1 /* 2 * NAND flash simulator. 3 * 4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> 5 * 6 * Copyright (C) 2004 Nokia Corporation 7 * 8 * Note: NS means "NAND Simulator". 9 * Note: Input means input TO flash chip, output means output FROM chip. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2, or (at your option) any later 14 * version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General 19 * Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA 24 */ 25 26 #define pr_fmt(fmt) "[nandsim]" fmt 27 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/vmalloc.h> 33 #include <linux/math64.h> 34 #include <linux/slab.h> 35 #include <linux/errno.h> 36 #include <linux/string.h> 37 #include <linux/mtd/mtd.h> 38 #include <linux/mtd/rawnand.h> 39 #include <linux/mtd/nand_bch.h> 40 #include <linux/mtd/partitions.h> 41 #include <linux/delay.h> 42 #include <linux/list.h> 43 #include <linux/random.h> 44 #include <linux/sched.h> 45 #include <linux/sched/mm.h> 46 #include <linux/fs.h> 47 #include <linux/pagemap.h> 48 #include <linux/seq_file.h> 49 #include <linux/debugfs.h> 50 51 /* Default simulator parameters values */ 52 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ 53 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ 54 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ 55 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) 56 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 57 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 58 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ 59 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ 60 #endif 61 62 #ifndef CONFIG_NANDSIM_ACCESS_DELAY 63 #define CONFIG_NANDSIM_ACCESS_DELAY 25 64 #endif 65 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY 66 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 67 #endif 68 #ifndef CONFIG_NANDSIM_ERASE_DELAY 69 #define CONFIG_NANDSIM_ERASE_DELAY 2 70 #endif 71 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE 72 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 73 #endif 74 #ifndef CONFIG_NANDSIM_INPUT_CYCLE 75 #define CONFIG_NANDSIM_INPUT_CYCLE 50 76 #endif 77 #ifndef CONFIG_NANDSIM_BUS_WIDTH 78 #define CONFIG_NANDSIM_BUS_WIDTH 8 79 #endif 80 #ifndef CONFIG_NANDSIM_DO_DELAYS 81 #define CONFIG_NANDSIM_DO_DELAYS 0 82 #endif 83 #ifndef CONFIG_NANDSIM_LOG 84 #define CONFIG_NANDSIM_LOG 0 85 #endif 86 #ifndef CONFIG_NANDSIM_DBG 87 #define CONFIG_NANDSIM_DBG 0 88 #endif 89 #ifndef CONFIG_NANDSIM_MAX_PARTS 90 #define CONFIG_NANDSIM_MAX_PARTS 32 91 #endif 92 93 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; 94 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; 95 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; 96 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; 97 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; 98 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; 99 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; 100 static uint log = CONFIG_NANDSIM_LOG; 101 static uint dbg = CONFIG_NANDSIM_DBG; 102 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; 103 static unsigned int parts_num; 104 static char *badblocks = NULL; 105 static char *weakblocks = NULL; 106 static char *weakpages = NULL; 107 static unsigned int bitflips = 0; 108 static char *gravepages = NULL; 109 static unsigned int overridesize = 0; 110 static char *cache_file = NULL; 111 static unsigned int bbt; 112 static unsigned int bch; 113 static u_char id_bytes[8] = { 114 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, 115 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, 116 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, 117 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, 118 [4 ... 7] = 0xFF, 119 }; 120 121 module_param_array(id_bytes, byte, NULL, 0400); 122 module_param_named(first_id_byte, id_bytes[0], byte, 0400); 123 module_param_named(second_id_byte, id_bytes[1], byte, 0400); 124 module_param_named(third_id_byte, id_bytes[2], byte, 0400); 125 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); 126 module_param(access_delay, uint, 0400); 127 module_param(programm_delay, uint, 0400); 128 module_param(erase_delay, uint, 0400); 129 module_param(output_cycle, uint, 0400); 130 module_param(input_cycle, uint, 0400); 131 module_param(bus_width, uint, 0400); 132 module_param(do_delays, uint, 0400); 133 module_param(log, uint, 0400); 134 module_param(dbg, uint, 0400); 135 module_param_array(parts, ulong, &parts_num, 0400); 136 module_param(badblocks, charp, 0400); 137 module_param(weakblocks, charp, 0400); 138 module_param(weakpages, charp, 0400); 139 module_param(bitflips, uint, 0400); 140 module_param(gravepages, charp, 0400); 141 module_param(overridesize, uint, 0400); 142 module_param(cache_file, charp, 0400); 143 module_param(bbt, uint, 0400); 144 module_param(bch, uint, 0400); 145 146 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); 147 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); 148 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); 149 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); 150 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); 151 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); 152 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); 153 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); 154 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); 155 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); 156 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); 157 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); 158 MODULE_PARM_DESC(log, "Perform logging if not zero"); 159 MODULE_PARM_DESC(dbg, "Output debug information if not zero"); 160 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); 161 /* Page and erase block positions for the following parameters are independent of any partitions */ 162 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); 163 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" 164 " separated by commas e.g. 113:2 means eb 113" 165 " can be erased only twice before failing"); 166 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" 167 " separated by commas e.g. 1401:2 means page 1401" 168 " can be written only twice before failing"); 169 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); 170 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" 171 " separated by commas e.g. 1401:2 means page 1401" 172 " can be read only twice before failing"); 173 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " 174 "The size is specified in erase blocks and as the exponent of a power of two" 175 " e.g. 5 means a size of 32 erase blocks"); 176 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); 177 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); 178 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " 179 "be correctable in 512-byte blocks"); 180 181 /* The largest possible page size */ 182 #define NS_LARGEST_PAGE_SIZE 4096 183 184 /* Simulator's output macros (logging, debugging, warning, error) */ 185 #define NS_LOG(args...) \ 186 do { if (log) pr_debug(" log: " args); } while(0) 187 #define NS_DBG(args...) \ 188 do { if (dbg) pr_debug(" debug: " args); } while(0) 189 #define NS_WARN(args...) \ 190 do { pr_warn(" warning: " args); } while(0) 191 #define NS_ERR(args...) \ 192 do { pr_err(" error: " args); } while(0) 193 #define NS_INFO(args...) \ 194 do { pr_info(" " args); } while(0) 195 196 /* Busy-wait delay macros (microseconds, milliseconds) */ 197 #define NS_UDELAY(us) \ 198 do { if (do_delays) udelay(us); } while(0) 199 #define NS_MDELAY(us) \ 200 do { if (do_delays) mdelay(us); } while(0) 201 202 /* Is the nandsim structure initialized ? */ 203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) 204 205 /* Good operation completion status */ 206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) 207 208 /* Operation failed completion status */ 209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 210 211 /* Calculate the page offset in flash RAM image by (row, column) address */ 212 #define NS_RAW_OFFSET(ns) \ 213 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) 214 215 /* Calculate the OOB offset in flash RAM image by (row, column) address */ 216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) 217 218 /* After a command is input, the simulator goes to one of the following states */ 219 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ 220 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ 221 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ 222 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ 223 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ 224 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ 225 #define STATE_CMD_STATUS 0x00000007 /* read status */ 226 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ 227 #define STATE_CMD_READID 