1050 return "STATE_ADDR_SEC"; 1051 case STATE_ADDR_ZERO: 1052 return "STATE_ADDR_ZERO"; 1053 case STATE_ADDR_COLUMN: 1054 return "STATE_ADDR_COLUMN"; 1055 case STATE_DATAIN: 1056 return "STATE_DATAIN"; 1057 case STATE_DATAOUT: 1058 return "STATE_DATAOUT"; 1059 case STATE_DATAOUT_ID: 1060 return "STATE_DATAOUT_ID"; 1061 case STATE_DATAOUT_STATUS: 1062 return "STATE_DATAOUT_STATUS"; 1063 case STATE_READY: 1064 return "STATE_READY"; 1065 case STATE_UNKNOWN: 1066 return "STATE_UNKNOWN"; 1067 } 1068 1069 NS_ERR("get_state_name: unknown state, BUG\n"); 1070 return NULL; 1071 } 1072 1073 /* 1074 * Check if command is valid. 1075 * 1076 * RETURNS: 1 if wrong command, 0 if right. 1077 */ 1078 static int ns_check_command(int cmd) 1079 { 1080 switch (cmd) { 1081 1082 case NAND_CMD_READ0: 1083 case NAND_CMD_READ1: 1084 case NAND_CMD_READSTART: 1085 case NAND_CMD_PAGEPROG: 1086 case NAND_CMD_READOOB: 1087 case NAND_CMD_ERASE1: 1088 case NAND_CMD_STATUS: 1089 case NAND_CMD_SEQIN: 1090 case NAND_CMD_READID: 1091 case NAND_CMD_ERASE2: 1092 case NAND_CMD_RESET: 1093 case NAND_CMD_RNDOUT: 1094 case NAND_CMD_RNDOUTSTART: 1095 return 0; 1096 1097 default: 1098 return 1; 1099 } 1100 } 1101 1102 /* 1103 * Returns state after command is accepted by command number. 1104 */ 1105 static uint32_t ns_get_state_by_command(unsigned command) 1106 { 1107 switch (command) { 1108 case NAND_CMD_READ0: 1109 return STATE_CMD_READ0; 1110 case NAND_CMD_READ1: 1111 return STATE_CMD_READ1; 1112 case NAND_CMD_PAGEPROG: 1113 return STATE_CMD_PAGEPROG; 1114 case NAND_CMD_READSTART: 1115 return STATE_CMD_READSTART; 1116 case NAND_CMD_READOOB: 1117 return STATE_CMD_READOOB; 1118 case NAND_CMD_ERASE1: 1119 return STATE_CMD_ERASE1; 1120 case NAND_CMD_STATUS: 1121 return STATE_CMD_STATUS; 1122 case NAND_CMD_SEQIN: 1123 return STATE_CMD_SEQIN; 1124 case NAND_CMD_READID: 1125 return STATE_CMD_READID; 1126 case NAND_CMD_ERASE2: 1127 return STATE_CMD_ERASE2; 1128 case NAND_CMD_RESET: 1129 return STATE_CMD_RESET; 1130 case NAND_CMD_RNDOUT: 1131 return STATE_CMD_RNDOUT; 1132 case NAND_CMD_RNDOUTSTART: 1133 return STATE_CMD_RNDOUTSTART; 1134 } 1135 1136 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1137 return 0; 1138 } 1139 1140 /* 1141 * Move an address byte to the correspondent internal register. 1142 */ 1143 static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt) 1144 { 1145 uint byte = (uint)bt; 1146 1147 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1148 ns->regs.column |= (byte << 8 * ns->regs.count); 1149 else { 1150 ns->regs.row |= (byte << 8 * (ns->regs.count - 1151 ns->geom.pgaddrbytes + 1152 ns->geom.secaddrbytes)); 1153 } 1154 1155 return; 1156 } 1157 1158 /* 1159 * Switch to STATE_READY state. 1160 */ 1161 static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status) 1162 { 1163 NS_DBG("switch_to_ready_state: switch to %s state\n", 1164 ns_get_state_name(STATE_READY)); 1165 1166 ns->state = STATE_READY; 1167 ns->nxstate = STATE_UNKNOWN; 1168 ns->op = NULL; 1169 ns->npstates = 0; 1170 ns->stateidx = 0; 1171 ns->regs.num = 0; 1172 ns->regs.count = 0; 1173 ns->regs.off = 0; 1174 ns->regs.row = 0; 1175 ns->regs.column = 0; 1176 ns->regs.status = status; 1177 } 1178 1179 /* 1180 * If the operation isn't known yet, try to find it in the global array 1181 * of supported operations. 1182 * 1183 * Operation can be unknown because of the following. 1184 * 1. New command was accepted and this is the first call to find the 1185 * correspondent states chain. In this case ns->npstates = 0; 1186 * 2. There are several operations which begin with the same command(s) 1187 * (for example program from the second half and read from the 1188 * second half operations both begin with the READ1 command). In this 1189 * case the ns->pstates[] array contains previous states. 1190 * 1191 * Thus, the function tries to find operation containing the following 1192 * states (if the 'flag' parameter is 0): 1193 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1194 * 1195 * If (one and only one) matching operation is found, it is accepted ( 1196 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1197 * zeroed). 1198 * 1199 * If there are several matches, the current state is pushed to the 1200 * ns->pstates. 1201 * 1202 * The operation can be unknown only while commands are input to the chip. 1203 * As soon as address command is accepted, the operation must be known. 1204 * In such situation the function is called with 'flag' != 0, and the 1205 * operation is searched using the following pattern: 1206 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1207 * 1208 * It is supposed that this pattern must either match one operation or 1209 * none. There can't be ambiguity in that case. 1210 * 1211 * If no matches found, the function does the following: 1212 * 1. if there are saved states present, try to ignore them and search 1213 * again only using the last command. If nothing was found, switch 1214 * to the STATE_READY state. 