1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 4 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 5 * 6 * Credits: 7 * David Woodhouse for adding multichip support 8 * 9 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 10 * rework for 2K page size chips 11 * 12 * This file contains all legacy helpers/code that should be removed 13 * at some point. 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/io.h> 18 #include <linux/nmi.h> 19 20 #include "internals.h" 21 22 /** 23 * nand_read_byte - [DEFAULT] read one byte from the chip 24 * @chip: NAND chip object 25 * 26 * Default read function for 8bit buswidth 27 */ 28 static uint8_t nand_read_byte(struct nand_chip *chip) 29 { 30 return readb(chip->legacy.IO_ADDR_R); 31 } 32 33 /** 34 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip 35 * @chip: NAND chip object 36 * 37 * Default read function for 16bit buswidth with endianness conversion. 38 * 39 */ 40 static uint8_t nand_read_byte16(struct nand_chip *chip) 41 { 42 return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R)); 43 } 44 45 /** 46 * nand_select_chip - [DEFAULT] control CE line 47 * @chip: NAND chip object 48 * @chipnr: chipnumber to select, -1 for deselect 49 * 50 * Default select function for 1 chip devices. 51 */ 52 static void nand_select_chip(struct nand_chip *chip, int chipnr) 53 { 54 switch (chipnr) { 55 case -1: 56 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 57 0 | NAND_CTRL_CHANGE); 58 break; 59 case 0: 60 break; 61 62 default: 63 BUG(); 64 } 65 } 66 67 /** 68 * nand_write_byte - [DEFAULT] write single byte to chip 69 * @chip: NAND chip object 70 * @byte: value to write 71 * 72 * Default function to write a byte to I/O[7:0] 73 */ 74 static void nand_write_byte(struct nand_chip *chip, uint8_t byte) 75 { 76 chip->legacy.write_buf(chip, &byte, 1); 77 } 78 79 /** 80 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 81 * @chip: NAND chip object 82 * @byte: value to write 83 * 84 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. 85 */ 86 static void nand_write_byte16(struct nand_chip *chip, uint8_t byte) 87 { 88 uint16_t word = byte; 89 90 /* 91 * It's not entirely clear what should happen to I/O[15:8] when writing 92 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: 93 * 94 * When the host supports a 16-bit bus width, only data is 95 * transferred at the 16-bit width. All address and command line 96 * transfers shall use only the lower 8-bits of the data bus. During 97 * command transfers, the host may place any value on the upper 98 * 8-bits of the data bus. During address transfers, the host shall 99 * set the upper 8-bits of the data bus to 00h. 100 * 101 * One user of the write_byte callback is nand_set_features. The 102 * four parameters are specified to be written to I/O[7:0], but this is 103 * neither an address nor a command transfer. Let's assume a 0 on the 104 * upper I/O lines is OK. 105 */ 106 chip->legacy.write_buf(chip, (uint8_t *)&word, 2); 107 } 108 109 /** 110 * nand_write_buf - [DEFAULT] write buffer to chip 111 * @chip: NAND chip object 112 * @buf: data buffer 113 * @len: number of bytes to write 114 * 115 * Default write function for 8bit buswidth. 116 */ 117 static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) 118 { 119 iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len); 120 } 121 122 /** 123 * nand_read_buf - [DEFAULT] read chip data into buffer 124 * @chip: NAND chip object 125 * @buf: buffer to store date 126 * @len: number of bytes to read 127 * 128 * Default read function for 8bit buswidth. 129 */ 130 static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 131 { 132 ioread8_rep(chip->legacy.IO_ADDR_R, buf, len); 133 } 134 135 /** 136 * nand_write_buf16 - [DEFAULT] write buffer to chip 137 * @chip: NAND chip object 138 * @buf: data buffer 139 * @len: number of bytes to write 140 * 141 * Default write function for 16bit buswidth. 142 */ 143 static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf, 144 int len) 145 { 146 u16 *p = (u16 *) buf; 147 148 iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1); 149 } 150 151 /** 152 * nand_read_buf16 - [DEFAULT] read chip data into buffer 153 * @chip: NAND chip object 154 * @buf: buffer to store date 155 * @len: number of bytes to read 156 * 157 * Default read function for 16bit buswidth. 158 */ 159 static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len) 160 { 161 u16 *p = (u16 *) buf; 162 163 ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1); 164 } 165 166 /** 167 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 168 * @chip: NAND chip object 169 * @timeo: Timeout 170 * 171 * Helper function for nand_wait_ready used when needing to wait in interrupt 172 * context. 