1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NAND flash simulator. 4 * 5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 6 * 7 * Copyright (C) 2004 Nokia Corporation 8 * 9 * Note: NS means "NAND Simulator". 10 * Note: Input means input TO flash chip, output means output FROM chip. 11 */ 12 13 #define pr_fmt(fmt) "[nandsim]" fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/vmalloc.h> 20 #include <linux/math64.h> 21 #include <linux/slab.h> 22 #include <linux/errno.h> 23 #include <linux/string.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/rawnand.h> 26 #include <linux/mtd/nand_bch.h> 27 #include <linux/mtd/partitions.h> 28 #include <linux/delay.h> 29 #include <linux/list.h> 30 #include <linux/random.h> 31 #include <linux/sched.h> 32 #include <linux/sched/mm.h> 33 #include <linux/fs.h> 34 #include <linux/pagemap.h> 35 #include <linux/seq_file.h> 36 #include <linux/debugfs.h> 37 38 /* Default simulator parameters values */ 39 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 40 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 41 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 42 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 43 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 44 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 45 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 46 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 47 #endif 48 49 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 50 #define CONFIG_NANDSIM_ACCESS_DELAY 25 51 #endif 52 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 53 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 54 #endif 55 #ifndef CONFIG_NANDSIM_ERASE_DELAY 56 #define CONFIG_NANDSIM_ERASE_DELAY 2 57 #endif 58 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 59 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 60 #endif 61 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 62 #define CONFIG_NANDSIM_INPUT_CYCLE 50 63 #endif 64 #ifndef CONFIG_NANDSIM_BUS_WIDTH 65 #define CONFIG_NANDSIM_BUS_WIDTH 8 66 #endif 67 #ifndef CONFIG_NANDSIM_DO_DELAYS 68 #define CONFIG_NANDSIM_DO_DELAYS 0 69 #endif 70 #ifndef CONFIG_NANDSIM_LOG 71 #define CONFIG_NANDSIM_LOG 0 72 #endif 73 #ifndef CONFIG_NANDSIM_DBG 74 #define CONFIG_NANDSIM_DBG 0 75 #endif 76 #ifndef CONFIG_NANDSIM_MAX_PARTS 77 #define CONFIG_NANDSIM_MAX_PARTS 32 78 #endif 79 80 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 81 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 82 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 83 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 84 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 85 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 86 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 87 static uint log = CONFIG_NANDSIM_LOG; 88 static uint dbg = CONFIG_NANDSIM_DBG; 89 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 90 static unsigned int parts_num; 91 static char *badblocks = NULL; 92 static char *weakblocks = NULL; 93 static char *weakpages = NULL; 94 static unsigned int bitflips = 0; 95 static char *gravepages = NULL; 96 static unsigned int overridesize = 0; 97 static char *cache_file = NULL; 98 static unsigned int bbt; 99 static unsigned int bch; 100 static u_char id_bytes[8] = { 101 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 102 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 103 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 104 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 105 [4 ... 7] = 0xFF, 106 }; 107 108 module_param_array(id_bytes, byte, NULL, 0400); 109 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 110 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 111 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 112 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 113 module_param(access_delay, uint, 0400); 114 module_param(programm_delay, uint, 0400); 115 module_param(erase_delay, uint, 0400); 116 module_param(output_cycle, uint, 0400); 117 module_param(input_cycle, uint, 0400); 118 module_param(bus_width, uint, 0400); 119 module_param(do_delays, uint, 0400); 120 module_param(log, uint, 0400); 121 module_param(dbg, uint, 0400); 122 module_param_array(parts, ulong, &parts_num, 0400); 123 module_param(badblocks, charp, 0400); 124 module_param(weakblocks, charp, 0400); 125 module_param(weakpages, charp, 0400); 126 module_param(bitflips, uint, 0400); 127 module_param(gravepages, charp, 0400); 128 module_param(overridesize, uint, 0400); 129 module_param(cache_file, charp, 0400); 130 module_param(bbt, uint, 0400); 131 module_param(bch, uint, 0400); 132 133 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 134 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 135 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 136 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 137 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 138 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 139 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 140 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 141 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 142 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 143 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 144 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 145 MODULE_PARM_DESC(log, "Perform logging if not zero"); 146 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 147 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 148 /* Page and erase block positions for the following parameters are independent of any partitions */ 149 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 150 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 151 " separated by commas e.g. 113:2 means eb 113" 152 " can be erased only twice before failing"); 153 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 154 " separated by commas e.g. 1401:2 means page 1401" 155 " can be written only twice before failing"); 156 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 157 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 158 " separated by commas e.g. 1401:2 means page 1401" 159 " can be read only twice before failing"); 160 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 161 "The size is specified in erase blocks and as the exponent of a power of two" 162 " e.g. 5 means a size of 32 erase blocks"); 163 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 164 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 165 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 166 "be correctable in 512-byte blocks"); 167 168 /* The largest possible page size */ 169 #define NS_LARGEST_PAGE_SIZE 4096 170 171 /* Simulator's output macros (logging, debugging, warning, error) */ 172 #define NS_LOG(args...) \ 173 do { if (log) pr_debug(" log: " args); } while(0) 174 #define NS_DBG(args...) \ 175 do { if (dbg) pr_debug(" debug: " args); } while(0) 176 #define NS_WARN(args...) \ 177 do { pr_warn(" warning: " args); } while(0) 178 #define NS_ERR(args...) \ 179 do { pr_err(" error: " args); } while(0) 180 #define NS_INFO(args...) \ 181 do { pr_info(" " args); } while(0) 182 183 /* Busy-wait delay macros (microseconds, milliseconds) */ 184 #define NS_UDELAY(us) \ 185 do { if (do_delays) udelay(us); } while(0) 186 #define NS_MDELAY(us) \ 187 do { if (do_delays) mdelay(us); } while(0) 188 189 /* Is the nandsim structure initialized ? */ 190 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 191 192 /* Good operation completion status */ 193 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 194 195 /* Operation failed completion status */ 196 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 197 198 /* Calculate the page offset in flash RAM image by (row, column) address */ 199 #define NS_RAW_OFFSET(ns) \ 200 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 201 202 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 203 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 204 205 /* After a command is input, the simulator goes to one of the following states */ 206 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 207 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 208 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 209 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 210 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 211 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 212 #define STATE_CMD_STATUS 0x00000007 /* read status */ 213 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 214 #define STATE_CMD_READID 0x0000000A /* read ID */ 215 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 216 #define STATE_CMD_RESET 0x0000000C /* reset */ 217 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 