xref: /openbmc/linux/drivers/mtd/nand/raw/nand_hynix.c (revision 8dde5715)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017 Free Electrons
4  * Copyright (C) 2017 NextThing Co
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  */
8 
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11 
12 #include "internals.h"
13 
14 #define NAND_HYNIX_CMD_SET_PARAMS	0x36
15 #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
16 
17 #define NAND_HYNIX_1XNM_RR_REPEAT	8
18 
19 /**
20  * struct hynix_read_retry - read-retry data
21  * @nregs: number of register to set when applying a new read-retry mode
22  * @regs: register offsets (NAND chip dependent)
23  * @values: array of values to set in registers. The array size is equal to
24  *	    (nregs * nmodes)
25  */
26 struct hynix_read_retry {
27 	int nregs;
28 	const u8 *regs;
29 	u8 values[0];
30 };
31 
32 /**
33  * struct hynix_nand - private Hynix NAND struct
34  * @nand_technology: manufacturing process expressed in picometer
35  * @read_retry: read-retry information
36  */
37 struct hynix_nand {
38 	const struct hynix_read_retry *read_retry;
39 };
40 
41 /**
42  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
43  *				 area
44  * @nregs: number of hynix private registers to set before reading the reading
45  *	   the OTP area
46  * @regs: registers that should be configured
47  * @values: values that should be set in regs
48  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
49  *	  chip
50  * @size: size of the read-retry OTP section
51  */
52 struct hynix_read_retry_otp {
53 	int nregs;
54 	const u8 *regs;
55 	const u8 *values;
56 	int page;
57 	int size;
58 };
59 
60 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
61 {
62 	u8 jedecid[5] = { };
63 	int ret;
64 
65 	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
66 	if (ret)
67 		return false;
68 
69 	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
70 }
71 
72 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
73 {
74 	if (nand_has_exec_op(chip)) {
75 		struct nand_op_instr instrs[] = {
76 			NAND_OP_CMD(cmd, 0),
77 		};
78 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
79 
80 		return nand_exec_op(chip, &op);
81 	}
82 
83 	chip->legacy.cmdfunc(chip, cmd, -1, -1);
84 
85 	return 0;
86 }
87 
88 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
89 {
90 	u16 column = ((u16)addr << 8) | addr;
91 
92 	if (nand_has_exec_op(chip)) {
93 		struct nand_op_instr instrs[] = {
94 			NAND_OP_ADDR(1, &addr, 0),
95 			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
96 		};
97 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
98 
99 		return nand_exec_op(chip, &op);
100 	}
101 
102 	chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
103 	chip->legacy.write_byte(chip, val);
104 
105 	return 0;
106 }
107 
108 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
109 {
110 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
111 	const u8 *values;
112 	int i, ret;
113 
114 	values = hynix->read_retry->values +
115 		 (retry_mode * hynix->read_retry->nregs);
116 
117 	/* Enter 'Set Hynix Parameters' mode */
118 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
119 	if (ret)
120 		return ret;
121 
122 	/*
123 	 * Configure the NAND in the requested read-retry mode.
124 	 * This is done by setting pre-defined values in internal NAND
125 	 * registers.
126 	 *
127 	 * The set of registers is NAND specific, and the values are either
128 	 * predefined or extracted from an OTP area on the NAND (values are
129 	 * probably tweaked at production in this case).
130 	 */
131 	for (i = 0; i < hynix->read_retry->nregs; i++) {
132 		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
133 					      values[i]);
134 		if (ret)
135 			return ret;
136 	}
137 
138 	/* Apply the new settings. */
139 	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
140 }
141 
142 /**
143  * hynix_get_majority - get the value that is occurring the most in a given
144  *			set of values
145  * @in: the array of values to test
146  * @repeat: the size of the in array
147  * @out: pointer used to store the output value
148  *
149  * This function implements the 'majority check' logic that is supposed to
150  * overcome the unreliability of MLC NANDs when reading the OTP area storing
151  * the read-retry parameters.
