xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45 
46 #include "internals.h"
47 
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50 				 struct mtd_oob_region *oobregion)
51 {
52 	struct nand_chip *chip = mtd_to_nand(mtd);
53 	struct nand_ecc_ctrl *ecc = &chip->ecc;
54 
55 	if (section > 1)
56 		return -ERANGE;
57 
58 	if (!section) {
59 		oobregion->offset = 0;
60 		if (mtd->oobsize == 16)
61 			oobregion->length = 4;
62 		else
63 			oobregion->length = 3;
64 	} else {
65 		if (mtd->oobsize == 8)
66 			return -ERANGE;
67 
68 		oobregion->offset = 6;
69 		oobregion->length = ecc->total - 4;
70 	}
71 
72 	return 0;
73 }
74 
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76 				  struct mtd_oob_region *oobregion)
77 {
78 	if (section > 1)
79 		return -ERANGE;
80 
81 	if (mtd->oobsize == 16) {
82 		if (section)
83 			return -ERANGE;
84 
85 		oobregion->length = 8;
86 		oobregion->offset = 8;
87 	} else {
88 		oobregion->length = 2;
89 		if (!section)
90 			oobregion->offset = 3;
91 		else
92 			oobregion->offset = 6;
93 	}
94 
95 	return 0;
96 }
97 
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99 	.ecc = nand_ooblayout_ecc_sp,
100 	.free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103 
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105 				 struct mtd_oob_region *oobregion)
106 {
107 	struct nand_chip *chip = mtd_to_nand(mtd);
108 	struct nand_ecc_ctrl *ecc = &chip->ecc;
109 
110 	if (section || !ecc->total)
111 		return -ERANGE;
112 
113 	oobregion->length = ecc->total;
114 	oobregion->offset = mtd->oobsize - oobregion->length;
115 
116 	return 0;
117 }
118 
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120 				  struct mtd_oob_region *oobregion)
121 {
122 	struct nand_chip *chip = mtd_to_nand(mtd);
123 	struct nand_ecc_ctrl *ecc = &chip->ecc;
124 
125 	if (section)
126 		return -ERANGE;
127 
128 	oobregion->length = mtd->oobsize - ecc->total - 2;
129 	oobregion->offset = 2;
130 
131 	return 0;
132 }
133 
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135 	.ecc = nand_ooblayout_ecc_lp,
136 	.free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139 
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145 					 struct mtd_oob_region *oobregion)
146 {
147 	struct nand_chip *chip = mtd_to_nand(mtd);
148 	struct nand_ecc_ctrl *ecc = &chip->ecc;
149 
150 	if (section)
151 		return -ERANGE;
152 
153 	switch (mtd->oobsize) {
154 	case 64:
155 		oobregion->offset = 40;
156 		break;
157 	case 128:
158 		oobregion->offset = 80;
159 		break;
160 	default:
161 		return -EINVAL;
162 	}
163 
164 	oobregion->length = ecc->total;
165 	if (oobregion->offset + oobregion->length > mtd->oobsize)
166 		return -ERANGE;
167 
168 	return 0;
169 }
170 
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172 					  struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 	struct nand_ecc_ctrl *ecc = &chip->ecc;
176 	int ecc_offset = 0;
177 
178 	if (section < 0 || section > 1)
179 		return -ERANGE;
180 
181 	switch (mtd->oobsize) {
182 	case 64:
183 		ecc_offset = 40;
184 		break;
185 	case 128:
186 		ecc_offset = 80;
187 		break;
188 	default:
189 		return -EINVAL;
190 	}
191 
192 	if (section == 0) {
193 		oobregion->offset = 2;
194 		oobregion->length = ecc_offset - 2;
195 	} else {
196 		oobregion->offset = ecc_offset + ecc->total;
197 		oobregion->length = mtd->oobsize - oobregion->offset;
198 	}
199 
200 	return 0;
201 }
202 
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204 	.ecc = nand_ooblayout_ecc_lp_hamming,
205 	.free = nand_ooblayout_free_lp_hamming,
206 };
207 
208 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
209 {
210 	int ret = 0;
211 
212 	/* Start address must align on block boundary */
213 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
214 		pr_debug("%s: unaligned address\n", __func__);
215 		ret = -EINVAL;
216 	}
217 
218 	/* Length must align on block boundary */
219 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
220 		pr_debug("%s: length not block aligned\n", __func__);
221 		ret = -EINVAL;
222 	}
223 
224 	return ret;
225 }
226 
227 /**
228  * nand_select_target() - Select a NAND target (A.K.A. die)
229  * @chip: NAND chip object
230  * @cs: the CS line to select. Note that this CS id is always from the chip
231  *	PoV, not the controller one
232  *
233  * Select a NAND target so that further operations executed on @chip go to the
234  * selected NAND target.
235  */
236 void nand_select_target(struct nand_chip *chip, unsigned int cs)
237 {
238 	/*
239 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
240 	 * not the case it's a bug and the caller should be fixed.
241 	 */
242 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
243 		return;
244 
245 	chip->cur_cs = cs;
246 
247 	if (chip->legacy.select_chip)
248 		chip->legacy.select_chip(chip, cs);
249 }
250 EXPORT_SYMBOL_GPL(nand_select_target);
251 
252 /**
253  * nand_deselect_target() - Deselect the currently selected target
254  * @chip: NAND chip object
255  *
256  * Deselect the currently selected NAND target. The result of operations
257  * executed on @chip after the target has been deselected is undefined.
258  */
259 void nand_deselect_target(struct nand_chip *chip)
260 {
261 	if (chip->legacy.select_chip)
262 		chip->legacy.select_chip(chip, -1);
263 
264 	chip->cur_cs = -1;
265 }
266 EXPORT_SYMBOL_GPL(nand_deselect_target);
267 
268 /**
269  * nand_release_device - [GENERIC] release chip
270  * @chip: NAND chip object
271  *
272  * Release chip lock and wake up anyone waiting on the device.
273  */
274 static void nand_release_device(struct nand_chip *chip)
275 {
276 	/* Release the controller and the chip */
277 	mutex_unlock(&chip->controller->lock);
278 	mutex_unlock(&chip->lock);
279 }
280 
281 /**
282  * nand_bbm_get_next_page - Get the next page for bad block markers
283  * @chip: NAND chip object
284  * @page: First page to start checking for bad block marker usage
285  *
286  * Returns an integer that corresponds to the page offset within a block, for
287  * a page that is used to store bad block markers. If no more pages are
288  * available, -EINVAL is returned.
289  */
290 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
291 {
292 	struct mtd_info *mtd = nand_to_mtd(chip);
293 	int last_page = ((mtd->erasesize - mtd->writesize) >>
294 			 chip->page_shift) & chip->pagemask;
295 
296 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
297 		return 0;
298 	else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
299 		return 1;
300 	else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
301 		return last_page;
302 
303 	return -EINVAL;
304 }
305 
306 /**
307  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
308  * @chip: NAND chip object
309  * @ofs: offset from device start
310  *
311  * Check, if the block is bad.
312  */
313 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
314 {
315 	int first_page, page_offset;
316 	int res;
317 	u8 bad;
318 
319 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
320 	page_offset = nand_bbm_get_next_page(chip, 0);
321 
322 	while (page_offset >= 0) {
323 		res = chip->ecc.read_oob(chip, first_page + page_offset);
324 		if (res < 0)
325 			return res;
326 
327 		bad = chip->oob_poi[chip->badblockpos];
328 
329 		if (likely(chip->badblockbits == 8))
330 			res = bad != 0xFF;
331 		else
332 			res = hweight8(bad) < chip->badblockbits;
333 		if (res)
334 			return res;
335 
336 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
337 	}
338 
339 	return 0;
340 }
341 
342 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
343 {
344 	if (chip->legacy.block_bad)
345 		return chip->legacy.block_bad(chip, ofs);
346 
347 	return nand_block_bad(chip, ofs);
348 }
349 
350 /**
351  * nand_get_device - [GENERIC] Get chip for selected access
352  * @chip: NAND chip structure
353  *
354  * Lock the device and its controller for exclusive access
355  *
356  * Return: -EBUSY if the chip has been suspended, 0 otherwise
357  */
358 static int nand_get_device(struct nand_chip *chip)
359 {
360 	mutex_lock(&chip->lock);
361 	if (chip->suspended) {
362 		mutex_unlock(&chip->lock);
363 		return -EBUSY;
364 	}
365 	mutex_lock(&chip->controller->lock);
366 
367 	return 0;
368 }
369 
370 /**
371  * nand_check_wp - [GENERIC] check if the chip is write protected
372  * @chip: NAND chip object
373  *
374  * Check, if the device is write protected. The function expects, that the
375  * device is already selected.
