xref: /openbmc/linux/drivers/mtd/nand/raw/nand_hynix.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/mtd/rawnand.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
21 
22 #define NAND_HYNIX_CMD_SET_PARAMS	0x36
23 #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
24 
25 #define NAND_HYNIX_1XNM_RR_REPEAT	8
26 
27 /**
28  * struct hynix_read_retry - read-retry data
29  * @nregs: number of register to set when applying a new read-retry mode
30  * @regs: register offsets (NAND chip dependent)
31  * @values: array of values to set in registers. The array size is equal to
32  *	    (nregs * nmodes)
33  */
34 struct hynix_read_retry {
35 	int nregs;
36 	const u8 *regs;
37 	u8 values[0];
38 };
39 
40 /**
41  * struct hynix_nand - private Hynix NAND struct
42  * @nand_technology: manufacturing process expressed in picometer
43  * @read_retry: read-retry information
44  */
45 struct hynix_nand {
46 	const struct hynix_read_retry *read_retry;
47 };
48 
49 /**
50  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
51  *				 area
52  * @nregs: number of hynix private registers to set before reading the reading
53  *	   the OTP area
54  * @regs: registers that should be configured
55  * @values: values that should be set in regs
56  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
57  *	  chip
58  * @size: size of the read-retry OTP section
59  */
60 struct hynix_read_retry_otp {
61 	int nregs;
62 	const u8 *regs;
63 	const u8 *values;
64 	int page;
65 	int size;
66 };
67 
68 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
69 {
70 	u8 jedecid[5] = { };
71 	int ret;
72 
73 	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
74 	if (ret)
75 		return false;
76 
77 	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
78 }
79 
80 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
81 {
82 	struct mtd_info *mtd = nand_to_mtd(chip);
83 
84 	if (chip->exec_op) {
85 		struct nand_op_instr instrs[] = {
86 			NAND_OP_CMD(cmd, 0),
87 		};
88 		struct nand_operation op = NAND_OPERATION(instrs);
89 
90 		return nand_exec_op(chip, &op);
91 	}
92 
93 	chip->cmdfunc(mtd, cmd, -1, -1);
94 
95 	return 0;
96 }
97 
98 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
99 {
100 	struct mtd_info *mtd = nand_to_mtd(chip);
101 	u16 column = ((u16)addr << 8) | addr;
102 
103 	chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
104 	chip->write_byte(mtd, val);
105 
106 	return 0;
107 }
108 
109 static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
110 {
111 	struct nand_chip *chip = mtd_to_nand(mtd);
112 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
113 	const u8 *values;
114 	int i, ret;
115 
116 	values = hynix->read_retry->values +
117 		 (retry_mode * hynix->read_retry->nregs);
118 
119 	/* Enter 'Set Hynix Parameters' mode */
120 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
121 	if (ret)
122 		return ret;
123 
124 	/*
125 	 * Configure the NAND in the requested read-retry mode.
126 	 * This is done by setting pre-defined values in internal NAND
127 	 * registers.
128 	 *
129 	 * The set of registers is NAND specific, and the values are either
130 	 * predefined or extracted from an OTP area on the NAND (values are
131 	 * probably tweaked at production in this case).
132 	 */
133 	for (i = 0; i < hynix->read_retry->nregs; i++) {
134 		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
135 					      values[i]);
136 		if (ret)
137 			return ret;
138 	}
139 
140 	/* Apply the new settings. */
141 	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
142 }
143 
144 /**
145  * hynix_get_majority - get the value that is occurring the most in a given
146  *			set of values
147  * @in: the array of values to test
148  * @repeat: the size of the in array
149  * @out: pointer used to store the output value
150  *
151  * This function implements the 'majority check' logic that is supposed to
152  * overcome the unreliability of MLC NANDs when reading the OTP area storing
153  * the read-retry parameters.
154  *
155  * It's based on a pretty simple assumption: if we repeat the same value
156  * several times and then take the one that is occurring the most, we should
157  * find the correct value.
158  * Let's hope this dummy algorithm prevents us from losing the read-retry
159  * parameters.
160  */
161 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
162 {
163 	int i, j, half = repeat / 2;
164 
165 	/*
166 	 * We only test the first half of the in array because we must ensure
167 	 * that the value is at least occurring repeat / 2 times.
168 	 *
169 	 * This loop is suboptimal since we may count the occurrences of the
170 	 * same value several time, but we are doing that on small sets, which
171 	 * makes it acceptable.
