1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 4 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 5 * 6 * Credits: 7 * David Woodhouse for adding multichip support 8 * 9 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 10 * rework for 2K page size chips 11 * 12 * This file contains all legacy helpers/code that should be removed 13 * at some point. 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/io.h> 18 #include <linux/nmi.h> 19 20 #include "internals.h" 21 22 /** 23 * nand_read_byte - [DEFAULT] read one byte from the chip 24 * @chip: NAND chip object 25 * 26 * Default read function for 8bit buswidth 27 */ 28 static uint8_t nand_read_byte(struct nand_chip *chip) 29 { 30 return readb(chip->legacy.IO_ADDR_R); 31 } 32 33 /** 34 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip 35 * @chip: NAND chip object 36 * 37 * Default read function for 16bit buswidth with endianness conversion. 38 * 39 */ 40 static uint8_t nand_read_byte16(struct nand_chip *chip) 41 { 42 return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R)); 43 } 44 45 /** 46 * nand_select_chip - [DEFAULT] control CE line 47 * @chip: NAND chip object 48 * @chipnr: chipnumber to select, -1 for deselect 49 * 50 * Default select function for 1 chip devices. 51 */ 52 static void nand_select_chip(struct nand_chip *chip, int chipnr) 53 { 54 switch (chipnr) { 55 case -1: 56 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 57 0 | NAND_CTRL_CHANGE); 58 break; 59 case 0: 60 break; 61 62 default: 63 BUG(); 64 } 65 } 66 67 /** 68 * nand_write_byte - [DEFAULT] write single byte to chip 69 * @chip: NAND chip object 70 * @byte: value to write 71 * 72 * Default function to write a byte to I/O[7:0] 73 */ 74 static void nand_write_byte(struct nand_chip *chip, uint8_t byte) 75 { 76 chip->legacy.write_buf(chip, &byte, 1); 77 } 78 79 /** 80 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 81 * @chip: NAND chip object 82 * @byte: value to write 83 * 84 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. 85 */ 86 static void nand_write_byte16(struct nand_chip *chip, uint8_t byte) 87 { 88 uint16_t word = byte; 89 90 /* 91 * It's not entirely clear what should happen to I/O[15:8] when writing 92 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: 93 * 94 * When the host supports a 16-bit bus width, only data is 95 * transferred at the 16-bit width. All address and command line 96 * transfers shall use only the lower 8-bits of the data bus. During 97 * command transfers, the host may place any value on the upper 98 * 8-bits of the data bus. During address transfers, the host shall 99 * set the upper 8-bits of the data bus to 00h. 100 * 101 * One user of the write_byte callback is nand_set_features. The 102 * four parameters are specified to be written to I/O[7:0], but this is 103 * neither an address nor a command transfer. Let's assume a 0 on the 104 * upper I/O lines is OK. 105 */ 106 chip->legacy.write_buf(chip, (uint8_t *)&word, 2); 107 } 108 109 /** 110 * nand_write_buf - [DEFAULT] write buffer to chip 111 * @chip: NAND chip object 112 * @buf: data buffer 113 * @len: number of bytes to write 114 * 115 * Default write function for 8bit buswidth. 116 */ 117 static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) 118 { 119 iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len); 120 } 121 122 /** 123 * nand_read_buf - [DEFAULT] read chip data into buffer 124 * @chip: NAND chip object 125 * @buf: buffer to store date 126 * @len: number of bytes to read 127 * 128 * Default read function for 8bit buswidth. 129 */ 130 static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 131 { 132 ioread8_rep(chip->legacy.IO_ADDR_R, buf, len); 133 } 134 135 /** 136 * nand_write_buf16 - [DEFAULT] write buffer to chip 137 * @chip: NAND chip object 138 * @buf: data buffer 139 * @len: number of bytes to write 140 * 141 * Default write function for 16bit buswidth. 142 */ 143 static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf, 144 int len) 145 { 146 u16 *p = (u16 *) buf; 147 148 iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1); 149 } 150 151 /** 152 * nand_read_buf16 - [DEFAULT] read chip data into buffer 153 * @chip: NAND chip object 154 * @buf: buffer to store date 155 * @len: number of bytes to read 156 * 157 * Default read function for 16bit buswidth. 158 */ 159 static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len) 160 { 161 u16 *p = (u16 *) buf; 162 163 ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1); 164 } 165 166 /** 167 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 168 * @chip: NAND chip object 169 * @timeo: Timeout 170 * 171 * Helper function for nand_wait_ready used when needing to wait in interrupt 172 * context. 