0x0000000A /* read ID */ 228 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ 229 #define STATE_CMD_RESET 0x0000000C /* reset */ 230 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ 231 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ 232 #define STATE_CMD_MASK 0x0000000F /* command states mask */ 233 234 /* After an address is input, the simulator goes to one of these states */ 235 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ 236 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ 237 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ 238 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ 239 #define STATE_ADDR_MASK 0x00000070 /* address states mask */ 240 241 /* During data input/output the simulator is in these states */ 242 #define STATE_DATAIN 0x00000100 /* waiting for data input */ 243 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ 244 245 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ 246 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ 247 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ 248 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ 249 250 /* Previous operation is done, ready to accept new requests */ 251 #define STATE_READY 0x00000000 252 253 /* This state is used to mark that the next state isn't known yet */ 254 #define STATE_UNKNOWN 0x10000000 255 256 /* Simulator's actions bit masks */ 257 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ 258 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ 259 #define ACTION_SECERASE 0x00300000 /* erase sector */ 260 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ 261 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ 262 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ 263 #define ACTION_MASK 0x00700000 /* action mask */ 264 265 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ 266 #define NS_OPER_STATES 6 /* Maximum number of states in operation */ 267 268 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ 269 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ 270 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ 271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ 272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ 273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ 274 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ 275 276 /* Remove action bits from state */ 277 #define NS_STATE(x) ((x) & ~ACTION_MASK) 278 279 /* 280 * Maximum previous states which need to be saved. Currently saving is 281 * only needed for page program operation with preceded read command 282 * (which is only valid for 512-byte pages). 283 */ 284 #define NS_MAX_PREVSTATES 1 285 286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ 287 #define NS_MAX_HELD_PAGES 16 288 289 /* 290 * A union to represent flash memory contents and flash buffer. 291 */ 292 union ns_mem { 293 u_char *byte; /* for byte access */ 294 uint16_t *word; /* for 16-bit word access */ 295 }; 296 297 /* 298 * The structure which describes all the internal simulator data. 299 */ 300 struct nandsim { 301 struct nand_chip chip; 302 struct nand_controller base; 303 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; 304 unsigned int nbparts; 305 306 uint busw; /* flash chip bus width (8 or 16) */ 307 u_char ids[8]; /* chip's ID bytes */ 308 uint32_t options; /* chip's characteristic bits */ 309 uint32_t state; /* current chip state */ 310 uint32_t nxstate; /* next expected state */ 311 312 uint32_t *op; /* current operation, NULL operations isn't known yet */ 313 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ 314 uint16_t npstates; /* number of previous states saved */ 315 uint16_t stateidx; /* current state index */ 316 317 /* The simulated NAND flash pages array */ 318 union ns_mem *pages; 319 320 /* Slab allocator for nand pages */ 321 struct kmem_cache *nand_pages_slab; 322 323 /* Internal buffer of page + OOB size bytes */ 324 union ns_mem buf; 325 326 /* NAND flash "geometry" */ 327 struct { 328 uint64_t totsz; /* total flash size, bytes */ 329 uint32_t secsz; /* flash sector (erase block) size, bytes */ 330 uint pgsz; /* NAND flash page size, bytes */ 331 uint oobsz; /* page OOB area size, bytes */ 332 uint64_t totszoob; /* total flash size including OOB, bytes */ 333 uint pgszoob; /* page size including OOB , bytes*/ 334 uint secszoob; /* sector size including OOB, bytes */ 335 uint pgnum; /* total number of pages */ 336 uint pgsec; /* number of pages per sector */ 337 uint secshift; /* bits number in sector size */ 338 uint pgshift; /* bits number in page size */ 339 uint pgaddrbytes; /* bytes per page address */ 340 uint secaddrbytes; /* bytes per sector address */ 341 uint idbytes; /* the number ID bytes that this chip outputs */ 342 } geom; 343 344 /* NAND flash internal registers */ 345 struct { 346 unsigned command; /* the command register */ 347 u_char status; /* the status register */ 348 uint row; /* the page number */ 349 uint column; /* the offset within page */ 350 uint count; /* internal counter */ 351 uint num; /* number of bytes which must be processed */ 352 uint off; /* fixed page offset */ 353 } regs; 354 355 /* NAND flash lines state */ 356 struct { 357 int ce; /* chip Enable */ 358 int cle; /* command Latch Enable */ 359 int ale; /* address Latch Enable */ 360 int wp; /* write Protect */ 361 } lines; 362 363 /* Fields needed when using a cache file */ 364 struct file *cfile; /* Open file */ 365 unsigned long *pages_written; /* Which pages have been written */ 366 void *file_buf; 367 struct page *held_pages[NS_MAX_HELD_PAGES]; 368 int held_cnt; 369 }; 370 371 /* 372 * Operations array. To perform any operation the simulator must pass 373 * through the correspondent states chain. 374 */ 375 static struct nandsim_operations { 376 uint32_t reqopts; /* options which are required to perform the operation */ 377 uint32_t states[NS_OPER_STATES]; /* operation's states */ 378 } ops[NS_OPER_NUM] = { 379 /* Read page + OOB from the beginning */ 380 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, 381 STATE_DATAOUT, STATE_READY}}, 382 /* Read page + OOB from the second half */ 383 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, 384 STATE_DATAOUT, STATE_READY}}, 385 /* Read OOB */ 386 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, 387 STATE_DATAOUT, STATE_READY}}, 388 /* Program page starting from the beginning */ 389 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, 390 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 391 /* Program page starting from the beginning */ 392 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, 393 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 394 /* Program page starting from the second half */ 395 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, 396 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 397 /* Program OOB */ 398 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, 399 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, 400 /* Erase sector */ 401 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, 402 /* Read status */ 403 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, 404 /* Read ID */ 405 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, 406 /* Large page devices read page */ 407 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, 408 STATE_DATAOUT, STATE_READY}}, 409 /* Large page devices random page read */ 410 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, 411 STATE_DATAOUT, STATE_READY}}, 412 }; 413 414 struct weak_block { 415 struct list_head list; 416 unsigned int erase_block_no; 417 unsigned int max_erases; 418 unsigned int erases_done; 419 }; 420 421 static LIST_HEAD(weak_blocks); 422 423 struct weak_page { 424 struct list_head list; 425 unsigned int page_no; 426 unsigned int max_writes; 427 unsigned int writes_done; 428 }; 429 430 static LIST_HEAD(weak_pages); 431 432 struct grave_page { 433 struct list_head list; 434 unsigned int page_no; 435 unsigned int max_reads; 436 unsigned int reads_done; 437 }; 438 439 static LIST_HEAD(grave_pages); 440 441 static unsigned long *erase_block_wear = NULL; 442 static unsigned int wear_eb_count = 0; 443 static unsigned long total_wear = 0; 444 445 /* MTD structure for NAND controller */ 446 static struct mtd_info *nsmtd; 447 448 static int nandsim_show(struct seq_file *m, void *private) 449 { 450 unsigned long wmin = -1, wmax = 0, avg; 451 unsigned long deciles[10], decile_max[10], tot = 0; 452 unsigned int i; 453 454 /* Calc wear stats */ 455 for (i = 0; i < wear_eb_count; ++i) { 456 unsigned long wear = erase_block_wear[i]; 457 if (wear < wmin) 458 wmin = wear; 459 if (wear > wmax) 460 wmax = wear; 461 tot += wear; 462 } 463 464 for (i = 0; i < 9; ++i) { 465 deciles[i] = 0; 466 decile_max[i] = (wmax * (i + 1) + 5) / 10; 467 } 468 deciles[9] = 0; 469 decile_max[9] = wmax; 470 for (i = 0; i < wear_eb_count; ++i) { 471 int d; 472 unsigned long wear = erase_block_wear[i]; 473 for (d = 0; d < 10; ++d) 474 if (wear <= decile_max[d]) { 475 deciles[d] += 1; 476 break; 477 } 478 } 479 avg = tot / wear_eb_count; 480 481 /* Output wear report */ 482 seq_printf(m, "Total numbers of erases: %lu\n", tot); 483 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); 484 seq_printf(m, "Average number of erases: %lu\n", avg); 485 seq_printf(m, "Maximum number of erases: %lu\n", wmax); 486 seq_printf(m, "Minimum number of erases: %lu\n", wmin); 487 for (i = 0; i < 10; ++i) { 488 unsigned long from = (i ? decile_max[i - 1] + 1 : 0); 489 if (from > decile_max[i]) 490 continue; 491 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", 492 from, 493 decile_max[i], 494 deciles[i]); 495 } 496 497 return 0; 498 } 499 DEFINE_SHOW_ATTRIBUTE(nandsim); 500 501 /** 502 * nandsim_debugfs_create - initialize debugfs 503 * @dev: nandsim device description object 504 * 505 * This function creates all debugfs files for UBI device @ubi. Returns zero in 506 * case of success and a negative error code in case of failure. 