376  */
377 static int nand_check_wp(struct nand_chip *chip)
378 {
379 	u8 status;
380 	int ret;
381 
382 	/* Broken xD cards report WP despite being writable */
383 	if (chip->options & NAND_BROKEN_XD)
384 		return 0;
385 
386 	/* Check the WP bit */
387 	ret = nand_status_op(chip, &status);
388 	if (ret)
389 		return ret;
390 
391 	return status & NAND_STATUS_WP ? 0 : 1;
392 }
393 
394 /**
395  * nand_fill_oob - [INTERN] Transfer client buffer to oob
396  * @chip: NAND chip object
397  * @oob: oob data buffer
398  * @len: oob data write length
399  * @ops: oob ops structure
400  */
401 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
402 			      struct mtd_oob_ops *ops)
403 {
404 	struct mtd_info *mtd = nand_to_mtd(chip);
405 	int ret;
406 
407 	/*
408 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
409 	 * data from a previous OOB read.
410 	 */
411 	memset(chip->oob_poi, 0xff, mtd->oobsize);
412 
413 	switch (ops->mode) {
414 
415 	case MTD_OPS_PLACE_OOB:
416 	case MTD_OPS_RAW:
417 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
418 		return oob + len;
419 
420 	case MTD_OPS_AUTO_OOB:
421 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
422 						  ops->ooboffs, len);
423 		BUG_ON(ret);
424 		return oob + len;
425 
426 	default:
427 		BUG();
428 	}
429 	return NULL;
430 }
431 
432 /**
433  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
434  * @chip: NAND chip object
435  * @to: offset to write to
436  * @ops: oob operation description structure
437  *
438  * NAND write out-of-band.
439  */
440 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
441 			     struct mtd_oob_ops *ops)
442 {
443 	struct mtd_info *mtd = nand_to_mtd(chip);
444 	int chipnr, page, status, len, ret;
445 
446 	pr_debug("%s: to = 0x%08x, len = %i\n",
447 			 __func__, (unsigned int)to, (int)ops->ooblen);
448 
449 	len = mtd_oobavail(mtd, ops);
450 
451 	/* Do not allow write past end of page */
452 	if ((ops->ooboffs + ops->ooblen) > len) {
453 		pr_debug("%s: attempt to write past end of page\n",
454 				__func__);
455 		return -EINVAL;
456 	}
457 
458 	chipnr = (int)(to >> chip->chip_shift);
459 
460 	/*
461 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
462 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
463 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
464 	 * it in the doc2000 driver in August 1999.  dwmw2.
465 	 */
466 	ret = nand_reset(chip, chipnr);
467 	if (ret)
468 		return ret;
469 
470 	nand_select_target(chip, chipnr);
471 
472 	/* Shift to get page */
473 	page = (int)(to >> chip->page_shift);
474 
475 	/* Check, if it is write protected */
476 	if (nand_check_wp(chip)) {
477 		nand_deselect_target(chip);
478 		return -EROFS;
479 	}
480 
481 	/* Invalidate the page cache, if we write to the cached page */
482 	if (page == chip->pagecache.page)
483 		chip->pagecache.page = -1;
484 
485 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
486 
487 	if (ops->mode == MTD_OPS_RAW)
488 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
489 	else
490 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
491 
492 	nand_deselect_target(chip);
493 
494 	if (status)
495 		return status;
496 
497 	ops->oobretlen = ops->ooblen;
498 
499 	return 0;
500 }
501 
502 /**
503  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
504  * @chip: NAND chip object
505  * @ofs: offset from device start
506  *
507  * This is the default implementation, which can be overridden by a hardware
508  * specific driver. It provides the details for writing a bad block marker to a
509  * block.
510  */
511 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
512 {
513 	struct mtd_info *mtd = nand_to_mtd(chip);
514 	struct mtd_oob_ops ops;
515 	uint8_t buf[2] = { 0, 0 };
516 	int ret = 0, res, page_offset;
517 
518 	memset(&ops, 0, sizeof(ops));
519 	ops.oobbuf = buf;
520 	ops.ooboffs = chip->badblockpos;
521 	if (chip->options & NAND_BUSWIDTH_16) {
522 		ops.ooboffs &= ~0x01;
523 		ops.len = ops.ooblen = 2;
524 	} else {
525 		ops.len = ops.ooblen = 1;
526 	}
527 	ops.mode = MTD_OPS_PLACE_OOB;
528 
529 	page_offset = nand_bbm_get_next_page(chip, 0);
530 
531 	while (page_offset >= 0) {
532 		res = nand_do_write_oob(chip,
533 					ofs + (page_offset * mtd->writesize),
534 					&ops);
535 
536 		if (!ret)
537 			ret = res;
538 
539 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
540 	}
541 
542 	return ret;
543 }
544 
545 /**
546  * nand_markbad_bbm - mark a block by updating the BBM
547  * @chip: NAND chip object
548  * @ofs: offset of the block to mark bad
549  */
550 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
551 {
552 	if (chip->legacy.block_markbad)
553 		return chip->legacy.block_markbad(chip, ofs);
554 
555 	return nand_default_block_markbad(chip, ofs);
556 }
557 
558 /**
559  * nand_block_markbad_lowlevel - mark a block bad
560  * @chip: NAND chip object
561  * @ofs: offset from device start
562  *
563  * This function performs the generic NAND bad block marking steps (i.e., bad
564  * block table(s) and/or marker(s)). We only allow the hardware driver to
565  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
566  *
567  * We try operations in the following order:
568  *
569  *  (1) erase the affected block, to allow OOB marker to be written cleanly
570  *  (2) write bad block marker to OOB area of affected block (unless flag
571  *      NAND_BBT_NO_OOB_BBM is present)
572  *  (3) update the BBT
573  *
574  * Note that we retain the first error encountered in (2) or (3), finish the
575  * procedures, and dump the error in the end.
576 */
577 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
578 {
579 	struct mtd_info *mtd = nand_to_mtd(chip);
580 	int res, ret = 0;
581 
582 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
583 		struct erase_info einfo;
584 
585 		/* Attempt erase before marking OOB */
586 		memset(&einfo, 0, sizeof(einfo));
587 		einfo.addr = ofs;
588 		einfo.len = 1ULL << chip->phys_erase_shift;
589 		nand_erase_nand(chip, &einfo, 0);
590 
591 		/* Write bad block marker to OOB */
592 		ret = nand_get_device(chip);
593 		if (ret)
594 			return ret;
595 
596 		ret = nand_markbad_bbm(chip, ofs);
597 		nand_release_device(chip);
598 	}
599 
600 	/* Mark block bad in BBT */
601 	if (chip->bbt) {
602 		res = nand_markbad_bbt(chip, ofs);
603 		if (!ret)
604 			ret = res;
605 	}
606 
607 	if (!ret)
608 		mtd->ecc_stats.badblocks++;
609 
610 	return ret;
611 }
612 
613 /**
614  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
615  * @mtd: MTD device structure
616  * @ofs: offset from device start
617  *
618  * Check if the block is marked as reserved.
619  */
620 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
621 {
622 	struct nand_chip *chip = mtd_to_nand(mtd);
623 
624 	if (!chip->bbt)
625 		return 0;
626 	/* Return info from the table */
627 	return nand_isreserved_bbt(chip, ofs);
628 }
629 
630 /**
631  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
632  * @chip: NAND chip object
633  * @ofs: offset from device start
634  * @allowbbt: 1, if its allowed to access the bbt area
635  *
636  * Check, if the block is bad. Either by reading the bad block table or
637  * calling of the scan function.
638  */
639 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
640 {
641 	/* Return info from the table */
642 	if (chip->bbt)
643 		return nand_isbad_bbt(chip, ofs, allowbbt);
644 
645 	return nand_isbad_bbm(chip, ofs);
646 }
647 
648 /**
649  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
650  * @chip: NAND chip structure
651  * @timeout_ms: Timeout in ms
652  *
653  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
654  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
655  * returned.
656  *
657  * This helper is intended to be used when the controller does not have access
658  * to the NAND R/B pin.
659  *
660  * Be aware that calling this helper from an ->exec_op() implementation means
661  * ->exec_op() must be re-entrant.
662  *
663  * Return 0 if the NAND chip is ready, a negative error otherwise.
