xref: /openbmc/linux/drivers/mtd/nand/raw/nand_micron.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/mtd/rawnand.h>
19 #include <linux/slab.h>
20 
21 /*
22  * Special Micron status bit 3 indicates that the block has been
23  * corrected by on-die ECC and should be rewritten.
24  */
25 #define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)
26 
27 /*
28  * On chips with 8-bit ECC and additional bit can be used to distinguish
29  * cases where a errors were corrected without needing a rewrite
30  *
31  * Bit 4 Bit 3 Bit 0 Description
32  * ----- ----- ----- -----------
33  * 0     0     0     No Errors
34  * 0     0     1     Multiple uncorrected errors
35  * 0     1     0     4 - 6 errors corrected, recommend rewrite
36  * 0     1     1     Reserved
37  * 1     0     0     1 - 3 errors corrected
38  * 1     0     1     Reserved
39  * 1     1     0     7 - 8 errors corrected, recommend rewrite
40  */
41 #define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
42 #define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
43 #define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
44 #define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
45 #define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
46 
47 struct nand_onfi_vendor_micron {
48 	u8 two_plane_read;
49 	u8 read_cache;
50 	u8 read_unique_id;
51 	u8 dq_imped;
52 	u8 dq_imped_num_settings;
53 	u8 dq_imped_feat_addr;
54 	u8 rb_pulldown_strength;
55 	u8 rb_pulldown_strength_feat_addr;
56 	u8 rb_pulldown_strength_num_settings;
57 	u8 otp_mode;
58 	u8 otp_page_start;
59 	u8 otp_data_prot_addr;
60 	u8 otp_num_pages;
61 	u8 otp_feat_addr;
62 	u8 read_retry_options;
63 	u8 reserved[72];
64 	u8 param_revision;
65 } __packed;
66 
67 struct micron_on_die_ecc {
68 	bool forced;
69 	bool enabled;
70 	void *rawbuf;
71 };
72 
73 struct micron_nand {
74 	struct micron_on_die_ecc ecc;
75 };
76 
77 static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
78 {
79 	struct nand_chip *chip = mtd_to_nand(mtd);
80 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
81 
82 	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
83 }
84 
85 /*
86  * Configure chip properties from Micron vendor-specific ONFI table
87  */
88 static int micron_nand_onfi_init(struct nand_chip *chip)
89 {
90 	struct nand_parameters *p = &chip->parameters;
91 
92 	if (p->onfi) {
93 		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
94 
95 		chip->read_retries = micron->read_retry_options;
96 		chip->setup_read_retry = micron_nand_setup_read_retry;
97 	}
98 
99 	if (p->supports_set_get_features) {
100 		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101 		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102 		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103 		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
104 	}
105 
106 	return 0;
107 }
108 
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
110 					      int section,
111 					      struct mtd_oob_region *oobregion)
112 {
113 	if (section >= 4)
114 		return -ERANGE;
115 
116 	oobregion->offset = (section * 16) + 8;
117 	oobregion->length = 8;
118 
119 	return 0;
120 }
121 
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
123 					       int section,
124 					       struct mtd_oob_region *oobregion)
125 {
126 	if (section >= 4)
127 		return -ERANGE;
128 
129 	oobregion->offset = (section * 16) + 2;
130 	oobregion->length = 6;
131 
132 	return 0;
133 }
134 
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
136 	.ecc = micron_nand_on_die_4_ooblayout_ecc,
137 	.free = micron_nand_on_die_4_ooblayout_free,
138 };
139 
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