218 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 219 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 220 221 /* After an address is input, the simulator goes to one of these states */ 222 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 223 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 224 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 225 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 226 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 227 228 /* During data input/output the simulator is in these states */ 229 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 230 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 231 232 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 233 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 234 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 235 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 236 237 /* Previous operation is done, ready to accept new requests */ 238 #define STATE_READY 0x00000000 239 240 /* This state is used to mark that the next state isn't known yet */ 241 #define STATE_UNKNOWN 0x10000000 242 243 /* Simulator's actions bit masks */ 244 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 245 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 246 #define ACTION_SECERASE 0x00300000 /* erase sector */ 247 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 248 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 249 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 250 #define ACTION_MASK 0x00700000 /* action mask */ 251 252 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 253 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 254 255 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 256 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 257 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 258 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 259 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 260 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 261 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 262 263 /* Remove action bits from state */ 264 #define NS_STATE(x) ((x) & ~ACTION_MASK) 265 266 /* 267 * Maximum previous states which need to be saved. Currently saving is 268 * only needed for page program operation with preceded read command 269 * (which is only valid for 512-byte pages). 270 */ 271 #define NS_MAX_PREVSTATES 1 272 273 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 274 #define NS_MAX_HELD_PAGES 16 275 276 /* 277 * A union to represent flash memory contents and flash buffer. 278 */ 279 union ns_mem { 280 u_char *byte; /* for byte access */ 281 uint16_t *word; /* for 16-bit word access */ 282 }; 283 284 /* 285 * The structure which describes all the internal simulator data. 286 */ 287 struct nandsim { 288 struct nand_chip chip; 289 struct nand_controller base; 290 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 291 unsigned int nbparts; 292 293 uint busw; /* flash chip bus width (8 or 16) */ 294 u_char ids[8]; /* chip's ID bytes */ 295 uint32_t options; /* chip's characteristic bits */ 296 uint32_t state; /* current chip state */ 297 uint32_t nxstate; /* next expected state */ 298 299 uint32_t *op; /* current operation, NULL operations isn't known yet */ 300 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 301 uint16_t npstates; /* number of previous states saved */ 302 uint16_t stateidx; /* current state index */ 303 304 /* The simulated NAND flash pages array */ 305 union ns_mem *pages; 306 307 /* Slab allocator for nand pages */ 308 struct kmem_cache *nand_pages_slab; 309 310 /* Internal buffer of page + OOB size bytes */ 311 union ns_mem buf; 312 313 /* NAND flash "geometry" */ 314 struct { 315 uint64_t totsz; /* total flash size, bytes */ 316 uint32_t secsz; /* flash sector (erase block) size, bytes */ 317 uint pgsz; /* NAND flash page size, bytes */ 318 uint oobsz; /* page OOB area size, bytes */ 319 uint64_t totszoob; /* total flash size including OOB, bytes */ 320 uint pgszoob; /* page size including OOB , bytes*/ 321 uint secszoob; /* sector size including OOB, bytes */ 322 uint pgnum; /* total number of pages */ 323 uint pgsec; /* number of pages per sector */ 324 uint secshift; /* bits number in sector size */ 325 uint pgshift; /* bits number in page size */ 326 uint pgaddrbytes; /* bytes per page address */ 327 uint secaddrbytes; /* bytes per sector address */ 328 uint idbytes; /* the number ID bytes that this chip outputs */ 329 } geom; 330 331 /* NAND flash internal registers */ 332 struct { 333 unsigned command; /* the command register */ 334 u_char status; /* the status register */ 335 uint row; /* the page number */ 336 uint column; /* the offset within page */ 337 uint count; /* internal counter */ 338 uint num; /* number of bytes which must be processed */ 339 uint off; /* fixed page offset */ 340 } regs; 341 342 /* NAND flash lines state */ 343 struct { 344 int ce; /* chip Enable */ 345 int cle; /* command Latch Enable */ 346 int ale; /* address Latch Enable */ 347 int wp; /* write Protect */ 348 } lines; 349 350 /* Fields needed when using a cache file */ 351 struct file *cfile; /* Open file */ 352 unsigned long *pages_written; /* Which pages have been written */ 353 void *file_buf; 354 struct page *held_pages[NS_MAX_HELD_PAGES]; 355 int held_cnt; 356 }; 357 358 /* 359 * Operations array. To perform any operation the simulator must pass 360 * through the correspondent states chain. 361 */ 362 static struct nandsim_operations { 363 uint32_t reqopts; /* options which are required to perform the operation */ 364 uint32_t states[NS_OPER_STATES]; /* operation's states */ 365 } ops[NS_OPER_NUM] = { 366 /* Read page + OOB from the beginning */ 367 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 368 STATE_DATAOUT, STATE_READY}}, 369 /* Read page + OOB from the second half */ 370 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 371 STATE_DATAOUT, STATE_READY}}, 372 /* Read OOB */ 373 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 374 STATE_DATAOUT, STATE_READY}}, 375 /* Program page starting from the beginning */ 376 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 377 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 378 /* Program page starting from the beginning */ 379 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 380 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 381 /* Program page starting from the second half */ 382 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 383 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 384 /* Program OOB */ 385 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 386 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 387 /* Erase sector */ 388 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 389 /* Read status */ 390 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 391 /* Read ID */ 392 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 393 /* Large page devices read page */ 394 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 395 STATE_DATAOUT, STATE_READY}}, 396 /* Large page devices random page read */ 397 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 398 STATE_DATAOUT, STATE_READY}}, 399 }; 400 401 struct weak_block { 402 struct list_head list; 403 unsigned int erase_block_no; 404 unsigned int max_erases; 405 unsigned int erases_done; 406 }; 407 408 static LIST_HEAD(weak_blocks); 409 410 struct weak_page { 411 struct list_head list; 412 unsigned int page_no; 413 unsigned int max_writes; 414 unsigned int writes_done; 415 }; 416 417 static LIST_HEAD(weak_pages); 418 419 struct grave_page { 420 struct list_head list; 421 unsigned int page_no; 422 unsigned int max_reads; 423 unsigned int reads_done; 424 }; 425 426 static LIST_HEAD(grave_pages); 427 428 static unsigned long *erase_block_wear = NULL; 429 static unsigned int wear_eb_count = 0; 430 static unsigned long total_wear = 0; 431 432 /* MTD structure for NAND controller */ 433 static struct mtd_info *nsmtd; 434 435 static int nandsim_show(struct seq_file *m, void *private) 436 { 437 unsigned long wmin = -1, wmax = 0, avg; 438 unsigned long deciles[10], decile_max[10], tot = 0; 439 unsigned int i; 440 441 /* Calc wear stats */ 442 for (i = 0; i < wear_eb_count; ++i) { 443 unsigned long wear = erase_block_wear[i]; 444 if (wear < wmin) 445 wmin = wear; 446 if (wear > wmax) 447 wmax = wear; 448 tot += wear; 449 } 450 451 for (i = 0; i < 9; ++i) { 452 deciles[i] = 0; 453 decile_max[i] = (wmax * (i + 1) + 5) / 10; 454 } 455 deciles[9] = 0; 456 decile_max[9] = wmax; 457 for (i = 0; i < wear_eb_count; ++i) { 458 int d; 459 unsigned long wear = erase_block_wear[i]; 460 for (d = 0; d < 10; ++d) 461 if (wear <= decile_max[d]) { 462 deciles[d] += 1; 463 break; 464 } 465 } 466 avg = tot / wear_eb_count; 467 468 /* Output wear report */ 469 seq_printf(m, "Total numbers of erases: %lu\n", tot); 470 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 471 seq_printf(m, "Average number of erases: %lu\n", avg); 472 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 473 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 474 for (i = 0; i < 10; ++i) { 475 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 476 if (from > decile_max[i]) 477 continue; 478 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 479 from, 480 decile_max[i], 481 deciles[i]); 482 } 483 484 return 0; 485 } 486 DEFINE_SHOW_ATTRIBUTE(nandsim); 487 488 /** 489 * nandsim_debugfs_create - initialize debugfs 490 * @dev: nandsim device description object 491 * 492 * This function creates all debugfs files for UBI device @ubi. Returns zero in 493 * case of success and a negative error code in case of failure. 