664  */
665 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
666 {
667 	const struct nand_sdr_timings *timings;
668 	u8 status = 0;
669 	int ret;
670 
671 	if (!nand_has_exec_op(chip))
672 		return -ENOTSUPP;
673 
674 	/* Wait tWB before polling the STATUS reg. */
675 	timings = nand_get_sdr_timings(&chip->data_interface);
676 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
677 
678 	ret = nand_status_op(chip, NULL);
679 	if (ret)
680 		return ret;
681 
682 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
683 	do {
684 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
685 		if (ret)
686 			break;
687 
688 		if (status & NAND_STATUS_READY)
689 			break;
690 
691 		/*
692 		 * Typical lowest execution time for a tR on most NANDs is 10us,
693 		 * use this as polling delay before doing something smarter (ie.
694 		 * deriving a delay from the timeout value, timeout_ms/ratio).
695 		 */
696 		udelay(10);
697 	} while	(time_before(jiffies, timeout_ms));
698 
699 	/*
700 	 * We have to exit READ_STATUS mode in order to read real data on the
701 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
702 	 * instruction.
703 	 */
704 	nand_exit_status_op(chip);
705 
706 	if (ret)
707 		return ret;
708 
709 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
710 };
711 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
712 
713 /**
714  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
715  * @chip: NAND chip structure
716  * @gpiod: GPIO descriptor of R/B pin
717  * @timeout_ms: Timeout in ms
718  *
719  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
720  * whitin the specified timeout, -ETIMEDOUT is returned.
721  *
722  * This helper is intended to be used when the controller has access to the
723  * NAND R/B pin over GPIO.
724  *
725  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
726  */
727 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
728 		      unsigned long timeout_ms)
729 {
730 	/* Wait until R/B pin indicates chip is ready or timeout occurs */
731 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
732 	do {
733 		if (gpiod_get_value_cansleep(gpiod))
734 			return 0;
735 
736 		cond_resched();
737 	} while	(time_before(jiffies, timeout_ms));
738 
739 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
740 };
741 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
742 
743 /**
744  * panic_nand_wait - [GENERIC] wait until the command is done
745  * @chip: NAND chip structure
746  * @timeo: timeout
747  *
748  * Wait for command done. This is a helper function for nand_wait used when
749  * we are in interrupt context. May happen when in panic and trying to write
750  * an oops through mtdoops.
751  */
752 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
753 {
754 	int i;
755 	for (i = 0; i < timeo; i++) {
756 		if (chip->legacy.dev_ready) {
757 			if (chip->legacy.dev_ready(chip))
758 				break;
759 		} else {
760 			int ret;
761 			u8 status;
762 
763 			ret = nand_read_data_op(chip, &status, sizeof(status),
764 						true);
765 			if (ret)
766 				return;
767 
768 			if (status & NAND_STATUS_READY)
769 				break;
770 		}
771 		mdelay(1);
772 	}
773 }
774 
775 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
776 {
777 	return (chip->parameters.supports_set_get_features &&
778 		test_bit(addr, chip->parameters.get_feature_list));
779 }
780 
781 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
782 {
783 	return (chip->parameters.supports_set_get_features &&
784 		test_bit(addr, chip->parameters.set_feature_list));
785 }
786 
787 /**
788  * nand_reset_data_interface - Reset data interface and timings
789  * @chip: The NAND chip
790  * @chipnr: Internal die id
791  *
792  * Reset the Data interface and timings to ONFI mode 0.
793  *
794  * Returns 0 for success or negative error code otherwise.
795  */
796 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
797 {
798 	int ret;
799 
800 	if (!nand_has_setup_data_iface(chip))
801 		return 0;
802 
803 	/*
804 	 * The ONFI specification says:
805 	 * "
806 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
807 	 * interface, the host shall use the Reset (FFh) command
808 	 * using SDR timing mode 0. A device in any timing mode is
809 	 * required to recognize Reset (FFh) command issued in SDR
810 	 * timing mode 0.
811 	 * "
812 	 *
813 	 * Configure the data interface in SDR mode and set the
814 	 * timings to timing mode 0.
815 	 */
816 
817 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
818 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
819 							&chip->data_interface);
820 	if (ret)
821 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
822 
823 	return ret;
824 }
825 
826 /**
827  * nand_setup_data_interface - Setup the best data interface and timings
828  * @chip: The NAND chip
829  * @chipnr: Internal die id
830  *
831  * Find and configure the best data interface and NAND timings supported by
832  * the chip and the driver.
833  * First tries to retrieve supported timing modes from ONFI information,
834  * and if the NAND chip does not support ONFI, relies on the
835  * ->onfi_timing_mode_default specified in the nand_ids table.
836  *
837  * Returns 0 for success or negative error code otherwise.
838  */
839 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
840 {
841 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
842 		chip->onfi_timing_mode_default,
843 	};
844 	int ret;
845 
846 	if (!nand_has_setup_data_iface(chip))
847 		return 0;
848 
849 	/* Change the mode on the chip side (if supported by the NAND chip) */
850 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
851 		nand_select_target(chip, chipnr);
852 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
853 					tmode_param);
854 		nand_deselect_target(chip);
855 		if (ret)
856 			return ret;
857 	}
858 
859 	/* Change the mode on the controller side */
860 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
861 							&chip->data_interface);
862 	if (ret)
863 		return ret;
864 
865 	/* Check the mode has been accepted by the chip, if supported */
866 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
867 		return 0;
868 
869 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
870 	nand_select_target(chip, chipnr);
871 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
872 				tmode_param);
873 	nand_deselect_target(chip);
874 	if (ret)
875 		goto err_reset_chip;
876 
877 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
878 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
879 			chip->onfi_timing_mode_default);
880 		goto err_reset_chip;
881 	}
882 
883 	return 0;
884 
885 err_reset_chip:
886 	/*
887 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
888 	 * timing mode.
889 	 */
890 	nand_reset_data_interface(chip, chipnr);
891 	nand_select_target(chip, chipnr);
892 	nand_reset_op(chip);
893 	nand_deselect_target(chip);
894 
895 	return ret;
896 }
897 
898 /**
899  * nand_init_data_interface - find the best data interface and timings
900  * @chip: The NAND chip
901  *
902  * Find the best data interface and NAND timings supported by the chip
903  * and the driver.
904  * First tries to retrieve supported timing modes from ONFI information,
905  * and if the NAND chip does not support ONFI, relies on the
906  * ->onfi_timing_mode_default specified in the nand_ids table. After this
907  * function nand_chip->data_interface is initialized with the best timing mode
908  * available.
909  *
910  * Returns 0 for success or negative error code otherwise.
911  */
912 static int nand_init_data_interface(struct nand_chip *chip)
913 {
914 	int modes, mode, ret;
915 
916 	if (!nand_has_setup_data_iface(chip))
917 		return 0;
918 
919 	/*
920 	 * First try to identify the best timings from ONFI parameters and
921 	 * if the NAND does not support ONFI, fallback to the default ONFI
922 	 * timing mode.
923 	 */
924 	if (chip->parameters.onfi) {
925 		modes = chip->parameters.onfi->async_timing_mode;
926 	} else {
927 		if (!chip->onfi_timing_mode_default)
928 			return 0;
929 
930 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
931 	}
932 
933 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
934 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
935 		if (ret)
936 			continue;
937 
938 		/*
939 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
940 		 * controller supports the requested timings.
941 		 */
942 		ret = chip->controller->ops->setup_data_interface(chip,
943 						 NAND_DATA_IFACE_CHECK_ONLY,
944 						 &chip->data_interface);
945 		if (!ret) {
946 			chip->onfi_timing_mode_default = mode;
947 			break;
948 		}
949 	}
950 
951 	return 0;
952 }
953 
954 /**
955  * nand_fill_column_cycles - fill the column cycles of an address
956  * @chip: The NAND chip
957  * @addrs: Array of address cycles to fill
958  * @offset_in_page: The offset in the page
959  *
960  * Fills the first or the first two bytes of the @addrs field depending
961  * on the NAND bus width and the page size.
962  *
963  * Returns the number of cycles needed to encode the column, or a negative
964  * error code in case one of the arguments is invalid.
965  */
966 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
967 				   unsigned int offset_in_page)
968 {
969 	struct mtd_info *mtd = nand_to_mtd(chip);
970 
971 	/* Make sure the offset is less than the actual page size. */
972 	if (offset_in_page > mtd->writesize + mtd->oobsize)
973 		return -EINVAL;
974 
975 	/*
976 	 * On small page NANDs, there's a dedicated command to access the OOB
977 	 * area, and the column address is relative to the start of the OOB
978 	 * area, not the start of the page. Asjust the address accordingly.
979 	 */
980 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
981 		offset_in_page -= mtd->writesize;
982 
983 	/*
984 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
985 	 * wide, then it must be divided by 2.