1215 * 2. if there are no saved states, switch to the STATE_READY state. 1216 * 1217 * RETURNS: -2 - no matched operations found. 1218 * -1 - several matches. 1219 * 0 - operation is found. 1220 */ 1221 static int ns_find_operation(struct nandsim *ns, uint32_t flag) 1222 { 1223 int opsfound = 0; 1224 int i, j, idx = 0; 1225 1226 for (i = 0; i < NS_OPER_NUM; i++) { 1227 1228 int found = 1; 1229 1230 if (!(ns->options & ops[i].reqopts)) 1231 /* Ignore operations we can't perform */ 1232 continue; 1233 1234 if (flag) { 1235 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1236 continue; 1237 } else { 1238 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1239 continue; 1240 } 1241 1242 for (j = 0; j < ns->npstates; j++) 1243 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1244 && (ns->options & ops[idx].reqopts)) { 1245 found = 0; 1246 break; 1247 } 1248 1249 if (found) { 1250 idx = i; 1251 opsfound += 1; 1252 } 1253 } 1254 1255 if (opsfound == 1) { 1256 /* Exact match */ 1257 ns->op = &ops[idx].states[0]; 1258 if (flag) { 1259 /* 1260 * In this case the find_operation function was 1261 * called when address has just began input. But it isn't 1262 * yet fully input and the current state must 1263 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1264 * state must be the next state (ns->nxstate). 1265 */ 1266 ns->stateidx = ns->npstates - 1; 1267 } else { 1268 ns->stateidx = ns->npstates; 1269 } 1270 ns->npstates = 0; 1271 ns->state = ns->op[ns->stateidx]; 1272 ns->nxstate = ns->op[ns->stateidx + 1]; 1273 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1274 idx, ns_get_state_name(ns->state), 1275 ns_get_state_name(ns->nxstate)); 1276 return 0; 1277 } 1278 1279 if (opsfound == 0) { 1280 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1281 if (ns->npstates != 0) { 1282 NS_DBG("find_operation: no operation found, try again with state %s\n", 1283 ns_get_state_name(ns->state)); 1284 ns->npstates = 0; 1285 return ns_find_operation(ns, 0); 1286 1287 } 1288 NS_DBG("find_operation: no operations found\n"); 1289 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1290 return -2; 1291 } 1292 1293 if (flag) { 1294 /* This shouldn't happen */ 1295 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1296 return -2; 1297 } 1298 1299 NS_DBG("find_operation: there is still ambiguity\n"); 1300 1301 ns->pstates[ns->npstates++] = ns->state; 1302 1303 return -1; 1304 } 1305 1306 static void ns_put_pages(struct nandsim *ns) 1307 { 1308 int i; 1309 1310 for (i = 0; i < ns->held_cnt; i++) 1311 put_page(ns->held_pages[i]); 1312 } 1313 1314 /* Get page cache pages in advance to provide NOFS memory allocation */ 1315 static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count, 1316 loff_t pos) 1317 { 1318 pgoff_t index, start_index, end_index; 1319 struct page *page; 1320 struct address_space *mapping = file->f_mapping; 1321 1322 start_index = pos >> PAGE_SHIFT; 1323 end_index = (pos + count - 1) >> PAGE_SHIFT; 1324 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1325 return -EINVAL; 1326 ns->held_cnt = 0; 1327 for (index = start_index; index <= end_index; index++) { 1328 page = find_get_page(mapping, index); 1329 if (page == NULL) { 1330 page = find_or_create_page(mapping, index, GFP_NOFS); 1331 if (page == NULL) { 1332 write_inode_now(mapping->host, 1); 1333 page = find_or_create_page(mapping, index, GFP_NOFS); 1334 } 1335 if (page == NULL) { 1336 ns_put_pages(ns); 1337 return -ENOMEM; 1338 } 1339 unlock_page(page); 1340 } 1341 ns->held_pages[ns->held_cnt++] = page; 1342 } 1343 return 0; 1344 } 1345 1346 static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf, 1347 size_t count, loff_t pos) 1348 { 1349 ssize_t tx; 1350 int err; 1351 unsigned int noreclaim_flag; 1352 1353 err = ns_get_pages(ns, file, count, pos); 1354 if (err) 1355 return err; 1356 noreclaim_flag = memalloc_noreclaim_save(); 1357 tx = kernel_read(file, buf, count, &pos); 1358 memalloc_noreclaim_restore(noreclaim_flag); 1359 ns_put_pages(ns); 1360 return tx; 1361 } 1362 1363 static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf, 1364 size_t count, loff_t pos) 1365 { 1366 ssize_t tx; 1367 int err; 1368 unsigned int noreclaim_flag; 1369 1370 err = ns_get_pages(ns, file, count, pos); 1371 if (err) 1372 return err; 1373 noreclaim_flag = memalloc_noreclaim_save(); 1374 tx = kernel_write(file, buf, count, &pos); 1375 memalloc_noreclaim_restore(noreclaim_flag); 1376 ns_put_pages(ns); 1377 return tx; 1378 } 1379 1380 /* 1381 * Returns a pointer to the current page. 1382 */ 1383 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1384 { 1385 return &(ns->pages[ns->regs.row]); 1386 } 1387 1388 /* 1389 * Retuns a pointer to