xref: /openbmc/linux/drivers/mtd/nand/raw/nand_micron.c (revision 4fc4dca8)
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/slab.h>
19 
20 #include "internals.h"
21 
22 /*
23  * Special Micron status bit 3 indicates that the block has been
24  * corrected by on-die ECC and should be rewritten.
25  */
26 #define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)
27 
28 /*
29  * On chips with 8-bit ECC and additional bit can be used to distinguish
30  * cases where a errors were corrected without needing a rewrite
31  *
32  * Bit 4 Bit 3 Bit 0 Description
33  * ----- ----- ----- -----------
34  * 0     0     0     No Errors
35  * 0     0     1     Multiple uncorrected errors
36  * 0     1     0     4 - 6 errors corrected, recommend rewrite
37  * 0     1     1     Reserved
38  * 1     0     0     1 - 3 errors corrected
39  * 1     0     1     Reserved
40  * 1     1     0     7 - 8 errors corrected, recommend rewrite
41  */
42 #define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
43 #define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
44 #define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
45 #define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
46 #define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
47 
48 struct nand_onfi_vendor_micron {
49 	u8 two_plane_read;
50 	u8 read_cache;
51 	u8 read_unique_id;
52 	u8 dq_imped;
53 	u8 dq_imped_num_settings;
54 	u8 dq_imped_feat_addr;
55 	u8 rb_pulldown_strength;
56 	u8 rb_pulldown_strength_feat_addr;
57 	u8 rb_pulldown_strength_num_settings;
58 	u8 otp_mode;
59 	u8 otp_page_start;
60 	u8 otp_data_prot_addr;
61 	u8 otp_num_pages;
62 	u8 otp_feat_addr;
63 	u8 read_retry_options;
64 	u8 reserved[72];
65 	u8 param_revision;
66 } __packed;
67 
68 struct micron_on_die_ecc {
69 	bool forced;
70 	bool enabled;
71 	void *rawbuf;
72 };
73 
74 struct micron_nand {
75 	struct micron_on_die_ecc ecc;
76 };
77 
78 static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
79 {
80 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
81 
82 	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
83 }
84 
85 /*
86  * Configure chip properties from Micron vendor-specific ONFI table
87  */
88 static int micron_nand_onfi_init(struct nand_chip *chip)
89 {
90 	struct nand_parameters *p = &chip->parameters;
91 
92 	if (p->onfi) {
93 		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
94 
95 		chip->read_retries = micron->read_retry_options;
96 		chip->setup_read_retry = micron_nand_setup_read_retry;
97 	}
98 
99 	if (p->supports_set_get_features) {
100 		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101 		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102 		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103 		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
104 	}
105 
106 	return 0;
107 }
108 
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
110 					      int section,
111 					      struct mtd_oob_region *oobregion)
112 {
113 	if (section >= 4)
114 		return -ERANGE;
115 
116 	oobregion->offset = (section * 16) + 8;
117 	oobregion->length = 8;
118 
119 	return 0;
120 }
121 
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
123 					       int section,
124 					       struct mtd_oob_region *oobregion)
125 {
126 	if (section >= 4)
127 		return -ERANGE;
128 
129 	oobregion->offset = (section * 16) + 2;
130 	oobregion->length = 6;
131 
132 	return 0;
133 }
134 
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
136 	.ecc = micron_nand_on_die_4_ooblayout_ecc,
137 	.free = micron_nand_on_die_4_ooblayout_free,
138 };
139 
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
141 					      int section,