172 	 */
173 	for (i = 0; i < half; i++) {
174 		int cnt = 0;
175 		u8 val = in[i];
176 
177 		/* Count all values that are matching the one at index i. */
178 		for (j = i + 1; j < repeat; j++) {
179 			if (in[j] == val)
180 				cnt++;
181 		}
182 
183 		/* We found a value occurring more than repeat / 2. */
184 		if (cnt > half) {
185 			*out = val;
186 			return 0;
187 		}
188 	}
189 
190 	return -EIO;
191 }
192 
193 static int hynix_read_rr_otp(struct nand_chip *chip,
194 			     const struct hynix_read_retry_otp *info,
195 			     void *buf)
196 {
197 	int i, ret;
198 
199 	ret = nand_reset_op(chip);
200 	if (ret)
201 		return ret;
202 
203 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
204 	if (ret)
205 		return ret;
206 
207 	for (i = 0; i < info->nregs; i++) {
208 		ret = hynix_nand_reg_write_op(chip, info->regs[i],
209 					      info->values[i]);
210 		if (ret)
211 			return ret;
212 	}
213 
214 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
215 	if (ret)
216 		return ret;
217 
218 	/* Sequence to enter OTP mode? */
219 	ret = hynix_nand_cmd_op(chip, 0x17);
220 	if (ret)
221 		return ret;
222 
223 	ret = hynix_nand_cmd_op(chip, 0x4);
224 	if (ret)
225 		return ret;
226 
227 	ret = hynix_nand_cmd_op(chip, 0x19);
228 	if (ret)
229 		return ret;
230 
231 	/* Now read the page */
232 	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
233 	if (ret)
234 		return ret;
235 
236 	/* Put everything back to normal */
237 	ret = nand_reset_op(chip);
238 	if (ret)
239 		return ret;
240 
241 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
242 	if (ret)
243 		return ret;
244 
245 	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
246 	if (ret)
247 		return ret;
248 
249 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
250 	if (ret)
251 		return ret;
252 
253 	return nand_read_page_op(chip, 0, 0, NULL, 0);
254 }
255 
256 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
257 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
258 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
259 	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
260 
261 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
262 				   int mode, int reg, bool inv, u8 *val)
263 {
264 	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
265 	int val_offs = (mode * nregs) + reg;
266 	int set_size = nmodes * nregs;
267 	int i, ret;
268 
269 	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
270 		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
271 
272 		tmp[i] = buf[val_offs + set_offs];
273 	}
274 
275 	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
276 	if (ret)
277 		return ret;
278 
279 	if (inv)
280 		*val = ~*val;
281 
282 	return 0;
283 }
284 
285 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
286 	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
287 };
288 
289 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
290 				  const struct hynix_read_retry_otp *info)
291 {
292 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
293 	struct hynix_read_retry *rr = NULL;
294 	int ret, i, j;
295 	u8 nregs, nmodes;
296 	u8 *buf;
297 
298 	buf = kmalloc(info->size, GFP_KERNEL);
299 	if (!buf)
300 		return -ENOMEM;
301 
302 	ret = hynix_read_rr_otp(chip, info, buf);
303 	if (ret)
304 		goto out;
305 
306 	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
307 				 &nmodes);
308 	if (ret)
309 		goto out;
310 
311 	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
312 				 NAND_HYNIX_1XNM_RR_REPEAT,
313 				 &nregs);
314 	if (ret)
315 		goto out;
316 
317 	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
318 	if (!rr) {
319 		ret = -ENOMEM;
320 		goto out;
321 	}
322 
323 	for (i = 0; i < nmodes; i++) {
324 		for (j = 0; j < nregs; j++) {
325 			u8 *val = rr->values + (i * nregs);
326 
327 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
328 						      false, val);
329 			if (!ret)
330 				continue;
331 
332 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
333 						      true, val);
334 			if (ret)
335 				goto out;
336 		}
337 	}
338 
339 	rr->nregs = nregs;
340 	rr->regs = hynix_1xnm_mlc_read_retry_regs;
341 	hynix->read_retry = rr;
342 	chip->setup_read_retry = hynix_nand_setup_read_retry;
343 	chip->read_retries = nmodes;
344 
345 out:
346 	kfree(buf);
347 
348 	if (ret)
349 		kfree(rr);
350 
351 	return ret;
352 }
353 
354 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
355 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
356 
357 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
358 	{
359 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
360 		.regs = hynix_mlc_1xnm_rr_otp_regs,
361 		.values = hynix_mlc_1xnm_rr_otp_values,
362 		.page = 0x21f,
363 		.size = 784
364 	},
365 	{
366 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
367 		.regs = hynix_mlc_1xnm_rr_otp_regs,
368 		.values = hynix_mlc_1xnm_rr_otp_values,
369 		.page = 0x200,
370 		.size = 528,
371 	},
372 };
373 
374 static int hynix_nand_rr_init(struct nand_chip *chip)
375 {
376 	int i, ret = 0;
377 	bool valid_jedecid;
378 
379 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
380 
381 	/*
382 	 * We only support read-retry for 1xnm NANDs, and those NANDs all
383 	 * expose a valid JEDEC ID.