507 */ 508 static int nandsim_debugfs_create(struct nandsim *dev) 509 { 510 struct dentry *root = nsmtd->dbg.dfs_dir; 511 struct dentry *dent; 512 513 /* 514 * Just skip debugfs initialization when the debugfs directory is 515 * missing. 516 */ 517 if (IS_ERR_OR_NULL(root)) { 518 if (IS_ENABLED(CONFIG_DEBUG_FS) && 519 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 520 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 521 return 0; 522 } 523 524 dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, 525 root, dev, &nandsim_fops); 526 if (IS_ERR_OR_NULL(dent)) { 527 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); 528 return -1; 529 } 530 531 return 0; 532 } 533 534 /* 535 * Allocate array of page pointers, create slab allocation for an array 536 * and initialize the array by NULL pointers. 537 * 538 * RETURNS: 0 if success, -ENOMEM if memory alloc fails. 539 */ 540 static int __init alloc_device(struct nandsim *ns) 541 { 542 struct file *cfile; 543 int i, err; 544 545 if (cache_file) { 546 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); 547 if (IS_ERR(cfile)) 548 return PTR_ERR(cfile); 549 if (!(cfile->f_mode & FMODE_CAN_READ)) { 550 NS_ERR("alloc_device: cache file not readable\n"); 551 err = -EINVAL; 552 goto err_close; 553 } 554 if (!(cfile->f_mode & FMODE_CAN_WRITE)) { 555 NS_ERR("alloc_device: cache file not writeable\n"); 556 err = -EINVAL; 557 goto err_close; 558 } 559 ns->pages_written = 560 vzalloc(array_size(sizeof(unsigned long), 561 BITS_TO_LONGS(ns->geom.pgnum))); 562 if (!ns->pages_written) { 563 NS_ERR("alloc_device: unable to allocate pages written array\n"); 564 err = -ENOMEM; 565 goto err_close; 566 } 567 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 568 if (!ns->file_buf) { 569 NS_ERR("alloc_device: unable to allocate file buf\n"); 570 err = -ENOMEM; 571 goto err_free; 572 } 573 ns->cfile = cfile; 574 return 0; 575 } 576 577 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum)); 578 if (!ns->pages) { 579 NS_ERR("alloc_device: unable to allocate page array\n"); 580 return -ENOMEM; 581 } 582 for (i = 0; i < ns->geom.pgnum; i++) { 583 ns->pages[i].byte = NULL; 584 } 585 ns->nand_pages_slab = kmem_cache_create("nandsim", 586 ns->geom.pgszoob, 0, 0, NULL); 587 if (!ns->nand_pages_slab) { 588 NS_ERR("cache_create: unable to create kmem_cache\n"); 589 return -ENOMEM; 590 } 591 592 return 0; 593 594 err_free: 595 vfree(ns->pages_written); 596 err_close: 597 filp_close(cfile, NULL); 598 return err; 599 } 600 601 /* 602 * Free any allocated pages, and free the array of page pointers. 603 */ 604 static void free_device(struct nandsim *ns) 605 { 606 int i; 607 608 if (ns->cfile) { 609 kfree(ns->file_buf); 610 vfree(ns->pages_written); 611 filp_close(ns->cfile, NULL); 612 return; 613 } 614 615 if (ns->pages) { 616 for (i = 0; i < ns->geom.pgnum; i++) { 617 if (ns->pages[i].byte) 618 kmem_cache_free(ns->nand_pages_slab, 619 ns->pages[i].byte); 620 } 621 kmem_cache_destroy(ns->nand_pages_slab); 622 vfree(ns->pages); 623 } 624 } 625 626 static char __init *get_partition_name(int i) 627 { 628 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); 629 } 630 631 /* 632 * Initialize the nandsim structure. 633 * 634 * RETURNS: 0 if success, -ERRNO if failure. 635 */ 636 static int __init init_nandsim(struct mtd_info *mtd) 637 { 638 struct nand_chip *chip = mtd_to_nand(mtd); 639 struct nandsim *ns = nand_get_controller_data(chip); 640 int i, ret = 0; 641 uint64_t remains; 642 uint64_t next_offset; 643 644 if (NS_IS_INITIALIZED(ns)) { 645 NS_ERR("init_nandsim: nandsim is already initialized\n"); 646 return -EIO; 647 } 648 649 /* Initialize the NAND flash parameters */ 650 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; 651 ns->geom.totsz = mtd->size; 652 ns->geom.pgsz = mtd->writesize; 653 ns->geom.oobsz = mtd->oobsize; 654 ns->geom.secsz = mtd->erasesize; 655 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; 656 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); 657 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; 658 ns->geom.secshift = ffs(ns->geom.secsz) - 1; 659 ns->geom.pgshift = chip->page_shift; 660 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; 661 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; 662 ns->options = 0; 663 664 if (ns->geom.pgsz == 512) { 665 ns->options |= OPT_PAGE512; 666 if (ns->busw == 8) 667 ns->options |= OPT_PAGE512_8BIT; 668 } else if (ns->geom.pgsz == 2048) { 669 ns->options |= OPT_PAGE2048; 670 } else if (ns->geom.pgsz == 4096) { 671 ns->options |= OPT_PAGE4096; 672 } else { 673 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); 674 return -EIO; 675 } 676 677 if (ns->options & OPT_SMALLPAGE) { 678 if (ns->geom.totsz <= (32 << 20)) { 679 ns->geom.pgaddrbytes = 3; 680 ns->geom.secaddrbytes = 2; 681 } else { 682 ns->geom.pgaddrbytes = 4; 683 ns->geom.secaddrbytes = 3; 684 } 685 } else { 686 if (ns->geom.totsz <= (128 << 20)) { 687 ns->geom.pgaddrbytes = 4; 688 ns->geom.secaddrbytes = 2; 689 } else { 690 ns->geom.pgaddrbytes = 5; 691 ns->geom.secaddrbytes = 3; 692 } 693 } 694 695 /* Fill the partition_info structure */ 696 if (parts_num > ARRAY_SIZE(ns->partitions)) { 697 NS_ERR("too many partitions.\n"); 698 return -EINVAL; 699 } 700 remains = ns->geom.totsz; 701 next_offset = 0; 702 for (i = 0; i < parts_num; ++i) { 703 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; 704 705 if (!part_sz || part_sz > remains) { 706 NS_ERR("bad partition size.\n"); 707 return -EINVAL; 708 } 709 ns->partitions[i].name = get_partition_name(i); 710 if (!ns->partitions[i].name) { 711 NS_ERR("unable to allocate memory.\n"); 712 return -ENOMEM; 713 } 714 ns->partitions[i].offset = next_offset; 715 ns->partitions[i].size = part_sz; 716 next_offset += ns->partitions[i].size; 717 remains -= ns->partitions[i].size; 718 } 719 ns->nbparts = parts_num; 720 if (remains) { 721 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { 722 NS_ERR("too many partitions.\n"); 723 return -EINVAL; 724 } 725 ns->partitions[i].name = get_partition_name(i); 726 if (!ns->partitions[i].name) { 727 NS_ERR("unable to allocate memory.\n"); 728 return -ENOMEM; 729 } 730 ns->partitions[i].offset = next_offset; 731 ns->partitions[i].size = remains; 732 ns->nbparts += 1; 733 } 734 735 if (ns->busw == 16) 736 NS_WARN("16-bit flashes support wasn't tested\n"); 737 738 printk("flash size: %llu MiB\n", 739 (unsigned long long)ns->geom.totsz >> 20); 740 printk("page size: %u bytes\n", ns->geom.pgsz); 741 printk("OOB area size: %u bytes\n", ns->geom.oobsz); 742 printk("sector size: %u KiB\n", ns->geom.secsz >> 10); 743 printk("pages number: %u\n", ns->geom.pgnum); 744 printk("pages per sector: %u\n", ns->geom.pgsec); 745 printk("bus width: %u\n", ns->busw); 746 printk("bits in sector size: %u\n", ns->geom.secshift); 747 printk("bits in page size: %u\n", ns->geom.pgshift); 748 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); 749 printk("flash size with OOB: %llu KiB\n", 750 (unsigned long long)ns->geom.totszoob >> 10); 751 printk("page address bytes: %u\n", ns->geom.pgaddrbytes); 752 printk("sector address bytes: %u\n", ns->geom.secaddrbytes); 753 printk("options: %#x\n", ns->options); 754 755 if ((ret = alloc_device(ns)) != 0) 756 return ret; 757 758 /* Allocate / initialize the internal buffer */ 759 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); 760 if (!ns->buf.byte) { 761 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", 762 ns->geom.pgszoob); 763 return -ENOMEM; 764 } 765 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); 766 767 return 0; 768 } 769 770 /* 771 * Free the nandsim structure. 