142 					      struct mtd_oob_region *oobregion)
143 {
144 	struct nand_chip *chip = mtd_to_nand(mtd);
145 
146 	if (section)
147 		return -ERANGE;
148 
149 	oobregion->offset = mtd->oobsize - chip->ecc.total;
150 	oobregion->length = chip->ecc.total;
151 
152 	return 0;
153 }
154 
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
156 					       int section,
157 					       struct mtd_oob_region *oobregion)
158 {
159 	struct nand_chip *chip = mtd_to_nand(mtd);
160 
161 	if (section)
162 		return -ERANGE;
163 
164 	oobregion->offset = 2;
165 	oobregion->length = mtd->oobsize - chip->ecc.total - 2;
166 
167 	return 0;
168 }
169 
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
171 	.ecc = micron_nand_on_die_8_ooblayout_ecc,
172 	.free = micron_nand_on_die_8_ooblayout_free,
173 };
174 
175 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
176 {
177 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
178 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179 	int ret;
180 
181 	if (micron->ecc.forced)
182 		return 0;
183 
184 	if (micron->ecc.enabled == enable)
185 		return 0;
186 
187 	if (enable)
188 		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
189 
190 	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
191 	if (!ret)
192 		micron->ecc.enabled = enable;
193 
194 	return ret;
195 }
196 
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
198 					   void *buf, int page,
199 					   int oob_required)
200 {
201 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
202 	struct mtd_info *mtd = nand_to_mtd(chip);
203 	unsigned int step, max_bitflips = 0;
204 	int ret;
205 
206 	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
207 		if (status & NAND_STATUS_FAIL)
208 			mtd->ecc_stats.failed++;
209 
210 		return 0;
211 	}
212 
213 	/*
214 	 * The internal ECC doesn't tell us the number of bitflips that have
215 	 * been corrected, but tells us if it recommends to rewrite the block.
216 	 * If it's the case, we need to read the page in raw mode and compare
217 	 * its content to the corrected version to extract the actual number of
218 	 * bitflips.
219 	 * But before we do that, we must make sure we have all OOB bytes read
220 	 * in non-raw mode, even if the user did not request those bytes.
221 	 */
222 	if (!oob_required) {
223 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
224 					false);
225 		if (ret)
226 			return ret;
227 	}
228 
229 	micron_nand_on_die_ecc_setup(chip, false);
230 
231 	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
232 				mtd->writesize + mtd->oobsize);
233 	if (ret)
234 		return ret;
235 
236 	for (step = 0; step < chip->ecc.steps; step++) {
237 		unsigned int offs, i, nbitflips = 0;
238 		u8 *rawbuf, *corrbuf;
239 
240 		offs = step * chip->ecc.size;
241 		rawbuf = micron->ecc.rawbuf + offs;
242 		corrbuf = buf + offs;
243 
244 		for (i = 0; i < chip->ecc.size; i++)
245 			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
246 
247 		offs = (step * 16) + 4;
248 		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
249 		corrbuf = chip->oob_poi + offs;
250 
251 		for (i = 0; i < chip->ecc.bytes + 4; i++)
252 			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
253 
254 		if (WARN_ON(nbitflips > chip->ecc.strength))
255 			return -EINVAL;
256 
257 		max_bitflips = max(nbitflips, max_bitflips);
258 		mtd->ecc_stats.corrected += nbitflips;
259 	}
260 
261 	return max_bitflips;
262 }
263 
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
265 {
266 	struct mtd_info *mtd = nand_to_mtd(chip);
267 
268 	/*
269 	 * With 8/512 we have more information but still don't know precisely
270 	 * how many bit-flips were seen.