152  *
153  * It's based on a pretty simple assumption: if we repeat the same value
154  * several times and then take the one that is occurring the most, we should
155  * find the correct value.
156  * Let's hope this dummy algorithm prevents us from losing the read-retry
157  * parameters.
158  */
159 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
160 {
161 	int i, j, half = repeat / 2;
162 
163 	/*
164 	 * We only test the first half of the in array because we must ensure
165 	 * that the value is at least occurring repeat / 2 times.
166 	 *
167 	 * This loop is suboptimal since we may count the occurrences of the
168 	 * same value several time, but we are doing that on small sets, which
169 	 * makes it acceptable.
170 	 */
171 	for (i = 0; i < half; i++) {
172 		int cnt = 0;
173 		u8 val = in[i];
174 
175 		/* Count all values that are matching the one at index i. */
176 		for (j = i + 1; j < repeat; j++) {
177 			if (in[j] == val)
178 				cnt++;
179 		}
180 
181 		/* We found a value occurring more than repeat / 2. */
182 		if (cnt > half) {
183 			*out = val;
184 			return 0;
185 		}
186 	}
187 
188 	return -EIO;
189 }
190 
191 static int hynix_read_rr_otp(struct nand_chip *chip,
192 			     const struct hynix_read_retry_otp *info,
193 			     void *buf)
194 {
195 	int i, ret;
196 
197 	ret = nand_reset_op(chip);
198 	if (ret)
199 		return ret;
200 
201 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
202 	if (ret)
203 		return ret;
204 
205 	for (i = 0; i < info->nregs; i++) {
206 		ret = hynix_nand_reg_write_op(chip, info->regs[i],
207 					      info->values[i]);
208 		if (ret)
209 			return ret;
210 	}
211 
212 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
213 	if (ret)
214 		return ret;
215 
216 	/* Sequence to enter OTP mode? */
217 	ret = hynix_nand_cmd_op(chip, 0x17);
218 	if (ret)
219 		return ret;
220 
221 	ret = hynix_nand_cmd_op(chip, 0x4);
222 	if (ret)
223 		return ret;
224 
225 	ret = hynix_nand_cmd_op(chip, 0x19);
226 	if (ret)
227 		return ret;
228 
229 	/* Now read the page */
230 	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
231 	if (ret)
232 		return ret;
233 
234 	/* Put everything back to normal */
235 	ret = nand_reset_op(chip);
236 	if (ret)
237 		return ret;
238 
239 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
240 	if (ret)
241 		return ret;
242 
243 	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
244 	if (ret)
245 		return ret;
246 
247 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
248 	if (ret)
249 		return ret;
250 
251 	return nand_read_page_op(chip, 0, 0, NULL, 0);
252 }
253 
254 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
255 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
256 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
257 	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
258 
259 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
260 				   int mode, int reg, bool inv, u8 *val)
261 {
262 	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
263 	int val_offs = (mode * nregs) + reg;
264 	int set_size = nmodes * nregs;
265 	int i, ret;
266 
267 	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
268 		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
269 
270 		tmp[i] = buf[val_offs + set_offs];
271 	}
272 
273 	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
274 	if (ret)
275 		return ret;
276 
277 	if (inv)
278 		*val = ~*val;
279 
280 	return 0;
281 }
282 
283 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
284 	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
285 };
286 
287 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
288 				  const struct hynix_read_retry_otp *info)
289 {
290 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
291 	struct hynix_read_retry *rr = NULL;
292 	int ret, i, j;
293 	u8 nregs, nmodes;
294 	u8 *buf;
295 
296 	buf = kmalloc(info->size, GFP_KERNEL);
297 	if (!buf)
298 		return -ENOMEM;
299 
300 	ret = hynix_read_rr_otp(chip, info, buf);
301 	if (ret)
302 		goto out;
303 
304 	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