772 */ 773 static void free_nandsim(struct nandsim *ns) 774 { 775 kfree(ns->buf.byte); 776 free_device(ns); 777 778 return; 779 } 780 781 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) 782 { 783 char *w; 784 int zero_ok; 785 unsigned int erase_block_no; 786 loff_t offset; 787 788 if (!badblocks) 789 return 0; 790 w = badblocks; 791 do { 792 zero_ok = (*w == '0' ? 1 : 0); 793 erase_block_no = simple_strtoul(w, &w, 0); 794 if (!zero_ok && !erase_block_no) { 795 NS_ERR("invalid badblocks.\n"); 796 return -EINVAL; 797 } 798 offset = (loff_t)erase_block_no * ns->geom.secsz; 799 if (mtd_block_markbad(mtd, offset)) { 800 NS_ERR("invalid badblocks.\n"); 801 return -EINVAL; 802 } 803 if (*w == ',') 804 w += 1; 805 } while (*w); 806 return 0; 807 } 808 809 static int parse_weakblocks(void) 810 { 811 char *w; 812 int zero_ok; 813 unsigned int erase_block_no; 814 unsigned int max_erases; 815 struct weak_block *wb; 816 817 if (!weakblocks) 818 return 0; 819 w = weakblocks; 820 do { 821 zero_ok = (*w == '0' ? 1 : 0); 822 erase_block_no = simple_strtoul(w, &w, 0); 823 if (!zero_ok && !erase_block_no) { 824 NS_ERR("invalid weakblocks.\n"); 825 return -EINVAL; 826 } 827 max_erases = 3; 828 if (*w == ':') { 829 w += 1; 830 max_erases = simple_strtoul(w, &w, 0); 831 } 832 if (*w == ',') 833 w += 1; 834 wb = kzalloc(sizeof(*wb), GFP_KERNEL); 835 if (!wb) { 836 NS_ERR("unable to allocate memory.\n"); 837 return -ENOMEM; 838 } 839 wb->erase_block_no = erase_block_no; 840 wb->max_erases = max_erases; 841 list_add(&wb->list, &weak_blocks); 842 } while (*w); 843 return 0; 844 } 845 846 static int erase_error(unsigned int erase_block_no) 847 { 848 struct weak_block *wb; 849 850 list_for_each_entry(wb, &weak_blocks, list) 851 if (wb->erase_block_no == erase_block_no) { 852 if (wb->erases_done >= wb->max_erases) 853 return 1; 854 wb->erases_done += 1; 855 return 0; 856 } 857 return 0; 858 } 859 860 static int parse_weakpages(void) 861 { 862 char *w; 863 int zero_ok; 864 unsigned int page_no; 865 unsigned int max_writes; 866 struct weak_page *wp; 867 868 if (!weakpages) 869 return 0; 870 w = weakpages; 871 do { 872 zero_ok = (*w == '0' ? 1 : 0); 873 page_no = simple_strtoul(w, &w, 0); 874 if (!zero_ok && !page_no) { 875 NS_ERR("invalid weakpages.\n"); 876 return -EINVAL; 877 } 878 max_writes = 3; 879 if (*w == ':') { 880 w += 1; 881 max_writes = simple_strtoul(w, &w, 0); 882 } 883 if (*w == ',') 884 w += 1; 885 wp = kzalloc(sizeof(*wp), GFP_KERNEL); 886 if (!wp) { 887 NS_ERR("unable to allocate memory.\n"); 888 return -ENOMEM; 889 } 890 wp->page_no = page_no; 891 wp->max_writes = max_writes; 892 list_add(&wp->list, &weak_pages); 893 } while (*w); 894 return 0; 895 } 896 897 static int write_error(unsigned int page_no) 898 { 899 struct weak_page *wp; 900 901 list_for_each_entry(wp, &weak_pages, list) 902 if (wp->page_no == page_no) { 903 if (wp->writes_done >= wp->max_writes) 904 return 1; 905 wp->writes_done += 1; 906 return 0; 907 } 908 return 0; 909 } 910 911 static int parse_gravepages(void) 912 { 913 char *g; 914 int zero_ok; 915 unsigned int page_no; 916 unsigned int max_reads; 917 struct grave_page *gp; 918 919 if (!gravepages) 920 return 0; 921 g = gravepages; 922 do { 923 zero_ok = (*g == '0' ? 1 : 0); 924 page_no = simple_strtoul(g, &g, 0); 925 if (!zero_ok && !page_no) { 926 NS_ERR("invalid gravepagess.\n"); 927 return -EINVAL; 928 } 929 max_reads = 3; 930 if (*g == ':') { 931 g += 1; 932 max_reads = simple_strtoul(g, &g, 0); 933 } 934 if (*g == ',') 935 g += 1; 936 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 937 if (!gp) { 938 NS_ERR("unable to allocate memory.\n"); 939 return -ENOMEM; 940 } 941 gp->page_no = page_no; 942 gp->max_reads = max_reads; 943 list_add(&gp->list, &grave_pages); 944 } while (*g); 945 return 0; 946 } 947 948 static int read_error(unsigned int page_no) 949 { 950 struct grave_page *gp; 951 952 list_for_each_entry(gp, &grave_pages, list) 953 if (gp->page_no == page_no) { 954 if (gp->reads_done >= gp->max_reads) 955 return 1; 956 gp->reads_done += 1; 957 return 0; 958 } 959 return 0; 960 } 961 962 static void free_lists(void) 963 { 964 struct list_head *pos, *n; 965 list_for_each_safe(pos, n, &weak_blocks) { 966 list_del(pos); 967 kfree(list_entry(pos, struct weak_block, list)); 968 } 969 list_for_each_safe(pos, n, &weak_pages) { 970 list_del(pos); 971 kfree(list_entry(pos, struct weak_page, list)); 972 } 973 list_for_each_safe(pos, n, &grave_pages) { 974 list_del(pos); 975 kfree(list_entry(pos, struct grave_page, list)); 976 } 977 kfree(erase_block_wear); 978 } 979 980 static int setup_wear_reporting(struct mtd_info *mtd) 981 { 982 size_t mem; 983 984 wear_eb_count = div_u64(mtd->size, mtd->erasesize); 985 mem = wear_eb_count * sizeof(unsigned long); 986 if (mem / sizeof(unsigned long) != wear_eb_count) { 987 NS_ERR("Too many erase blocks for wear reporting\n"); 988 return -ENOMEM; 989 } 990 erase_block_wear = kzalloc(mem, GFP_KERNEL); 991 if (!erase_block_wear) { 992 NS_ERR("Too many erase blocks for wear reporting\n"); 993 return -ENOMEM; 994 } 995 return 0; 996 } 997 998 static void update_wear(unsigned int erase_block_no) 999 { 1000 if (!erase_block_wear) 1001 return; 1002 total_wear += 1; 1003 /* 1004 * TODO: Notify this through a debugfs entry, 1005 * instead of showing an error message. 1006 */ 1007 if (total_wear == 0) 1008 NS_ERR("Erase counter total overflow\n"); 1009 erase_block_wear[erase_block_no] += 1; 1010 if (erase_block_wear[erase_block_no] == 0) 1011 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); 1012 } 1013 1014 /* 1015 * Returns the string representation of 'state' state. 1016 */ 1017 static char *get_state_name(uint32_t state) 1018 { 1019 switch (NS_STATE(state)) { 1020 case STATE_CMD_READ0: 1021 return "STATE_CMD_READ0"; 1022 case STATE_CMD_READ1: 1023 return "STATE_CMD_READ1"; 1024 case STATE_CMD_PAGEPROG: 1025 return "STATE_CMD_PAGEPROG"; 1026 case STATE_CMD_READOOB: 1027 return "STATE_CMD_READOOB"; 1028 case STATE_CMD_READSTART: 1029 return "STATE_CMD_READSTART"; 1030 case STATE_CMD_ERASE1: 1031 return "STATE_CMD_ERASE1"; 1032 case STATE_CMD_STATUS: 1033 return "STATE_CMD_STATUS"; 1034 case STATE_CMD_SEQIN: 1035 return "STATE_CMD_SEQIN"; 1036 case STATE_CMD_READID: 1037 return "STATE_CMD_READID"; 1038 case STATE_CMD_ERASE2: 1039 return "STATE_CMD_ERASE2"; 1040 case STATE_CMD_RESET: 1041 return "STATE_CMD_RESET"; 1042 case STATE_CMD_RNDOUT: 1043 return "STATE_CMD_RNDOUT"; 1044 case STATE_CMD_RNDOUTSTART: 1045 return "STATE_CMD_RNDOUTSTART"; 1046 case STATE_ADDR_PAGE: 1047 return "STATE_ADDR_PAGE"; 1048 case STATE_ADDR_SEC: 1049 return "STATE_ADDR_SEC"; 1050 case STATE_ADDR_ZERO: 1051 return "STATE_ADDR_ZERO"; 1052 case STATE_ADDR_COLUMN: 1053 return "STATE_ADDR_COLUMN"; 1054 case STATE_DATAIN: 1055 return "STATE_DATAIN"; 1056 case STATE_DATAOUT: 1057 return "STATE_DATAOUT"; 1058 case STATE_DATAOUT_ID: 1059 return "STATE_DATAOUT_ID"; 1060 case STATE_DATAOUT_STATUS: 1061 return "STATE_DATAOUT_STATUS"; 1062 case STATE_READY: 1063 return "STATE_READY"; 1064 case STATE_UNKNOWN: 1065 return "STATE_UNKNOWN"; 1066 } 1067 1068 NS_ERR("get_state_name: unknown state, BUG\n"); 1069 return NULL; 1070 } 1071 1072 /* 1073 * Check if command is valid. 1074 * 1075 * RETURNS: 1 if wrong command, 0 if right. 1076 */ 1077 static int check_command(int cmd) 1078 { 1079 switch (cmd) { 1080 1081 case NAND_CMD_READ0: 1082 case NAND_CMD_READ1: 1083 case NAND_CMD_READSTART: 1084 case NAND_CMD_PAGEPROG: 1085 case NAND_CMD_READOOB: 1086 case NAND_CMD_ERASE1: 1087 case NAND_CMD_STATUS: 1088 case NAND_CMD_SEQIN: 1089 case NAND_CMD_READID: 1090 case NAND_CMD_ERASE2: 1091 case NAND_CMD_RESET: 1092 case NAND_CMD_RNDOUT: 1093 case NAND_CMD_RNDOUTSTART: 1094 return 0; 1095 1096 default: 1097 return 1; 1098 } 1099 } 1100 1101 /* 1102 * Returns state after command is accepted by command number. 1103 */ 1104 static uint32_t get_state_by_command(unsigned command) 1105 { 1106 switch (command) { 1107 case NAND_CMD_READ0: 1108 return STATE_CMD_READ0; 1109 case NAND_CMD_READ1: 1110 return STATE_CMD_READ1; 1111 case NAND_CMD_PAGEPROG: 1112 return STATE_CMD_PAGEPROG; 1113 case NAND_CMD_READSTART: 1114 return STATE_CMD_READSTART; 1115 case NAND_CMD_READOOB: 1116 return STATE_CMD_READOOB; 1117 case NAND_CMD_ERASE1: 1118 return STATE_CMD_ERASE1; 1119 case NAND_CMD_STATUS: 1120 return STATE_CMD_STATUS; 1121 case NAND_CMD_SEQIN: 1122 return STATE_CMD_SEQIN; 1123 case NAND_CMD_READID: 1124 return STATE_CMD_READID; 1125 case NAND_CMD_ERASE2: 1126 return STATE_CMD_ERASE2; 1127 case NAND_CMD_RESET: 1128 return STATE_CMD_RESET; 1129 case NAND_CMD_RNDOUT: 1130 return STATE_CMD_RNDOUT; 1131 case NAND_CMD_RNDOUTSTART: 1132 return STATE_CMD_RNDOUTSTART; 1133 } 1134 1135 NS_ERR("get_state_by_command: unknown command, BUG\n"); 1136 return 0; 1137 } 1138 1139 /* 1140 * Move an address byte to the correspondent internal register. 