173 */ 174 static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo) 175 { 176 int i; 177 178 /* Wait for the device to get ready */ 179 for (i = 0; i < timeo; i++) { 180 if (chip->legacy.dev_ready(chip)) 181 break; 182 touch_softlockup_watchdog(); 183 mdelay(1); 184 } 185 } 186 187 /** 188 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 189 * @chip: NAND chip object 190 * 191 * Wait for the ready pin after a command, and warn if a timeout occurs. 192 */ 193 void nand_wait_ready(struct nand_chip *chip) 194 { 195 unsigned long timeo = 400; 196 197 if (in_interrupt() || oops_in_progress) 198 return panic_nand_wait_ready(chip, timeo); 199 200 /* Wait until command is processed or timeout occurs */ 201 timeo = jiffies + msecs_to_jiffies(timeo); 202 do { 203 if (chip->legacy.dev_ready(chip)) 204 return; 205 cond_resched(); 206 } while (time_before(jiffies, timeo)); 207 208 if (!chip->legacy.dev_ready(chip)) 209 pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); 210 } 211 EXPORT_SYMBOL_GPL(nand_wait_ready); 212 213 /** 214 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. 215 * @chip: NAND chip object 216 * @timeo: Timeout in ms 217 * 218 * Wait for status ready (i.e. command done) or timeout. 219 */ 220 static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo) 221 { 222 int ret; 223 224 timeo = jiffies + msecs_to_jiffies(timeo); 225 do { 226 u8 status; 227 228 ret = nand_read_data_op(chip, &status, sizeof(status), true); 229 if (ret) 230 return; 231 232 if (status & NAND_STATUS_READY) 233 break; 234 touch_softlockup_watchdog(); 235 } while (time_before(jiffies, timeo)); 236 }; 237 238 /** 239 * nand_command - [DEFAULT] Send command to NAND device 240 * @chip: NAND chip object 241 * @command: the command to be sent 242 * @column: the column address for this command, -1 if none 243 * @page_addr: the page address for this command, -1 if none 244 * 245 * Send command to NAND device. This function is used for small page devices 246 * (512 Bytes per page). 247 */ 248 static void nand_command(struct nand_chip *chip, unsigned int command, 249 int column, int page_addr) 250 { 251 struct mtd_info *mtd = nand_to_mtd(chip); 252 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; 253 254 /* Write out the command to the device */ 255 if (command == NAND_CMD_SEQIN) { 256 int readcmd; 257 258 if (column >= mtd->writesize) { 259 /* OOB area */ 260 column -= mtd->writesize; 261 readcmd = NAND_CMD_READOOB; 262 } else if (column < 256) { 263 /* First 256 bytes --> READ0 */ 264 readcmd = NAND_CMD_READ0; 265 } else { 266 column -= 256; 267 readcmd = NAND_CMD_READ1; 268 } 269 chip->legacy.cmd_ctrl(chip, readcmd, ctrl); 270 ctrl &= ~NAND_CTRL_CHANGE; 271 } 272 if (command != NAND_CMD_NONE) 273 chip->legacy.cmd_ctrl(chip, command, ctrl); 274 275 /* Address cycle, when necessary */ 276 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; 277 /* Serially input address */ 278 if (column != -1) { 279 /* Adjust columns for 16 bit buswidth */ 280 if (chip->options & NAND_BUSWIDTH_16 && 281 !nand_opcode_8bits(command)) 282 column >>= 1; 283 chip->legacy.cmd_ctrl(chip, column, ctrl); 284 ctrl &= ~NAND_CTRL_CHANGE; 285 } 286 if (page_addr != -1) { 287 chip->legacy.cmd_ctrl(chip, page_addr, ctrl); 288 ctrl &= ~NAND_CTRL_CHANGE; 289 chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl); 290 if (chip->options & NAND_ROW_ADDR_3) 291 chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl); 292 } 293 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 294 NAND_NCE | NAND_CTRL_CHANGE); 295 296 /* 297 * Program and erase have their own busy handlers status and sequential 298 * in needs no delay 299 */ 300 switch (command) { 301 302 case NAND_CMD_NONE: 303 case NAND_CMD_PAGEPROG: 304 case NAND_CMD_ERASE1: 305 case NAND_CMD_ERASE2: 306 case NAND_CMD_SEQIN: 307 case NAND_CMD_STATUS: 308 case NAND_CMD_READID: 309 case NAND_CMD_SET_FEATURES: 310 return; 311 312 case NAND_CMD_RESET: 313 if (chip->legacy.dev_ready) 314 break; 315 udelay(chip->legacy.chip_delay); 316 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, 317 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 318 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 319 NAND_NCE | NAND_CTRL_CHANGE); 320 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 321 nand_wait_status_ready(chip, 250); 322 return; 323 324 /* This applies to read commands */ 325 case NAND_CMD_READ0: 326 /* 327 * READ0 is sometimes used to exit GET STATUS mode. When this 328 * is the case no address cycles are requested, and we can use 329 * this information to detect that we should not wait for the 330 * device to be ready. 