494 */ 495 static int nandsim_debugfs_create(struct nandsim *dev) 496 { 497 struct dentry *root = nsmtd->dbg.dfs_dir; 498 struct dentry *dent; 499 500 /* 501 * Just skip debugfs initialization when the debugfs directory is 502 * missing. 503 */ 504 if (IS_ERR_OR_NULL(root)) { 505 if (IS_ENABLED(CONFIG_DEBUG_FS) && 506 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 507 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 508 return 0; 509 } 510 511 dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, 512 root, dev, &nandsim_fops); 513 if (IS_ERR_OR_NULL(dent)) { 514 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 515 return -1; 516 } 517 518 return 0; 519 } 520 521 /* 522 * Allocate array of page pointers, create slab allocation for an array 523 * and initialize the array by NULL pointers. 524 * 525 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 526 */ 527 static int __init alloc_device(struct nandsim *ns) 528 { 529 struct file *cfile; 530 int i, err; 531 532 if (cache_file) { 533 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 534 if (IS_ERR(cfile)) 535 return PTR_ERR(cfile); 536 if (!(cfile->f_mode & FMODE_CAN_READ)) { 537 NS_ERR("alloc_device: cache file not readable\n"); 538 err = -EINVAL; 539 goto err_close; 540 } 541 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 542 NS_ERR("alloc_device: cache file not writeable\n"); 543 err = -EINVAL; 544 goto err_close; 545 } 546 ns->pages_written = 547 vzalloc(array_size(sizeof(unsigned long), 548 BITS_TO_LONGS(ns->geom.pgnum))); 549 if (!ns->pages_written) { 550 NS_ERR("alloc_device: unable to allocate pages written array\n"); 551 err = -ENOMEM; 552 goto err_close; 553 } 554 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 555 if (!ns->file_buf) { 556 NS_ERR("alloc_device: unable to allocate file buf\n"); 557 err = -ENOMEM; 558 goto err_free; 559 } 560 ns->cfile = cfile; 561 return 0; 562 } 563 564 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 565 if (!ns->pages) { 566 NS_ERR("alloc_device: unable to allocate page array\n"); 567 return -ENOMEM; 568 } 569 for (i = 0; i < ns->geom.pgnum; i++) { 570 ns->pages[i].byte = NULL; 571 } 572 ns->nand_pages_slab = kmem_cache_create("nandsim", 573 ns->geom.pgszoob, 0, 0, NULL); 574 if (!ns->nand_pages_slab) { 575 NS_ERR("cache_create: unable to create kmem_cache\n"); 576 return -ENOMEM; 577 } 578 579 return 0; 580 581 err_free: 582 vfree(ns->pages_written); 583 err_close: 584 filp_close(cfile, NULL); 585 return err; 586 } 587 588 /* 589 * Free any allocated pages, and free the array of page pointers. 590 */ 591 static void free_device(struct nandsim *ns) 592 { 593 int i; 594 595 if (ns->cfile) { 596 kfree(ns->file_buf); 597 vfree(ns->pages_written); 598 filp_close(ns->cfile, NULL); 599 return; 600 } 601 602 if (ns->pages) { 603 for (i = 0; i < ns->geom.pgnum; i++) { 604 if (ns->pages[i].byte) 605 kmem_cache_free(ns->nand_pages_slab, 606 ns->pages[i].byte); 607 } 608 kmem_cache_destroy(ns->nand_pages_slab); 609 vfree(ns->pages); 610 } 611 } 612 613 static char __init *get_partition_name(int i) 614 { 615 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 616 } 617 618 /* 619 * Initialize the nandsim structure. 620 * 621 * RETURNS: 0 if success, -ERRNO if failure. 622 */ 623 static int __init init_nandsim(struct mtd_info *mtd) 624 { 625 struct nand_chip *chip = mtd_to_nand(mtd); 626 struct nandsim *ns = nand_get_controller_data(chip); 627 int i, ret = 0; 628 uint64_t remains; 629 uint64_t next_offset; 630 631 if (NS_IS_INITIALIZED(ns)) { 632 NS_ERR("init_nandsim: nandsim is already initialized\n"); 633 return -EIO; 634 } 635 636 /* Initialize the NAND flash parameters */ 637 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 638 ns->geom.totsz = mtd->size; 639 ns->geom.pgsz = mtd->writesize; 640 ns->geom.oobsz = mtd->oobsize; 641 ns->geom.secsz = mtd->erasesize; 642 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 643 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 644 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 645 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 646 ns->geom.pgshift = chip->page_shift; 647 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 648 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 649 ns->options = 0; 650 651 if (ns->geom.pgsz == 512) { 652 ns->options |= OPT_PAGE512; 653 if (ns->busw == 8) 654 ns->options |= OPT_PAGE512_8BIT; 655 } else if (ns->geom.pgsz == 2048) { 656 ns->options |= OPT_PAGE2048; 657 } else if (ns->geom.pgsz == 4096) { 658 ns->options |= OPT_PAGE4096; 659 } else { 660 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 661 return -EIO; 662 } 663 664 if (ns->options & OPT_SMALLPAGE) { 665 if (ns->geom.totsz <= (32 << 20)) { 666 ns->geom.pgaddrbytes = 3; 667 ns->geom.secaddrbytes = 2; 668 } else { 669 ns->geom.pgaddrbytes = 4; 670 ns->geom.secaddrbytes = 3; 671 } 672 } else { 673 if (ns->geom.totsz <= (128 << 20)) { 674 ns->geom.pgaddrbytes = 4; 675 ns->geom.secaddrbytes = 2; 676 } else { 677 ns->geom.pgaddrbytes = 5; 678 ns->geom.secaddrbytes = 3; 679 } 680 } 681 682 /* Fill the partition_info structure */ 683 if (parts_num > ARRAY_SIZE(ns->partitions)) { 684 NS_ERR("too many partitions.\n"); 685 return -EINVAL; 686 } 687 remains = ns->geom.totsz; 688 next_offset = 0; 689 for (i = 0; i < parts_num; ++i) { 690 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 691 692 if (!part_sz || part_sz > remains) { 693 NS_ERR("bad partition size.\n"); 694 return -EINVAL; 695 } 696 ns->partitions[i].name = get_partition_name(i); 697 if (!ns->partitions[i].name) { 698 NS_ERR("unable to allocate memory.\n"); 699 return -ENOMEM; 700 } 701 ns->partitions[i].offset = next_offset; 702 ns->partitions[i].size = part_sz; 703 next_offset += ns->partitions[i].size; 704 remains -= ns->partitions[i].size; 705 } 706 ns->nbparts = parts_num; 707 if (remains) { 708 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 709 NS_ERR("too many partitions.\n"); 710 return -EINVAL; 711 } 712 ns->partitions[i].name = get_partition_name(i); 713 if (!ns->partitions[i].name) { 714 NS_ERR("unable to allocate memory.\n"); 715 return -ENOMEM; 716 } 717 ns->partitions[i].offset = next_offset; 718 ns->partitions[i].size = remains; 719 ns->nbparts += 1; 720 } 721 722 if (ns->busw == 16) 723 NS_WARN("16-bit flashes support wasn't tested\n"); 724 725 printk("flash size: %llu MiB\n", 726 (unsigned long long)ns->geom.totsz >> 20); 727 printk("page size: %u bytes\n", ns->geom.pgsz); 728 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 729 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 730 printk("pages number: %u\n", ns->geom.pgnum); 731 printk("pages per sector: %u\n", ns->geom.pgsec); 732 printk("bus width: %u\n", ns->busw); 733 printk("bits in sector size: %u\n", ns->geom.secshift); 734 printk("bits in page size: %u\n", ns->geom.pgshift); 735 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 736 printk("flash size with OOB: %llu KiB\n", 737 (unsigned long long)ns->geom.totszoob >> 10); 738 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 739 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 740 printk("options: %#x\n", ns->options); 741 742 if ((ret = alloc_device(ns)) != 0) 743 return ret; 744 745 /* Allocate / initialize the internal buffer */ 746 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 747 if (!ns->buf.byte) { 748 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 749 ns->geom.pgszoob); 750 return -ENOMEM; 751 } 752 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 753 754 return 0; 755 } 756 757 /* 758 * Free the nandsim structure. 759 */ 760 static void free_nandsim(struct nandsim *ns) 761 { 762 kfree(ns->buf.byte); 763 free_device(ns); 764 765 return; 766 } 767 768 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 769 { 770 char *w; 771 int zero_ok; 772 unsigned int erase_block_no; 773 loff_t offset; 774 775 if (!badblocks) 776 return 0; 777 w = badblocks; 778 do { 779 zero_ok = (*w == '0' ? 