1141 */ 1142 static inline void accept_addr_byte(struct nandsim *ns, u_char bt) 1143 { 1144 uint byte = (uint)bt; 1145 1146 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) 1147 ns->regs.column |= (byte << 8 * ns->regs.count); 1148 else { 1149 ns->regs.row |= (byte << 8 * (ns->regs.count - 1150 ns->geom.pgaddrbytes + 1151 ns->geom.secaddrbytes)); 1152 } 1153 1154 return; 1155 } 1156 1157 /* 1158 * Switch to STATE_READY state. 1159 */ 1160 static inline void switch_to_ready_state(struct nandsim *ns, u_char status) 1161 { 1162 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); 1163 1164 ns->state = STATE_READY; 1165 ns->nxstate = STATE_UNKNOWN; 1166 ns->op = NULL; 1167 ns->npstates = 0; 1168 ns->stateidx = 0; 1169 ns->regs.num = 0; 1170 ns->regs.count = 0; 1171 ns->regs.off = 0; 1172 ns->regs.row = 0; 1173 ns->regs.column = 0; 1174 ns->regs.status = status; 1175 } 1176 1177 /* 1178 * If the operation isn't known yet, try to find it in the global array 1179 * of supported operations. 1180 * 1181 * Operation can be unknown because of the following. 1182 * 1. New command was accepted and this is the first call to find the 1183 * correspondent states chain. In this case ns->npstates = 0; 1184 * 2. There are several operations which begin with the same command(s) 1185 * (for example program from the second half and read from the 1186 * second half operations both begin with the READ1 command). In this 1187 * case the ns->pstates[] array contains previous states. 1188 * 1189 * Thus, the function tries to find operation containing the following 1190 * states (if the 'flag' parameter is 0): 1191 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state 1192 * 1193 * If (one and only one) matching operation is found, it is accepted ( 1194 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is 1195 * zeroed). 1196 * 1197 * If there are several matches, the current state is pushed to the 1198 * ns->pstates. 1199 * 1200 * The operation can be unknown only while commands are input to the chip. 1201 * As soon as address command is accepted, the operation must be known. 1202 * In such situation the function is called with 'flag' != 0, and the 1203 * operation is searched using the following pattern: 1204 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> 1205 * 1206 * It is supposed that this pattern must either match one operation or 1207 * none. There can't be ambiguity in that case. 1208 * 1209 * If no matches found, the function does the following: 1210 * 1. if there are saved states present, try to ignore them and search 1211 * again only using the last command. If nothing was found, switch 1212 * to the STATE_READY state. 1213 * 2. if there are no saved states, switch to the STATE_READY state. 1214 * 1215 * RETURNS: -2 - no matched operations found. 1216 * -1 - several matches. 1217 * 0 - operation is found. 1218 */ 1219 static int find_operation(struct nandsim *ns, uint32_t flag) 1220 { 1221 int opsfound = 0; 1222 int i, j, idx = 0; 1223 1224 for (i = 0; i < NS_OPER_NUM; i++) { 1225 1226 int found = 1; 1227 1228 if (!(ns->options & ops[i].reqopts)) 1229 /* Ignore operations we can't perform */ 1230 continue; 1231 1232 if (flag) { 1233 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) 1234 continue; 1235 } else { 1236 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) 1237 continue; 1238 } 1239 1240 for (j = 0; j < ns->npstates; j++) 1241 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) 1242 && (ns->options & ops[idx].reqopts)) { 1243 found = 0; 1244 break; 1245 } 1246 1247 if (found) { 1248 idx = i; 1249 opsfound += 1; 1250 } 1251 } 1252 1253 if (opsfound == 1) { 1254 /* Exact match */ 1255 ns->op = &ops[idx].states[0]; 1256 if (flag) { 1257 /* 1258 * In this case the find_operation function was 1259 * called when address has just began input. But it isn't 1260 * yet fully input and the current state must 1261 * not be one of STATE_ADDR_*, but the STATE_ADDR_* 1262 * state must be the next state (ns->nxstate). 1263 */ 1264 ns->stateidx = ns->npstates - 1; 1265 } else { 1266 ns->stateidx = ns->npstates; 1267 } 1268 ns->npstates = 0; 1269 ns->state = ns->op[ns->stateidx]; 1270 ns->nxstate = ns->op[ns->stateidx + 1]; 1271 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", 1272 idx, get_state_name(ns->state), get_state_name(ns->nxstate)); 1273 return 0; 1274 } 1275 1276 if (opsfound == 0) { 1277 /* Nothing was found. Try to ignore previous commands (if any) and search again */ 1278 if (ns->npstates != 0) { 1279 NS_DBG("find_operation: no operation found, try again with state %s\n", 1280 get_state_name(ns->state)); 1281 ns->npstates = 0; 1282 return find_operation(ns, 0); 1283 1284 } 1285 NS_DBG("find_operation: no operations found\n"); 1286 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1287 return -2; 1288 } 1289 1290 if (flag) { 1291 /* This shouldn't happen */ 1292 NS_DBG("find_operation: BUG, operation must be known if address is input\n"); 1293 return -2; 1294 } 1295 1296 NS_DBG("find_operation: there is still ambiguity\n"); 1297 1298 ns->pstates[ns->npstates++] = ns->state; 1299 1300 return -1; 1301 } 1302 1303 static void put_pages(struct nandsim *ns) 1304 { 1305 int i; 1306 1307 for (i = 0; i < ns->held_cnt; i++) 1308 put_page(ns->held_pages[i]); 1309 } 1310 1311 /* Get page cache pages in advance to provide NOFS memory allocation */ 1312 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) 1313 { 1314 pgoff_t index, start_index, end_index; 1315 struct page *page; 1316 struct address_space *mapping = file->f_mapping; 1317 1318 start_index = pos >> PAGE_SHIFT; 1319 end_index = (pos + count - 1) >> PAGE_SHIFT; 1320 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) 1321 return -EINVAL; 1322 ns->held_cnt = 0; 1323 for (index = start_index; index <= end_index; index++) { 1324 page = find_get_page(mapping, index); 1325 if (page == NULL) { 1326 page = find_or_create_page(mapping, index, GFP_NOFS); 1327 if (page == NULL) { 1328 write_inode_now(mapping->host, 1); 1329 page = find_or_create_page(mapping, index, GFP_NOFS); 1330 } 1331 if (page == NULL) { 1332 put_pages(ns); 1333 return -ENOMEM; 1334 } 1335 unlock_page(page); 1336 } 1337 ns->held_pages[ns->held_cnt++] = page; 1338 } 1339 return 0; 1340 } 1341 1342 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1343 { 1344 ssize_t tx; 1345 int err; 1346 unsigned int noreclaim_flag; 1347 1348 err = get_pages(ns, file, count, pos); 1349 if (err) 1350 return err; 1351 noreclaim_flag = memalloc_noreclaim_save(); 1352 tx = kernel_read(file, buf, count, &pos); 1353 memalloc_noreclaim_restore(noreclaim_flag); 1354 put_pages(ns); 1355 return tx; 1356 } 1357 1358 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) 1359 { 1360 ssize_t tx; 1361 int err; 1362 unsigned int noreclaim_flag; 1363 1364 err = get_pages(ns, file, count, pos); 1365 if (err) 1366 return err; 1367 noreclaim_flag = memalloc_noreclaim_save(); 1368 tx = kernel_write(file, buf, count, &pos); 1369 memalloc_noreclaim_restore(noreclaim_flag); 1370 put_pages(ns); 1371 return tx; 1372 } 1373 1374 /* 1375 * Returns a pointer to the current page. 1376 */ 1377 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) 1378 { 1379 return &(ns->pages[ns->regs.row]); 1380 } 1381 1382 /* 1383 * Retuns a pointer to the current byte, within the current page. 1384 */ 1385 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) 1386 { 1387 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; 1388 } 1389 1390 static int do_read_error(struct nandsim *ns, int num) 1391 { 1392 unsigned int page_no = ns->regs.row; 1393 1394 if (read_error(page_no)) { 1395 prandom_bytes(ns->buf.byte, num); 1396 NS_WARN("simulating read error in page %u\n", page_no); 1397 return 1; 1398 } 1399 return 0; 1400 } 1401 1402 static void do_bit_flips(struct nandsim *ns, int num) 1403 { 1404 if (bitflips && prandom_u32() < (1 << 22)) { 1405 int flips = 1; 1406 if (bitflips > 1) 1407 flips = (prandom_u32() % (int) bitflips) + 1; 1408 while (flips--) { 1409 int pos = prandom_u32() % (num * 8); 1410 ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); 1411 NS_WARN("read_page: flipping bit %d in page %d " 1412 "reading from %d ecc: corrected=%u failed=%u\n", 1413 pos, ns->regs.row, ns->regs.column + ns->regs.off, 1414 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); 1415 } 1416 } 1417 } 1418 1419 /* 1420 * Fill the NAND buffer with data read from the specified page. 1421 */ 1422 static void read_page(struct nandsim *ns, int num) 1423 { 1424 union ns_mem *mypage; 1425 1426 if (ns->cfile) { 1427 if (!test_bit(ns->regs.row, ns->pages_written)) { 1428 NS_DBG("read_page: page %d not written\n", ns->regs.row); 1429 memset(ns->buf.byte, 0xFF, num); 1430 } else { 1431 loff_t pos; 1432 ssize_t tx; 1433 1434 NS_DBG("read_page: page %d written, reading from %d\n", 1435 ns->regs.row, ns->regs.column + ns->regs.off); 1436 if (do_read_error(ns, num)) 1437 return; 1438 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1439 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); 1440 if (tx != num) { 1441 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1442 return; 1443 } 1444 do_bit_flips(ns, num); 1445 } 1446 return; 1447 } 1448 1449 mypage = NS_GET_PAGE(ns); 1450 if (mypage->byte == NULL) { 1451 NS_DBG("read_page: page %d not allocated\n", ns->regs.row); 1452 memset(ns->buf.byte, 0xFF, num); 1453 } else { 1454 NS_DBG("read_page: page %d allocated, reading from %d\n", 1455 ns->regs.row, ns->regs.column + ns->regs.off); 1456 if (do_read_error(ns, num)) 1457 return; 1458 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); 1459 do_bit_flips(ns, num); 1460 } 1461 } 1462 1463 /* 1464 * Erase all pages in the specified sector. 