986 	 */
987 	if (chip->options & NAND_BUSWIDTH_16) {
988 		if (WARN_ON(offset_in_page % 2))
989 			return -EINVAL;
990 
991 		offset_in_page /= 2;
992 	}
993 
994 	addrs[0] = offset_in_page;
995 
996 	/*
997 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
998 	 * need 2
999 	 */
1000 	if (mtd->writesize <= 512)
1001 		return 1;
1002 
1003 	addrs[1] = offset_in_page >> 8;
1004 
1005 	return 2;
1006 }
1007 
1008 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1009 				     unsigned int offset_in_page, void *buf,
1010 				     unsigned int len)
1011 {
1012 	struct mtd_info *mtd = nand_to_mtd(chip);
1013 	const struct nand_sdr_timings *sdr =
1014 		nand_get_sdr_timings(&chip->data_interface);
1015 	u8 addrs[4];
1016 	struct nand_op_instr instrs[] = {
1017 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1018 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1019 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1020 				 PSEC_TO_NSEC(sdr->tRR_min)),
1021 		NAND_OP_DATA_IN(len, buf, 0),
1022 	};
1023 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1024 	int ret;
1025 
1026 	/* Drop the DATA_IN instruction if len is set to 0. */
1027 	if (!len)
1028 		op.ninstrs--;
1029 
1030 	if (offset_in_page >= mtd->writesize)
1031 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1032 	else if (offset_in_page >= 256 &&
1033 		 !(chip->options & NAND_BUSWIDTH_16))
1034 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1035 
1036 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1037 	if (ret < 0)
1038 		return ret;
1039 
1040 	addrs[1] = page;
1041 	addrs[2] = page >> 8;
1042 
1043 	if (chip->options & NAND_ROW_ADDR_3) {
1044 		addrs[3] = page >> 16;
1045 		instrs[1].ctx.addr.naddrs++;
1046 	}
1047 
1048 	return nand_exec_op(chip, &op);
1049 }
1050 
1051 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1052 				     unsigned int offset_in_page, void *buf,
1053 				     unsigned int len)
1054 {
1055 	const struct nand_sdr_timings *sdr =
1056 		nand_get_sdr_timings(&chip->data_interface);
1057 	u8 addrs[5];
1058 	struct nand_op_instr instrs[] = {
1059 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1060 		NAND_OP_ADDR(4, addrs, 0),
1061 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1062 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1063 				 PSEC_TO_NSEC(sdr->tRR_min)),
1064 		NAND_OP_DATA_IN(len, buf, 0),
1065 	};
1066 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1067 	int ret;
1068 
1069 	/* Drop the DATA_IN instruction if len is set to 0. */
1070 	if (!len)
1071 		op.ninstrs--;
1072 
1073 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1074 	if (ret < 0)
1075 		return ret;
1076 
1077 	addrs[2] = page;
1078 	addrs[3] = page >> 8;
1079 
1080 	if (chip->options & NAND_ROW_ADDR_3) {
1081 		addrs[4] = page >> 16;
1082 		instrs[1].ctx.addr.naddrs++;
1083 	}
1084 
1085 	return nand_exec_op(chip, &op);
1086 }
1087 
1088 /**
1089  * nand_read_page_op - Do a READ PAGE operation
1090  * @chip: The NAND chip
1091  * @page: page to read
1092  * @offset_in_page: offset within the page
1093  * @buf: buffer used to store the data
1094  * @len: length of the buffer
1095  *
1096  * This function issues a READ PAGE operation.
1097  * This function does not select/unselect the CS line.
1098  *
1099  * Returns 0 on success, a negative error code otherwise.
1100  */
1101 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1102 		      unsigned int offset_in_page, void *buf, unsigned int len)
1103 {
1104 	struct mtd_info *mtd = nand_to_mtd(chip);
1105 
1106 	if (len && !buf)
1107 		return -EINVAL;
1108 
1109 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1110 		return -EINVAL;
1111 
1112 	if (nand_has_exec_op(chip)) {
1113 		if (mtd->writesize > 512)
1114 			return nand_lp_exec_read_page_op(chip, page,
1115 							 offset_in_page, buf,
1116 							 len);
1117 
1118 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1119 						 buf, len);
1120 	}
1121 
1122 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1123 	if (len)
1124 		chip->legacy.read_buf(chip, buf, len);
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nand_read_page_op);
1129 
1130 /**
1131  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1132  * @chip: The NAND chip
1133  * @page: parameter page to read
1134  * @buf: buffer used to store the data
1135  * @len: length of the buffer
1136  *
1137  * This function issues a READ PARAMETER PAGE operation.
1138  * This function does not select/unselect the CS line.
1139  *
1140  * Returns 0 on success, a negative error code otherwise.
1141  */
1142 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1143 			    unsigned int len)
1144 {
1145 	unsigned int i;
1146 	u8 *p = buf;
1147 
1148 	if (len && !buf)
1149 		return -EINVAL;
1150 
1151 	if (nand_has_exec_op(chip)) {
1152 		const struct nand_sdr_timings *sdr =
1153 			nand_get_sdr_timings(&chip->data_interface);
1154 		struct nand_op_instr instrs[] = {
1155 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1156 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1157 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1158 					 PSEC_TO_NSEC(sdr->tRR_min)),
1159 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1160 		};
1161 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1162 
1163 		/* Drop the DATA_IN instruction if len is set to 0. */
1164 		if (!len)
1165 			op.ninstrs--;
1166 
1167 		return nand_exec_op(chip, &op);
1168 	}
1169 
1170 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1171 	for (i = 0; i < len; i++)
1172 		p[i] = chip->legacy.read_byte(chip);
1173 
1174 	return 0;
1175 }
1176 
1177 /**
1178  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1179  * @chip: The NAND chip
1180  * @offset_in_page: offset within the page
1181  * @buf: buffer used to store the data
1182  * @len: length of the buffer
1183  * @force_8bit: force 8-bit bus access
1184  *
1185  * This function issues a CHANGE READ COLUMN operation.
1186  * This function does not select/unselect the CS line.
1187  *
1188  * Returns 0 on success, a negative error code otherwise.
1189  */
1190 int nand_change_read_column_op(struct nand_chip *chip,
1191 			       unsigned int offset_in_page, void *buf,
1192 			       unsigned int len, bool force_8bit)
1193 {
1194 	struct mtd_info *mtd = nand_to_mtd(chip);
1195 
1196 	if (len && !buf)
1197 		return -EINVAL;
1198 
1199 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1200 		return -EINVAL;
1201 
1202 	/* Small page NANDs do not support column change. */
1203 	if (mtd->writesize <= 512)
1204 		return -ENOTSUPP;
1205 
1206 	if (nand_has_exec_op(chip)) {
1207 		const struct nand_sdr_timings *sdr =
1208 			nand_get_sdr_timings(&chip->data_interface);
1209 		u8 addrs[2] = {};
1210 		struct nand_op_instr instrs[] = {
1211 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1212 			NAND_OP_ADDR(2, addrs, 0),
1213 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1214 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1215 			NAND_OP_DATA_IN(len, buf, 0),
1216 		};
1217 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1218 		int ret;
1219 
1220 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1221 		if (ret < 0)
1222 			return ret;
1223 
1224 		/* Drop the DATA_IN instruction if len is set to 0. */
1225 		if (!len)
1226 			op.ninstrs--;
1227 
1228 		instrs[3].ctx.data.force_8bit = force_8bit;
1229 
1230 		return nand_exec_op(chip, &op);
1231 	}
1232 
1233 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1234 	if (len)
1235 		chip->legacy.read_buf(chip, buf, len);
1236 
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1240 
1241 /**
1242  * nand_read_oob_op - Do a READ OOB operation
1243  * @chip: The NAND chip
1244  * @page: page to read
1245  * @offset_in_oob: offset within the OOB area
1246  * @buf: buffer used to store the data
1247  * @len: length of the buffer
1248  *
1249  * This function issues a READ OOB operation.
1250  * This function does not select/unselect the CS line.
1251  *
1252  * Returns 0 on success, a negative error code otherwise.