1 : 0); 780 erase_block_no = simple_strtoul(w, &w, 0); 781 if (!zero_ok && !erase_block_no) { 782 NS_ERR("invalid badblocks.\n"); 783 return -EINVAL; 784 } 785 offset = (loff_t)erase_block_no * ns->geom.secsz; 786 if (mtd_block_markbad(mtd, offset)) { 787 NS_ERR("invalid badblocks.\n"); 788 return -EINVAL; 789 } 790 if (*w == ',') 791 w += 1; 792 } while (*w); 793 return 0; 794 } 795 796 static int parse_weakblocks(void) 797 { 798 char *w; 799 int zero_ok; 800 unsigned int erase_block_no; 801 unsigned int max_erases; 802 struct weak_block *wb; 803 804 if (!weakblocks) 805 return 0; 806 w = weakblocks; 807 do { 808 zero_ok = (*w == '0' ? 1 : 0); 809 erase_block_no = simple_strtoul(w, &w, 0); 810 if (!zero_ok && !erase_block_no) { 811 NS_ERR("invalid weakblocks.\n"); 812 return -EINVAL; 813 } 814 max_erases = 3; 815 if (*w == ':') { 816 w += 1; 817 max_erases = simple_strtoul(w, &w, 0); 818 } 819 if (*w == ',') 820 w += 1; 821 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 822 if (!wb) { 823 NS_ERR("unable to allocate memory.\n"); 824 return -ENOMEM; 825 } 826 wb->erase_block_no = erase_block_no; 827 wb->max_erases = max_erases; 828 list_add(&wb->list, &weak_blocks); 829 } while (*w); 830 return 0; 831 } 832 833 static int erase_error(unsigned int erase_block_no) 834 { 835 struct weak_block *wb; 836 837 list_for_each_entry(wb, &weak_blocks, list) 838 if (wb->erase_block_no == erase_block_no) { 839 if (wb->erases_done >= wb->max_erases) 840 return 1; 841 wb->erases_done += 1; 842 return 0; 843 } 844 return 0; 845 } 846 847 static int parse_weakpages(void) 848 { 849 char *w; 850 int zero_ok; 851 unsigned int page_no; 852 unsigned int max_writes; 853 struct weak_page *wp; 854 855 if (!weakpages) 856 return 0; 857 w = weakpages; 858 do { 859 zero_ok = (*w == '0' ? 1 : 0); 860 page_no = simple_strtoul(w, &w, 0); 861 if (!zero_ok && !page_no) { 862 NS_ERR("invalid weakpages.\n"); 863 return -EINVAL; 864 } 865 max_writes = 3; 866 if (*w == ':') { 867 w += 1; 868 max_writes = simple_strtoul(w, &w, 0); 869 } 870 if (*w == ',') 871 w += 1; 872 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 873 if (!wp) { 874 NS_ERR("unable to allocate memory.\n"); 875 return -ENOMEM; 876 } 877 wp->page_no = page_no; 878 wp->max_writes = max_writes; 879 list_add(&wp->list, &weak_pages); 880 } while (*w); 881 return 0; 882 } 883 884 static int write_error(unsigned int page_no) 885 { 886 struct weak_page *wp; 887 888 list_for_each_entry(wp, &weak_pages, list) 889 if (wp->page_no == page_no) { 890 if (wp->writes_done >= wp->max_writes) 891 return 1; 892 wp->writes_done += 1; 893 return 0; 894 } 895 return 0; 896 } 897 898 static int parse_gravepages(void) 899 { 900 char *g; 901 int zero_ok; 902 unsigned int page_no; 903 unsigned int max_reads; 904 struct grave_page *gp; 905 906 if (!gravepages) 907 return 0; 908 g = gravepages; 909 do { 910 zero_ok = (*g == '0' ? 1 : 0); 911 page_no = simple_strtoul(g, &g, 0); 912 if (!zero_ok && !page_no) { 913 NS_ERR("invalid gravepagess.\n"); 914 return -EINVAL; 915 } 916 max_reads = 3; 917 if (*g == ':') { 918 g += 1; 919 max_reads = simple_strtoul(g, &g, 0); 920 } 921 if (*g == ',') 922 g += 1; 923 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 924 if (!gp) { 925 NS_ERR("unable to allocate memory.\n"); 926 return -ENOMEM; 927 } 928 gp->page_no = page_no; 929 gp->max_reads = max_reads; 930 list_add(&gp->list, &grave_pages); 931 } while (*g); 932 return 0; 933 } 934 935 static int read_error(unsigned int page_no) 936 { 937 struct grave_page *gp; 938 939 list_for_each_entry(gp, &grave_pages, list) 940 if (gp->page_no == page_no) { 941 if (gp->reads_done >= gp->max_reads) 942 return 1; 943 gp->reads_done += 1; 944 return 0; 945 } 946 return 0; 947 } 948 949 static void free_lists(void) 950 { 951 struct list_head *pos, *n; 952 list_for_each_safe(pos, n, &weak_blocks) { 953 list_del(pos); 954 kfree(list_entry(pos, struct weak_block, list)); 955 } 956 list_for_each_safe(pos, n, &weak_pages) { 957 list_del(pos); 958 kfree(list_entry(pos, struct weak_page, list)); 959 } 960 list_for_each_safe(pos, n, &grave_pages) { 961 list_del(pos); 962 kfree(list_entry(pos, struct grave_page, list)); 963 } 964 kfree(erase_block_wear); 965 } 966 967 static int setup_wear_reporting(struct mtd_info *mtd) 968 { 969 size_t mem; 970 971 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 972 mem = wear_eb_count * sizeof(unsigned long); 973 if (mem / sizeof(unsigned long) != wear_eb_count) { 974 NS_ERR("Too many erase blocks for wear reporting\n"); 975 return -ENOMEM; 976 } 977 erase_block_wear = kzalloc(mem, GFP_KERNEL); 978 if (!erase_block_wear) { 979 NS_ERR("Too many erase blocks for wear reporting\n"); 980 return -ENOMEM; 981 } 982 return 0; 983 } 984 985 static void update_wear(unsigned int erase_block_no) 986 { 987 if (!erase_block_wear) 988 return; 989 total_wear += 1; 990 /* 991 * TODO: Notify this through a debugfs entry, 992 * instead of showing an error message. 993 */ 994 if (total_wear == 0) 995 NS_ERR("Erase counter total overflow\n"); 996 erase_block_wear[erase_block_no] += 1; 997 if (erase_block_wear[erase_block_no] == 0) 998 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 999 } 1000 1001 /* 1002 * Returns the string representation of 'state' state. 1003 */ 1004 static char *get_state_name(uint32_t state) 1005 { 1006 switch (NS_STATE(state)) { 1007 case STATE_CMD_READ0: 1008 return "STATE_CMD_READ0"; 1009 case STATE_CMD_READ1: 1010 return "STATE_CMD_READ1"; 1011 case STATE_CMD_PAGEPROG: 1012 return "STATE_CMD_PAGEPROG"; 1013 case STATE_CMD_READOOB: 1014 return "STATE_CMD_READOOB"; 1015 case STATE_CMD_READSTART: 1016 return "STATE_CMD_READSTART"; 1017 case STATE_CMD_ERASE1: 1018 return "STATE_CMD_ERASE1"; 1019 case STATE_CMD_STATUS: 1020 return "STATE_CMD_STATUS"; 1021 case STATE_CMD_SEQIN: 1022 return "STATE_CMD_SEQIN"; 1023 case STATE_CMD_READID: 1024 return "STATE_CMD_READID"; 1025 case STATE_CMD_ERASE2: 1026 return "STATE_CMD_ERASE2"; 1027 case STATE_CMD_RESET: 1028 return "STATE_CMD_RESET"; 1029 case STATE_CMD_RNDOUT: 1030 return "STATE_CMD_RNDOUT"; 1031 case STATE_CMD_RNDOUTSTART: 1032 return "STATE_CMD_RNDOUTSTART"; 1033 case STATE_ADDR_PAGE: 1034 return "STATE_ADDR_PAGE"; 1035 case STATE_ADDR_SEC: 1036 return "STATE_ADDR_SEC"; 1037 case STATE_ADDR_ZERO: 1038 return "STATE_ADDR_ZERO"; 1039 case STATE_ADDR_COLUMN: 1040 return "STATE_ADDR_COLUMN"; 1041 case STATE_DATAIN: 1042 return "STATE_DATAIN"; 1043 case STATE_DATAOUT: 1044 return "STATE_DATAOUT"; 1045 case STATE_DATAOUT_ID: 1046 return "STATE_DATAOUT_ID"; 1047 case STATE_DATAOUT_STATUS: 1048 return "STATE_DATAOUT_STATUS"; 1049 case STATE_READY: 1050 return "STATE_READY"; 1051 case STATE_UNKNOWN: 1052 return "STATE_UNKNOWN"; 1053 } 1054 1055 NS_ERR("get_state_name: unknown state, BUG\n"); 1056 return NULL; 1057 } 1058 1059 /* 1060 * Check if command is valid. 1061 * 1062 * RETURNS: 1 if wrong command, 0 if right. 1063 */ 1064 static int check_command(int cmd) 1065 { 1066 switch (cmd) { 1067 1068 case NAND_CMD_READ0: 1069 case NAND_CMD_READ1: 1070 case NAND_CMD_READSTART: 1071 case NAND_CMD_PAGEPROG: 1072 case NAND_CMD_READOOB: 1073 case NAND_CMD_ERASE1: 1074 case NAND_CMD_STATUS: 1075 case NAND_CMD_SEQIN: 1076 case NAND_CMD_READID: 1077 case NAND_CMD_ERASE2: 1078 case NAND_CMD_RESET: 1079 case NAND_CMD_RNDOUT: 1080 case NAND_CMD_RNDOUTSTART: 1081 return 0; 1082 1083 default: 1084 return 1; 1085 } 1086 } 1087 1088 /* 1089 * Returns state after command is accepted by command number. 1090 */ 1091 static uint32_t get_state_by_command(unsigned command) 1092 { 1093 switch (command) { 1094 case NAND_CMD_READ0: 1095 return STATE_CMD_READ0; 1096 case NAND_CMD_READ1: 1097 return STATE_CMD_READ1; 1098 case NAND_CMD_PAGEPROG: 1099 return STATE_CMD_PAGEPROG; 1100 case NAND_CMD_READSTART: 1101 return STATE_CMD_READSTART; 1102 case NAND_CMD_READOOB: 1103 return STATE_CMD_READOOB; 1104 case NAND_CMD_ERASE1: 1105 return STATE_CMD_ERASE1; 1106 case NAND_CMD_STATUS: 1107 return STATE_CMD_STATUS; 1108 case NAND_CMD_SEQIN: 1109 return STATE_CMD_SEQIN; 1110 case NAND_CMD_READID: 1111 return STATE_CMD_READID; 1112 case NAND_CMD_ERASE2: 1113 return STATE_CMD_ERASE2; 1114 case NAND_CMD_RESET: 1115 return STATE_CMD_RESET; 1116 case NAND_CMD_RNDOUT: 1117 return STATE_CMD_RNDOUT; 1118 case NAND_CMD_RNDOUTSTART: 1119 return STATE_CMD_RNDOUTSTART; 1120 } 1121 1122 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1123 return 0; 1124 } 1125 1126 /* 1127 * Move an address byte to the correspondent internal register. 