141 					      int section,
142 					      struct mtd_oob_region *oobregion)
143 {
144 	struct nand_chip *chip = mtd_to_nand(mtd);
145 
146 	if (section)
147 		return -ERANGE;
148 
149 	oobregion->offset = mtd->oobsize - chip->ecc.total;
150 	oobregion->length = chip->ecc.total;
151 
152 	return 0;
153 }
154 
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
156 					       int section,
157 					       struct mtd_oob_region *oobregion)
158 {
159 	struct nand_chip *chip = mtd_to_nand(mtd);
160 
161 	if (section)
162 		return -ERANGE;
163 
164 	oobregion->offset = 2;
165 	oobregion->length = mtd->oobsize - chip->ecc.total - 2;
166 
167 	return 0;
168 }
169 
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
171 	.ecc = micron_nand_on_die_8_ooblayout_ecc,
172 	.free = micron_nand_on_die_8_ooblayout_free,
173 };
174 
175 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
176 {
177 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
178 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179 	int ret;
180 
181 	if (micron->ecc.forced)
182 		return 0;
183 
184 	if (micron->ecc.enabled == enable)
185 		return 0;
186 
187 	if (enable)
188 		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
189 
190 	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
191 	if (!ret)
192 		micron->ecc.enabled = enable;
193 
194 	return ret;
195 }
196 
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
198 					   void *buf, int page,
199 					   int oob_required)
200 {
201 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
202 	struct mtd_info *mtd = nand_to_mtd(chip);
203 	unsigned int step, max_bitflips = 0;
204 	int ret;
205 
206 	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
207 		if (status & NAND_STATUS_FAIL)
208 			mtd->ecc_stats.failed++;
209 
210 		return 0;
211 	}
212 
213 	/*
214 	 * The internal ECC doesn't tell us the number of bitflips that have
215 	 * been corrected, but tells us if it recommends to rewrite the block.
216 	 * If it's the case, we need to read the page in raw mode and compare
217 	 * its content to the corrected version to extract the actual number of
218 	 * bitflips.
219 	 * But before we do that, we must make sure we have all OOB bytes read
220 	 * in non-raw mode, even if the user did not request those bytes.
221 	 */
222 	if (!oob_required) {
223 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
224 					false);
225 		if (ret)
226 			return ret;
227 	}
228 
229 	micron_nand_on_die_ecc_setup(chip, false);
230 
231 	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
232 				mtd->writesize + mtd->oobsize);
233 	if (ret)
234 		return ret;
235 
236 	for (step = 0; step < chip->ecc.steps; step++) {
237 		unsigned int offs, i, nbitflips = 0;
238 		u8 *rawbuf, *corrbuf;
239 
240 		offs = step * chip->ecc.size;
241 		rawbuf = micron->ecc.rawbuf + offs;
242 		corrbuf = buf + offs;
243 
244 		for (i = 0; i < chip->ecc.size; i++)
245 			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
246 
247 		offs = (step * 16) + 4;
248 		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
249 		corrbuf = chip->oob_poi + offs;
250 
251 		for (i = 0; i < chip->ecc.bytes + 4; i++)
252 			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
253 
254 		if (WARN_ON(nbitflips > chip->ecc.strength))
255 			return -EINVAL;
256 
257 		max_bitflips = max(nbitflips, max_bitflips);
258 		mtd->ecc_stats.corrected += nbitflips;
259 	}
260 
261 	return max_bitflips;
262 }
263 
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
265 {
266 	struct mtd_info *mtd = nand_to_mtd(chip);
267 
268 	/*
269 	 * With 8/512 we have more information but still don't know precisely
270 	 * how many bit-flips were seen.