305 				 &nmodes);
306 	if (ret)
307 		goto out;
308 
309 	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
310 				 NAND_HYNIX_1XNM_RR_REPEAT,
311 				 &nregs);
312 	if (ret)
313 		goto out;
314 
315 	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
316 	if (!rr) {
317 		ret = -ENOMEM;
318 		goto out;
319 	}
320 
321 	for (i = 0; i < nmodes; i++) {
322 		for (j = 0; j < nregs; j++) {
323 			u8 *val = rr->values + (i * nregs);
324 
325 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
326 						      false, val);
327 			if (!ret)
328 				continue;
329 
330 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
331 						      true, val);
332 			if (ret)
333 				goto out;
334 		}
335 	}
336 
337 	rr->nregs = nregs;
338 	rr->regs = hynix_1xnm_mlc_read_retry_regs;
339 	hynix->read_retry = rr;
340 	chip->setup_read_retry = hynix_nand_setup_read_retry;
341 	chip->read_retries = nmodes;
342 
343 out:
344 	kfree(buf);
345 
346 	if (ret)
347 		kfree(rr);
348 
349 	return ret;
350 }
351 
352 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
353 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
354 
355 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
356 	{
357 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
358 		.regs = hynix_mlc_1xnm_rr_otp_regs,
359 		.values = hynix_mlc_1xnm_rr_otp_values,
360 		.page = 0x21f,
361 		.size = 784
362 	},
363 	{
364 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
365 		.regs = hynix_mlc_1xnm_rr_otp_regs,
366 		.values = hynix_mlc_1xnm_rr_otp_values,
367 		.page = 0x200,
368 		.size = 528,
369 	},
370 };
371 
372 static int hynix_nand_rr_init(struct nand_chip *chip)
373 {
374 	int i, ret = 0;
375 	bool valid_jedecid;
376 
377 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
378 
379 	/*
380 	 * We only support read-retry for 1xnm NANDs, and those NANDs all
381 	 * expose a valid JEDEC ID.
382 	 */
383 	if (valid_jedecid) {
384 		u8 nand_tech = chip->id.data[5] >> 4;
385 
386 		/* 1xnm technology */
387 		if (nand_tech == 4) {
388 			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
389 			     i++) {
390 				/*
391 				 * FIXME: Hynix recommend to copy the
392 				 * read-retry OTP area into a normal page.
393 				 */
394 				ret = hynix_mlc_1xnm_rr_init(chip,
395 						hynix_mlc_1xnm_rr_otps);
396 				if (!ret)
397 					break;
398 			}
399 		}
400 	}
401 
402 	if (ret)
403 		pr_warn("failed to initialize read-retry infrastructure");
404 
405 	return 0;
406 }
407 
408 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
409 				       bool valid_jedecid)
410 {
411 	struct mtd_info *mtd = nand_to_mtd(chip);
412 	struct nand_memory_organization *memorg;
413 	u8 oobsize;
414 
415 	memorg = nanddev_get_memorg(&chip->base);
416 
417 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
418 		  ((chip->id.data[3] >> 4) & 0x4);
419 
420 	if (valid_jedecid) {
421 		switch (oobsize) {
422 		case 0:
423 			memorg->oobsize = 2048;
424 			break;
425 		case 1:
426 			memorg->oobsize = 1664;
427 			break;
428 		case 2:
429 			memorg->oobsize = 1024;
430 			break;
431 		case 3:
432 			memorg->oobsize = 640;
433 			break;
434 		default:
435 			/*
436 			 * We should never reach this case, but if that
437 			 * happens, this probably means Hynix decided to use
438 			 * a different extended ID format, and we should find
439 			 * a way to support it.
440 			 */
441 			WARN(1, "Invalid OOB size");
442 			break;
443 		}
444 	} else {
445 		switch (oobsize) {
446 		case 0:
447 			memorg->oobsize = 128;
448 			break;
449 		case 1:
450 			memorg->oobsize = 224;
451 			break;
452 		case 2:
453 			memorg->oobsize = 448;
454 			break;
455 		case 3:
456 			memorg->oobsize = 64;
457 			break;
458 		case 4:
459 			memorg->oobsize = 32;
460 			break;
461 		case 5:
462 			memorg->oobsize = 16;
463 			break;
464 		case 6:
465 			memorg->oobsize = 640;
466 			break;
467 		default:
468 			/*
469 			 * We should never reach this case, but if that
470 			 * happens, this probably means Hynix decided to use
471 			 * a different extended ID format, and we should find
472 			 * a way to support it.