the current byte, within the current page. 1390 */ 1391 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1392 { 1393 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; 1394 } 1395 1396 static int ns_do_read_error(struct nandsim *ns, int num) 1397 { 1398 unsigned int page_no = ns->regs.row; 1399 1400 if (ns_read_error(page_no)) { 1401 prandom_bytes(ns->buf.byte, num); 1402 NS_WARN("simulating read error in page %u\n", page_no); 1403 return 1; 1404 } 1405 return 0; 1406 } 1407 1408 static void ns_do_bit_flips(struct nandsim *ns, int num) 1409 { 1410 if (bitflips && prandom_u32() < (1 << 22)) { 1411 int flips = 1; 1412 if (bitflips > 1) 1413 flips = (prandom_u32() % (int) bitflips) + 1; 1414 while (flips--) { 1415 int pos = prandom_u32() % (num * 8); 1416 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1417 NS_WARN("read_page: flipping bit %d in page %d " 1418 "reading from %d ecc: corrected=%u failed=%u\n", 1419 pos, ns->regs.row, ns->regs.column + ns->regs.off, 1420 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1421 } 1422 } 1423 } 1424 1425 /* 1426 * Fill the NAND buffer with data read from the specified page. 1427 */ 1428 static void ns_read_page(struct nandsim *ns, int num) 1429 { 1430 union ns_mem *mypage; 1431 1432 if (ns->cfile) { 1433 if (!test_bit(ns->regs.row, ns->pages_written)) { 1434 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1435 memset(ns->buf.byte, 0xFF, num); 1436 } else { 1437 loff_t pos; 1438 ssize_t tx; 1439 1440 NS_DBG("read_page: page %d written, reading from %d\n", 1441 ns->regs.row, ns->regs.column + ns->regs.off); 1442 if (ns_do_read_error(ns, num)) 1443 return; 1444 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1445 tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num, 1446 pos); 1447 if (tx != num) { 1448 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1449 return; 1450 } 1451 ns_do_bit_flips(ns, num); 1452 } 1453 return; 1454 } 1455 1456 mypage = NS_GET_PAGE(ns); 1457 if (mypage->byte == NULL) { 1458 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1459 memset(ns->buf.byte, 0xFF, num); 1460 } else { 1461 NS_DBG("read_page: page %d allocated, reading from %d\n", 1462 ns->regs.row, ns->regs.column + ns->regs.off); 1463 if (ns_do_read_error(ns, num)) 1464 return; 1465 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1466 ns_do_bit_flips(ns, num); 1467 } 1468 } 1469 1470 /* 1471 * Erase all pages in the specified sector. 1472 */ 1473 static void ns_erase_sector(struct nandsim *ns) 1474 { 1475 union ns_mem *mypage; 1476 int i; 1477 1478 if (ns->cfile) { 1479 for (i = 0; i < ns->geom.pgsec; i++) 1480 if (__test_and_clear_bit(ns->regs.row + i, 1481 ns->pages_written)) { 1482 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1483 } 1484 return; 1485 } 1486 1487 mypage = NS_GET_PAGE(ns); 1488 for (i = 0; i < ns->geom.pgsec; i++) { 1489 if (mypage->byte != NULL) { 1490 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1491 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1492 mypage->byte = NULL; 1493 } 1494 mypage++; 1495 } 1496 } 1497 1498 /* 1499 * Program the specified page with the contents from the NAND buffer. 1500 */ 1501 static int ns_prog_page(struct nandsim *ns, int num) 1502 { 1503 int i; 1504 union ns_mem *mypage; 1505 u_char *pg_off; 1506 1507 if (ns->cfile) { 1508 loff_t off; 1509 ssize_t tx; 1510 int all; 1511 1512 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1513 pg_off = ns->file_buf + ns->regs.column + ns->regs.off; 1514 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1515 if (!test_bit(ns->regs.row, ns->pages_written)) { 1516 all = 1; 1517 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1518 } else { 1519 all = 0; 1520 tx = ns_read_file(ns, ns->cfile, pg_off, num, off); 1521 if (tx != num) { 1522 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1523 return -1; 1524 } 1525 } 1526 for (i = 0; i < num; i++) 1527 pg_off[i] &= ns->buf.byte[i]; 1528 if (all) { 1529 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1530 tx = ns_write_file(ns, ns->cfile, ns->file_buf, 1531 ns->geom.pgszoob, pos); 1532 if (tx != ns->geom.pgszoob) { 1533 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1534 return -1; 1535 } 1536 __set_bit(ns->regs.row, ns->pages_written); 1537 } else { 1538 tx = ns_write_file(ns, ns->cfile, pg_off, num, off); 1539 if (tx != num) { 1540 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1541 return -1; 1542 } 1543 } 1544 return 0; 1545 } 1546 1547 mypage = NS_GET_PAGE(ns); 1548 if (mypage->byte == NULL) { 1549 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1550 /* 1551 * We allocate memory with GFP_NOFS because a flash FS may 1552 * utilize this. If it is holding an FS lock, then gets here, 1553 * then kernel memory alloc runs writeback which goes to the FS 1554 * again and deadlocks. This was seen in practice. 