271 	 */
272 	switch (status & NAND_ECC_STATUS_MASK) {
273 	case NAND_ECC_STATUS_UNCORRECTABLE:
274 		mtd->ecc_stats.failed++;
275 		return 0;
276 	case NAND_ECC_STATUS_1_3_CORRECTED:
277 		mtd->ecc_stats.corrected += 3;
278 		return 3;
279 	case NAND_ECC_STATUS_4_6_CORRECTED:
280 		mtd->ecc_stats.corrected += 6;
281 		/* rewrite recommended */
282 		return 6;
283 	case NAND_ECC_STATUS_7_8_CORRECTED:
284 		mtd->ecc_stats.corrected += 8;
285 		/* rewrite recommended */
286 		return 8;
287 	default:
288 		return 0;
289 	}
290 }
291 
292 static int
293 micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
294 				 uint8_t *buf, int oob_required,
295 				 int page)
296 {
297 	u8 status;
298 	int ret, max_bitflips = 0;
299 
300 	ret = micron_nand_on_die_ecc_setup(chip, true);
301 	if (ret)
302 		return ret;
303 
304 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
305 	if (ret)
306 		goto out;
307 
308 	ret = nand_status_op(chip, &status);
309 	if (ret)
310 		goto out;
311 
312 	ret = nand_exit_status_op(chip);
313 	if (ret)
314 		goto out;
315 
316 	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
317 	if (!ret && oob_required)
318 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
319 					false);
320 
321 	if (chip->ecc.strength == 4)
322 		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
323 							       buf, page,
324 							       oob_required);
325 	else
326 		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
327 
328 out:
329 	micron_nand_on_die_ecc_setup(chip, false);
330 
331 	return ret ? ret : max_bitflips;
332 }
333 
334 static int
335 micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
336 				  const uint8_t *buf, int oob_required,
337 				  int page)
338 {
339 	int ret;
340 
341 	ret = micron_nand_on_die_ecc_setup(chip, true);
342 	if (ret)
343 		return ret;
344 
345 	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
346 	micron_nand_on_die_ecc_setup(chip, false);
347 
348 	return ret;
349 }
350 
351 enum {
352 	/* The NAND flash doesn't support on-die ECC */
353 	MICRON_ON_DIE_UNSUPPORTED,
354 
355 	/*
356 	 * The NAND flash supports on-die ECC and it can be
357 	 * enabled/disabled by a set features command.
358 	 */
359 	MICRON_ON_DIE_SUPPORTED,
360 
361 	/*
362 	 * The NAND flash supports on-die ECC, and it cannot be
363 	 * disabled.
364 	 */
365 	MICRON_ON_DIE_MANDATORY,
366 };
367 
368 #define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
369 #define MICRON_ID_ECC_ENABLED		BIT(7)
370 
371 /*
372  * Try to detect if the NAND support on-die ECC. To do this, we enable
373  * the feature, and read back if it has been enabled as expected. We
374  * also check if it can be disabled, because some Micron NANDs do not
375  * allow disabling the on-die ECC and we don't support such NANDs for
376  * now.
377  *
378  * This function also has the side effect of disabling on-die ECC if
379  * it had been left enabled by the firmware/bootloader.
380  */
381 static int micron_supports_on_die_ecc(struct nand_chip *chip)
382 {
383 	u8 id[5];
384 	int ret;
385 
386 	if (!chip->parameters.onfi)
387 		return MICRON_ON_DIE_UNSUPPORTED;
388 
389 	if (chip->bits_per_cell != 1)
390 		return MICRON_ON_DIE_UNSUPPORTED;
391 
392 	/*
393 	 * We only support on-die ECC of 4/512 or 8/512
394 	 */
395 	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
396 		return MICRON_ON_DIE_UNSUPPORTED;
397 
398 	/* 0x2 means on-die ECC is available. */
399 	if (chip->id.len != 5 ||
400 	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
401 		return MICRON_ON_DIE_UNSUPPORTED;
402 
403 	ret = micron_nand_on_die_ecc_setup(chip, true);
404 	if (ret)
405 		return MICRON_ON_DIE_UNSUPPORTED;
406 
407 	ret = nand_readid_op(chip, 0, id, sizeof(id));
408 	if (ret)
409 		return MICRON_ON_DIE_UNSUPPORTED;
410 
411 	if (!(id[4] & MICRON_ID_ECC_ENABLED))
412 		return MICRON_ON_DIE_UNSUPPORTED;
413 
414 	ret = micron_nand_on_die_ecc_setup(chip, false);
415 	if (ret)
416 		return MICRON_ON_DIE_UNSUPPORTED;
417 