173 */ 174 static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo) 175 { 176 int i; 177 178 /* Wait for the device to get ready */ 179 for (i = 0; i < timeo; i++) { 180 if (chip->legacy.dev_ready(chip)) 181 break; 182 touch_softlockup_watchdog(); 183 mdelay(1); 184 } 185 } 186 187 /** 188 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 189 * @chip: NAND chip object 190 * 191 * Wait for the ready pin after a command, and warn if a timeout occurs. 192 */ 193 void nand_wait_ready(struct nand_chip *chip) 194 { 195 unsigned long timeo = 400; 196 197 if (in_interrupt() || oops_in_progress) 198 return panic_nand_wait_ready(chip, timeo); 199 200 /* Wait until command is processed or timeout occurs */ 201 timeo = jiffies + msecs_to_jiffies(timeo); 202 do { 203 if (chip->legacy.dev_ready(chip)) 204 return; 205 cond_resched(); 206 } while (time_before(jiffies, timeo)); 207 208 if (!chip->legacy.dev_ready(chip)) 209 pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); 210 } 211 EXPORT_SYMBOL_GPL(nand_wait_ready); 212 213 /** 214 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. 215 * @chip: NAND chip object 216 * @timeo: Timeout in ms 217 * 218 * Wait for status ready (i.e. command done) or timeout. 219 */ 220 static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo) 221 { 222 int ret; 223 224 timeo = jiffies + msecs_to_jiffies(timeo); 225 do { 226 u8 status; 227 228 ret = nand_read_data_op(chip, &status, sizeof(status), true); 229 if (ret) 230 return; 231 232 if (status & NAND_STATUS_READY) 233 break; 234 touch_softlockup_watchdog(); 235 } while (time_before(jiffies, timeo)); 236 }; 237 238 /** 239 * nand_command - [DEFAULT] Send command to NAND device 240 * @chip: NAND chip object 241 * @command: the command to be sent 242 * @column: the column address for this command, -1 if none 243 * @page_addr: the page address for this command, -1 if none 244 * 245 * Send command to NAND device. This function is used for small page devices 246 * (512 Bytes per page). 247 */ 248 static void nand_command(struct nand_chip *chip, unsigned int command, 249 int column, int page_addr) 250 { 251 struct mtd_info *mtd = nand_to_mtd(chip); 252 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; 253 254 /* Write out the command to the device */ 255 if (command == NAND_CMD_SEQIN) { 256 int readcmd; 257 258 if (column >= mtd->writesize) { 259 /* OOB area */ 260 column -= mtd->writesize; 261 readcmd = NAND_CMD_READOOB; 262 } else if (column < 256) { 263 /* First 256 bytes --> READ0 */ 264 readcmd = NAND_CMD_READ0; 265 } else { 266 column -= 256; 267 readcmd = NAND_CMD_READ1; 268 } 269 chip->legacy.cmd_ctrl(chip, readcmd, ctrl); 270 ctrl &= ~NAND_CTRL_CHANGE; 271 } 272 if (command != NAND_CMD_NONE) 273 chip->legacy.cmd_ctrl(chip, command, ctrl); 274 275 /* Address cycle, when necessary */ 276 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; 277 /* Serially input address */ 278 if (column != -1) { 279 /* Adjust columns for 16 bit buswidth */ 280 if (chip->options & NAND_BUSWIDTH_16 && 281 !nand_opcode_8bits(command)) 282 column >>= 1; 283 chip->legacy.cmd_ctrl(chip, column, ctrl); 284 ctrl &= ~NAND_CTRL_CHANGE; 285 } 286 if (page_addr != -1) { 287 chip->legacy.cmd_ctrl(chip, page_addr, ctrl); 288 ctrl &= ~NAND_CTRL_CHANGE; 289 chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl); 290 if (chip->options & NAND_ROW_ADDR_3) 291 chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl); 292 } 293 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 294 NAND_NCE | NAND_CTRL_CHANGE); 295 296 /* 297 * Program and erase have their own busy handlers status and sequential 298 * in needs no delay 299 */ 300 switch (command) { 301 302 case NAND_CMD_NONE: 303 case NAND_CMD_PAGEPROG: 304 case NAND_CMD_ERASE1: 305 case NAND_CMD_ERASE2: 306 case NAND_CMD_SEQIN: 307 case NAND_CMD_STATUS: 308 case NAND_CMD_READID: 309 case NAND_CMD_SET_FEATURES: 310 return; 311 312 case NAND_CMD_RESET: 313 if (chip->legacy.dev_ready) 314 break; 315 udelay(chip->legacy.chip_delay); 316 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, 317 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 318 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 319 NAND_NCE | NAND_CTRL_CHANGE); 320 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 321 nand_wait_status_ready(chip, 250); 322 return; 323 324 /* This applies to read commands */ 325 case NAND_CMD_READ0: 326 /* 327 * READ0 is sometimes used to exit GET STATUS mode. When this 328 * is the case no address cycles are requested, and we can use 329 * this information to detect that we should not wait for the 330 * device to be ready. 