xref: /openbmc/linux/drivers/mtd/nand/raw/nand_hynix.c (revision 4a075bd4)
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/sizes.h>
19 #include <linux/slab.h>
20 
21 #include "internals.h"
22 
23 #define NAND_HYNIX_CMD_SET_PARAMS	0x36
24 #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
25 
26 #define NAND_HYNIX_1XNM_RR_REPEAT	8
27 
28 /**
29  * struct hynix_read_retry - read-retry data
30  * @nregs: number of register to set when applying a new read-retry mode
31  * @regs: register offsets (NAND chip dependent)
32  * @values: array of values to set in registers. The array size is equal to
33  *	    (nregs * nmodes)
34  */
35 struct hynix_read_retry {
36 	int nregs;
37 	const u8 *regs;
38 	u8 values[0];
39 };
40 
41 /**
42  * struct hynix_nand - private Hynix NAND struct
43  * @nand_technology: manufacturing process expressed in picometer
44  * @read_retry: read-retry information
45  */
46 struct hynix_nand {
47 	const struct hynix_read_retry *read_retry;
48 };
49 
50 /**
51  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
52  *				 area
53  * @nregs: number of hynix private registers to set before reading the reading
54  *	   the OTP area
55  * @regs: registers that should be configured
56  * @values: values that should be set in regs
57  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
58  *	  chip
59  * @size: size of the read-retry OTP section
60  */
61 struct hynix_read_retry_otp {
62 	int nregs;
63 	const u8 *regs;
64 	const u8 *values;
65 	int page;
66 	int size;
67 };
68 
69 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
70 {
71 	u8 jedecid[5] = { };
72 	int ret;
73 
74 	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
75 	if (ret)
76 		return false;
77 
78 	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
79 }
80 
81 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
82 {
83 	if (nand_has_exec_op(chip)) {
84 		struct nand_op_instr instrs[] = {
85 			NAND_OP_CMD(cmd, 0),
86 		};
87 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
88 
89 		return nand_exec_op(chip, &op);
90 	}
91 
92 	chip->legacy.cmdfunc(chip, cmd, -1, -1);
93 
94 	return 0;
95 }
96 
97 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
98 {
99 	u16 column = ((u16)addr << 8) | addr;
100 
101 	if (nand_has_exec_op(chip)) {
102 		struct nand_op_instr instrs[] = {
103 			NAND_OP_ADDR(1, &addr, 0),
104 			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
105 		};
106 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
107 
108 		return nand_exec_op(chip, &op);
109 	}
110 
111 	chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
112 	chip->legacy.write_byte(chip, val);
113 
114 	return 0;
115 }
116 
117 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
118 {
119 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
120 	const u8 *values;
121 	int i, ret;
122 
123 	values = hynix->read_retry->values +
124 		 (retry_mode * hynix->read_retry->nregs);
125 
126 	/* Enter 'Set Hynix Parameters' mode */
127 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
128 	if (ret)
129 		return ret;
130 
131 	/*
132 	 * Configure the NAND in the requested read-retry mode.
133 	 * This is done by setting pre-defined values in internal NAND
134 	 * registers.
135 	 *
136 	 * The set of registers is NAND specific, and the values are either
137 	 * predefined or extracted from an OTP area on the NAND (values are
138 	 * probably tweaked at production in this case).
139 	 */
140 	for (i = 0; i < hynix->read_retry->nregs; i++) {
141 		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
142 					      values[i]);
143 		if (ret)
144 			return ret;
145 	}
146 
147 	/* Apply the new settings. */
148 	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
149 }
150 
151 /**
152  * hynix_get_majority - get the value that is occurring the most in a given
153  *			set of values
154  * @in: the array of values to test
155  * @repeat: the size of the in array
156  * @out: pointer used to store the output value
157  *
158  * This function implements the 'majority check' logic that is supposed to
159  * overcome the unreliability of MLC NANDs when reading the OTP area storing
160  * the read-retry parameters.