1555 */ 1556 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1557 if (mypage->byte == NULL) { 1558 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1559 return -1; 1560 } 1561 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1562 } 1563 1564 pg_off = NS_PAGE_BYTE_OFF(ns); 1565 for (i = 0; i < num; i++) 1566 pg_off[i] &= ns->buf.byte[i]; 1567 1568 return 0; 1569 } 1570 1571 /* 1572 * If state has any action bit, perform this action. 1573 * 1574 * RETURNS: 0 if success, -1 if error. 1575 */ 1576 static int ns_do_state_action(struct nandsim *ns, uint32_t action) 1577 { 1578 int num; 1579 int busdiv = ns->busw == 8 ? 1 : 2; 1580 unsigned int erase_block_no, page_no; 1581 1582 action &= ACTION_MASK; 1583 1584 /* Check that page address input is correct */ 1585 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1586 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1587 return -1; 1588 } 1589 1590 switch (action) { 1591 1592 case ACTION_CPY: 1593 /* 1594 * Copy page data to the internal buffer. 1595 */ 1596 1597 /* Column shouldn't be very large */ 1598 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1599 NS_ERR("do_state_action: column number is too large\n"); 1600 break; 1601 } 1602 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1603 ns_read_page(ns, num); 1604 1605 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1606 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1607 1608 if (ns->regs.off == 0) 1609 NS_LOG("read page %d\n", ns->regs.row); 1610 else if (ns->regs.off < ns->geom.pgsz) 1611 NS_LOG("read page %d (second half)\n", ns->regs.row); 1612 else 1613 NS_LOG("read OOB of page %d\n", ns->regs.row); 1614 1615 NS_UDELAY(access_delay); 1616 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1617 1618 break; 1619 1620 case ACTION_SECERASE: 1621 /* 1622 * Erase sector. 1623 */ 1624 1625 if (ns->lines.wp) { 1626 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1627 return -1; 1628 } 1629 1630 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1631 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1632 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1633 return -1; 1634 } 1635 1636 ns->regs.row = (ns->regs.row << 1637 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1638 ns->regs.column = 0; 1639 1640 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1641 1642 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1643 ns->regs.row, NS_RAW_OFFSET(ns)); 1644 NS_LOG("erase sector %u\n", erase_block_no); 1645 1646 ns_erase_sector(ns); 1647 1648 NS_MDELAY(erase_delay); 1649 1650 if (erase_block_wear) 1651 ns_update_wear(erase_block_no); 1652 1653 if (ns_erase_error(erase_block_no)) { 1654 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1655 return -1; 1656 } 1657 1658 break; 1659 1660 case ACTION_PRGPAGE: 1661 /* 1662 * Program page - move internal buffer data to the page. 1663 */ 1664 1665 if (ns->lines.wp) { 1666 NS_WARN("do_state_action: device is write-protected, programm\n"); 1667 return -1; 1668 } 1669 1670 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1671 if (num != ns->regs.count) { 1672 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1673 ns->regs.count, num); 1674 return -1; 1675 } 1676 1677 if (ns_prog_page(ns, num) == -1) 1678 return -1; 1679 1680 page_no = ns->regs.row; 1681 1682 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1683 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1684 NS_LOG("programm page %d\n", ns->regs.row); 1685 1686 NS_UDELAY(programm_delay); 1687 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1688 1689 if (ns_write_error(page_no)) { 1690 NS_WARN("simulating write failure in page %u\n", page_no); 1691 return -1; 1692 } 1693 1694 break; 1695 1696 case ACTION_ZEROOFF: 1697 NS_DBG("do_state_action: set internal offset to 0\n"); 1698 ns->regs.off = 0; 1699 break; 1700 1701 case ACTION_HALFOFF: 1702 if (!(ns->options & OPT_PAGE512_8BIT)) { 1703 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1704 "byte page size 8x chips\n"); 1705 return -1; 1706 } 1707 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1708 ns->regs.off = ns->geom.pgsz/2; 1709 break; 1710 1711 case ACTION_OOBOFF: 1712 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1713 ns->regs.off = ns->geom.pgsz; 1714 break; 1715 1716 default: 1717 NS_DBG("do_state_action: BUG! unknown action\n"); 1718 } 1719 1720 return 0; 1721 } 1722 1723 /* 1724 * Switch simulator's state. 1725 */ 1726 static void ns_switch_state(struct nandsim *ns) 1727 { 1728 if (ns->op) { 1729 /* 1730 * The current operation have already been identified. 1731 * Just follow the states chain. 