384 	 */
385 	if (valid_jedecid) {
386 		u8 nand_tech = chip->id.data[5] >> 4;
387 
388 		/* 1xnm technology */
389 		if (nand_tech == 4) {
390 			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
391 			     i++) {
392 				/*
393 				 * FIXME: Hynix recommend to copy the
394 				 * read-retry OTP area into a normal page.
395 				 */
396 				ret = hynix_mlc_1xnm_rr_init(chip,
397 						hynix_mlc_1xnm_rr_otps);
398 				if (!ret)
399 					break;
400 			}
401 		}
402 	}
403 
404 	if (ret)
405 		pr_warn("failed to initialize read-retry infrastructure");
406 
407 	return 0;
408 }
409 
410 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
411 				       bool valid_jedecid)
412 {
413 	struct mtd_info *mtd = nand_to_mtd(chip);
414 	u8 oobsize;
415 
416 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
417 		  ((chip->id.data[3] >> 4) & 0x4);
418 
419 	if (valid_jedecid) {
420 		switch (oobsize) {
421 		case 0:
422 			mtd->oobsize = 2048;
423 			break;
424 		case 1:
425 			mtd->oobsize = 1664;
426 			break;
427 		case 2:
428 			mtd->oobsize = 1024;
429 			break;
430 		case 3:
431 			mtd->oobsize = 640;
432 			break;
433 		default:
434 			/*
435 			 * We should never reach this case, but if that
436 			 * happens, this probably means Hynix decided to use
437 			 * a different extended ID format, and we should find
438 			 * a way to support it.
439 			 */
440 			WARN(1, "Invalid OOB size");
441 			break;
442 		}
443 	} else {
444 		switch (oobsize) {
445 		case 0:
446 			mtd->oobsize = 128;
447 			break;
448 		case 1:
449 			mtd->oobsize = 224;
450 			break;
451 		case 2:
452 			mtd->oobsize = 448;
453 			break;
454 		case 3:
455 			mtd->oobsize = 64;
456 			break;
457 		case 4:
458 			mtd->oobsize = 32;
459 			break;
460 		case 5:
461 			mtd->oobsize = 16;
462 			break;
463 		case 6:
464 			mtd->oobsize = 640;
465 			break;
466 		default:
467 			/*
468 			 * We should never reach this case, but if that
469 			 * happens, this probably means Hynix decided to use
470 			 * a different extended ID format, and we should find
471 			 * a way to support it.
472 			 */
473 			WARN(1, "Invalid OOB size");
474 			break;
475 		}
476 	}
477 }
478 
479 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
480 						bool valid_jedecid)
481 {
482 	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
483 
484 	if (valid_jedecid) {
485 		/* Reference: H27UCG8T2E datasheet */
486 		chip->ecc_step_ds = 1024;
487 
488 		switch (ecc_level) {
489 		case 0:
490 			chip->ecc_step_ds = 0;
491 			chip->ecc_strength_ds = 0;
492 			break;
493 		case 1:
494 			chip->ecc_strength_ds = 4;
495 			break;
496 		case 2:
497 			chip->ecc_strength_ds = 24;
498 			break;
499 		case 3:
500 			chip->ecc_strength_ds = 32;
501 			break;
502 		case 4:
503 			chip->ecc_strength_ds = 40;
504 			break;
505 		case 5:
506 			chip->ecc_strength_ds = 50;
507 			break;
508 		case 6:
509 			chip->ecc_strength_ds = 60;
510 			break;
511 		default:
512 			/*
513 			 * We should never reach this case, but if that
514 			 * happens, this probably means Hynix decided to use
515 			 * a different extended ID format, and we should find
516 			 * a way to support it.
517 			 */
518 			WARN(1, "Invalid ECC requirements");
519 		}
520 	} else {
521 		/*
522 		 * The ECC requirements field meaning depends on the
523 		 * NAND technology.
524 		 */
525 		u8 nand_tech = chip->id.data[5] & 0x7;
526 
527 		if (nand_tech < 3) {
528 			/* > 26nm, reference: H27UBG8T2A datasheet */
529 			if (ecc_level < 5) {
530 				chip->ecc_step_ds = 512;
531 				chip->ecc_strength_ds = 1 << ecc_level;
532 			} else if (ecc_level < 7) {
533 				if (ecc_level == 5)
534 					chip->ecc_step_ds = 2048;
535 				else
536 					chip->ecc_step_ds = 1024;
537 				chip->ecc_strength_ds = 24;
538 			} else {
539 				/*
540 				 * We should never reach this case, but if that
541 				 * happens, this probably means Hynix decided
542 				 * to use a different extended ID format, and
543 				 * we should find a way to support it.