161  *
162  * It's based on a pretty simple assumption: if we repeat the same value
163  * several times and then take the one that is occurring the most, we should
164  * find the correct value.
165  * Let's hope this dummy algorithm prevents us from losing the read-retry
166  * parameters.
167  */
168 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
169 {
170 	int i, j, half = repeat / 2;
171 
172 	/*
173 	 * We only test the first half of the in array because we must ensure
174 	 * that the value is at least occurring repeat / 2 times.
175 	 *
176 	 * This loop is suboptimal since we may count the occurrences of the
177 	 * same value several time, but we are doing that on small sets, which
178 	 * makes it acceptable.
179 	 */
180 	for (i = 0; i < half; i++) {
181 		int cnt = 0;
182 		u8 val = in[i];
183 
184 		/* Count all values that are matching the one at index i. */
185 		for (j = i + 1; j < repeat; j++) {
186 			if (in[j] == val)
187 				cnt++;
188 		}
189 
190 		/* We found a value occurring more than repeat / 2. */
191 		if (cnt > half) {
192 			*out = val;
193 			return 0;
194 		}
195 	}
196 
197 	return -EIO;
198 }
199 
200 static int hynix_read_rr_otp(struct nand_chip *chip,
201 			     const struct hynix_read_retry_otp *info,
202 			     void *buf)
203 {
204 	int i, ret;
205 
206 	ret = nand_reset_op(chip);
207 	if (ret)
208 		return ret;
209 
210 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
211 	if (ret)
212 		return ret;
213 
214 	for (i = 0; i < info->nregs; i++) {
215 		ret = hynix_nand_reg_write_op(chip, info->regs[i],
216 					      info->values[i]);
217 		if (ret)
218 			return ret;
219 	}
220 
221 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
222 	if (ret)
223 		return ret;
224 
225 	/* Sequence to enter OTP mode? */
226 	ret = hynix_nand_cmd_op(chip, 0x17);
227 	if (ret)
228 		return ret;
229 
230 	ret = hynix_nand_cmd_op(chip, 0x4);
231 	if (ret)
232 		return ret;
233 
234 	ret = hynix_nand_cmd_op(chip, 0x19);
235 	if (ret)
236 		return ret;
237 
238 	/* Now read the page */
239 	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
240 	if (ret)
241 		return ret;
242 
243 	/* Put everything back to normal */
244 	ret = nand_reset_op(chip);
245 	if (ret)
246 		return ret;
247 
248 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
249 	if (ret)
250 		return ret;
251 
252 	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
253 	if (ret)
254 		return ret;
255 
256 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
257 	if (ret)
258 		return ret;
259 
260 	return nand_read_page_op(chip, 0, 0, NULL, 0);
261 }
262 
263 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
264 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
265 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
266 	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
267 
268 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
269 				   int mode, int reg, bool inv, u8 *val)
270 {
271 	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
272 	int val_offs = (mode * nregs) + reg;
273 	int set_size = nmodes * nregs;
274 	int i, ret;
275 
276 	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
277 		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
278 
279 		tmp[i] = buf[val_offs + set_offs];
280 	}
281 
282 	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
283 	if (ret)
284 		return ret;
285 
286 	if (inv)
287 		*val = ~*val;
288 
289 	return 0;
290 }
291 
292 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
293 	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
294 };
295 
296 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
297 				  const struct hynix_read_retry_otp *info)
298 {
299 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
300 	struct hynix_read_retry *rr = NULL;
301 	int ret, i, j;
302 	u8 nregs, nmodes;
303 	u8 *buf;
304 
305 	buf = kmalloc(info->size, GFP_KERNEL);
306 	if (!buf)
307 		return -ENOMEM;
308 
309 	ret = hynix_read_rr_otp(chip, info, buf);
310 	if (ret)
311 		goto out;
312 
313 	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