331 */ 332 if (column == -1 && page_addr == -1) 333 return; 334 335 default: 336 /* 337 * If we don't have access to the busy pin, we apply the given 338 * command delay 339 */ 340 if (!chip->legacy.dev_ready) { 341 udelay(chip->legacy.chip_delay); 342 return; 343 } 344 } 345 /* 346 * Apply this short delay always to ensure that we do wait tWB in 347 * any case on any machine. 348 */ 349 ndelay(100); 350 351 nand_wait_ready(chip); 352 } 353 354 static void nand_ccs_delay(struct nand_chip *chip) 355 { 356 /* 357 * The controller already takes care of waiting for tCCS when the RNDIN 358 * or RNDOUT command is sent, return directly. 359 */ 360 if (!(chip->options & NAND_WAIT_TCCS)) 361 return; 362 363 /* 364 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns 365 * (which should be safe for all NANDs). 366 */ 367 if (nand_has_setup_data_iface(chip)) 368 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); 369 else 370 ndelay(500); 371 } 372 373 /** 374 * nand_command_lp - [DEFAULT] Send command to NAND large page device 375 * @chip: NAND chip object 376 * @command: the command to be sent 377 * @column: the column address for this command, -1 if none 378 * @page_addr: the page address for this command, -1 if none 379 * 380 * Send command to NAND device. This is the version for the new large page 381 * devices. We don't have the separate regions as we have in the small page 382 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. 383 */ 384 static void nand_command_lp(struct nand_chip *chip, unsigned int command, 385 int column, int page_addr) 386 { 387 struct mtd_info *mtd = nand_to_mtd(chip); 388 389 /* Emulate NAND_CMD_READOOB */ 390 if (command == NAND_CMD_READOOB) { 391 column += mtd->writesize; 392 command = NAND_CMD_READ0; 393 } 394 395 /* Command latch cycle */ 396 if (command != NAND_CMD_NONE) 397 chip->legacy.cmd_ctrl(chip, command, 398 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 399 400 if (column != -1 || page_addr != -1) { 401 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; 402 403 /* Serially input address */ 404 if (column != -1) { 405 /* Adjust columns for 16 bit buswidth */ 406 if (chip->options & NAND_BUSWIDTH_16 && 407 !nand_opcode_8bits(command)) 408 column >>= 1; 409 chip->legacy.cmd_ctrl(chip, column, ctrl); 410 ctrl &= ~NAND_CTRL_CHANGE; 411 412 /* Only output a single addr cycle for 8bits opcodes. */ 413 if (!nand_opcode_8bits(command)) 414 chip->legacy.cmd_ctrl(chip, column >> 8, ctrl); 415 } 416 if (page_addr != -1) { 417 chip->legacy.cmd_ctrl(chip, page_addr, ctrl); 418 chip->legacy.cmd_ctrl(chip, page_addr >> 8, 419 NAND_NCE | NAND_ALE); 420 if (chip->options & NAND_ROW_ADDR_3) 421 chip->legacy.cmd_ctrl(chip, page_addr >> 16, 422 NAND_NCE | NAND_ALE); 423 } 424 } 425 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 426 NAND_NCE | NAND_CTRL_CHANGE); 427 428 /* 429 * Program and erase have their own busy handlers status, sequential 430 * in and status need no delay. 431 */ 432 switch (command) { 433 434 case NAND_CMD_NONE: 435 case NAND_CMD_CACHEDPROG: 436 case NAND_CMD_PAGEPROG: 437 case NAND_CMD_ERASE1: 438 case NAND_CMD_ERASE2: 439 case NAND_CMD_SEQIN: 440 case NAND_CMD_STATUS: 441 case NAND_CMD_READID: 442 case NAND_CMD_SET_FEATURES: 443 return; 444 445 case NAND_CMD_RNDIN: 446 nand_ccs_delay(chip); 447 return; 448 449 case NAND_CMD_RESET: 450 if (chip->legacy.dev_ready) 451 break; 452 udelay(chip->legacy.chip_delay); 453 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, 454 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 455 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 456 NAND_NCE | NAND_CTRL_CHANGE); 457 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 458 nand_wait_status_ready(chip, 250); 459 return; 460 461 case NAND_CMD_RNDOUT: 462 /* No ready / busy check necessary */ 463 chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART, 464 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 465 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 466 NAND_NCE | NAND_CTRL_CHANGE); 467 468 nand_ccs_delay(chip); 469 return; 470 471 case NAND_CMD_READ0: 472 /* 473 * READ0 is sometimes used to exit GET STATUS mode. When this 474 * is the case no address cycles are requested, and we can use 475 * this information to detect that READSTART should not be 476 * issued. 