473 			 */
474 			WARN(1, "Invalid OOB size");
475 			break;
476 		}
477 
478 		/*
479 		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
480 		 * Area Size" is encoded "per 8KB" (page size). This chip uses
481 		 * a page size of 16KiB. The datasheet mentions an OOB size of
482 		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
483 		 * the existing logic above) is 640 bytes.
484 		 * Update the OOB size for this chip by taking the value
485 		 * determined above and scaling it to the actual page size (so
486 		 * the actual OOB size for this chip is: 640 * 16k / 8k).
487 		 */
488 		if (chip->id.data[1] == 0xde)
489 			memorg->oobsize *= memorg->pagesize / SZ_8K;
490 	}
491 
492 	mtd->oobsize = memorg->oobsize;
493 }
494 
495 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
496 						bool valid_jedecid)
497 {
498 	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
499 
500 	if (valid_jedecid) {
501 		/* Reference: H27UCG8T2E datasheet */
502 		chip->base.eccreq.step_size = 1024;
503 
504 		switch (ecc_level) {
505 		case 0:
506 			chip->base.eccreq.step_size = 0;
507 			chip->base.eccreq.strength = 0;
508 			break;
509 		case 1:
510 			chip->base.eccreq.strength = 4;
511 			break;
512 		case 2:
513 			chip->base.eccreq.strength = 24;
514 			break;
515 		case 3:
516 			chip->base.eccreq.strength = 32;
517 			break;
518 		case 4:
519 			chip->base.eccreq.strength = 40;
520 			break;
521 		case 5:
522 			chip->base.eccreq.strength = 50;
523 			break;
524 		case 6:
525 			chip->base.eccreq.strength = 60;
526 			break;
527 		default:
528 			/*
529 			 * We should never reach this case, but if that
530 			 * happens, this probably means Hynix decided to use
531 			 * a different extended ID format, and we should find
532 			 * a way to support it.
533 			 */
534 			WARN(1, "Invalid ECC requirements");
535 		}
536 	} else {
537 		/*
538 		 * The ECC requirements field meaning depends on the
539 		 * NAND technology.
540 		 */
541 		u8 nand_tech = chip->id.data[5] & 0x7;
542 
543 		if (nand_tech < 3) {
544 			/* > 26nm, reference: H27UBG8T2A datasheet */
545 			if (ecc_level < 5) {
546 				chip->base.eccreq.step_size = 512;
547 				chip->base.eccreq.strength = 1 << ecc_level;
548 			} else if (ecc_level < 7) {
549 				if (ecc_level == 5)
550 					chip->base.eccreq.step_size = 2048;
551 				else
552 					chip->base.eccreq.step_size = 1024;
553 				chip->base.eccreq.strength = 24;
554 			} else {
555 				/*
556 				 * We should never reach this case, but if that
557 				 * happens, this probably means Hynix decided
558 				 * to use a different extended ID format, and
559 				 * we should find a way to support it.