314 				 &nmodes);
315 	if (ret)
316 		goto out;
317 
318 	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
319 				 NAND_HYNIX_1XNM_RR_REPEAT,
320 				 &nregs);
321 	if (ret)
322 		goto out;
323 
324 	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
325 	if (!rr) {
326 		ret = -ENOMEM;
327 		goto out;
328 	}
329 
330 	for (i = 0; i < nmodes; i++) {
331 		for (j = 0; j < nregs; j++) {
332 			u8 *val = rr->values + (i * nregs);
333 
334 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
335 						      false, val);
336 			if (!ret)
337 				continue;
338 
339 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
340 						      true, val);
341 			if (ret)
342 				goto out;
343 		}
344 	}
345 
346 	rr->nregs = nregs;
347 	rr->regs = hynix_1xnm_mlc_read_retry_regs;
348 	hynix->read_retry = rr;
349 	chip->setup_read_retry = hynix_nand_setup_read_retry;
350 	chip->read_retries = nmodes;
351 
352 out:
353 	kfree(buf);
354 
355 	if (ret)
356 		kfree(rr);
357 
358 	return ret;
359 }
360 
361 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
362 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
363 
364 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
365 	{
366 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
367 		.regs = hynix_mlc_1xnm_rr_otp_regs,
368 		.values = hynix_mlc_1xnm_rr_otp_values,
369 		.page = 0x21f,
370 		.size = 784
371 	},
372 	{
373 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
374 		.regs = hynix_mlc_1xnm_rr_otp_regs,
375 		.values = hynix_mlc_1xnm_rr_otp_values,
376 		.page = 0x200,
377 		.size = 528,
378 	},
379 };
380 
381 static int hynix_nand_rr_init(struct nand_chip *chip)
382 {
383 	int i, ret = 0;
384 	bool valid_jedecid;
385 
386 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
387 
388 	/*
389 	 * We only support read-retry for 1xnm NANDs, and those NANDs all
390 	 * expose a valid JEDEC ID.
391 	 */
392 	if (valid_jedecid) {
393 		u8 nand_tech = chip->id.data[5] >> 4;
394 
395 		/* 1xnm technology */
396 		if (nand_tech == 4) {
397 			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
398 			     i++) {
399 				/*
400 				 * FIXME: Hynix recommend to copy the
401 				 * read-retry OTP area into a normal page.
402 				 */
403 				ret = hynix_mlc_1xnm_rr_init(chip,
404 						hynix_mlc_1xnm_rr_otps);
405 				if (!ret)
406 					break;
407 			}
408 		}
409 	}
410 
411 	if (ret)
412 		pr_warn("failed to initialize read-retry infrastructure");
413 
414 	return 0;
415 }
416 
417 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
418 				       bool valid_jedecid)
419 {
420 	struct mtd_info *mtd = nand_to_mtd(chip);
421 	struct nand_memory_organization *memorg;
422 	u8 oobsize;
423 
424 	memorg = nanddev_get_memorg(&chip->base);
425 
426 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
427 		  ((chip->id.data[3] >> 4) & 0x4);
428 
429 	if (valid_jedecid) {
430 		switch (oobsize) {
431 		case 0:
432 			memorg->oobsize = 2048;
433 			break;
434 		case 1:
435 			memorg->oobsize = 1664;
436 			break;
437 		case 2:
438 			memorg->oobsize = 1024;
439 			break;
440 		case 3:
441 			memorg->oobsize = 640;
442 			break;
443 		default:
444 			/*
445 			 * We should never reach this case, but if that
446 			 * happens, this probably means Hynix decided to use
447 			 * a different extended ID format, and we should find
448 			 * a way to support it.
449 			 */
450 			WARN(1, "Invalid OOB size");
451 			break;
452 		}
453 	} else {
454 		switch (oobsize) {
455 		case 0:
456 			memorg->oobsize = 128;
457 			break;
458 		case 1:
459 			memorg->oobsize = 224;
460 			break;
461 		case 2:
462 			memorg->oobsize = 448;
463 			break;
464 		case 3:
465 			memorg->oobsize = 64;
466 			break;
467 		case 4:
468 			memorg->oobsize = 32;
469 			break;
470 		case 5:
471 			memorg->oobsize = 16;
472 			break;
473 		case 6:
474 			memorg->oobsize = 640;
475 			break;
476 		default:
477 			/*
478 			 * We should never reach this case, but if that
479 			 * happens, this probably means Hynix decided to use
480 			 * a different extended ID format, and we should find
481 			 * a way to support it.