1465 */ 1466 static void erase_sector(struct nandsim *ns) 1467 { 1468 union ns_mem *mypage; 1469 int i; 1470 1471 if (ns->cfile) { 1472 for (i = 0; i < ns->geom.pgsec; i++) 1473 if (__test_and_clear_bit(ns->regs.row + i, 1474 ns->pages_written)) { 1475 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); 1476 } 1477 return; 1478 } 1479 1480 mypage = NS_GET_PAGE(ns); 1481 for (i = 0; i < ns->geom.pgsec; i++) { 1482 if (mypage->byte != NULL) { 1483 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); 1484 kmem_cache_free(ns->nand_pages_slab, mypage->byte); 1485 mypage->byte = NULL; 1486 } 1487 mypage++; 1488 } 1489 } 1490 1491 /* 1492 * Program the specified page with the contents from the NAND buffer. 1493 */ 1494 static int prog_page(struct nandsim *ns, int num) 1495 { 1496 int i; 1497 union ns_mem *mypage; 1498 u_char *pg_off; 1499 1500 if (ns->cfile) { 1501 loff_t off; 1502 ssize_t tx; 1503 int all; 1504 1505 NS_DBG("prog_page: writing page %d\n", ns->regs.row); 1506 pg_off = ns->file_buf + ns->regs.column + ns->regs.off; 1507 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; 1508 if (!test_bit(ns->regs.row, ns->pages_written)) { 1509 all = 1; 1510 memset(ns->file_buf, 0xff, ns->geom.pgszoob); 1511 } else { 1512 all = 0; 1513 tx = read_file(ns, ns->cfile, pg_off, num, off); 1514 if (tx != num) { 1515 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); 1516 return -1; 1517 } 1518 } 1519 for (i = 0; i < num; i++) 1520 pg_off[i] &= ns->buf.byte[i]; 1521 if (all) { 1522 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; 1523 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); 1524 if (tx != ns->geom.pgszoob) { 1525 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1526 return -1; 1527 } 1528 __set_bit(ns->regs.row, ns->pages_written); 1529 } else { 1530 tx = write_file(ns, ns->cfile, pg_off, num, off); 1531 if (tx != num) { 1532 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); 1533 return -1; 1534 } 1535 } 1536 return 0; 1537 } 1538 1539 mypage = NS_GET_PAGE(ns); 1540 if (mypage->byte == NULL) { 1541 NS_DBG("prog_page: allocating page %d\n", ns->regs.row); 1542 /* 1543 * We allocate memory with GFP_NOFS because a flash FS may 1544 * utilize this. If it is holding an FS lock, then gets here, 1545 * then kernel memory alloc runs writeback which goes to the FS 1546 * again and deadlocks. This was seen in practice. 1547 */ 1548 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); 1549 if (mypage->byte == NULL) { 1550 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); 1551 return -1; 1552 } 1553 memset(mypage->byte, 0xFF, ns->geom.pgszoob); 1554 } 1555 1556 pg_off = NS_PAGE_BYTE_OFF(ns); 1557 for (i = 0; i < num; i++) 1558 pg_off[i] &= ns->buf.byte[i]; 1559 1560 return 0; 1561 } 1562 1563 /* 1564 * If state has any action bit, perform this action. 1565 * 1566 * RETURNS: 0 if success, -1 if error. 1567 */ 1568 static int do_state_action(struct nandsim *ns, uint32_t action) 1569 { 1570 int num; 1571 int busdiv = ns->busw == 8 ? 1 : 2; 1572 unsigned int erase_block_no, page_no; 1573 1574 action &= ACTION_MASK; 1575 1576 /* Check that page address input is correct */ 1577 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { 1578 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); 1579 return -1; 1580 } 1581 1582 switch (action) { 1583 1584 case ACTION_CPY: 1585 /* 1586 * Copy page data to the internal buffer. 1587 */ 1588 1589 /* Column shouldn't be very large */ 1590 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { 1591 NS_ERR("do_state_action: column number is too large\n"); 1592 break; 1593 } 1594 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1595 read_page(ns, num); 1596 1597 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", 1598 num, NS_RAW_OFFSET(ns) + ns->regs.off); 1599 1600 if (ns->regs.off == 0) 1601 NS_LOG("read page %d\n", ns->regs.row); 1602 else if (ns->regs.off < ns->geom.pgsz) 1603 NS_LOG("read page %d (second half)\n", ns->regs.row); 1604 else 1605 NS_LOG("read OOB of page %d\n", ns->regs.row); 1606 1607 NS_UDELAY(access_delay); 1608 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); 1609 1610 break; 1611 1612 case ACTION_SECERASE: 1613 /* 1614 * Erase sector. 1615 */ 1616 1617 if (ns->lines.wp) { 1618 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); 1619 return -1; 1620 } 1621 1622 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec 1623 || (ns->regs.row & ~(ns->geom.secsz - 1))) { 1624 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); 1625 return -1; 1626 } 1627 1628 ns->regs.row = (ns->regs.row << 1629 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; 1630 ns->regs.column = 0; 1631 1632 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); 1633 1634 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", 1635 ns->regs.row, NS_RAW_OFFSET(ns)); 1636 NS_LOG("erase sector %u\n", erase_block_no); 1637 1638 erase_sector(ns); 1639 1640 NS_MDELAY(erase_delay); 1641 1642 if (erase_block_wear) 1643 update_wear(erase_block_no); 1644 1645 if (erase_error(erase_block_no)) { 1646 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); 1647 return -1; 1648 } 1649 1650 break; 1651 1652 case ACTION_PRGPAGE: 1653 /* 1654 * Program page - move internal buffer data to the page. 1655 */ 1656 1657 if (ns->lines.wp) { 1658 NS_WARN("do_state_action: device is write-protected, programm\n"); 1659 return -1; 1660 } 1661 1662 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1663 if (num != ns->regs.count) { 1664 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", 1665 ns->regs.count, num); 1666 return -1; 1667 } 1668 1669 if (prog_page(ns, num) == -1) 1670 return -1; 1671 1672 page_no = ns->regs.row; 1673 1674 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", 1675 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); 1676 NS_LOG("programm page %d\n", ns->regs.row); 1677 1678 NS_UDELAY(programm_delay); 1679 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); 1680 1681 if (write_error(page_no)) { 1682 NS_WARN("simulating write failure in page %u\n", page_no); 1683 return -1; 1684 } 1685 1686 break; 1687 1688 case ACTION_ZEROOFF: 1689 NS_DBG("do_state_action: set internal offset to 0\n"); 1690 ns->regs.off = 0; 1691 break; 1692 1693 case ACTION_HALFOFF: 1694 if (!(ns->options & OPT_PAGE512_8BIT)) { 1695 NS_ERR("do_state_action: BUG! can't skip half of page for non-512" 1696 "byte page size 8x chips\n"); 1697 return -1; 1698 } 1699 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); 1700 ns->regs.off = ns->geom.pgsz/2; 1701 break; 1702 1703 case ACTION_OOBOFF: 1704 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); 1705 ns->regs.off = ns->geom.pgsz; 1706 break; 1707 1708 default: 1709 NS_DBG("do_state_action: BUG! unknown action\n"); 1710 } 1711 1712 return 0; 1713 } 1714 1715 /* 1716 * Switch simulator's state. 1717 */ 1718 static void switch_state(struct nandsim *ns) 1719 { 1720 if (ns->op) { 1721 /* 1722 * The current operation have already been identified. 1723 * Just follow the states chain. 1724 */ 1725 1726 ns->stateidx += 1; 1727 ns->state = ns->nxstate; 1728 ns->nxstate = ns->op[ns->stateidx + 1]; 1729 1730 NS_DBG("switch_state: operation is known, switch to the next state, " 1731 "state: %s, nxstate: %s\n", 1732 get_state_name(ns->state), get_state_name(ns->nxstate)); 1733 1734 /* See, whether we need to do some action */ 1735 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1736 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1737 return; 1738 } 1739 1740 } else { 1741 /* 1742 * We don't yet know which operation we perform. 1743 * Try to identify it. 1744 */ 1745 1746 /* 1747 * The only event causing the switch_state function to 1748 * be called with yet unknown operation is new command. 