418 	ret = nand_readid_op(chip, 0, id, sizeof(id));
419 	if (ret)
420 		return MICRON_ON_DIE_UNSUPPORTED;
421 
422 	if (id[4] & MICRON_ID_ECC_ENABLED)
423 		return MICRON_ON_DIE_MANDATORY;
424 
425 	/*
426 	 * We only support on-die ECC of 4/512 or 8/512
427 	 */
428 	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
429 		return MICRON_ON_DIE_UNSUPPORTED;
430 
431 	return MICRON_ON_DIE_SUPPORTED;
432 }
433 
434 static int micron_nand_init(struct nand_chip *chip)
435 {
436 	struct mtd_info *mtd = nand_to_mtd(chip);
437 	struct micron_nand *micron;
438 	int ondie;
439 	int ret;
440 
441 	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
442 	if (!micron)
443 		return -ENOMEM;
444 
445 	nand_set_manufacturer_data(chip, micron);
446 
447 	ret = micron_nand_onfi_init(chip);
448 	if (ret)
449 		goto err_free_manuf_data;
450 
451 	if (mtd->writesize == 2048)
452 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
453 
454 	ondie = micron_supports_on_die_ecc(chip);
455 
456 	if (ondie == MICRON_ON_DIE_MANDATORY &&
457 	    chip->ecc.mode != NAND_ECC_ON_DIE) {
458 		pr_err("On-die ECC forcefully enabled, not supported\n");
459 		ret = -EINVAL;
460 		goto err_free_manuf_data;
461 	}
462 
463 	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
464 		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
465 			pr_err("On-die ECC selected but not supported\n");
466 			ret = -EINVAL;
467 			goto err_free_manuf_data;
468 		}
469 
470 		if (ondie == MICRON_ON_DIE_MANDATORY) {
471 			micron->ecc.forced = true;
472 			micron->ecc.enabled = true;
473 		}
474 
475 		/*
476 		 * In case of 4bit on-die ECC, we need a buffer to store a
477 		 * page dumped in raw mode so that we can compare its content
478 		 * to the same page after ECC correction happened and extract
479 		 * the real number of bitflips from this comparison.
480 		 * That's not needed for 8-bit ECC, because the status expose
481 		 * a better approximation of the number of bitflips in a page.
482 		 */
483 		if (chip->ecc_strength_ds == 4) {
484 			micron->ecc.rawbuf = kmalloc(mtd->writesize +
485 						     mtd->oobsize,
486 						     GFP_KERNEL);
487 			if (!micron->ecc.rawbuf) {
488 				ret = -ENOMEM;
489 				goto err_free_manuf_data;
490 			}
491 		}
492 
493 		if (chip->ecc_strength_ds == 4)
494 			mtd_set_ooblayout(mtd,
495 					  &micron_nand_on_die_4_ooblayout_ops);
496 		else
497 			mtd_set_ooblayout(mtd,
498 					  &micron_nand_on_die_8_ooblayout_ops);
499 
500 		chip->ecc.bytes = chip->ecc_strength_ds * 2;
501 		chip->ecc.size = 512;
502 		chip->ecc.strength = chip->ecc_strength_ds;
503 		chip->ecc.algo = NAND_ECC_BCH;
504 		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
505 		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
506 
507 		if (ondie == MICRON_ON_DIE_MANDATORY) {
508 			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
509 			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
510 		} else {
511 			chip->ecc.read_page_raw = nand_read_page_raw;
512 			chip->ecc.write_page_raw = nand_write_page_raw;
513 		}
514 	}
515 
516 	return 0;
517 
518 err_free_manuf_data:
519 	kfree(micron->ecc.rawbuf);
520 	kfree(micron);
521 
522 	return ret;
523 }
524 
525 static void micron_nand_cleanup(struct nand_chip *chip)
526 {
527 	struct micron_nand *micron = nand_get_manufacturer_data(chip);
528 
529 	kfree(micron->ecc.rawbuf);
530 	kfree(micron);
531 }
532 
533 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
534 					 struct nand_onfi_params *p)
535 {
536 	/*
537 	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
538 	 * revision number field of the ONFI parameter page. Assume ONFI
539 	 * version 1.0 if the revision number is 00 00.
540 	 */
541 	if (le16_to_cpu(p->revision) == 0)
542 		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
543 }
544 
545 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
546 	.init = micron_nand_init,
547 	.cleanup = micron_nand_cleanup,
548 	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
549 };
550