1732 */ 1733 1734 ns->stateidx += 1; 1735 ns->state = ns->nxstate; 1736 ns->nxstate = ns->op[ns->stateidx + 1]; 1737 1738 NS_DBG("switch_state: operation is known, switch to the next state, " 1739 "state: %s, nxstate: %s\n", 1740 ns_get_state_name(ns->state), 1741 ns_get_state_name(ns->nxstate)); 1742 1743 /* See, whether we need to do some action */ 1744 if ((ns->state & ACTION_MASK) && 1745 ns_do_state_action(ns, ns->state) < 0) { 1746 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1747 return; 1748 } 1749 1750 } else { 1751 /* 1752 * We don't yet know which operation we perform. 1753 * Try to identify it. 1754 */ 1755 1756 /* 1757 * The only event causing the switch_state function to 1758 * be called with yet unknown operation is new command. 1759 */ 1760 ns->state = ns_get_state_by_command(ns->regs.command); 1761 1762 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1763 1764 if (ns_find_operation(ns, 0)) 1765 return; 1766 1767 if ((ns->state & ACTION_MASK) && 1768 ns_do_state_action(ns, ns->state) < 0) { 1769 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1770 return; 1771 } 1772 } 1773 1774 /* For 16x devices column means the page offset in words */ 1775 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1776 NS_DBG("switch_state: double the column number for 16x device\n"); 1777 ns->regs.column <<= 1; 1778 } 1779 1780 if (NS_STATE(ns->nxstate) == STATE_READY) { 1781 /* 1782 * The current state is the last. Return to STATE_READY 1783 */ 1784 1785 u_char status = NS_STATUS_OK(ns); 1786 1787 /* In case of data states, see if all bytes were input/output */ 1788 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1789 && ns->regs.count != ns->regs.num) { 1790 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1791 ns->regs.num - ns->regs.count); 1792 status = NS_STATUS_FAILED(ns); 1793 } 1794 1795 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1796 1797 ns_switch_to_ready_state(ns, status); 1798 1799 return; 1800 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1801 /* 1802 * If the next state is data input/output, switch to it now 1803 */ 1804 1805 ns->state = ns->nxstate; 1806 ns->nxstate = ns->op[++ns->stateidx + 1]; 1807 ns->regs.num = ns->regs.count = 0; 1808 1809 NS_DBG("switch_state: the next state is data I/O, switch, " 1810 "state: %s, nxstate: %s\n", 1811 ns_get_state_name(ns->state), 1812 ns_get_state_name(ns->nxstate)); 1813 1814 /* 1815 * Set the internal register to the count of bytes which 1816 * are expected to be input or output 1817 */ 1818 switch (NS_STATE(ns->state)) { 1819 case STATE_DATAIN: 1820 case STATE_DATAOUT: 1821 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1822 break; 1823 1824 case STATE_DATAOUT_ID: 1825 ns->regs.num = ns->geom.idbytes; 1826 break; 1827 1828 case STATE_DATAOUT_STATUS: 1829 ns->regs.count = ns->regs.num = 0; 1830 break; 1831 1832 default: 1833 NS_ERR("switch_state: BUG! unknown data state\n"); 1834 } 1835 1836 } else if (ns->nxstate & STATE_ADDR_MASK) { 1837 /* 1838 * If the next state is address input, set the internal 1839 * register to the number of expected address bytes 1840 */ 1841 1842 ns->regs.count = 0; 1843 1844 switch (NS_STATE(ns->nxstate)) { 1845 case STATE_ADDR_PAGE: 1846 ns->regs.num = ns->geom.pgaddrbytes; 1847 1848 break; 1849 case STATE_ADDR_SEC: 1850 ns->regs.num = ns->geom.secaddrbytes; 1851 break; 1852 1853 case STATE_ADDR_ZERO: 1854 ns->regs.num = 1; 1855 break; 1856 1857 case STATE_ADDR_COLUMN: 1858 /* Column address is always 2 bytes */ 1859 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1860 break; 1861 1862 default: 1863 NS_ERR("switch_state: BUG! unknown address state\n"); 1864 } 1865 } else { 1866 /* 1867 * Just reset internal counters. 1868 */ 1869 1870 ns->regs.num = 0; 1871 ns->regs.count = 0; 1872 } 1873 } 1874 1875 static u_char ns_nand_read_byte(struct nand_chip *chip) 1876 { 1877 struct nandsim *ns = nand_get_controller_data(chip); 1878 u_char outb = 0x00; 1879 1880 /* Sanity and correctness checks */ 1881 if (!ns->lines.ce) { 1882 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1883 return outb; 1884 } 1885 if (ns->lines.ale || ns->lines.cle) { 1886 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1887 return outb; 1888 } 1889 if (!(ns->state & STATE_DATAOUT_MASK)) { 1890 NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n", 1891 ns_get_state_name(ns->state), (uint)outb); 1892 return outb; 1893 } 1894 1895 /* Status register may be read as many times as it is wanted */ 1896 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1897 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1898 return ns->regs.status; 1899 } 1900 1901 /* Check if there is any data in the internal buffer which may be read */ 1902 if (ns->regs.count == ns->regs.num) { 1903 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1904 return outb; 1905 } 1906 1907 switch (NS_STATE(ns->state)) { 1908 case STATE_DATAOUT: 1909 if (ns->busw == 8) { 1910 outb = ns->buf.byte[ns->regs.count]; 1911 ns->regs.count += 1; 1912 } else { 