1253  */
1254 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1255 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1256 {
1257 	struct mtd_info *mtd = nand_to_mtd(chip);
1258 
1259 	if (len && !buf)
1260 		return -EINVAL;
1261 
1262 	if (offset_in_oob + len > mtd->oobsize)
1263 		return -EINVAL;
1264 
1265 	if (nand_has_exec_op(chip))
1266 		return nand_read_page_op(chip, page,
1267 					 mtd->writesize + offset_in_oob,
1268 					 buf, len);
1269 
1270 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1271 	if (len)
1272 		chip->legacy.read_buf(chip, buf, len);
1273 
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1277 
1278 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1279 				  unsigned int offset_in_page, const void *buf,
1280 				  unsigned int len, bool prog)
1281 {
1282 	struct mtd_info *mtd = nand_to_mtd(chip);
1283 	const struct nand_sdr_timings *sdr =
1284 		nand_get_sdr_timings(&chip->data_interface);
1285 	u8 addrs[5] = {};
1286 	struct nand_op_instr instrs[] = {
1287 		/*
1288 		 * The first instruction will be dropped if we're dealing
1289 		 * with a large page NAND and adjusted if we're dealing
1290 		 * with a small page NAND and the page offset is > 255.
1291 		 */
1292 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1293 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1294 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1295 		NAND_OP_DATA_OUT(len, buf, 0),
1296 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1297 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1298 	};
1299 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1300 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1301 	int ret;
1302 	u8 status;
1303 
1304 	if (naddrs < 0)
1305 		return naddrs;
1306 
1307 	addrs[naddrs++] = page;
1308 	addrs[naddrs++] = page >> 8;
1309 	if (chip->options & NAND_ROW_ADDR_3)
1310 		addrs[naddrs++] = page >> 16;
1311 
1312 	instrs[2].ctx.addr.naddrs = naddrs;
1313 
1314 	/* Drop the last two instructions if we're not programming the page. */
1315 	if (!prog) {
1316 		op.ninstrs -= 2;
1317 		/* Also drop the DATA_OUT instruction if empty. */
1318 		if (!len)
1319 			op.ninstrs--;
1320 	}
1321 
1322 	if (mtd->writesize <= 512) {
1323 		/*
1324 		 * Small pages need some more tweaking: we have to adjust the
1325 		 * first instruction depending on the page offset we're trying
1326 		 * to access.
1327 		 */
1328 		if (offset_in_page >= mtd->writesize)
1329 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1330 		else if (offset_in_page >= 256 &&
1331 			 !(chip->options & NAND_BUSWIDTH_16))
1332 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1333 	} else {
1334 		/*
1335 		 * Drop the first command if we're dealing with a large page
1336 		 * NAND.
1337 		 */
1338 		op.instrs++;
1339 		op.ninstrs--;
1340 	}
1341 
1342 	ret = nand_exec_op(chip, &op);
1343 	if (!prog || ret)
1344 		return ret;
1345 
1346 	ret = nand_status_op(chip, &status);
1347 	if (ret)
1348 		return ret;
1349 
1350 	return status;
1351 }
1352 
1353 /**
1354  * nand_prog_page_begin_op - starts a PROG PAGE operation
1355  * @chip: The NAND chip
1356  * @page: page to write
1357  * @offset_in_page: offset within the page
1358  * @buf: buffer containing the data to write to the page
1359  * @len: length of the buffer
1360  *
1361  * This function issues the first half of a PROG PAGE operation.
1362  * This function does not select/unselect the CS line.
1363  *
1364  * Returns 0 on success, a negative error code otherwise.
1365  */
1366 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1367 			    unsigned int offset_in_page, const void *buf,
1368 			    unsigned int len)
1369 {
1370 	struct mtd_info *mtd = nand_to_mtd(chip);
1371 
1372 	if (len && !buf)
1373 		return -EINVAL;
1374 
1375 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1376 		return -EINVAL;
1377 
1378 	if (nand_has_exec_op(chip))
1379 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1380 					      len, false);
1381 
1382 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1383 
1384 	if (buf)
1385 		chip->legacy.write_buf(chip, buf, len);
1386 
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1390 
1391 /**
1392  * nand_prog_page_end_op - ends a PROG PAGE operation
1393  * @chip: The NAND chip
1394  *
1395  * This function issues the second half of a PROG PAGE operation.
1396  * This function does not select/unselect the CS line.
1397  *
1398  * Returns 0 on success, a negative error code otherwise.
1399  */
1400 int nand_prog_page_end_op(struct nand_chip *chip)
1401 {
1402 	int ret;
1403 	u8 status;
1404 
1405 	if (nand_has_exec_op(chip)) {
1406 		const struct nand_sdr_timings *sdr =
1407 			nand_get_sdr_timings(&chip->data_interface);
1408 		struct nand_op_instr instrs[] = {
1409 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1410 				    PSEC_TO_NSEC(sdr->tWB_max)),
1411 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1412 		};
1413 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1414 
1415 		ret = nand_exec_op(chip, &op);
1416 		if (ret)
1417 			return ret;
1418 
1419 		ret = nand_status_op(chip, &status);
1420 		if (ret)
1421 			return ret;
1422 	} else {
1423 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1424 		ret = chip->legacy.waitfunc(chip);
1425 		if (ret < 0)
1426 			return ret;
1427 
1428 		status = ret;
1429 	}
1430 
1431 	if (status & NAND_STATUS_FAIL)
1432 		return -EIO;
1433 
1434 	return 0;
1435 }
1436 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1437 
1438 /**
1439  * nand_prog_page_op - Do a full PROG PAGE operation
1440  * @chip: The NAND chip
1441  * @page: page to write
1442  * @offset_in_page: offset within the page
1443  * @buf: buffer containing the data to write to the page
1444  * @len: length of the buffer
1445  *
1446  * This function issues a full PROG PAGE operation.
1447  * This function does not select/unselect the CS line.
1448  *
1449  * Returns 0 on success, a negative error code otherwise.
1450  */
1451 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1452 		      unsigned int offset_in_page, const void *buf,
1453 		      unsigned int len)
1454 {
1455 	struct mtd_info *mtd = nand_to_mtd(chip);
1456 	int status;
1457 
1458 	if (!len || !buf)
1459 		return -EINVAL;
1460 
1461 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1462 		return -EINVAL;
1463 
1464 	if (nand_has_exec_op(chip)) {
1465 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1466 						len, true);
1467 	} else {
1468 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1469 				     page);
1470 		chip->legacy.write_buf(chip, buf, len);
1471 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1472 		status = chip->legacy.waitfunc(chip);
1473 	}
1474 
1475 	if (status & NAND_STATUS_FAIL)
1476 		return -EIO;
1477 
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1481 
1482 /**
1483  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1484  * @chip: The NAND chip
1485  * @offset_in_page: offset within the page
1486  * @buf: buffer containing the data to send to the NAND
1487  * @len: length of the buffer
1488  * @force_8bit: force 8-bit bus access
1489  *
1490  * This function issues a CHANGE WRITE COLUMN operation.
1491  * This function does not select/unselect the CS line.
1492  *
1493  * Returns 0 on success, a negative error code otherwise.
1494  */
1495 int nand_change_write_column_op(struct nand_chip *chip,
1496 				unsigned int offset_in_page,
1497 				const void *buf, unsigned int len,
1498 				bool force_8bit)
1499 {
1500 	struct mtd_info *mtd = nand_to_mtd(chip);
1501 
1502 	if (len && !buf)
1503 		return -EINVAL;
1504 
1505 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1506 		return -EINVAL;
1507 
1508 	/* Small page NANDs do not support column change. */
1509 	if (mtd->writesize <= 512)
1510 		return -ENOTSUPP;
1511 
1512 	if (nand_has_exec_op(chip)) {
1513 		const struct nand_sdr_timings *sdr =
1514 			nand_get_sdr_timings(&chip->data_interface);
1515 		u8 addrs[2];
1516 		struct nand_op_instr instrs[] = {
1517 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1518 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1519 			NAND_OP_DATA_OUT(len, buf, 0),
1520 		};
1521 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1522 		int ret;
1523 
1524 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1525 		if (ret < 0)
1526 			return ret;
1527 
1528 		instrs[2].ctx.data.force_8bit = force_8bit;
1529 
1530 		/* Drop the DATA_OUT instruction if len is set to 0. */
1531 		if (!len)
1532 			op.ninstrs--;
1533 
1534 		return nand_exec_op(chip, &op);
1535 	}
1536 
1537 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1538 	if (len)
1539 		chip->legacy.write_buf(chip, buf, len);
1540 
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1544 
1545 /**
1546  * nand_readid_op - Do a READID operation
1547  * @chip: The NAND chip
1548  * @addr: address cycle to pass after the READID command
1549  * @buf: buffer used to store the ID
1550  * @len: length of the buffer
1551  *
1552  * This function sends a READID command and reads back the ID returned by the
1553  * NAND.
1554  * This function does not select/unselect the CS line.
1555  *
1556  * Returns 0 on success, a negative error code otherwise.