560 				 */
561 				WARN(1, "Invalid ECC requirements");
562 			}
563 		} else {
564 			/* <= 26nm, reference: H27UBG8T2B datasheet */
565 			if (!ecc_level) {
566 				chip->base.eccreq.step_size = 0;
567 				chip->base.eccreq.strength = 0;
568 			} else if (ecc_level < 5) {
569 				chip->base.eccreq.step_size = 512;
570 				chip->base.eccreq.strength = 1 << (ecc_level - 1);
571 			} else {
572 				chip->base.eccreq.step_size = 1024;
573 				chip->base.eccreq.strength = 24 +
574 							(8 * (ecc_level - 5));
575 			}
576 		}
577 	}
578 }
579 
580 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
581 						       bool valid_jedecid)
582 {
583 	u8 nand_tech;
584 
585 	/* We need scrambling on all TLC NANDs*/
586 	if (nanddev_bits_per_cell(&chip->base) > 2)
587 		chip->options |= NAND_NEED_SCRAMBLING;
588 
589 	/* And on MLC NANDs with sub-3xnm process */
590 	if (valid_jedecid) {
591 		nand_tech = chip->id.data[5] >> 4;
592 
593 		/* < 3xnm */
594 		if (nand_tech > 0)
595 			chip->options |= NAND_NEED_SCRAMBLING;
596 	} else {
597 		nand_tech = chip->id.data[5] & 0x7;
598 
599 		/* < 32nm */
600 		if (nand_tech > 2)
601 			chip->options |= NAND_NEED_SCRAMBLING;
602 	}
603 }
604 
605 static void hynix_nand_decode_id(struct nand_chip *chip)
606 {
607 	struct mtd_info *mtd = nand_to_mtd(chip);
608 	struct nand_memory_organization *memorg;
609 	bool valid_jedecid;
610 	u8 tmp;
611 
612 	memorg = nanddev_get_memorg(&chip->base);
613 
614 	/*
615 	 * Exclude all SLC NANDs from this advanced detection scheme.
616 	 * According to the ranges defined in several datasheets, it might
617 	 * appear that even SLC NANDs could fall in this extended ID scheme.
618 	 * If that the case rework the test to let SLC NANDs go through the
619 	 * detection process.
620 	 */
621 	if (chip->id.len < 6 || nand_is_slc(chip)) {
622 		nand_decode_ext_id(chip);
623 		return;
624 	}
625 
626 	/* Extract pagesize */
627 	memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
628 	mtd->writesize = memorg->pagesize;
629 
630 	tmp = (chip->id.data[3] >> 4) & 0x3;
631 	/*
632 	 * When bit7 is set that means we start counting at 1MiB, otherwise
633 	 * we start counting at 128KiB and shift this value the content of
634 	 * ID[3][4:5].
635 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
636 	 * this case the erasesize is set to 768KiB.
637 	 */
638 	if (chip->id.data[3] & 0x80) {
639 		memorg->pages_per_eraseblock = (SZ_1M << tmp) /
640 					       memorg->pagesize;
641 		mtd->erasesize = SZ_1M << tmp;
642 	} else if (tmp == 3) {
643 		memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
644 					       memorg->pagesize;
645 		mtd->erasesize = SZ_512K + SZ_256K;
646 	} else {
647 		memorg->pages_per_eraseblock = (SZ_128K << tmp) /
648 					       memorg->pagesize;
649 		mtd->erasesize = SZ_128K << tmp;
650 	}
651 
652 	/*
653 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
654 	 * not exposing a valid JEDEC parameter table.
655 	 * These NANDs use a different NAND ID scheme.
656 	 */
657 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
658 
659 	hynix_nand_extract_oobsize(chip, valid_jedecid);
660 	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
661 	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
662 }
663 
664 static void hynix_nand_cleanup(struct nand_chip *chip)
665 {
666 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
667 
668 	if (!hynix)
669 		return;
670 
671 	kfree(hynix->read_retry);
672 	kfree(hynix);
673 	nand_set_manufacturer_data(chip, NULL);
674 }
675 
676 static int hynix_nand_init(struct nand_chip *chip)
677 {
678 	struct hynix_nand *hynix;
679 	int ret;
680 
681 	if (!nand_is_slc(chip))
682 		chip->options |= NAND_BBM_LASTPAGE;
683 	else
684 		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
685 
686 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
687 	if (!hynix)
688 		return -ENOMEM;
689 
690 	nand_set_manufacturer_data(chip, hynix);
691 
692 	ret = hynix_nand_rr_init(chip);
693 	if (ret)
694 		hynix_nand_cleanup(chip);
695 
696 	return ret;
697 }
698 
699 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
700 	.detect = hynix_nand_decode_id,
701 	.init = hynix_nand_init,
702 	.cleanup = hynix_nand_cleanup,
703 };
704