1128 */ 1129 static inline void accept_addr_byte(struct nandsim *ns, u_char bt) 1130 { 1131 uint byte = (uint)bt; 1132 1133 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1134 ns->regs.column |= (byte << 8 * ns->regs.count); 1135 else { 1136 ns->regs.row |= (byte << 8 * (ns->regs.count - 1137 ns->geom.pgaddrbytes + 1138 ns->geom.secaddrbytes)); 1139 } 1140 1141 return; 1142 } 1143 1144 /* 1145 * Switch to STATE_READY state. 1146 */ 1147 static inline void switch_to_ready_state(struct nandsim *ns, u_char status) 1148 { 1149 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); 1150 1151 ns->state = STATE_READY; 1152 ns->nxstate = STATE_UNKNOWN; 1153 ns->op = NULL; 1154 ns->npstates = 0; 1155 ns->stateidx = 0; 1156 ns->regs.num = 0; 1157 ns->regs.count = 0; 1158 ns->regs.off = 0; 1159 ns->regs.row = 0; 1160 ns->regs.column = 0; 1161 ns->regs.status = status; 1162 } 1163 1164 /* 1165 * If the operation isn't known yet, try to find it in the global array 1166 * of supported operations. 1167 * 1168 * Operation can be unknown because of the following. 1169 * 1. New command was accepted and this is the first call to find the 1170 * correspondent states chain. In this case ns->npstates = 0; 1171 * 2. There are several operations which begin with the same command(s) 1172 * (for example program from the second half and read from the 1173 * second half operations both begin with the READ1 command). In this 1174 * case the ns->pstates[] array contains previous states. 1175 * 1176 * Thus, the function tries to find operation containing the following 1177 * states (if the 'flag' parameter is 0): 1178 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1179 * 1180 * If (one and only one) matching operation is found, it is accepted ( 1181 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1182 * zeroed). 1183 * 1184 * If there are several matches, the current state is pushed to the 1185 * ns->pstates. 1186 * 1187 * The operation can be unknown only while commands are input to the chip. 1188 * As soon as address command is accepted, the operation must be known. 1189 * In such situation the function is called with 'flag' != 0, and the 1190 * operation is searched using the following pattern: 1191 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1192 * 1193 * It is supposed that this pattern must either match one operation or 1194 * none. There can't be ambiguity in that case. 1195 * 1196 * If no matches found, the function does the following: 1197 * 1. if there are saved states present, try to ignore them and search 1198 * again only using the last command. If nothing was found, switch 1199 * to the STATE_READY state. 1200 * 2. if there are no saved states, switch to the STATE_READY state. 1201 * 1202 * RETURNS: -2 - no matched operations found. 1203 * -1 - several matches. 1204 * 0 - operation is found. 1205 */ 1206 static int find_operation(struct nandsim *ns, uint32_t flag) 1207 { 1208 int opsfound = 0; 1209 int i, j, idx = 0; 1210 1211 for (i = 0; i < NS_OPER_NUM; i++) { 1212 1213 int found = 1; 1214 1215 if (!(ns->options & ops[i].reqopts)) 1216 /* Ignore operations we can't perform */ 1217 continue; 1218 1219 if (flag) { 1220 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1221 continue; 1222 } else { 1223 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1224 continue; 1225 } 1226 1227 for (j = 0; j < ns->npstates; j++) 1228 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1229 && (ns->options & ops[idx].reqopts)) { 1230 found = 0; 1231 break; 1232 } 1233 1234 if (found) { 1235 idx = i; 1236 opsfound += 1; 1237 } 1238 } 1239 1240 if (opsfound == 1) { 1241 /* Exact match */ 1242 ns->op = &ops[idx].states[0]; 1243 if (flag) { 1244 /* 1245 * In this case the find_operation function was 1246 * called when address has just began input. But it isn't 1247 * yet fully input and the current state must 1248 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1249 * state must be the next state (ns->nxstate). 1250 */ 1251 ns->stateidx = ns->npstates - 1; 1252 } else { 1253 ns->stateidx = ns->npstates; 1254 } 1255 ns->npstates = 0; 1256 ns->state = ns->op[ns->stateidx]; 1257 ns->nxstate = ns->op[ns->stateidx + 1]; 1258 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1259 idx, get_state_name(ns->state), get_state_name(ns->nxstate)); 1260 return 0; 1261 } 1262 1263 if (opsfound == 0) { 1264 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1265 if (ns->npstates != 0) { 1266 NS_DBG("find_operation: no operation found, try again with state %s\n", 1267 get_state_name(ns->state)); 1268 ns->npstates = 0; 1269 return find_operation(ns, 0); 1270 1271 } 1272 NS_DBG("find_operation: no operations found\n"); 1273 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1274 return -2; 1275 } 1276 1277 if (flag) { 1278 /* This shouldn't happen */ 1279 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1280 return -2; 1281 } 1282 1283 NS_DBG("find_operation: there is still ambiguity\n"); 1284 1285 ns->pstates[ns->npstates++] = ns->state; 1286 1287 return -1; 1288 } 1289 1290 static void put_pages(struct nandsim *ns) 1291 { 1292 int i; 1293 1294 for (i = 0; i < ns->held_cnt; i++) 1295 put_page(ns->held_pages[i]); 1296 } 1297 1298 /* Get page cache pages in advance to provide NOFS memory allocation */ 1299 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) 1300 { 1301 pgoff_t index, start_index, end_index; 1302 struct page *page; 1303 struct address_space *mapping = file->f_mapping; 1304 1305 start_index = pos >> PAGE_SHIFT; 1306 end_index = (pos + count - 1) >> PAGE_SHIFT; 1307 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1308 return -EINVAL; 1309 ns->held_cnt = 0; 1310 for (index = start_index; index <= end_index; index++) { 1311 page = find_get_page(mapping, index); 1312 if (page == NULL) { 1313 page = find_or_create_page(mapping, index, GFP_NOFS); 1314 if (page == NULL) { 1315 write_inode_now(mapping->host, 1); 1316 page = find_or_create_page(mapping, index, GFP_NOFS); 1317 } 1318 if (page == NULL) { 1319 put_pages(ns); 1320 return -ENOMEM; 1321 } 1322 unlock_page(page); 1323 } 1324 ns->held_pages[ns->held_cnt++] = page; 1325 } 1326 return 0; 1327 } 1328 1329 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1330 { 1331 ssize_t tx; 1332 int err; 1333 unsigned int noreclaim_flag; 1334 1335 err = get_pages(ns, file, count, pos); 1336 if (err) 1337 return err; 1338 noreclaim_flag = memalloc_noreclaim_save(); 1339 tx = kernel_read(file, buf, count, &pos); 1340 memalloc_noreclaim_restore(noreclaim_flag); 1341 put_pages(ns); 1342 return tx; 1343 } 1344 1345 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1346 { 1347 ssize_t tx; 1348 int err; 1349 unsigned int noreclaim_flag; 1350 1351 err = get_pages(ns, file, count, pos); 1352 if (err) 1353 return err; 1354 noreclaim_flag = memalloc_noreclaim_save(); 1355 tx = kernel_write(file, buf, count, &pos); 1356 memalloc_noreclaim_restore(noreclaim_flag); 1357 put_pages(ns); 1358 return tx; 1359 } 1360 1361 /* 1362 * Returns a pointer to the current page. 1363 */ 1364 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1365 { 1366 return &(ns->pages[ns->regs.row]); 1367 } 1368 1369 /* 1370 * Retuns a pointer to the current byte, within the current page. 1371 */ 1372 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1373 { 1374 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; 1375 } 1376 1377 static int do_read_error(struct nandsim *ns, int num) 1378 { 1379 unsigned int page_no = ns->regs.row; 1380 1381 if (read_error(page_no)) { 1382 prandom_bytes(ns->buf.byte, num); 1383 NS_WARN("simulating read error in page %u\n", page_no); 1384 return 1; 1385 } 1386 return 0; 1387 } 1388 1389 static void do_bit_flips(struct nandsim *ns, int num) 1390 { 1391 if (bitflips && prandom_u32() < (1 << 22)) { 1392 int flips = 1; 1393 if (bitflips > 1) 1394 flips = (prandom_u32() % (int) bitflips) + 1; 1395 while (flips--) { 1396 int pos = prandom_u32() % (num * 8); 1397 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1398 NS_WARN("read_page: flipping bit %d in page %d " 1399 "reading from %d ecc: corrected=%u failed=%u\n", 1400 pos, ns->regs.row, ns->regs.column + ns->regs.off, 1401 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1402 } 1403 } 1404 } 1405 1406 /* 1407 * Fill the NAND buffer with data read from the specified page. 1408 */ 1409 static void read_page(struct nandsim *ns, int num) 1410 { 1411 union ns_mem *mypage; 1412 1413 if (ns->cfile) { 1414 if (!test_bit(ns->regs.row, ns->pages_written)) { 1415 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1416 memset(ns->buf.byte, 0xFF, num); 1417 } else { 1418 loff_t pos; 1419 ssize_t tx; 1420 1421 NS_DBG("read_page: page %d written, reading from %d\n", 1422 ns->regs.row, ns->regs.column + ns->regs.off); 1423 if (do_read_error(ns, num)) 1424 return; 1425 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1426 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); 1427 if (tx != num) { 1428 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1429 return; 1430 } 1431 do_bit_flips(ns, num); 1432 } 1433 return; 1434 } 1435 1436 mypage = NS_GET_PAGE(ns); 1437 if (mypage->byte == NULL) { 1438 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1439 memset(ns->buf.byte, 0xFF, num); 1440 } else { 1441 NS_DBG("read_page: page %d allocated, reading from %d\n", 1442 ns->regs.row, ns->regs.column + ns->regs.off); 1443 if (do_read_error(ns, num)) 1444 return; 1445 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1446 do_bit_flips(ns, num); 1447 } 1448 } 1449 1450 /* 1451 * Erase all pages in the specified sector. 