1749 */ 1750 ns->state = get_state_by_command(ns->regs.command); 1751 1752 NS_DBG("switch_state: operation is unknown, try to find it\n"); 1753 1754 if (find_operation(ns, 0) != 0) 1755 return; 1756 1757 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1758 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1759 return; 1760 } 1761 } 1762 1763 /* For 16x devices column means the page offset in words */ 1764 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { 1765 NS_DBG("switch_state: double the column number for 16x device\n"); 1766 ns->regs.column <<= 1; 1767 } 1768 1769 if (NS_STATE(ns->nxstate) == STATE_READY) { 1770 /* 1771 * The current state is the last. Return to STATE_READY 1772 */ 1773 1774 u_char status = NS_STATUS_OK(ns); 1775 1776 /* In case of data states, see if all bytes were input/output */ 1777 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) 1778 && ns->regs.count != ns->regs.num) { 1779 NS_WARN("switch_state: not all bytes were processed, %d left\n", 1780 ns->regs.num - ns->regs.count); 1781 status = NS_STATUS_FAILED(ns); 1782 } 1783 1784 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); 1785 1786 switch_to_ready_state(ns, status); 1787 1788 return; 1789 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { 1790 /* 1791 * If the next state is data input/output, switch to it now 1792 */ 1793 1794 ns->state = ns->nxstate; 1795 ns->nxstate = ns->op[++ns->stateidx + 1]; 1796 ns->regs.num = ns->regs.count = 0; 1797 1798 NS_DBG("switch_state: the next state is data I/O, switch, " 1799 "state: %s, nxstate: %s\n", 1800 get_state_name(ns->state), get_state_name(ns->nxstate)); 1801 1802 /* 1803 * Set the internal register to the count of bytes which 1804 * are expected to be input or output 1805 */ 1806 switch (NS_STATE(ns->state)) { 1807 case STATE_DATAIN: 1808 case STATE_DATAOUT: 1809 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; 1810 break; 1811 1812 case STATE_DATAOUT_ID: 1813 ns->regs.num = ns->geom.idbytes; 1814 break; 1815 1816 case STATE_DATAOUT_STATUS: 1817 ns->regs.count = ns->regs.num = 0; 1818 break; 1819 1820 default: 1821 NS_ERR("switch_state: BUG! unknown data state\n"); 1822 } 1823 1824 } else if (ns->nxstate & STATE_ADDR_MASK) { 1825 /* 1826 * If the next state is address input, set the internal 1827 * register to the number of expected address bytes 1828 */ 1829 1830 ns->regs.count = 0; 1831 1832 switch (NS_STATE(ns->nxstate)) { 1833 case STATE_ADDR_PAGE: 1834 ns->regs.num = ns->geom.pgaddrbytes; 1835 1836 break; 1837 case STATE_ADDR_SEC: 1838 ns->regs.num = ns->geom.secaddrbytes; 1839 break; 1840 1841 case STATE_ADDR_ZERO: 1842 ns->regs.num = 1; 1843 break; 1844 1845 case STATE_ADDR_COLUMN: 1846 /* Column address is always 2 bytes */ 1847 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; 1848 break; 1849 1850 default: 1851 NS_ERR("switch_state: BUG! unknown address state\n"); 1852 } 1853 } else { 1854 /* 1855 * Just reset internal counters. 1856 */ 1857 1858 ns->regs.num = 0; 1859 ns->regs.count = 0; 1860 } 1861 } 1862 1863 static u_char ns_nand_read_byte(struct nand_chip *chip) 1864 { 1865 struct nandsim *ns = nand_get_controller_data(chip); 1866 u_char outb = 0x00; 1867 1868 /* Sanity and correctness checks */ 1869 if (!ns->lines.ce) { 1870 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); 1871 return outb; 1872 } 1873 if (ns->lines.ale || ns->lines.cle) { 1874 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); 1875 return outb; 1876 } 1877 if (!(ns->state & STATE_DATAOUT_MASK)) { 1878 NS_WARN("read_byte: unexpected data output cycle, state is %s " 1879 "return %#x\n", get_state_name(ns->state), (uint)outb); 1880 return outb; 1881 } 1882 1883 /* Status register may be read as many times as it is wanted */ 1884 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { 1885 NS_DBG("read_byte: return %#x status\n", ns->regs.status); 1886 return ns->regs.status; 1887 } 1888 1889 /* Check if there is any data in the internal buffer which may be read */ 1890 if (ns->regs.count == ns->regs.num) { 1891 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); 1892 return outb; 1893 } 1894 1895 switch (NS_STATE(ns->state)) { 1896 case STATE_DATAOUT: 1897 if (ns->busw == 8) { 1898 outb = ns->buf.byte[ns->regs.count]; 1899 ns->regs.count += 1; 1900 } else { 1901 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); 1902 ns->regs.count += 2; 1903 } 1904 break; 1905 case STATE_DATAOUT_ID: 1906 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); 1907 outb = ns->ids[ns->regs.count]; 1908 ns->regs.count += 1; 1909 break; 1910 default: 1911 BUG(); 1912 } 1913 1914 if (ns->regs.count == ns->regs.num) { 1915 NS_DBG("read_byte: all bytes were read\n"); 1916 1917 if (NS_STATE(ns->nxstate) == STATE_READY) 1918 switch_state(ns); 1919 } 1920 1921 return outb; 1922 } 1923 1924 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte) 1925 { 1926 struct nandsim *ns = nand_get_controller_data(chip); 1927 1928 /* Sanity and correctness checks */ 1929 if (!ns->lines.ce) { 1930 NS_ERR("write_byte: chip is disabled, ignore write\n"); 1931 return; 1932 } 1933 if (ns->lines.ale && ns->lines.cle) { 1934 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); 1935 return; 1936 } 1937 1938 if (ns->lines.cle == 1) { 1939 /* 1940 * The byte written is a command. 1941 */ 1942 1943 if (byte == NAND_CMD_RESET) { 1944 NS_LOG("reset chip\n"); 1945 switch_to_ready_state(ns, NS_STATUS_OK(ns)); 1946 return; 1947 } 1948 1949 /* Check that the command byte is correct */ 1950 if (check_command(byte)) { 1951 NS_ERR("write_byte: unknown command %#x\n", (uint)byte); 1952 return; 1953 } 1954 1955 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS 1956 || NS_STATE(ns->state) == STATE_DATAOUT) { 1957 int row = ns->regs.row; 1958 1959 switch_state(ns); 1960 if (byte == NAND_CMD_RNDOUT) 1961 ns->regs.row = row; 1962 } 1963 1964 /* Check if chip is expecting command */ 1965 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { 1966 /* Do not warn if only 2 id bytes are read */ 1967 if (!(ns->regs.command == NAND_CMD_READID && 1968 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { 1969 /* 1970 * We are in situation when something else (not command) 1971 * was expected but command was input. In this case ignore 1972 * previous command(s)/state(s) and accept the last one. 1973 */ 1974 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " 1975 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); 1976 } 1977 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1978 } 1979 1980 NS_DBG("command byte corresponding to %s state accepted\n", 1981 get_state_name(get_state_by_command(byte))); 1982 ns->regs.command = byte; 1983 switch_state(ns); 1984 1985 } else if (ns->lines.ale == 1) { 1986 /* 1987 * The byte written is an address. 1988 */ 1989 1990 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { 1991 1992 NS_DBG("write_byte: operation isn't known yet, identify it\n"); 1993 1994 if (find_operation(ns, 1) < 0) 1995 return; 1996 1997 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { 1998 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 1999 return; 2000 } 2001 2002 ns->regs.count = 0; 2003 switch (NS_STATE(ns->nxstate)) { 2004 case STATE_ADDR_PAGE: 2005 ns->regs.num = ns->geom.pgaddrbytes; 2006 break; 2007 case STATE_ADDR_SEC: 2008 ns->regs.num = ns->geom.secaddrbytes; 2009 break; 2010 case STATE_ADDR_ZERO: 2011 ns->regs.num = 1; 2012 break; 2013 default: 2014 BUG(); 2015 } 2016 } 2017 2018 /* Check that chip is expecting address */ 2019 if (!(ns->nxstate & STATE_ADDR_MASK)) { 2020 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " 2021 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); 2022 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2023 return; 2024 } 2025 2026 /* Check if this is expected byte */ 2027 if (ns->regs.count == ns->regs.num) { 2028 NS_ERR("write_byte: no more address bytes expected\n"); 2029 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2030 return; 2031 } 2032 2033 accept_addr_byte(ns, byte); 2034 2035 ns->regs.count += 1; 2036 2037 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", 2038 (uint)byte, ns->regs.count, ns->regs.num); 2039 2040 if (ns->regs.count == ns->regs.num) { 2041 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); 2042 switch_state(ns); 2043 } 2044 2045 } else { 2046 /* 2047 * The byte written is an input data. 2048 */ 2049 2050 /* Check that chip is expecting data input */ 2051 if (!(ns->state & STATE_DATAIN_MASK)) { 2052 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " 2053 "switch to %s\n", (uint)byte, 2054 get_state_name(ns->state), get_state_name(STATE_READY)); 2055 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2056 return; 2057 } 2058 2059 /* Check if this is expected byte */ 2060 if (ns->regs.count == ns->regs.num) { 2061 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", 2062 ns->regs.num); 2063 return; 2064 } 2065 2066 if (ns->busw == 8) { 2067 ns->buf.byte[ns->regs.count] = byte; 2068 ns->regs.count += 1; 2069 } else { 2070 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); 2071 ns->regs.count += 2; 2072 } 2073 } 2074 2075 return; 2076 } 2077 2078 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf, 2079 int len) 2080 { 2081 struct nandsim *ns = nand_get_controller_data(chip); 2082 2083 /* Check that chip is expecting data input */ 2084 if (!