271 	 */
272 	switch (status & NAND_ECC_STATUS_MASK) {
273 	case NAND_ECC_STATUS_UNCORRECTABLE:
274 		mtd->ecc_stats.failed++;
275 		return 0;
276 	case NAND_ECC_STATUS_1_3_CORRECTED:
277 		mtd->ecc_stats.corrected += 3;
278 		return 3;
279 	case NAND_ECC_STATUS_4_6_CORRECTED:
280 		mtd->ecc_stats.corrected += 6;
281 		/* rewrite recommended */
282 		return 6;
283 	case NAND_ECC_STATUS_7_8_CORRECTED:
284 		mtd->ecc_stats.corrected += 8;
285 		/* rewrite recommended */
286 		return 8;
287 	default:
288 		return 0;
289 	}
290 }
291 
292 static int
293 micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
294 				 int oob_required, int page)
295 {
296 	struct mtd_info *mtd = nand_to_mtd(chip);
297 	u8 status;
298 	int ret, max_bitflips = 0;
299 
300 	ret = micron_nand_on_die_ecc_setup(chip, true);
301 	if (ret)
302 		return ret;
303 
304 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
305 	if (ret)
306 		goto out;
307 
308 	ret = nand_status_op(chip, &status);
309 	if (ret)
310 		goto out;
311 
312 	ret = nand_exit_status_op(chip);
313 	if (ret)
314 		goto out;
315 
316 	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
317 	if (!ret && oob_required)
318 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
319 					false);
320 
321 	if (chip->ecc.strength == 4)
322 		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
323 							       buf, page,
324 							       oob_required);
325 	else
326 		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
327 
328 out:
329 	micron_nand_on_die_ecc_setup(chip, false);
330 
331 	return ret ? ret : max_bitflips;
332 }
333 
334 static int
335 micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
336 				  int oob_required, int page)
337 {
338 	int ret;
339 
340 	ret = micron_nand_on_die_ecc_setup(chip, true);
341 	if (ret)
342 		return ret;
343 
344 	ret = nand_write_page_raw(chip, buf, oob_required, page);
345 	micron_nand_on_die_ecc_setup(chip, false);
346 
347 	return ret;
348 }
349 
350 enum {
351 	/* The NAND flash doesn't support on-die ECC */
352 	MICRON_ON_DIE_UNSUPPORTED,
353 
354 	/*
355 	 * The NAND flash supports on-die ECC and it can be
356 	 * enabled/disabled by a set features command.
357 	 */
358 	MICRON_ON_DIE_SUPPORTED,
359 
360 	/*
361 	 * The NAND flash supports on-die ECC, and it cannot be
362 	 * disabled.
363 	 */
364 	MICRON_ON_DIE_MANDATORY,
365 };
366 
367 #define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
368 #define MICRON_ID_ECC_ENABLED		BIT(7)
369 
370 /*
371  * Try to detect if the NAND support on-die ECC. To do this, we enable
372  * the feature, and read back if it has been enabled as expected. We
373  * also check if it can be disabled, because some Micron NANDs do not
374  * allow disabling the on-die ECC and we don't support such NANDs for
375  * now.
376  *
377  * This function also has the side effect of disabling on-die ECC if
378  * it had been left enabled by the firmware/bootloader.
379  */
380 static int micron_supports_on_die_ecc(struct nand_chip *chip)
381 {
382 	u8 id[5];
383 	int ret;
384 
385 	if (!chip->parameters.onfi)
386 		return MICRON_ON_DIE_UNSUPPORTED;
387 
388 	if (nanddev_bits_per_cell(&chip->base) != 1)
389 		return MICRON_ON_DIE_UNSUPPORTED;
390 
391 	/*
392 	 * We only support on-die ECC of 4/512 or 8/512
393 	 */
394 	if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
395 		return MICRON_ON_DIE_UNSUPPORTED;
396 
397 	/* 0x2 means on-die ECC is available. */
398 	if (chip->id.len != 5 ||
399 	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
400 		return MICRON_ON_DIE_UNSUPPORTED;
401 
402 	ret = micron_nand_on_die_ecc_setup(chip, true);
403 	if (ret)
404 		return MICRON_ON_DIE_UNSUPPORTED;
405 
406 	ret = nand_readid_op(chip, 0, id, sizeof(id));
407 	if (ret)
408 		return MICRON_ON_DIE_UNSUPPORTED;
409 
410 	if (!(id[4] & MICRON_ID_ECC_ENABLED))
411 		return MICRON_ON_DIE_UNSUPPORTED;
412 
413 	ret = micron_nand_on_die_ecc_setup(chip, false);
414 	if (ret)
415 		return MICRON_ON_DIE_UNSUPPORTED;
416 