1557  */
1558 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1559 		   unsigned int len)
1560 {
1561 	unsigned int i;
1562 	u8 *id = buf;
1563 
1564 	if (len && !buf)
1565 		return -EINVAL;
1566 
1567 	if (nand_has_exec_op(chip)) {
1568 		const struct nand_sdr_timings *sdr =
1569 			nand_get_sdr_timings(&chip->data_interface);
1570 		struct nand_op_instr instrs[] = {
1571 			NAND_OP_CMD(NAND_CMD_READID, 0),
1572 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1573 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1574 		};
1575 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1576 
1577 		/* Drop the DATA_IN instruction if len is set to 0. */
1578 		if (!len)
1579 			op.ninstrs--;
1580 
1581 		return nand_exec_op(chip, &op);
1582 	}
1583 
1584 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1585 
1586 	for (i = 0; i < len; i++)
1587 		id[i] = chip->legacy.read_byte(chip);
1588 
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(nand_readid_op);
1592 
1593 /**
1594  * nand_status_op - Do a STATUS operation
1595  * @chip: The NAND chip
1596  * @status: out variable to store the NAND status
1597  *
1598  * This function sends a STATUS command and reads back the status returned by
1599  * the NAND.
1600  * This function does not select/unselect the CS line.
1601  *
1602  * Returns 0 on success, a negative error code otherwise.
1603  */
1604 int nand_status_op(struct nand_chip *chip, u8 *status)
1605 {
1606 	if (nand_has_exec_op(chip)) {
1607 		const struct nand_sdr_timings *sdr =
1608 			nand_get_sdr_timings(&chip->data_interface);
1609 		struct nand_op_instr instrs[] = {
1610 			NAND_OP_CMD(NAND_CMD_STATUS,
1611 				    PSEC_TO_NSEC(sdr->tADL_min)),
1612 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1613 		};
1614 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1615 
1616 		if (!status)
1617 			op.ninstrs--;
1618 
1619 		return nand_exec_op(chip, &op);
1620 	}
1621 
1622 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1623 	if (status)
1624 		*status = chip->legacy.read_byte(chip);
1625 
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(nand_status_op);
1629 
1630 /**
1631  * nand_exit_status_op - Exit a STATUS operation
1632  * @chip: The NAND chip
1633  *
1634  * This function sends a READ0 command to cancel the effect of the STATUS
1635  * command to avoid reading only the status until a new read command is sent.
1636  *
1637  * This function does not select/unselect the CS line.
1638  *
1639  * Returns 0 on success, a negative error code otherwise.
1640  */
1641 int nand_exit_status_op(struct nand_chip *chip)
1642 {
1643 	if (nand_has_exec_op(chip)) {
1644 		struct nand_op_instr instrs[] = {
1645 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1646 		};
1647 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1648 
1649 		return nand_exec_op(chip, &op);
1650 	}
1651 
1652 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1653 
1654 	return 0;
1655 }
1656 
1657 /**
1658  * nand_erase_op - Do an erase operation
1659  * @chip: The NAND chip
1660  * @eraseblock: block to erase
1661  *
1662  * This function sends an ERASE command and waits for the NAND to be ready
1663  * before returning.
1664  * This function does not select/unselect the CS line.
1665  *
1666  * Returns 0 on success, a negative error code otherwise.
1667  */
1668 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1669 {
1670 	unsigned int page = eraseblock <<
1671 			    (chip->phys_erase_shift - chip->page_shift);
1672 	int ret;
1673 	u8 status;
1674 
1675 	if (nand_has_exec_op(chip)) {
1676 		const struct nand_sdr_timings *sdr =
1677 			nand_get_sdr_timings(&chip->data_interface);
1678 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1679 		struct nand_op_instr instrs[] = {
1680 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1681 			NAND_OP_ADDR(2, addrs, 0),
1682 			NAND_OP_CMD(NAND_CMD_ERASE2,
1683 				    PSEC_TO_MSEC(sdr->tWB_max)),
1684 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1685 		};
1686 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1687 
1688 		if (chip->options & NAND_ROW_ADDR_3)
1689 			instrs[1].ctx.addr.naddrs++;
1690 
1691 		ret = nand_exec_op(chip, &op);
1692 		if (ret)
1693 			return ret;
1694 
1695 		ret = nand_status_op(chip, &status);
1696 		if (ret)
1697 			return ret;
1698 	} else {
1699 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1700 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1701 
1702 		ret = chip->legacy.waitfunc(chip);
1703 		if (ret < 0)
1704 			return ret;
1705 
1706 		status = ret;
1707 	}
1708 
1709 	if (status & NAND_STATUS_FAIL)
1710 		return -EIO;
1711 
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(nand_erase_op);
1715 
1716 /**
1717  * nand_set_features_op - Do a SET FEATURES operation
1718  * @chip: The NAND chip
1719  * @feature: feature id
1720  * @data: 4 bytes of data
1721  *
1722  * This function sends a SET FEATURES command and waits for the NAND to be
1723  * ready before returning.
1724  * This function does not select/unselect the CS line.
1725  *
1726  * Returns 0 on success, a negative error code otherwise.
1727  */
1728 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1729 				const void *data)
1730 {
1731 	const u8 *params = data;
1732 	int i, ret;
1733 
1734 	if (nand_has_exec_op(chip)) {
1735 		const struct nand_sdr_timings *sdr =
1736 			nand_get_sdr_timings(&chip->data_interface);
1737 		struct nand_op_instr instrs[] = {
1738 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1739 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1740 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1741 					      PSEC_TO_NSEC(sdr->tWB_max)),
1742 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1743 		};
1744 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1745 
1746 		return nand_exec_op(chip, &op);
1747 	}
1748 
1749 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1750 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1751 		chip->legacy.write_byte(chip, params[i]);
1752 
1753 	ret = chip->legacy.waitfunc(chip);
1754 	if (ret < 0)
1755 		return ret;
1756 
1757 	if (ret & NAND_STATUS_FAIL)
1758 		return -EIO;
1759 
1760 	return 0;
1761 }
1762 
1763 /**
1764  * nand_get_features_op - Do a GET FEATURES operation
1765  * @chip: The NAND chip
1766  * @feature: feature id
1767  * @data: 4 bytes of data
1768  *
1769  * This function sends a GET FEATURES command and waits for the NAND to be
1770  * ready before returning.
1771  * This function does not select/unselect the CS line.
1772  *
1773  * Returns 0 on success, a negative error code otherwise.
1774  */
1775 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1776 				void *data)
1777 {
1778 	u8 *params = data;
1779 	int i;
1780 
1781 	if (nand_has_exec_op(chip)) {
1782 		const struct nand_sdr_timings *sdr =
1783 			nand_get_sdr_timings(&chip->data_interface);
1784 		struct nand_op_instr instrs[] = {
1785 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1786 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1787 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1788 					 PSEC_TO_NSEC(sdr->tRR_min)),
1789 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1790 					     data, 0),
1791 		};
1792 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1793 
1794 		return nand_exec_op(chip, &op);
1795 	}
1796 
1797 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1798 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1799 		params[i] = chip->legacy.read_byte(chip);
1800 
1801 	return 0;
1802 }
1803 
1804 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1805 			    unsigned int delay_ns)
1806 {
1807 	if (nand_has_exec_op(chip)) {
1808 		struct nand_op_instr instrs[] = {
1809 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1810 					 PSEC_TO_NSEC(delay_ns)),
1811 		};
1812 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1813 
1814 		return nand_exec_op(chip, &op);
1815 	}
1816 
1817 	/* Apply delay or wait for ready/busy pin */
1818 	if (!chip->legacy.dev_ready)
1819 		udelay(chip->legacy.chip_delay);
1820 	else
1821 		nand_wait_ready(chip);
1822 
1823 	return 0;
1824 }
1825 
1826 /**
1827  * nand_reset_op - Do a reset operation
1828  * @chip: The NAND chip
1829  *
1830  * This function sends a RESET command and waits for the NAND to be ready
1831  * before returning.
1832  * This function does not select/unselect the CS line.
1833  *
1834  * Returns 0 on success, a negative error code otherwise.
1835  */
1836 int nand_reset_op(struct nand_chip *chip)
1837 {
1838 	if (nand_has_exec_op(chip)) {
1839 		const struct nand_sdr_timings *sdr =
1840 			nand_get_sdr_timings(&chip->data_interface);
1841 		struct nand_op_instr instrs[] = {
1842 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1843 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1844 		};
1845 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1846 
1847 		return nand_exec_op(chip, &op);
1848 	}
1849 
1850 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1851 
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(nand_reset_op);
1855 
1856 /**
1857  * nand_read_data_op - Read data from the NAND
1858  * @chip: The NAND chip
1859  * @buf: buffer used to store the data
1860  * @len: length of the buffer
1861  * @force_8bit: force 8-bit bus access
1862  *
1863  * This function does a raw data read on the bus. Usually used after launching
1864  * another NAND operation like nand_read_page_op().