331 */ 332 if (column == -1 && page_addr == -1) 333 return; 334 /* fall through */ 335 336 default: 337 /* 338 * If we don't have access to the busy pin, we apply the given 339 * command delay 340 */ 341 if (!chip->legacy.dev_ready) { 342 udelay(chip->legacy.chip_delay); 343 return; 344 } 345 } 346 /* 347 * Apply this short delay always to ensure that we do wait tWB in 348 * any case on any machine. 349 */ 350 ndelay(100); 351 352 nand_wait_ready(chip); 353 } 354 355 static void nand_ccs_delay(struct nand_chip *chip) 356 { 357 /* 358 * The controller already takes care of waiting for tCCS when the RNDIN 359 * or RNDOUT command is sent, return directly. 360 */ 361 if (!(chip->options & NAND_WAIT_TCCS)) 362 return; 363 364 /* 365 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns 366 * (which should be safe for all NANDs). 367 */ 368 if (nand_has_setup_data_iface(chip)) 369 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); 370 else 371 ndelay(500); 372 } 373 374 /** 375 * nand_command_lp - [DEFAULT] Send command to NAND large page device 376 * @chip: NAND chip object 377 * @command: the command to be sent 378 * @column: the column address for this command, -1 if none 379 * @page_addr: the page address for this command, -1 if none 380 * 381 * Send command to NAND device. This is the version for the new large page 382 * devices. We don't have the separate regions as we have in the small page 383 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. 384 */ 385 static void nand_command_lp(struct nand_chip *chip, unsigned int command, 386 int column, int page_addr) 387 { 388 struct mtd_info *mtd = nand_to_mtd(chip); 389 390 /* Emulate NAND_CMD_READOOB */ 391 if (command == NAND_CMD_READOOB) { 392 column += mtd->writesize; 393 command = NAND_CMD_READ0; 394 } 395 396 /* Command latch cycle */ 397 if (command != NAND_CMD_NONE) 398 chip->legacy.cmd_ctrl(chip, command, 399 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 400 401 if (column != -1 || page_addr != -1) { 402 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; 403 404 /* Serially input address */ 405 if (column != -1) { 406 /* Adjust columns for 16 bit buswidth */ 407 if (chip->options & NAND_BUSWIDTH_16 && 408 !nand_opcode_8bits(command)) 409 column >>= 1; 410 chip->legacy.cmd_ctrl(chip, column, ctrl); 411 ctrl &= ~NAND_CTRL_CHANGE; 412 413 /* Only output a single addr cycle for 8bits opcodes. */ 414 if (!nand_opcode_8bits(command)) 415 chip->legacy.cmd_ctrl(chip, column >> 8, ctrl); 416 } 417 if (page_addr != -1) { 418 chip->legacy.cmd_ctrl(chip, page_addr, ctrl); 419 chip->legacy.cmd_ctrl(chip, page_addr >> 8, 420 NAND_NCE | NAND_ALE); 421 if (chip->options & NAND_ROW_ADDR_3) 422 chip->legacy.cmd_ctrl(chip, page_addr >> 16, 423 NAND_NCE | NAND_ALE); 424 } 425 } 426 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 427 NAND_NCE | NAND_CTRL_CHANGE); 428 429 /* 430 * Program and erase have their own busy handlers status, sequential 431 * in and status need no delay. 432 */ 433 switch (command) { 434 435 case NAND_CMD_NONE: 436 case NAND_CMD_CACHEDPROG: 437 case NAND_CMD_PAGEPROG: 438 case NAND_CMD_ERASE1: 439 case NAND_CMD_ERASE2: 440 case NAND_CMD_SEQIN: 441 case NAND_CMD_STATUS: 442 case NAND_CMD_READID: 443 case NAND_CMD_SET_FEATURES: 444 return; 445 446 case NAND_CMD_RNDIN: 447 nand_ccs_delay(chip); 448 return; 449 450 case NAND_CMD_RESET: 451 if (chip->legacy.dev_ready) 452 break; 453 udelay(chip->legacy.chip_delay); 454 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, 455 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 456 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 457 NAND_NCE | NAND_CTRL_CHANGE); 458 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 459 nand_wait_status_ready(chip, 250); 460 return; 461 462 case NAND_CMD_RNDOUT: 463 /* No ready / busy check necessary */ 464 chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART, 465 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 466 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 467 NAND_NCE | NAND_CTRL_CHANGE); 468 469 nand_ccs_delay(chip); 470 return; 471 472 case NAND_CMD_READ0: 473 /* 474 * READ0 is sometimes used to exit GET STATUS mode. When this 475 * is the case no address cycles are requested, and we can use 476 * this information to detect that READSTART should not be 477 * issued. 