1452 */ 1453 static void erase_sector(struct nandsim *ns) 1454 { 1455 union ns_mem *mypage; 1456 int i; 1457 1458 if (ns->cfile) { 1459 for (i = 0; i < ns->geom.pgsec; i++) 1460 if (__test_and_clear_bit(ns->regs.row + i, 1461 ns->pages_written)) { 1462 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1463 } 1464 return; 1465 } 1466 1467 mypage = NS_GET_PAGE(ns); 1468 for (i = 0; i < ns->geom.pgsec; i++) { 1469 if (mypage->byte != NULL) { 1470 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1471 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1472 mypage->byte = NULL; 1473 } 1474 mypage++; 1475 } 1476 } 1477 1478 /* 1479 * Program the specified page with the contents from the NAND buffer. 1480 */ 1481 static int prog_page(struct nandsim *ns, int num) 1482 { 1483 int i; 1484 union ns_mem *mypage; 1485 u_char *pg_off; 1486 1487 if (ns->cfile) { 1488 loff_t off; 1489 ssize_t tx; 1490 int all; 1491 1492 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1493 pg_off = ns->file_buf + ns->regs.column + ns->regs.off; 1494 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1495 if (!test_bit(ns->regs.row, ns->pages_written)) { 1496 all = 1; 1497 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1498 } else { 1499 all = 0; 1500 tx = read_file(ns, ns->cfile, pg_off, num, off); 1501 if (tx != num) { 1502 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1503 return -1; 1504 } 1505 } 1506 for (i = 0; i < num; i++) 1507 pg_off[i] &= ns->buf.byte[i]; 1508 if (all) { 1509 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1510 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); 1511 if (tx != ns->geom.pgszoob) { 1512 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1513 return -1; 1514 } 1515 __set_bit(ns->regs.row, ns->pages_written); 1516 } else { 1517 tx = write_file(ns, ns->cfile, pg_off, num, off); 1518 if (tx != num) { 1519 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1520 return -1; 1521 } 1522 } 1523 return 0; 1524 } 1525 1526 mypage = NS_GET_PAGE(ns); 1527 if (mypage->byte == NULL) { 1528 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1529 /* 1530 * We allocate memory with GFP_NOFS because a flash FS may 1531 * utilize this. If it is holding an FS lock, then gets here, 1532 * then kernel memory alloc runs writeback which goes to the FS 1533 * again and deadlocks. This was seen in practice. 1534 */ 1535 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1536 if (mypage->byte == NULL) { 1537 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1538 return -1; 1539 } 1540 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1541 } 1542 1543 pg_off = NS_PAGE_BYTE_OFF(ns); 1544 for (i = 0; i < num; i++) 1545 pg_off[i] &= ns->buf.byte[i]; 1546 1547 return 0; 1548 } 1549 1550 /* 1551 * If state has any action bit, perform this action. 1552 * 1553 * RETURNS: 0 if success, -1 if error. 1554 */ 1555 static int do_state_action(struct nandsim *ns, uint32_t action) 1556 { 1557 int num; 1558 int busdiv = ns->busw == 8 ? 1 : 2; 1559 unsigned int erase_block_no, page_no; 1560 1561 action &= ACTION_MASK; 1562 1563 /* Check that page address input is correct */ 1564 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1565 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1566 return -1; 1567 } 1568 1569 switch (action) { 1570 1571 case ACTION_CPY: 1572 /* 1573 * Copy page data to the internal buffer. 1574 */ 1575 1576 /* Column shouldn't be very large */ 1577 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1578 NS_ERR("do_state_action: column number is too large\n"); 1579 break; 1580 } 1581 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1582 read_page(ns, num); 1583 1584 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1585 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1586 1587 if (ns->regs.off == 0) 1588 NS_LOG("read page %d\n", ns->regs.row); 1589 else if (ns->regs.off < ns->geom.pgsz) 1590 NS_LOG("read page %d (second half)\n", ns->regs.row); 1591 else 1592 NS_LOG("read OOB of page %d\n", ns->regs.row); 1593 1594 NS_UDELAY(access_delay); 1595 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1596 1597 break; 1598 1599 case ACTION_SECERASE: 1600 /* 1601 * Erase sector. 1602 */ 1603 1604 if (ns->lines.wp) { 1605 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1606 return -1; 1607 } 1608 1609 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1610 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1611 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1612 return -1; 1613 } 1614 1615 ns->regs.row = (ns->regs.row << 1616 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1617 ns->regs.column = 0; 1618 1619 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1620 1621 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1622 ns->regs.row, NS_RAW_OFFSET(ns)); 1623 NS_LOG("erase sector %u\n", erase_block_no); 1624 1625 erase_sector(ns); 1626 1627 NS_MDELAY(erase_delay); 1628 1629 if (erase_block_wear) 1630 update_wear(erase_block_no); 1631 1632 if (erase_error(erase_block_no)) { 1633 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1634 return -1; 1635 } 1636 1637 break; 1638 1639 case ACTION_PRGPAGE: 1640 /* 1641 * Program page - move internal buffer data to the page. 1642 */ 1643 1644 if (ns->lines.wp) { 1645 NS_WARN("do_state_action: device is write-protected, programm\n"); 1646 return -1; 1647 } 1648 1649 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1650 if (num != ns->regs.count) { 1651 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1652 ns->regs.count, num); 1653 return -1; 1654 } 1655 1656 if (prog_page(ns, num) == -1) 1657 return -1; 1658 1659 page_no = ns->regs.row; 1660 1661 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1662 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1663 NS_LOG("programm page %d\n", ns->regs.row); 1664 1665 NS_UDELAY(programm_delay); 1666 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1667 1668 if (write_error(page_no)) { 1669 NS_WARN("simulating write failure in page %u\n", page_no); 1670 return -1; 1671 } 1672 1673 break; 1674 1675 case ACTION_ZEROOFF: 1676 NS_DBG("do_state_action: set internal offset to 0\n"); 1677 ns->regs.off = 0; 1678 break; 1679 1680 case ACTION_HALFOFF: 1681 if (!(ns->options & OPT_PAGE512_8BIT)) { 1682 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1683 "byte page size 8x chips\n"); 1684 return -1; 1685 } 1686 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1687 ns->regs.off = ns->geom.pgsz/2; 1688 break; 1689 1690 case ACTION_OOBOFF: 1691 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1692 ns->regs.off = ns->geom.pgsz; 1693 break; 1694 1695 default: 1696 NS_DBG("do_state_action: BUG! unknown action\n"); 1697 } 1698 1699 return 0; 1700 } 1701 1702 /* 1703 * Switch simulator's state. 1704 */ 1705 static void switch_state(struct nandsim *ns) 1706 { 1707 if (ns->op) { 1708 /* 1709 * The current operation have already been identified. 1710 * Just follow the states chain. 1711 */ 1712 1713 ns->stateidx += 1; 1714 ns->state = ns->nxstate; 1715 ns->nxstate = ns->op[ns->stateidx + 1]; 1716 1717 NS_DBG("switch_state: operation is known, switch to the next state, " 1718 "state: %s, nxstate: %s\n", 1719 get_state_name(ns->state), get_state_name(ns->nxstate)); 1720 1721 /* See, whether we need to do some action */ 1722 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1723 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1724 return; 1725 } 1726 1727 } else { 1728 /* 1729 * We don't yet know which operation we perform. 1730 * Try to identify it. 1731 */ 1732 1733 /* 1734 * The only event causing the switch_state function to 1735 * be called with yet unknown operation is new command. 