544 				 */
545 				WARN(1, "Invalid ECC requirements");
546 			}
547 		} else {
548 			/* <= 26nm, reference: H27UBG8T2B datasheet */
549 			if (!ecc_level) {
550 				chip->ecc_step_ds = 0;
551 				chip->ecc_strength_ds = 0;
552 			} else if (ecc_level < 5) {
553 				chip->ecc_step_ds = 512;
554 				chip->ecc_strength_ds = 1 << (ecc_level - 1);
555 			} else {
556 				chip->ecc_step_ds = 1024;
557 				chip->ecc_strength_ds = 24 +
558 							(8 * (ecc_level - 5));
559 			}
560 		}
561 	}
562 }
563 
564 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
565 						       bool valid_jedecid)
566 {
567 	u8 nand_tech;
568 
569 	/* We need scrambling on all TLC NANDs*/
570 	if (chip->bits_per_cell > 2)
571 		chip->options |= NAND_NEED_SCRAMBLING;
572 
573 	/* And on MLC NANDs with sub-3xnm process */
574 	if (valid_jedecid) {
575 		nand_tech = chip->id.data[5] >> 4;
576 
577 		/* < 3xnm */
578 		if (nand_tech > 0)
579 			chip->options |= NAND_NEED_SCRAMBLING;
580 	} else {
581 		nand_tech = chip->id.data[5] & 0x7;
582 
583 		/* < 32nm */
584 		if (nand_tech > 2)
585 			chip->options |= NAND_NEED_SCRAMBLING;
586 	}
587 }
588 
589 static void hynix_nand_decode_id(struct nand_chip *chip)
590 {
591 	struct mtd_info *mtd = nand_to_mtd(chip);
592 	bool valid_jedecid;
593 	u8 tmp;
594 
595 	/*
596 	 * Exclude all SLC NANDs from this advanced detection scheme.
597 	 * According to the ranges defined in several datasheets, it might
598 	 * appear that even SLC NANDs could fall in this extended ID scheme.
599 	 * If that the case rework the test to let SLC NANDs go through the
600 	 * detection process.
601 	 */
602 	if (chip->id.len < 6 || nand_is_slc(chip)) {
603 		nand_decode_ext_id(chip);
604 		return;
605 	}
606 
607 	/* Extract pagesize */
608 	mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
609 
610 	tmp = (chip->id.data[3] >> 4) & 0x3;
611 	/*
612 	 * When bit7 is set that means we start counting at 1MiB, otherwise
613 	 * we start counting at 128KiB and shift this value the content of
614 	 * ID[3][4:5].
615 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
616 	 * this case the erasesize is set to 768KiB.
617 	 */
618 	if (chip->id.data[3] & 0x80)
619 		mtd->erasesize = SZ_1M << tmp;
620 	else if (tmp == 3)
621 		mtd->erasesize = SZ_512K + SZ_256K;
622 	else
623 		mtd->erasesize = SZ_128K << tmp;
624 
625 	/*
626 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
627 	 * not exposing a valid JEDEC parameter table.
628 	 * These NANDs use a different NAND ID scheme.
629 	 */
630 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
631 
632 	hynix_nand_extract_oobsize(chip, valid_jedecid);
633 	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
634 	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
635 }
636 
637 static void hynix_nand_cleanup(struct nand_chip *chip)
638 {
639 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
640 
641 	if (!hynix)
642 		return;
643 
644 	kfree(hynix->read_retry);
645 	kfree(hynix);
646 	nand_set_manufacturer_data(chip, NULL);
647 }
648 
649 static int hynix_nand_init(struct nand_chip *chip)
650 {
651 	struct hynix_nand *hynix;
652 	int ret;
653 
654 	if (!nand_is_slc(chip))
655 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
656 	else
657 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
658 
659 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
660 	if (!hynix)
661 		return -ENOMEM;
662 
663 	nand_set_manufacturer_data(chip, hynix);
664 
665 	ret = hynix_nand_rr_init(chip);
666 	if (ret)
667 		hynix_nand_cleanup(chip);
668 
669 	return ret;
670 }
671 
672 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
673 	.detect = hynix_nand_decode_id,
674 	.init = hynix_nand_init,
675 	.cleanup = hynix_nand_cleanup,
676 };
677