417 	ret = nand_readid_op(chip, 0, id, sizeof(id));
418 	if (ret)
419 		return MICRON_ON_DIE_UNSUPPORTED;
420 
421 	if (id[4] & MICRON_ID_ECC_ENABLED)
422 		return MICRON_ON_DIE_MANDATORY;
423 
424 	/*
425 	 * We only support on-die ECC of 4/512 or 8/512
426 	 */
427 	if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
428 		return MICRON_ON_DIE_UNSUPPORTED;
429 
430 	return MICRON_ON_DIE_SUPPORTED;
431 }
432 
433 static int micron_nand_init(struct nand_chip *chip)
434 {
435 	struct mtd_info *mtd = nand_to_mtd(chip);
436 	struct micron_nand *micron;
437 	int ondie;
438 	int ret;
439 
440 	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
441 	if (!micron)
442 		return -ENOMEM;
443 
444 	nand_set_manufacturer_data(chip, micron);
445 
446 	ret = micron_nand_onfi_init(chip);
447 	if (ret)
448 		goto err_free_manuf_data;
449 
450 	if (mtd->writesize == 2048)
451 		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
452 
453 	ondie = micron_supports_on_die_ecc(chip);
454 
455 	if (ondie == MICRON_ON_DIE_MANDATORY &&
456 	    chip->ecc.mode != NAND_ECC_ON_DIE) {
457 		pr_err("On-die ECC forcefully enabled, not supported\n");
458 		ret = -EINVAL;
459 		goto err_free_manuf_data;
460 	}
461 
462 	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
463 		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
464 			pr_err("On-die ECC selected but not supported\n");
465 			ret = -EINVAL;
466 			goto err_free_manuf_data;
467 		}
468 
469 		if (ondie == MICRON_ON_DIE_MANDATORY) {
470 			micron->ecc.forced = true;
471 			micron->ecc.enabled = true;
472 		}
473 
474 		/*
475 		 * In case of 4bit on-die ECC, we need a buffer to store a
476 		 * page dumped in raw mode so that we can compare its content
477 		 * to the same page after ECC correction happened and extract
478 		 * the real number of bitflips from this comparison.
479 		 * That's not needed for 8-bit ECC, because the status expose
480 		 * a better approximation of the number of bitflips in a page.
481 		 */
482 		if (chip->base.eccreq.strength == 4) {
483 			micron->ecc.rawbuf = kmalloc(mtd->writesize +
484 						     mtd->oobsize,
485 						     GFP_KERNEL);
486 			if (!micron->ecc.rawbuf) {
487 				ret = -ENOMEM;
488 				goto err_free_manuf_data;
489 			}
490 		}
491 
492 		if (chip->base.eccreq.strength == 4)
493 			mtd_set_ooblayout(mtd,
494 					  &micron_nand_on_die_4_ooblayout_ops);
495 		else
496 			mtd_set_ooblayout(mtd,
497 					  &micron_nand_on_die_8_ooblayout_ops);
498 
499 		chip->ecc.bytes = chip->base.eccreq.strength * 2;
500 		chip->ecc.size = 512;
501 		chip->ecc.strength = chip->base.eccreq.strength;
502 		chip->ecc.algo = NAND_ECC_BCH;
503 		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
504 		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
505 
506 		if (ondie == MICRON_ON_DIE_MANDATORY) {
507 			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
508 			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
509 		} else {
510 			chip->ecc.read_page_raw = nand_read_page_raw;
511 			chip->ecc.write_page_raw = nand_write_page_raw;
512 		}
513 	}
514 
515 	return 0;
516 
517 err_free_manuf_data:
518 	kfree(micron->ecc.rawbuf);
519 	kfree(micron);
520 
521 	return ret;
522 }
523 
524 static void micron_nand_cleanup(struct nand_chip *chip)
525 {
526 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
527 
528 	kfree(micron->ecc.rawbuf);
529 	kfree(micron);
530 }
531 
532 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
533 					 struct nand_onfi_params *p)
534 {
535 	/*
536 	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
537 	 * revision number field of the ONFI parameter page. Assume ONFI
538 	 * version 1.0 if the revision number is 00 00.
539 	 */
540 	if (le16_to_cpu(p->revision) == 0)
541 		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
542 }
543 
544 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
545 	.init = micron_nand_init,
546 	.cleanup = micron_nand_cleanup,
547 	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
548 };
549