1736 */ 1737 ns->state = get_state_by_command(ns->regs.command); 1738 1739 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1740 1741 if (find_operation(ns, 0) != 0) 1742 return; 1743 1744 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1745 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1746 return; 1747 } 1748 } 1749 1750 /* For 16x devices column means the page offset in words */ 1751 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1752 NS_DBG("switch_state: double the column number for 16x device\n"); 1753 ns->regs.column <<= 1; 1754 } 1755 1756 if (NS_STATE(ns->nxstate) == STATE_READY) { 1757 /* 1758 * The current state is the last. Return to STATE_READY 1759 */ 1760 1761 u_char status = NS_STATUS_OK(ns); 1762 1763 /* In case of data states, see if all bytes were input/output */ 1764 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1765 && ns->regs.count != ns->regs.num) { 1766 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1767 ns->regs.num - ns->regs.count); 1768 status = NS_STATUS_FAILED(ns); 1769 } 1770 1771 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1772 1773 switch_to_ready_state(ns, status); 1774 1775 return; 1776 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1777 /* 1778 * If the next state is data input/output, switch to it now 1779 */ 1780 1781 ns->state = ns->nxstate; 1782 ns->nxstate = ns->op[++ns->stateidx + 1]; 1783 ns->regs.num = ns->regs.count = 0; 1784 1785 NS_DBG("switch_state: the next state is data I/O, switch, " 1786 "state: %s, nxstate: %s\n", 1787 get_state_name(ns->state), get_state_name(ns->nxstate)); 1788 1789 /* 1790 * Set the internal register to the count of bytes which 1791 * are expected to be input or output 1792 */ 1793 switch (NS_STATE(ns->state)) { 1794 case STATE_DATAIN: 1795 case STATE_DATAOUT: 1796 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1797 break; 1798 1799 case STATE_DATAOUT_ID: 1800 ns->regs.num = ns->geom.idbytes; 1801 break; 1802 1803 case STATE_DATAOUT_STATUS: 1804 ns->regs.count = ns->regs.num = 0; 1805 break; 1806 1807 default: 1808 NS_ERR("switch_state: BUG! unknown data state\n"); 1809 } 1810 1811 } else if (ns->nxstate & STATE_ADDR_MASK) { 1812 /* 1813 * If the next state is address input, set the internal 1814 * register to the number of expected address bytes 1815 */ 1816 1817 ns->regs.count = 0; 1818 1819 switch (NS_STATE(ns->nxstate)) { 1820 case STATE_ADDR_PAGE: 1821 ns->regs.num = ns->geom.pgaddrbytes; 1822 1823 break; 1824 case STATE_ADDR_SEC: 1825 ns->regs.num = ns->geom.secaddrbytes; 1826 break; 1827 1828 case STATE_ADDR_ZERO: 1829 ns->regs.num = 1; 1830 break; 1831 1832 case STATE_ADDR_COLUMN: 1833 /* Column address is always 2 bytes */ 1834 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1835 break; 1836 1837 default: 1838 NS_ERR("switch_state: BUG! unknown address state\n"); 1839 } 1840 } else { 1841 /* 1842 * Just reset internal counters. 1843 */ 1844 1845 ns->regs.num = 0; 1846 ns->regs.count = 0; 1847 } 1848 } 1849 1850 static u_char ns_nand_read_byte(struct nand_chip *chip) 1851 { 1852 struct nandsim *ns = nand_get_controller_data(chip); 1853 u_char outb = 0x00; 1854 1855 /* Sanity and correctness checks */ 1856 if (!ns->lines.ce) { 1857 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1858 return outb; 1859 } 1860 if (ns->lines.ale || ns->lines.cle) { 1861 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1862 return outb; 1863 } 1864 if (!(ns->state & STATE_DATAOUT_MASK)) { 1865 NS_WARN("read_byte: unexpected data output cycle, state is %s " 1866 "return %#x\n", get_state_name(ns->state), (uint)outb); 1867 return outb; 1868 } 1869 1870 /* Status register may be read as many times as it is wanted */ 1871 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1872 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1873 return ns->regs.status; 1874 } 1875 1876 /* Check if there is any data in the internal buffer which may be read */ 1877 if (ns->regs.count == ns->regs.num) { 1878 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1879 return outb; 1880 } 1881 1882 switch (NS_STATE(ns->state)) { 1883 case STATE_DATAOUT: 1884 if (ns->busw == 8) { 1885 outb = ns->buf.byte[ns->regs.count]; 1886 ns->regs.count += 1; 1887 } else { 1888 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1889 ns->regs.count += 2; 1890 } 1891 break; 1892 case STATE_DATAOUT_ID: 1893 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1894 outb = ns->ids[ns->regs.count]; 1895 ns->regs.count += 1; 1896 break; 1897 default: 1898 BUG(); 1899 } 1900 1901 if (ns->regs.count == ns->regs.num) { 1902 NS_DBG("read_byte: all bytes were read\n"); 1903 1904 if (NS_STATE(ns->nxstate) == STATE_READY) 1905 switch_state(ns); 1906 } 1907 1908 return outb; 1909 } 1910 1911 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) 1912 { 1913 struct nandsim *ns = nand_get_controller_data(chip); 1914 1915 /* Sanity and correctness checks */ 1916 if (!ns->lines.ce) { 1917 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1918 return; 1919 } 1920 if (ns->lines.ale && ns->lines.cle) { 1921 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1922 return; 1923 } 1924 1925 if (ns->lines.cle == 1) { 1926 /* 1927 * The byte written is a command. 1928 */ 1929 1930 if (byte == NAND_CMD_RESET) { 1931 NS_LOG("reset chip\n"); 1932 switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1933 return; 1934 } 1935 1936 /* Check that the command byte is correct */ 1937 if (check_command(byte)) { 1938 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1939 return; 1940 } 1941 1942 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1943 || NS_STATE(ns->state) == STATE_DATAOUT) { 1944 int row = ns->regs.row; 1945 1946 switch_state(ns); 1947 if (byte == NAND_CMD_RNDOUT) 1948 ns->regs.row = row; 1949 } 1950 1951 /* Check if chip is expecting command */ 1952 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1953 /* Do not warn if only 2 id bytes are read */ 1954 if (!(ns->regs.command == NAND_CMD_READID && 1955 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1956 /* 1957 * We are in situation when something else (not command) 1958 * was expected but command was input. In this case ignore 1959 * previous command(s)/state(s) and accept the last one. 1960 */ 1961 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " 1962 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); 1963 } 1964 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1965 } 1966 1967 NS_DBG("command byte corresponding to %s state accepted\n", 1968 get_state_name(get_state_by_command(byte))); 1969 ns->regs.command = byte; 1970 switch_state(ns); 1971 1972 } else if (ns->lines.ale == 1) { 1973 /* 1974 * The byte written is an address. 1975 */ 1976 1977 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 1978 1979 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 1980 1981 if (find_operation(ns, 1) < 0) 1982 return; 1983 1984 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1985 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1986 return; 1987 } 1988 1989 ns->regs.count = 0; 1990 switch (NS_STATE(ns->nxstate)) { 1991 case STATE_ADDR_PAGE: 1992 ns->regs.num = ns->geom.pgaddrbytes; 1993 break; 1994 case STATE_ADDR_SEC: 1995 ns->regs.num = ns->geom.secaddrbytes; 1996 break; 1997 case STATE_ADDR_ZERO: 1998 ns->regs.num = 1; 1999 break; 2000 default: 2001 BUG(); 2002 } 2003 } 2004 2005 /* Check that chip is expecting address */ 2006 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2007 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " 2008 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); 2009 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2010 return; 2011 } 2012 2013 /* Check if this is expected byte */ 2014 if (ns->regs.count == ns->regs.num) { 2015 NS_ERR("write_byte: no more address bytes expected\n"); 2016 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2017 return; 2018 } 2019 2020 accept_addr_byte(ns, byte); 2021 2022 ns->regs.count += 1; 2023 2024 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2025 (uint)byte, ns->regs.count, ns->regs.num); 2026 2027 if (ns->regs.count == ns->regs.num) { 2028 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2029 switch_state(ns); 2030 } 2031 2032 } else { 2033 /* 2034 * The byte written is an input data. 2035 */ 2036 2037 /* Check that chip is expecting data input */ 2038 if (!(ns->state & STATE_DATAIN_MASK)) { 2039 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " 2040 "switch to %s\n", (uint)byte, 2041 get_state_name(ns->state), get_state_name(STATE_READY)); 2042 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2043 return; 2044 } 2045 2046 /* Check if this is expected byte */ 2047 if (ns->regs.count == ns->regs.num) { 2048 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2049 ns->regs.num); 2050 return; 2051 } 2052 2053 if (ns->busw == 8) { 2054 ns->buf.byte[ns->regs.count] = byte; 2055 ns->regs.count += 1; 2056 } else { 2057 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2058 ns->regs.count += 2; 2059 } 2060 } 2061 2062 return; 2063 } 2064 2065 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, 2066 int len) 2067 { 2068 struct nandsim *ns = nand_get_controller_data(chip); 2069 2070 /* Check that chip is expecting data input */ 2071 if (!