1913 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1914 ns->regs.count += 2; 1915 } 1916 break; 1917 case STATE_DATAOUT_ID: 1918 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1919 outb = ns->ids[ns->regs.count]; 1920 ns->regs.count += 1; 1921 break; 1922 default: 1923 BUG(); 1924 } 1925 1926 if (ns->regs.count == ns->regs.num) { 1927 NS_DBG("read_byte: all bytes were read\n"); 1928 1929 if (NS_STATE(ns->nxstate) == STATE_READY) 1930 ns_switch_state(ns); 1931 } 1932 1933 return outb; 1934 } 1935 1936 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) 1937 { 1938 struct nandsim *ns = nand_get_controller_data(chip); 1939 1940 /* Sanity and correctness checks */ 1941 if (!ns->lines.ce) { 1942 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1943 return; 1944 } 1945 if (ns->lines.ale && ns->lines.cle) { 1946 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1947 return; 1948 } 1949 1950 if (ns->lines.cle == 1) { 1951 /* 1952 * The byte written is a command. 1953 */ 1954 1955 if (byte == NAND_CMD_RESET) { 1956 NS_LOG("reset chip\n"); 1957 ns_switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1958 return; 1959 } 1960 1961 /* Check that the command byte is correct */ 1962 if (ns_check_command(byte)) { 1963 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1964 return; 1965 } 1966 1967 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1968 || NS_STATE(ns->state) == STATE_DATAOUT) { 1969 int row = ns->regs.row; 1970 1971 ns_switch_state(ns); 1972 if (byte == NAND_CMD_RNDOUT) 1973 ns->regs.row = row; 1974 } 1975 1976 /* Check if chip is expecting command */ 1977 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1978 /* Do not warn if only 2 id bytes are read */ 1979 if (!(ns->regs.command == NAND_CMD_READID && 1980 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1981 /* 1982 * We are in situation when something else (not command) 1983 * was expected but command was input. In this case ignore 1984 * previous command(s)/state(s) and accept the last one. 1985 */ 1986 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n", 1987 (uint)byte, 1988 ns_get_state_name(ns->nxstate)); 1989 } 1990 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1991 } 1992 1993 NS_DBG("command byte corresponding to %s state accepted\n", 1994 ns_get_state_name(ns_get_state_by_command(byte))); 1995 ns->regs.command = byte; 1996 ns_switch_state(ns); 1997 1998 } else if (ns->lines.ale == 1) { 1999 /* 2000 * The byte written is an address. 2001 */ 2002 2003 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 2004 2005 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 2006 2007 if (ns_find_operation(ns, 1) < 0) 2008 return; 2009 2010 if ((ns->state & ACTION_MASK) && 2011 ns_do_state_action(ns, ns->state) < 0) { 2012 ns_switch_to_ready_state(ns, 2013 NS_STATUS_FAILED(ns)); 2014 return; 2015 } 2016 2017 ns->regs.count = 0; 2018 switch (NS_STATE(ns->nxstate)) { 2019 case STATE_ADDR_PAGE: 2020 ns->regs.num = ns->geom.pgaddrbytes; 2021 break; 2022 case STATE_ADDR_SEC: 2023 ns->regs.num = ns->geom.secaddrbytes; 2024 break; 2025 case STATE_ADDR_ZERO: 2026 ns->regs.num = 1; 2027 break; 2028 default: 2029 BUG(); 2030 } 2031 } 2032 2033 /* Check that chip is expecting address */ 2034 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2035 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n", 2036 (uint)byte, ns_get_state_name(ns->nxstate)); 2037 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2038 return; 2039 } 2040 2041 /* Check if this is expected byte */ 2042 if (ns->regs.count == ns->regs.num) { 2043 NS_ERR("write_byte: no more address bytes expected\n"); 2044 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2045 return; 2046 } 2047 2048 ns_accept_addr_byte(ns, byte); 2049 2050 ns->regs.count += 1; 2051 2052 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2053 (uint)byte, ns->regs.count, ns->regs.num); 2054 2055 if (ns->regs.count == ns->regs.num) { 2056 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2057 ns_switch_state(ns); 2058 } 2059 2060 } else { 2061 /* 2062 * The byte written is an input data. 2063 */ 2064 2065 /* Check that chip is expecting data input */ 2066 if (!(ns->state & STATE_DATAIN_MASK)) { 2067 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n", 2068 (uint)byte, ns_get_state_name(ns->state), 2069 ns_get_state_name(STATE_READY)); 2070 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2071 return; 2072 } 2073 2074 /* Check if this is expected byte */ 2075 if (ns->regs.count == ns->regs.num) { 2076 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2077 ns->regs.num); 2078 return; 2079 } 2080 2081 if (ns->busw == 8) { 2082 ns->buf.byte[ns->regs.count] = byte; 2083 ns->regs.count += 1; 2084 } else { 2085 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2086 ns->regs.count += 2; 2087 } 2088 } 2089 2090 return; 2091 } 2092 2093 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, 2094 int len) 2095 { 2096 struct nandsim *ns = nand_get_controller_data(chip); 2097 2098 /* Check that chip is expecting data input */ 2099 if (!