1865  * This function does not select/unselect the CS line.
1866  *
1867  * Returns 0 on success, a negative error code otherwise.
1868  */
1869 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1870 		      bool force_8bit)
1871 {
1872 	if (!len || !buf)
1873 		return -EINVAL;
1874 
1875 	if (nand_has_exec_op(chip)) {
1876 		struct nand_op_instr instrs[] = {
1877 			NAND_OP_DATA_IN(len, buf, 0),
1878 		};
1879 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1880 
1881 		instrs[0].ctx.data.force_8bit = force_8bit;
1882 
1883 		return nand_exec_op(chip, &op);
1884 	}
1885 
1886 	if (force_8bit) {
1887 		u8 *p = buf;
1888 		unsigned int i;
1889 
1890 		for (i = 0; i < len; i++)
1891 			p[i] = chip->legacy.read_byte(chip);
1892 	} else {
1893 		chip->legacy.read_buf(chip, buf, len);
1894 	}
1895 
1896 	return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(nand_read_data_op);
1899 
1900 /**
1901  * nand_write_data_op - Write data from the NAND
1902  * @chip: The NAND chip
1903  * @buf: buffer containing the data to send on the bus
1904  * @len: length of the buffer
1905  * @force_8bit: force 8-bit bus access
1906  *
1907  * This function does a raw data write on the bus. Usually used after launching
1908  * another NAND operation like nand_write_page_begin_op().
1909  * This function does not select/unselect the CS line.
1910  *
1911  * Returns 0 on success, a negative error code otherwise.
1912  */
1913 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1914 		       unsigned int len, bool force_8bit)
1915 {
1916 	if (!len || !buf)
1917 		return -EINVAL;
1918 
1919 	if (nand_has_exec_op(chip)) {
1920 		struct nand_op_instr instrs[] = {
1921 			NAND_OP_DATA_OUT(len, buf, 0),
1922 		};
1923 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1924 
1925 		instrs[0].ctx.data.force_8bit = force_8bit;
1926 
1927 		return nand_exec_op(chip, &op);
1928 	}
1929 
1930 	if (force_8bit) {
1931 		const u8 *p = buf;
1932 		unsigned int i;
1933 
1934 		for (i = 0; i < len; i++)
1935 			chip->legacy.write_byte(chip, p[i]);
1936 	} else {
1937 		chip->legacy.write_buf(chip, buf, len);
1938 	}
1939 
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(nand_write_data_op);
1943 
1944 /**
1945  * struct nand_op_parser_ctx - Context used by the parser
1946  * @instrs: array of all the instructions that must be addressed
1947  * @ninstrs: length of the @instrs array
1948  * @subop: Sub-operation to be passed to the NAND controller
1949  *
1950  * This structure is used by the core to split NAND operations into
1951  * sub-operations that can be handled by the NAND controller.
1952  */
1953 struct nand_op_parser_ctx {
1954 	const struct nand_op_instr *instrs;
1955 	unsigned int ninstrs;
1956 	struct nand_subop subop;
1957 };
1958 
1959 /**
1960  * nand_op_parser_must_split_instr - Checks if an instruction must be split
1961  * @pat: the parser pattern element that matches @instr
1962  * @instr: pointer to the instruction to check
1963  * @start_offset: this is an in/out parameter. If @instr has already been
1964  *		  split, then @start_offset is the offset from which to start
1965  *		  (either an address cycle or an offset in the data buffer).
1966  *		  Conversely, if the function returns true (ie. instr must be
1967  *		  split), this parameter is updated to point to the first
1968  *		  data/address cycle that has not been taken care of.
1969  *
1970  * Some NAND controllers are limited and cannot send X address cycles with a
1971  * unique operation, or cannot read/write more than Y bytes at the same time.
1972  * In this case, split the instruction that does not fit in a single
1973  * controller-operation into two or more chunks.
1974  *
1975  * Returns true if the instruction must be split, false otherwise.
1976  * The @start_offset parameter is also updated to the offset at which the next
1977  * bundle of instruction must start (if an address or a data instruction).
1978  */
1979 static bool
1980 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1981 				const struct nand_op_instr *instr,
1982 				unsigned int *start_offset)
1983 {
1984 	switch (pat->type) {
1985 	case NAND_OP_ADDR_INSTR:
1986 		if (!pat->ctx.addr.maxcycles)
1987 			break;
1988 
1989 		if (instr->ctx.addr.naddrs - *start_offset >
1990 		    pat->ctx.addr.maxcycles) {
1991 			*start_offset += pat->ctx.addr.maxcycles;
1992 			return true;
1993 		}
1994 		break;
1995 
1996 	case NAND_OP_DATA_IN_INSTR:
1997 	case NAND_OP_DATA_OUT_INSTR:
1998 		if (!pat->ctx.data.maxlen)
1999 			break;
2000 
2001 		if (instr->ctx.data.len - *start_offset >
2002 		    pat->ctx.data.maxlen) {
2003 			*start_offset += pat->ctx.data.maxlen;
2004 			return true;
2005 		}
2006 		break;
2007 
2008 	default:
2009 		break;
2010 	}
2011 
2012 	return false;
2013 }
2014 
2015 /**
2016  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2017  *			      remaining in the parser context
2018  * @pat: the pattern to test
2019  * @ctx: the parser context structure to match with the pattern @pat
2020  *
2021  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2022  * Returns true if this is the case, false ortherwise. When true is returned,
2023  * @ctx->subop is updated with the set of instructions to be passed to the
2024  * controller driver.
2025  */
2026 static bool
2027 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2028 			 struct nand_op_parser_ctx *ctx)
2029 {
2030 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2031 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2032 	const struct nand_op_instr *instr = ctx->subop.instrs;
2033 	unsigned int i, ninstrs;
2034 
2035 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2036 		/*
2037 		 * The pattern instruction does not match the operation
2038 		 * instruction. If the instruction is marked optional in the
2039 		 * pattern definition, we skip the pattern element and continue
2040 		 * to the next one. If the element is mandatory, there's no
2041 		 * match and we can return false directly.
2042 		 */
2043 		if (instr->type != pat->elems[i].type) {
2044 			if (!pat->elems[i].optional)
2045 				return false;
2046 
2047 			continue;
2048 		}
2049 
2050 		/*
2051 		 * Now check the pattern element constraints. If the pattern is
2052 		 * not able to handle the whole instruction in a single step,
2053 		 * we have to split it.
2054 		 * The last_instr_end_off value comes back updated to point to
2055 		 * the position where we have to split the instruction (the
2056 		 * start of the next subop chunk).
2057 		 */
2058 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2059 						    &instr_offset)) {
2060 			ninstrs++;
2061 			i++;
2062 			break;
2063 		}
2064 
2065 		instr++;
2066 		ninstrs++;
2067 		instr_offset = 0;
2068 	}
2069 
2070 	/*
2071 	 * This can happen if all instructions of a pattern are optional.
2072 	 * Still, if there's not at least one instruction handled by this
2073 	 * pattern, this is not a match, and we should try the next one (if
2074 	 * any).
2075 	 */
2076 	if (!ninstrs)
2077 		return false;
2078 
2079 	/*
2080 	 * We had a match on the pattern head, but the pattern may be longer
2081 	 * than the instructions we're asked to execute. We need to make sure
2082 	 * there's no mandatory elements in the pattern tail.
2083 	 */
2084 	for (; i < pat->nelems; i++) {
2085 		if (!pat->elems[i].optional)
2086 			return false;
2087 	}
2088 
2089 	/*
2090 	 * We have a match: update the subop structure accordingly and return
2091 	 * true.