482 			 */
483 			WARN(1, "Invalid OOB size");
484 			break;
485 		}
486 
487 		/*
488 		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
489 		 * Area Size" is encoded "per 8KB" (page size). This chip uses
490 		 * a page size of 16KiB. The datasheet mentions an OOB size of
491 		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
492 		 * the existing logic above) is 640 bytes.
493 		 * Update the OOB size for this chip by taking the value
494 		 * determined above and scaling it to the actual page size (so
495 		 * the actual OOB size for this chip is: 640 * 16k / 8k).
496 		 */
497 		if (chip->id.data[1] == 0xde)
498 			memorg->oobsize *= memorg->pagesize / SZ_8K;
499 	}
500 
501 	mtd->oobsize = memorg->oobsize;
502 }
503 
504 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
505 						bool valid_jedecid)
506 {
507 	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
508 
509 	if (valid_jedecid) {
510 		/* Reference: H27UCG8T2E datasheet */
511 		chip->base.eccreq.step_size = 1024;
512 
513 		switch (ecc_level) {
514 		case 0:
515 			chip->base.eccreq.step_size = 0;
516 			chip->base.eccreq.strength = 0;
517 			break;
518 		case 1:
519 			chip->base.eccreq.strength = 4;
520 			break;
521 		case 2:
522 			chip->base.eccreq.strength = 24;
523 			break;
524 		case 3:
525 			chip->base.eccreq.strength = 32;
526 			break;
527 		case 4:
528 			chip->base.eccreq.strength = 40;
529 			break;
530 		case 5:
531 			chip->base.eccreq.strength = 50;
532 			break;
533 		case 6:
534 			chip->base.eccreq.strength = 60;
535 			break;
536 		default:
537 			/*
538 			 * We should never reach this case, but if that
539 			 * happens, this probably means Hynix decided to use
540 			 * a different extended ID format, and we should find
541 			 * a way to support it.
542 			 */
543 			WARN(1, "Invalid ECC requirements");
544 		}
545 	} else {
546 		/*
547 		 * The ECC requirements field meaning depends on the
548 		 * NAND technology.
549 		 */
550 		u8 nand_tech = chip->id.data[5] & 0x7;
551 
552 		if (nand_tech < 3) {
553 			/* > 26nm, reference: H27UBG8T2A datasheet */
554 			if (ecc_level < 5) {
555 				chip->base.eccreq.step_size = 512;
556 				chip->base.eccreq.strength = 1 << ecc_level;
557 			} else if (ecc_level < 7) {
558 				if (ecc_level == 5)
559 					chip->base.eccreq.step_size = 2048;
560 				else
561 					chip->base.eccreq.step_size = 1024;
562 				chip->base.eccreq.strength = 24;
563 			} else {
564 				/*
565 				 * We should never reach this case, but if that
566 				 * happens, this probably means Hynix decided
567 				 * to use a different extended ID format, and
568 				 * we should find a way to support it.