(ns->state & STATE_DATAIN_MASK)) { 2100 NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n", 2101 ns_get_state_name(ns->state)); 2102 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2103 return; 2104 } 2105 2106 /* Check if these are expected bytes */ 2107 if (ns->regs.count + len > ns->regs.num) { 2108 NS_ERR("write_buf: too many input bytes\n"); 2109 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2110 return; 2111 } 2112 2113 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2114 ns->regs.count += len; 2115 2116 if (ns->regs.count == ns->regs.num) { 2117 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2118 } 2119 } 2120 2121 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 2122 { 2123 struct nandsim *ns = nand_get_controller_data(chip); 2124 2125 /* Sanity and correctness checks */ 2126 if (!ns->lines.ce) { 2127 NS_ERR("read_buf: chip is disabled\n"); 2128 return; 2129 } 2130 if (ns->lines.ale || ns->lines.cle) { 2131 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2132 return; 2133 } 2134 if (!(ns->state & STATE_DATAOUT_MASK)) { 2135 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2136 ns_get_state_name(ns->state)); 2137 return; 2138 } 2139 2140 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2141 int i; 2142 2143 for (i = 0; i < len; i++) 2144 buf[i] = ns_nand_read_byte(chip); 2145 2146 return; 2147 } 2148 2149 /* Check if these are expected bytes */ 2150 if (ns->regs.count + len > ns->regs.num) { 2151 NS_ERR("read_buf: too many bytes to read\n"); 2152 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2153 return; 2154 } 2155 2156 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2157 ns->regs.count += len; 2158 2159 if (ns->regs.count == ns->regs.num) { 2160 if (NS_STATE(ns->nxstate) == STATE_READY) 2161 ns_switch_state(ns); 2162 } 2163 2164 return; 2165 } 2166 2167 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op, 2168 bool check_only) 2169 { 2170 int i; 2171 unsigned int op_id; 2172 const struct nand_op_instr *instr = NULL; 2173 struct nandsim *ns = nand_get_controller_data(chip); 2174 2175 if (check_only) 2176 return 0; 2177 2178 ns->lines.ce = 1; 2179 2180 for (op_id = 0; op_id < op->ninstrs; op_id++) { 2181 instr = &op->instrs[op_id]; 2182 ns->lines.cle = 0; 2183 ns->lines.ale = 0; 2184 2185 switch (instr->type) { 2186 case NAND_OP_CMD_INSTR: 2187 ns->lines.cle = 1; 2188 ns_nand_write_byte(chip, instr->ctx.cmd.opcode); 2189 break; 2190 case NAND_OP_ADDR_INSTR: 2191 ns->lines.ale = 1; 2192 for (i = 0; i < instr->ctx.addr.naddrs; i++) 2193 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]); 2194 break; 2195 case NAND_OP_DATA_IN_INSTR: 2196 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); 2197 break; 2198 case NAND_OP_DATA_OUT_INSTR: 2199 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); 2200 break; 2201 case NAND_OP_WAITRDY_INSTR: 2202 /* we are always ready */ 2203 break; 2204 } 2205 } 2206 2207 return 0; 2208 } 2209 2210 static int ns_attach_chip(struct nand_chip *chip) 2211 { 2212 unsigned int eccsteps, eccbytes; 2213 2214 if (!bch) 2215 return 0; 2216 2217 if (!mtd_nand_has_bch()) { 2218 NS_ERR("BCH ECC support is disabled\n"); 2219 return -EINVAL; 2220 } 2221 2222 /* Use 512-byte ecc blocks */ 2223 eccsteps = nsmtd->writesize / 512; 2224 eccbytes = ((bch * 13) + 7) / 8; 2225 2226 /* Do not bother supporting small page devices */ 2227 if (nsmtd->oobsize < 64 || !eccsteps) { 2228 NS_ERR("BCH not available on small page devices\n"); 2229 return -EINVAL; 2230 } 2231 2232 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2233 NS_ERR("Invalid BCH value %u\n", bch); 2234 return -EINVAL; 2235 } 2236 2237 chip->ecc.mode = NAND_ECC_SOFT; 2238 chip->ecc.algo = NAND_ECC_BCH; 2239 chip->ecc.size = 512; 2240 chip->ecc.strength = bch; 2241 chip->ecc.bytes = eccbytes; 2242 2243 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2244 2245 return 0; 2246 } 2247 2248 static const struct nand_controller_ops ns_controller_ops = { 2249 .attach_chip = ns_attach_chip, 2250 .exec_op = ns_exec_op, 2251 }; 2252 2253 /* 2254 * Module initialization function 2255 */ 2256 static int __init ns_init_module(void) 2257 { 2258 struct list_head *pos, *n; 2259 struct nand_chip *chip; 2260 struct nandsim *ns; 2261 int ret; 2262 2263 if (bus_width != 8 && bus_width != 16) { 2264 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2265 return -EINVAL; 2266 } 2267 2268 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL); 2269 if (!ns) { 2270 NS_ERR("unable to allocate core structures.