(ns->state & STATE_DATAIN_MASK)) { 2072 NS_ERR("write_buf: data input isn't expected, state is %s, " 2073 "switch to STATE_READY\n", get_state_name(ns->state)); 2074 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2075 return; 2076 } 2077 2078 /* Check if these are expected bytes */ 2079 if (ns->regs.count + len > ns->regs.num) { 2080 NS_ERR("write_buf: too many input bytes\n"); 2081 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2082 return; 2083 } 2084 2085 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2086 ns->regs.count += len; 2087 2088 if (ns->regs.count == ns->regs.num) { 2089 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2090 } 2091 } 2092 2093 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 2094 { 2095 struct nandsim *ns = nand_get_controller_data(chip); 2096 2097 /* Sanity and correctness checks */ 2098 if (!ns->lines.ce) { 2099 NS_ERR("read_buf: chip is disabled\n"); 2100 return; 2101 } 2102 if (ns->lines.ale || ns->lines.cle) { 2103 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2104 return; 2105 } 2106 if (!(ns->state & STATE_DATAOUT_MASK)) { 2107 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2108 get_state_name(ns->state)); 2109 return; 2110 } 2111 2112 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2113 int i; 2114 2115 for (i = 0; i < len; i++) 2116 buf[i] = ns_nand_read_byte(chip); 2117 2118 return; 2119 } 2120 2121 /* Check if these are expected bytes */ 2122 if (ns->regs.count + len > ns->regs.num) { 2123 NS_ERR("read_buf: too many bytes to read\n"); 2124 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2125 return; 2126 } 2127 2128 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2129 ns->regs.count += len; 2130 2131 if (ns->regs.count == ns->regs.num) { 2132 if (NS_STATE(ns->nxstate) == STATE_READY) 2133 switch_state(ns); 2134 } 2135 2136 return; 2137 } 2138 2139 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op, 2140 bool check_only) 2141 { 2142 int i; 2143 unsigned int op_id; 2144 const struct nand_op_instr *instr = NULL; 2145 struct nandsim *ns = nand_get_controller_data(chip); 2146 2147 ns->lines.ce = 1; 2148 2149 for (op_id = 0; op_id < op->ninstrs; op_id++) { 2150 instr = &op->instrs[op_id]; 2151 ns->lines.cle = 0; 2152 ns->lines.ale = 0; 2153 2154 switch (instr->type) { 2155 case NAND_OP_CMD_INSTR: 2156 ns->lines.cle = 1; 2157 ns_nand_write_byte(chip, instr->ctx.cmd.opcode); 2158 break; 2159 case NAND_OP_ADDR_INSTR: 2160 ns->lines.ale = 1; 2161 for (i = 0; i < instr->ctx.addr.naddrs; i++) 2162 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]); 2163 break; 2164 case NAND_OP_DATA_IN_INSTR: 2165 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); 2166 break; 2167 case NAND_OP_DATA_OUT_INSTR: 2168 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); 2169 break; 2170 case NAND_OP_WAITRDY_INSTR: 2171 /* we are always ready */ 2172 break; 2173 } 2174 } 2175 2176 return 0; 2177 } 2178 2179 static int ns_attach_chip(struct nand_chip *chip) 2180 { 2181 unsigned int eccsteps, eccbytes; 2182 2183 if (!bch) 2184 return 0; 2185 2186 if (!mtd_nand_has_bch()) { 2187 NS_ERR("BCH ECC support is disabled\n"); 2188 return -EINVAL; 2189 } 2190 2191 /* Use 512-byte ecc blocks */ 2192 eccsteps = nsmtd->writesize / 512; 2193 eccbytes = ((bch * 13) + 7) / 8; 2194 2195 /* Do not bother supporting small page devices */ 2196 if (nsmtd->oobsize < 64 || !eccsteps) { 2197 NS_ERR("BCH not available on small page devices\n"); 2198 return -EINVAL; 2199 } 2200 2201 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2202 NS_ERR("Invalid BCH value %u\n", bch); 2203 return -EINVAL; 2204 } 2205 2206 chip->ecc.mode = NAND_ECC_SOFT; 2207 chip->ecc.algo = NAND_ECC_BCH; 2208 chip->ecc.size = 512; 2209 chip->ecc.strength = bch; 2210 chip->ecc.bytes = eccbytes; 2211 2212 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2213 2214 return 0; 2215 } 2216 2217 static const struct nand_controller_ops ns_controller_ops = { 2218 .attach_chip = ns_attach_chip, 2219 .exec_op = ns_exec_op, 2220 }; 2221 2222 /* 2223 * Module initialization function 2224 */ 2225 static int __init ns_init_module(void) 2226 { 2227 struct nand_chip *chip; 2228 struct nandsim *ns; 2229 int retval = -ENOMEM, i; 2230 2231 if (bus_width != 8 && bus_width != 16) { 2232 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2233 return -EINVAL; 2234 } 2235 2236 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL); 2237 if (!ns) { 2238 NS_ERR("unable to allocate core structures.\n"); 2239 return -ENOMEM; 2240 } 2241 chip = &ns->chip; 2242 nsmtd = nand_to_mtd(chip); 2243 nand_set_controller_data(chip, (void *)ns); 2244 2245 chip->ecc.mode = NAND_ECC_SOFT; 2246 chip->ecc.algo = NAND_ECC_HAMMING; 2247 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2248 /* and 'badblocks' parameters to work */ 2249 chip->options |= NAND_SKIP_BBTSCAN; 2250 2251 switch (bbt) { 2252 case 2: 2253 chip->bbt_options |= NAND_BBT_NO_OOB; 2254 fallthrough; 2255 case 1: 2256 chip->bbt_options |= NAND_BBT_USE_FLASH; 2257 fallthrough; 2258 case 0: 2259 break; 2260 default: 2261 NS_ERR("bbt has to be 0..2\n"); 2262 retval = -EINVAL; 2263 goto error; 2264 } 2265 /* 2266 * Perform minimum nandsim structure initialization to handle 2267 * the initial ID read command correctly 2268 */ 2269 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2270 ns->geom.idbytes = 8; 2271 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2272 ns->geom.idbytes = 6; 2273 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2274 ns->geom.idbytes = 4; 2275 else 2276 ns->geom.idbytes = 2; 2277 ns->regs.status = NS_STATUS_OK(ns); 2278 ns->nxstate = STATE_UNKNOWN; 2279 ns->options |= OPT_PAGE512; /* temporary value */ 2280 memcpy(ns->ids, id_bytes, sizeof(ns->ids)); 2281 if (bus_width == 16) { 2282 ns->busw = 16; 2283 chip->options |= NAND_BUSWIDTH_16; 2284 } 2285 2286 nsmtd->owner = THIS_MODULE; 2287 2288 if ((retval = parse_weakblocks()) != 0) 2289 goto error; 2290 2291 if ((retval = parse_weakpages()) != 0) 2292 goto error; 2293 2294 if ((retval = parse_gravepages()) != 0) 2295 goto error; 2296 2297 nand_controller_init(&ns->base); 2298 ns->base.ops = &ns_controller_ops; 2299 chip->controller = &ns->base; 2300 2301 retval = nand_scan(chip, 1); 2302 if (retval) { 2303 NS_ERR("Could not scan NAND Simulator device\n"); 2304 goto error; 2305 } 2306 2307 if (overridesize) { 2308 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2309 struct nand_memory_organization *memorg; 2310 u64 targetsize; 2311 2312 memorg = nanddev_get_memorg(&chip->base); 2313 2314 if (new_size >> overridesize != nsmtd->erasesize) { 2315 NS_ERR("overridesize is too big\n"); 2316 retval = -EINVAL; 2317 goto err_exit; 2318 } 2319 2320 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2321 nsmtd->size = new_size; 2322 memorg->eraseblocks_per_lun = 1 << overridesize; 2323 targetsize = nanddev_target_size(&chip->base); 2324 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2325 chip->pagemask = (targetsize >> chip->page_shift) - 1; 2326 } 2327 2328 if ((retval = setup_wear_reporting(nsmtd)) != 0) 2329 goto err_exit; 2330 2331 if ((retval = init_nandsim(nsmtd)) != 0) 2332 goto err_exit; 2333 2334 if ((retval = nand_create_bbt(chip)) != 0) 2335 goto err_exit; 2336 2337 if ((retval = parse_badblocks(ns, nsmtd)) != 0) 2338 goto err_exit; 2339 2340 /* Register NAND partitions */ 2341 retval = mtd_device_register(nsmtd, &ns->partitions[0], 2342 ns->nbparts); 2343 if (retval != 0) 2344 goto err_exit; 2345 2346 if ((retval = nandsim_debugfs_create(ns)) != 0) 2347 goto err_exit; 2348 2349 return 0; 2350 2351 err_exit: 2352 free_nandsim(ns); 2353 nand_release(chip); 2354 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) 2355 kfree(ns->partitions[i].name); 2356 error: 2357 kfree(ns); 2358 free_lists(); 2359 2360 return retval; 2361 } 2362 2363 module_init(ns_init_module); 2364 2365 /* 2366 * Module clean-up function 2367 */ 2368 static void __exit ns_cleanup_module(void) 2369 { 2370 struct nand_chip *chip = mtd_to_nand(nsmtd); 2371 struct nandsim *ns = nand_get_controller_data(chip); 2372 int i; 2373 2374 free_nandsim(ns); /* Free nandsim private resources */ 2375 nand_release(chip); /* Unregister driver */ 2376 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) 2377 kfree(ns->partitions[i].name); 2378 kfree(ns); /* Free other structures */ 2379 free_lists(); 2380 } 2381 2382 module_exit(ns_cleanup_module); 2383 2384 MODULE_LICENSE ("GPL"); 2385 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2386 MODULE_DESCRIPTION ("The NAND flash simulator"); 2387