569 				 */
570 				WARN(1, "Invalid ECC requirements");
571 			}
572 		} else {
573 			/* <= 26nm, reference: H27UBG8T2B datasheet */
574 			if (!ecc_level) {
575 				chip->base.eccreq.step_size = 0;
576 				chip->base.eccreq.strength = 0;
577 			} else if (ecc_level < 5) {
578 				chip->base.eccreq.step_size = 512;
579 				chip->base.eccreq.strength = 1 << (ecc_level - 1);
580 			} else {
581 				chip->base.eccreq.step_size = 1024;
582 				chip->base.eccreq.strength = 24 +
583 							(8 * (ecc_level - 5));
584 			}
585 		}
586 	}
587 }
588 
589 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
590 						       bool valid_jedecid)
591 {
592 	u8 nand_tech;
593 
594 	/* We need scrambling on all TLC NANDs*/
595 	if (nanddev_bits_per_cell(&chip->base) > 2)
596 		chip->options |= NAND_NEED_SCRAMBLING;
597 
598 	/* And on MLC NANDs with sub-3xnm process */
599 	if (valid_jedecid) {
600 		nand_tech = chip->id.data[5] >> 4;
601 
602 		/* < 3xnm */
603 		if (nand_tech > 0)
604 			chip->options |= NAND_NEED_SCRAMBLING;
605 	} else {
606 		nand_tech = chip->id.data[5] & 0x7;
607 
608 		/* < 32nm */
609 		if (nand_tech > 2)
610 			chip->options |= NAND_NEED_SCRAMBLING;
611 	}
612 }
613 
614 static void hynix_nand_decode_id(struct nand_chip *chip)
615 {
616 	struct mtd_info *mtd = nand_to_mtd(chip);
617 	struct nand_memory_organization *memorg;
618 	bool valid_jedecid;
619 	u8 tmp;
620 
621 	memorg = nanddev_get_memorg(&chip->base);
622 
623 	/*
624 	 * Exclude all SLC NANDs from this advanced detection scheme.
625 	 * According to the ranges defined in several datasheets, it might
626 	 * appear that even SLC NANDs could fall in this extended ID scheme.
627 	 * If that the case rework the test to let SLC NANDs go through the
628 	 * detection process.
629 	 */
630 	if (chip->id.len < 6 || nand_is_slc(chip)) {
631 		nand_decode_ext_id(chip);
632 		return;
633 	}
634 
635 	/* Extract pagesize */
636 	memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
637 	mtd->writesize = memorg->pagesize;
638 
639 	tmp = (chip->id.data[3] >> 4) & 0x3;
640 	/*
641 	 * When bit7 is set that means we start counting at 1MiB, otherwise
642 	 * we start counting at 128KiB and shift this value the content of
643 	 * ID[3][4:5].
644 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
645 	 * this case the erasesize is set to 768KiB.
646 	 */
647 	if (chip->id.data[3] & 0x80) {
648 		memorg->pages_per_eraseblock = (SZ_1M << tmp) /
649 					       memorg->pagesize;
650 		mtd->erasesize = SZ_1M << tmp;
651 	} else if (tmp == 3) {
652 		memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
653 					       memorg->pagesize;
654 		mtd->erasesize = SZ_512K + SZ_256K;
655 	} else {
656 		memorg->pages_per_eraseblock = (SZ_128K << tmp) /
657 					       memorg->pagesize;
658 		mtd->erasesize = SZ_128K << tmp;
659 	}
660 
661 	/*
662 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
663 	 * not exposing a valid JEDEC parameter table.
664 	 * These NANDs use a different NAND ID scheme.
665 	 */
666 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
667 
668 	hynix_nand_extract_oobsize(chip, valid_jedecid);
669 	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
670 	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
671 }
672 
673 static void hynix_nand_cleanup(struct nand_chip *chip)
674 {
675 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
676 
677 	if (!hynix)
678 		return;
679 
680 	kfree(hynix->read_retry);
681 	kfree(hynix);
682 	nand_set_manufacturer_data(chip, NULL);
683 }
684 
685 static int hynix_nand_init(struct nand_chip *chip)
686 {
687 	struct hynix_nand *hynix;
688 	int ret;
689 
690 	if (!nand_is_slc(chip))
691 		chip->options |= NAND_BBM_LASTPAGE;
692 	else
693 		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
694 
695 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
696 	if (!hynix)
697 		return -ENOMEM;
698 
699 	nand_set_manufacturer_data(chip, hynix);
700 
701 	ret = hynix_nand_rr_init(chip);
702 	if (ret)
703 		hynix_nand_cleanup(chip);
704 
705 	return ret;
706 }
707 
708 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
709 	.detect = hynix_nand_decode_id,
710 	.init = hynix_nand_init,
711 	.cleanup = hynix_nand_cleanup,
712 };
713