\n"); 2271 return -ENOMEM; 2272 } 2273 chip = &ns->chip; 2274 nsmtd = nand_to_mtd(chip); 2275 nand_set_controller_data(chip, (void *)ns); 2276 2277 chip->ecc.mode = NAND_ECC_SOFT; 2278 chip->ecc.algo = NAND_ECC_HAMMING; 2279 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2280 /* and 'badblocks' parameters to work */ 2281 chip->options |= NAND_SKIP_BBTSCAN; 2282 2283 switch (bbt) { 2284 case 2: 2285 chip->bbt_options |= NAND_BBT_NO_OOB; 2286 fallthrough; 2287 case 1: 2288 chip->bbt_options |= NAND_BBT_USE_FLASH; 2289 fallthrough; 2290 case 0: 2291 break; 2292 default: 2293 NS_ERR("bbt has to be 0..2\n"); 2294 ret = -EINVAL; 2295 goto free_ns_struct; 2296 } 2297 /* 2298 * Perform minimum nandsim structure initialization to handle 2299 * the initial ID read command correctly 2300 */ 2301 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2302 ns->geom.idbytes = 8; 2303 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2304 ns->geom.idbytes = 6; 2305 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2306 ns->geom.idbytes = 4; 2307 else 2308 ns->geom.idbytes = 2; 2309 ns->regs.status = NS_STATUS_OK(ns); 2310 ns->nxstate = STATE_UNKNOWN; 2311 ns->options |= OPT_PAGE512; /* temporary value */ 2312 memcpy(ns->ids, id_bytes, sizeof(ns->ids)); 2313 if (bus_width == 16) { 2314 ns->busw = 16; 2315 chip->options |= NAND_BUSWIDTH_16; 2316 } 2317 2318 nsmtd->owner = THIS_MODULE; 2319 2320 ret = ns_parse_weakblocks(); 2321 if (ret) 2322 goto free_ns_struct; 2323 2324 ret = ns_parse_weakpages(); 2325 if (ret) 2326 goto free_wb_list; 2327 2328 ret = ns_parse_gravepages(); 2329 if (ret) 2330 goto free_wp_list; 2331 2332 nand_controller_init(&ns->base); 2333 ns->base.ops = &ns_controller_ops; 2334 chip->controller = &ns->base; 2335 2336 ret = nand_scan(chip, 1); 2337 if (ret) { 2338 NS_ERR("Could not scan NAND Simulator device\n"); 2339 goto free_gp_list; 2340 } 2341 2342 if (overridesize) { 2343 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2344 struct nand_memory_organization *memorg; 2345 u64 targetsize; 2346 2347 memorg = nanddev_get_memorg(&chip->base); 2348 2349 if (new_size >> overridesize != nsmtd->erasesize) { 2350 NS_ERR("overridesize is too big\n"); 2351 ret = -EINVAL; 2352 goto cleanup_nand; 2353 } 2354 2355 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2356 nsmtd->size = new_size; 2357 memorg->eraseblocks_per_lun = 1 << overridesize; 2358 targetsize = nanddev_target_size(&chip->base); 2359 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2360 chip->pagemask = (targetsize >> chip->page_shift) - 1; 2361 } 2362 2363 ret = ns_setup_wear_reporting(nsmtd); 2364 if (ret) 2365 goto cleanup_nand; 2366 2367 ret = ns_init(nsmtd); 2368 if (ret) 2369 goto free_ebw; 2370 2371 ret = nand_create_bbt(chip); 2372 if (ret) 2373 goto free_ns_object; 2374 2375 ret = ns_parse_badblocks(ns, nsmtd); 2376 if (ret) 2377 goto free_ns_object; 2378 2379 /* Register NAND partitions */ 2380 ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts); 2381 if (ret) 2382 goto free_ns_object; 2383 2384 ret = ns_debugfs_create(ns); 2385 if (ret) 2386 goto unregister_mtd; 2387 2388 return 0; 2389 2390 unregister_mtd: 2391 WARN_ON(mtd_device_unregister(nsmtd)); 2392 free_ns_object: 2393 ns_free(ns); 2394 free_ebw: 2395 kfree(erase_block_wear); 2396 cleanup_nand: 2397 nand_cleanup(chip); 2398 free_gp_list: 2399 list_for_each_safe(pos, n, &grave_pages) { 2400 list_del(pos); 2401 kfree(list_entry(pos, struct grave_page, list)); 2402 } 2403 free_wp_list: 2404 list_for_each_safe(pos, n, &weak_pages) { 2405 list_del(pos); 2406 kfree(list_entry(pos, struct weak_page, list)); 2407 } 2408 free_wb_list: 2409 list_for_each_safe(pos, n, &weak_blocks) { 2410 list_del(pos); 2411 kfree(list_entry(pos, struct weak_block, list)); 2412 } 2413 free_ns_struct: 2414 kfree(ns); 2415 2416 return ret; 2417 } 2418 2419 module_init(ns_init_module); 2420 2421 /* 2422 * Module clean-up function 2423 */ 2424 static void __exit ns_cleanup_module(void) 2425 { 2426 struct nand_chip *chip = mtd_to_nand(nsmtd); 2427 struct nandsim *ns = nand_get_controller_data(chip); 2428 struct list_head *pos, *n; 2429 2430 ns_debugfs_remove(ns); 2431 WARN_ON(mtd_device_unregister(nsmtd)); 2432 ns_free(ns); 2433 kfree(erase_block_wear); 2434 nand_cleanup(chip); 2435 2436 list_for_each_safe(pos, n, &grave_pages) { 2437 list_del(pos); 2438 kfree(list_entry(pos, struct grave_page, list)); 2439 } 2440 2441 list_for_each_safe(pos, n, &weak_pages) { 2442 list_del(pos); 2443 kfree(list_entry(pos, struct weak_page, list)); 2444 } 2445 2446 list_for_each_safe(pos, n, &weak_blocks) { 2447 list_del(pos); 2448 kfree(list_entry(pos, struct weak_block, list)); 2449 } 2450 2451 kfree(ns); 2452 } 2453 2454 module_exit(ns_cleanup_module); 2455 2456 MODULE_LICENSE ("GPL"); 2457 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2458 MODULE_DESCRIPTION ("The NAND flash simulator"); 2459