477 */ 478 if (column == -1 && page_addr == -1) 479 return; 480 481 chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART, 482 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 483 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 484 NAND_NCE | NAND_CTRL_CHANGE); 485 486 /* This applies to read commands */ 487 default: 488 /* 489 * If we don't have access to the busy pin, we apply the given 490 * command delay. 491 */ 492 if (!chip->legacy.dev_ready) { 493 udelay(chip->legacy.chip_delay); 494 return; 495 } 496 } 497 498 /* 499 * Apply this short delay always to ensure that we do wait tWB in 500 * any case on any machine. 501 */ 502 ndelay(100); 503 504 nand_wait_ready(chip); 505 } 506 507 /** 508 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP 509 * @chip: nand chip info structure 510 * @addr: feature address. 511 * @subfeature_param: the subfeature parameters, a four bytes array. 512 * 513 * Should be used by NAND controller drivers that do not support the SET/GET 514 * FEATURES operations. 515 */ 516 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 517 u8 *subfeature_param) 518 { 519 return -ENOTSUPP; 520 } 521 EXPORT_SYMBOL(nand_get_set_features_notsupp); 522 523 /** 524 * nand_wait - [DEFAULT] wait until the command is done 525 * @chip: NAND chip structure 526 * 527 * Wait for command done. This applies to erase and program only. 528 */ 529 static int nand_wait(struct nand_chip *chip) 530 { 531 532 unsigned long timeo = 400; 533 u8 status; 534 int ret; 535 536 /* 537 * Apply this short delay always to ensure that we do wait tWB in any 538 * case on any machine. 539 */ 540 ndelay(100); 541 542 ret = nand_status_op(chip, NULL); 543 if (ret) 544 return ret; 545 546 if (in_interrupt() || oops_in_progress) 547 panic_nand_wait(chip, timeo); 548 else { 549 timeo = jiffies + msecs_to_jiffies(timeo); 550 do { 551 if (chip->legacy.dev_ready) { 552 if (chip->legacy.dev_ready(chip)) 553 break; 554 } else { 555 ret = nand_read_data_op(chip, &status, 556 sizeof(status), true); 557 if (ret) 558 return ret; 559 560 if (status & NAND_STATUS_READY) 561 break; 562 } 563 cond_resched(); 564 } while (time_before(jiffies, timeo)); 565 } 566 567 ret = nand_read_data_op(chip, &status, sizeof(status), true); 568 if (ret) 569 return ret; 570 571 /* This can happen if in case of timeout or buggy dev_ready */ 572 WARN_ON(!(status & NAND_STATUS_READY)); 573 return status; 574 } 575 576 void nand_legacy_set_defaults(struct nand_chip *chip) 577 { 578 unsigned int busw = chip->options & NAND_BUSWIDTH_16; 579 580 if (nand_has_exec_op(chip)) 581 return; 582 583 /* check for proper chip_delay setup, set 20us if not */ 584 if (!chip->legacy.chip_delay) 585 chip->legacy.chip_delay = 20; 586 587 /* check, if a user supplied command function given */ 588 if (!chip->legacy.cmdfunc) 589 chip->legacy.cmdfunc = nand_command; 590 591 /* check, if a user supplied wait function given */ 592 if (chip->legacy.waitfunc == NULL) 593 chip->legacy.waitfunc = nand_wait; 594 595 if (!chip->legacy.select_chip) 596 chip->legacy.select_chip = nand_select_chip; 597 598 /* If called twice, pointers that depend on busw may need to be reset */ 599 if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte) 600 chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte; 601 if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf) 602 chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf; 603 if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte) 604 chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte; 605 if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf) 606 chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf; 607 } 608 609 void nand_legacy_adjust_cmdfunc(struct nand_chip *chip) 610 { 611 struct mtd_info *mtd = nand_to_mtd(chip); 612 613 /* Do not replace user supplied command function! */ 614 if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command) 615 chip->legacy.cmdfunc = nand_command_lp; 616 } 617 618 int nand_legacy_check_hooks(struct nand_chip *chip) 619 { 620 /* 621 * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is 622 * not populated. 623 */ 624 if (nand_has_exec_op(chip)) 625 return 0; 626 627 /* 628 * Default functions assigned for ->legacy.cmdfunc() and 629 * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be 630 * populated. 631 */ 632 if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) && 633 !chip->legacy.cmd_ctrl) { 634 pr_err("->legacy.cmd_ctrl() should be provided\n"); 635 return -EINVAL; 636 } 637 638 return 0; 639 } 640