(ns->state & STATE_DATAIN_MASK)) { 2085 NS_ERR("write_buf: data input isn't expected, state is %s, " 2086 "switch to STATE_READY\n", get_state_name(ns->state)); 2087 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2088 return; 2089 } 2090 2091 /* Check if these are expected bytes */ 2092 if (ns->regs.count + len > ns->regs.num) { 2093 NS_ERR("write_buf: too many input bytes\n"); 2094 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2095 return; 2096 } 2097 2098 memcpy(ns->buf.byte + ns->regs.count, buf, len); 2099 ns->regs.count += len; 2100 2101 if (ns->regs.count == ns->regs.num) { 2102 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); 2103 } 2104 } 2105 2106 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 2107 { 2108 struct nandsim *ns = nand_get_controller_data(chip); 2109 2110 /* Sanity and correctness checks */ 2111 if (!ns->lines.ce) { 2112 NS_ERR("read_buf: chip is disabled\n"); 2113 return; 2114 } 2115 if (ns->lines.ale || ns->lines.cle) { 2116 NS_ERR("read_buf: ALE or CLE pin is high\n"); 2117 return; 2118 } 2119 if (!(ns->state & STATE_DATAOUT_MASK)) { 2120 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", 2121 get_state_name(ns->state)); 2122 return; 2123 } 2124 2125 if (NS_STATE(ns->state) != STATE_DATAOUT) { 2126 int i; 2127 2128 for (i = 0; i < len; i++) 2129 buf[i] = ns_nand_read_byte(chip); 2130 2131 return; 2132 } 2133 2134 /* Check if these are expected bytes */ 2135 if (ns->regs.count + len > ns->regs.num) { 2136 NS_ERR("read_buf: too many bytes to read\n"); 2137 switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); 2138 return; 2139 } 2140 2141 memcpy(buf, ns->buf.byte + ns->regs.count, len); 2142 ns->regs.count += len; 2143 2144 if (ns->regs.count == ns->regs.num) { 2145 if (NS_STATE(ns->nxstate) == STATE_READY) 2146 switch_state(ns); 2147 } 2148 2149 return; 2150 } 2151 2152 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op, 2153 bool check_only) 2154 { 2155 int i; 2156 unsigned int op_id; 2157 const struct nand_op_instr *instr = NULL; 2158 struct nandsim *ns = nand_get_controller_data(chip); 2159 2160 ns->lines.ce = 1; 2161 2162 for (op_id = 0; op_id < op->ninstrs; op_id++) { 2163 instr = &op->instrs[op_id]; 2164 ns->lines.cle = 0; 2165 ns->lines.ale = 0; 2166 2167 switch (instr->type) { 2168 case NAND_OP_CMD_INSTR: 2169 ns->lines.cle = 1; 2170 ns_nand_write_byte(chip, instr->ctx.cmd.opcode); 2171 break; 2172 case NAND_OP_ADDR_INSTR: 2173 ns->lines.ale = 1; 2174 for (i = 0; i < instr->ctx.addr.naddrs; i++) 2175 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]); 2176 break; 2177 case NAND_OP_DATA_IN_INSTR: 2178 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); 2179 break; 2180 case NAND_OP_DATA_OUT_INSTR: 2181 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); 2182 break; 2183 case NAND_OP_WAITRDY_INSTR: 2184 /* we are always ready */ 2185 break; 2186 } 2187 } 2188 2189 return 0; 2190 } 2191 2192 static int ns_attach_chip(struct nand_chip *chip) 2193 { 2194 unsigned int eccsteps, eccbytes; 2195 2196 if (!bch) 2197 return 0; 2198 2199 if (!mtd_nand_has_bch()) { 2200 NS_ERR("BCH ECC support is disabled\n"); 2201 return -EINVAL; 2202 } 2203 2204 /* Use 512-byte ecc blocks */ 2205 eccsteps = nsmtd->writesize / 512; 2206 eccbytes = ((bch * 13) + 7) / 8; 2207 2208 /* Do not bother supporting small page devices */ 2209 if (nsmtd->oobsize < 64 || !eccsteps) { 2210 NS_ERR("BCH not available on small page devices\n"); 2211 return -EINVAL; 2212 } 2213 2214 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) { 2215 NS_ERR("Invalid BCH value %u\n", bch); 2216 return -EINVAL; 2217 } 2218 2219 chip->ecc.mode = NAND_ECC_SOFT; 2220 chip->ecc.algo = NAND_ECC_BCH; 2221 chip->ecc.size = 512; 2222 chip->ecc.strength = bch; 2223 chip->ecc.bytes = eccbytes; 2224 2225 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); 2226 2227 return 0; 2228 } 2229 2230 static const struct nand_controller_ops ns_controller_ops = { 2231 .attach_chip = ns_attach_chip, 2232 .exec_op = ns_exec_op, 2233 }; 2234 2235 /* 2236 * Module initialization function 2237 */ 2238 static int __init ns_init_module(void) 2239 { 2240 struct nand_chip *chip; 2241 struct nandsim *ns; 2242 int retval = -ENOMEM, i; 2243 2244 if (bus_width != 8 && bus_width != 16) { 2245 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); 2246 return -EINVAL; 2247 } 2248 2249 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL); 2250 if (!ns) { 2251 NS_ERR("unable to allocate core structures.\n"); 2252 return -ENOMEM; 2253 } 2254 chip = &ns->chip; 2255 nsmtd = nand_to_mtd(chip); 2256 nand_set_controller_data(chip, (void *)ns); 2257 2258 chip->ecc.mode = NAND_ECC_SOFT; 2259 chip->ecc.algo = NAND_ECC_HAMMING; 2260 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ 2261 /* and 'badblocks' parameters to work */ 2262 chip->options |= NAND_SKIP_BBTSCAN; 2263 2264 switch (bbt) { 2265 case 2: 2266 chip->bbt_options |= NAND_BBT_NO_OOB; 2267 /* fall through */ 2268 case 1: 2269 chip->bbt_options |= NAND_BBT_USE_FLASH; 2270 /* fall through */ 2271 case 0: 2272 break; 2273 default: 2274 NS_ERR("bbt has to be 0..2\n"); 2275 retval = -EINVAL; 2276 goto error; 2277 } 2278 /* 2279 * Perform minimum nandsim structure initialization to handle 2280 * the initial ID read command correctly 2281 */ 2282 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) 2283 ns->geom.idbytes = 8; 2284 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) 2285 ns->geom.idbytes = 6; 2286 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) 2287 ns->geom.idbytes = 4; 2288 else 2289 ns->geom.idbytes = 2; 2290 ns->regs.status = NS_STATUS_OK(ns); 2291 ns->nxstate = STATE_UNKNOWN; 2292 ns->options |= OPT_PAGE512; /* temporary value */ 2293 memcpy(ns->ids, id_bytes, sizeof(ns->ids)); 2294 if (bus_width == 16) { 2295 ns->busw = 16; 2296 chip->options |= NAND_BUSWIDTH_16; 2297 } 2298 2299 nsmtd->owner = THIS_MODULE; 2300 2301 if ((retval = parse_weakblocks()) != 0) 2302 goto error; 2303 2304 if ((retval = parse_weakpages()) != 0) 2305 goto error; 2306 2307 if ((retval = parse_gravepages()) != 0) 2308 goto error; 2309 2310 nand_controller_init(&ns->base); 2311 ns->base.ops = &ns_controller_ops; 2312 chip->controller = &ns->base; 2313 2314 retval = nand_scan(chip, 1); 2315 if (retval) { 2316 NS_ERR("Could not scan NAND Simulator device\n"); 2317 goto error; 2318 } 2319 2320 if (overridesize) { 2321 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; 2322 struct nand_memory_organization *memorg; 2323 u64 targetsize; 2324 2325 memorg = nanddev_get_memorg(&chip->base); 2326 2327 if (new_size >> overridesize != nsmtd->erasesize) { 2328 NS_ERR("overridesize is too big\n"); 2329 retval = -EINVAL; 2330 goto err_exit; 2331 } 2332 2333 /* N.B. This relies on nand_scan not doing anything with the size before we change it */ 2334 nsmtd->size = new_size; 2335 memorg->eraseblocks_per_lun = 1 << overridesize; 2336 targetsize = nanddev_target_size(&chip->base); 2337 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; 2338 chip->pagemask = (targetsize >> chip->page_shift) - 1; 2339 } 2340 2341 if ((retval = setup_wear_reporting(nsmtd)) != 0) 2342 goto err_exit; 2343 2344 if ((retval = init_nandsim(nsmtd)) != 0) 2345 goto err_exit; 2346 2347 if ((retval = nand_create_bbt(chip)) != 0) 2348 goto err_exit; 2349 2350 if ((retval = parse_badblocks(ns, nsmtd)) != 0) 2351 goto err_exit; 2352 2353 /* Register NAND partitions */ 2354 retval = mtd_device_register(nsmtd, &ns->partitions[0], 2355 ns->nbparts); 2356 if (retval != 0) 2357 goto err_exit; 2358 2359 if ((retval = nandsim_debugfs_create(ns)) != 0) 2360 goto err_exit; 2361 2362 return 0; 2363 2364 err_exit: 2365 free_nandsim(ns); 2366 nand_release(chip); 2367 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) 2368 kfree(ns->partitions[i].name); 2369 error: 2370 kfree(ns); 2371 free_lists(); 2372 2373 return retval; 2374 } 2375 2376 module_init(ns_init_module); 2377 2378 /* 2379 * Module clean-up function 2380 */ 2381 static void __exit ns_cleanup_module(void) 2382 { 2383 struct nand_chip *chip = mtd_to_nand(nsmtd); 2384 struct nandsim *ns = nand_get_controller_data(chip); 2385 int i; 2386 2387 free_nandsim(ns); /* Free nandsim private resources */ 2388 nand_release(chip); /* Unregister driver */ 2389 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) 2390 kfree(ns->partitions[i].name); 2391 kfree(ns); /* Free other structures */ 2392 free_lists(); 2393 } 2394 2395 module_exit(ns_cleanup_module); 2396 2397 MODULE_LICENSE ("GPL"); 2398 MODULE_AUTHOR ("Artem B. Bityuckiy"); 2399 MODULE_DESCRIPTION ("The NAND flash simulator"); 2400