478 */ 479 if (column == -1 && page_addr == -1) 480 return; 481 482 chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART, 483 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 484 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 485 NAND_NCE | NAND_CTRL_CHANGE); 486 487 /* fall through - This applies to read commands */ 488 default: 489 /* 490 * If we don't have access to the busy pin, we apply the given 491 * command delay. 492 */ 493 if (!chip->legacy.dev_ready) { 494 udelay(chip->legacy.chip_delay); 495 return; 496 } 497 } 498 499 /* 500 * Apply this short delay always to ensure that we do wait tWB in 501 * any case on any machine. 502 */ 503 ndelay(100); 504 505 nand_wait_ready(chip); 506 } 507 508 /** 509 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP 510 * @chip: nand chip info structure 511 * @addr: feature address. 512 * @subfeature_param: the subfeature parameters, a four bytes array. 513 * 514 * Should be used by NAND controller drivers that do not support the SET/GET 515 * FEATURES operations. 516 */ 517 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 518 u8 *subfeature_param) 519 { 520 return -ENOTSUPP; 521 } 522 EXPORT_SYMBOL(nand_get_set_features_notsupp); 523 524 /** 525 * nand_wait - [DEFAULT] wait until the command is done 526 * @chip: NAND chip structure 527 * 528 * Wait for command done. This applies to erase and program only. 529 */ 530 static int nand_wait(struct nand_chip *chip) 531 { 532 533 unsigned long timeo = 400; 534 u8 status; 535 int ret; 536 537 /* 538 * Apply this short delay always to ensure that we do wait tWB in any 539 * case on any machine. 540 */ 541 ndelay(100); 542 543 ret = nand_status_op(chip, NULL); 544 if (ret) 545 return ret; 546 547 if (in_interrupt() || oops_in_progress) 548 panic_nand_wait(chip, timeo); 549 else { 550 timeo = jiffies + msecs_to_jiffies(timeo); 551 do { 552 if (chip->legacy.dev_ready) { 553 if (chip->legacy.dev_ready(chip)) 554 break; 555 } else { 556 ret = nand_read_data_op(chip, &status, 557 sizeof(status), true); 558 if (ret) 559 return ret; 560 561 if (status & NAND_STATUS_READY) 562 break; 563 } 564 cond_resched(); 565 } while (time_before(jiffies, timeo)); 566 } 567 568 ret = nand_read_data_op(chip, &status, sizeof(status), true); 569 if (ret) 570 return ret; 571 572 /* This can happen if in case of timeout or buggy dev_ready */ 573 WARN_ON(!(status & NAND_STATUS_READY)); 574 return status; 575 } 576 577 void nand_legacy_set_defaults(struct nand_chip *chip) 578 { 579 unsigned int busw = chip->options & NAND_BUSWIDTH_16; 580 581 if (nand_has_exec_op(chip)) 582 return; 583 584 /* check for proper chip_delay setup, set 20us if not */ 585 if (!chip->legacy.chip_delay) 586 chip->legacy.chip_delay = 20; 587 588 /* check, if a user supplied command function given */ 589 if (!chip->legacy.cmdfunc) 590 chip->legacy.cmdfunc = nand_command; 591 592 /* check, if a user supplied wait function given */ 593 if (chip->legacy.waitfunc == NULL) 594 chip->legacy.waitfunc = nand_wait; 595 596 if (!chip->legacy.select_chip) 597 chip->legacy.select_chip = nand_select_chip; 598 599 /* If called twice, pointers that depend on busw may need to be reset */ 600 if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte) 601 chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte; 602 if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf) 603 chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf; 604 if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte) 605 chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte; 606 if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf) 607 chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf; 608 } 609 610 void nand_legacy_adjust_cmdfunc(struct nand_chip *chip) 611 { 612 struct mtd_info *mtd = nand_to_mtd(chip); 613 614 /* Do not replace user supplied command function! */ 615 if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command) 616 chip->legacy.cmdfunc = nand_command_lp; 617 } 618 619 int nand_legacy_check_hooks(struct nand_chip *chip) 620 { 621 /* 622 * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is 623 * not populated. 624 */ 625 if (nand_has_exec_op(chip)) 626 return 0; 627 628 /* 629 * Default functions assigned for ->legacy.cmdfunc() and 630 * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be 631 * populated. 632 */ 633 if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) && 634 !chip->legacy.cmd_ctrl) { 635 pr_err("->legacy.cmd_ctrl() should be provided\n"); 636 return -EINVAL; 637 } 638 639 return 0; 640 } 641