2092 	 */
2093 	ctx->subop.ninstrs = ninstrs;
2094 	ctx->subop.last_instr_end_off = instr_offset;
2095 
2096 	return true;
2097 }
2098 
2099 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2100 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2101 {
2102 	const struct nand_op_instr *instr;
2103 	char *prefix = "      ";
2104 	unsigned int i;
2105 
2106 	pr_debug("executing subop:\n");
2107 
2108 	for (i = 0; i < ctx->ninstrs; i++) {
2109 		instr = &ctx->instrs[i];
2110 
2111 		if (instr == &ctx->subop.instrs[0])
2112 			prefix = "    ->";
2113 
2114 		nand_op_trace(prefix, instr);
2115 
2116 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2117 			prefix = "      ";
2118 	}
2119 }
2120 #else
2121 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2122 {
2123 	/* NOP */
2124 }
2125 #endif
2126 
2127 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2128 				  const struct nand_op_parser_ctx *b)
2129 {
2130 	if (a->subop.ninstrs < b->subop.ninstrs)
2131 		return -1;
2132 	else if (a->subop.ninstrs > b->subop.ninstrs)
2133 		return 1;
2134 
2135 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2136 		return -1;
2137 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2138 		return 1;
2139 
2140 	return 0;
2141 }
2142 
2143 /**
2144  * nand_op_parser_exec_op - exec_op parser
2145  * @chip: the NAND chip
2146  * @parser: patterns description provided by the controller driver
2147  * @op: the NAND operation to address
2148  * @check_only: when true, the function only checks if @op can be handled but
2149  *		does not execute the operation
2150  *
2151  * Helper function designed to ease integration of NAND controller drivers that
2152  * only support a limited set of instruction sequences. The supported sequences
2153  * are described in @parser, and the framework takes care of splitting @op into
2154  * multiple sub-operations (if required) and pass them back to the ->exec()
2155  * callback of the matching pattern if @check_only is set to false.
2156  *
2157  * NAND controller drivers should call this function from their own ->exec_op()
2158  * implementation.
2159  *
2160  * Returns 0 on success, a negative error code otherwise. A failure can be
2161  * caused by an unsupported operation (none of the supported patterns is able
2162  * to handle the requested operation), or an error returned by one of the
2163  * matching pattern->exec() hook.
2164  */
2165 int nand_op_parser_exec_op(struct nand_chip *chip,
2166 			   const struct nand_op_parser *parser,
2167 			   const struct nand_operation *op, bool check_only)
2168 {
2169 	struct nand_op_parser_ctx ctx = {
2170 		.subop.instrs = op->instrs,
2171 		.instrs = op->instrs,
2172 		.ninstrs = op->ninstrs,
2173 	};
2174 	unsigned int i;
2175 
2176 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2177 		const struct nand_op_parser_pattern *pattern;
2178 		struct nand_op_parser_ctx best_ctx;
2179 		int ret, best_pattern = -1;
2180 
2181 		for (i = 0; i < parser->npatterns; i++) {
2182 			struct nand_op_parser_ctx test_ctx = ctx;
2183 
2184 			pattern = &parser->patterns[i];
2185 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2186 				continue;
2187 
2188 			if (best_pattern >= 0 &&
2189 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2190 				continue;
2191 
2192 			best_pattern = i;
2193 			best_ctx = test_ctx;
2194 		}
2195 
2196 		if (best_pattern < 0) {
2197 			pr_debug("->exec_op() parser: pattern not found!\n");
2198 			return -ENOTSUPP;
2199 		}
2200 
2201 		ctx = best_ctx;
2202 		nand_op_parser_trace(&ctx);
2203 
2204 		if (!check_only) {
2205 			pattern = &parser->patterns[best_pattern];
2206 			ret = pattern->exec(chip, &ctx.subop);
2207 			if (ret)
2208 				return ret;
2209 		}
2210 
2211 		/*
2212 		 * Update the context structure by pointing to the start of the
2213 		 * next subop.
2214 		 */
2215 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2216 		if (ctx.subop.last_instr_end_off)
2217 			ctx.subop.instrs -= 1;
2218 
2219 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2220 	}
2221 
2222 	return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2225 
2226 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2227 {
2228 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2229 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2230 }
2231 
2232 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2233 				      unsigned int instr_idx)
2234 {
2235 	return subop && instr_idx < subop->ninstrs;
2236 }
2237 
2238 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2239 					     unsigned int instr_idx)
2240 {
2241 	if (instr_idx)
2242 		return 0;
2243 
2244 	return subop->first_instr_start_off;
2245 }
2246 
2247 /**
2248  * nand_subop_get_addr_start_off - Get the start offset in an address array
2249  * @subop: The entire sub-operation
2250  * @instr_idx: Index of the instruction inside the sub-operation
2251  *
2252  * During driver development, one could be tempted to directly use the
2253  * ->addr.addrs field of address instructions. This is wrong as address
2254  * instructions might be split.
2255  *
2256  * Given an address instruction, returns the offset of the first cycle to issue.
2257  */
2258 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2259 					   unsigned int instr_idx)
2260 {
2261 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2262 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2263 		return 0;
2264 
2265 	return nand_subop_get_start_off(subop, instr_idx);
2266 }
2267 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2268 
2269 /**
2270  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2271  * @subop: The entire sub-operation
2272  * @instr_idx: Index of the instruction inside the sub-operation
2273  *
2274  * During driver development, one could be tempted to directly use the
2275  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2276  * might be split.
2277  *
2278  * Given an address instruction, returns the number of address cycle to issue.
2279  */
2280 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2281 					 unsigned int instr_idx)
2282 {
2283 	int start_off, end_off;
2284 
2285 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2286 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2287 		return 0;
2288 
2289 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2290 
2291 	if (instr_idx == subop->ninstrs - 1 &&
2292 	    subop->last_instr_end_off)
2293 		end_off = subop->last_instr_end_off;
2294 	else
2295 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2296 
2297 	return end_off - start_off;
2298 }
2299 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2300 
2301 /**
2302  * nand_subop_get_data_start_off - Get the start offset in a data array
2303  * @subop: The entire sub-operation
2304  * @instr_idx: Index of the instruction inside the sub-operation
2305  *
2306  * During driver development, one could be tempted to directly use the
2307  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2308  * instructions might be split.
2309  *
2310  * Given a data instruction, returns the offset to start from.
2311  */
2312 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2313 					   unsigned int instr_idx)
2314 {
2315 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2316 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2317 		return 0;
2318 
2319 	return nand_subop_get_start_off(subop, instr_idx);
2320 }
2321 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2322 
2323 /**
2324  * nand_subop_get_data_len - Get the number of bytes to retrieve
2325  * @subop: The entire sub-operation
2326  * @instr_idx: Index of the instruction inside the sub-operation
2327  *
2328  * During driver development, one could be tempted to directly use the
2329  * ->data->len field of a data instruction. This is wrong as data instructions
2330  * might be split.
2331  *
2332  * Returns the length of the chunk of data to send/receive.
2333  */
2334 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2335 				     unsigned int instr_idx)
2336 {
2337 	int start_off = 0, end_off;
2338 
2339 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2340 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2341 		return 0;
2342 
2343 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2344 
2345 	if (instr_idx == subop->ninstrs - 1 &&
2346 	    subop->last_instr_end_off)
2347 		end_off = subop->last_instr_end_off;
2348 	else
2349 		end_off = subop->instrs[instr_idx].ctx.data.len;
2350 
2351 	return end_off - start_off;
2352 }
2353 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2354 
2355 /**
2356  * nand_reset - Reset and initialize a NAND device
2357  * @chip: The NAND chip
2358  * @chipnr: Internal die id
2359  *
2360  * Save the timings data structure, then apply SDR timings mode 0 (see
2361  * nand_reset_data_interface for details), do the reset operation, and
2362  * apply back the previous timings.
2363  *
2364  * Returns 0 on success, a negative error code otherwise.
2365  */
2366 int nand_reset(struct nand_chip *chip, int chipnr)
2367 {
2368 	struct nand_data_interface saved_data_intf = chip->data_interface;
2369 	int ret;
2370 
2371 	ret = nand_reset_data_interface(chip, chipnr);
2372 	if (ret)
2373 		return ret;
2374 
2375 	/*
2376 	 * The CS line has to be released before we can apply the new NAND
2377 	 * interface settings, hence this weird nand_select_target()
2378 	 * nand_deselect_target() dance.
2379 	 */
2380 	nand_select_target(chip, chipnr);
2381 	ret = nand_reset_op(chip);
2382 	nand_deselect_target(chip);
2383 	if (ret)
2384 		return ret;
2385 
2386 	/*
2387 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2388 	 * controller in timings mode 0. If the default mode for this chip is
2389 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2390 	 * nand_setup_data_interface() uses ->set/get_features() which would
2391 	 * fail anyway as the parameter page is not available yet.
2392 	 */
2393 	if (!chip->onfi_timing_mode_default)
2394 		return 0;
2395 
2396 	chip->data_interface = saved_data_intf;
2397 	ret = nand_setup_data_interface(chip, chipnr);
2398 	if (ret)
2399 		return ret;
2400 
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(nand_reset);
2404 
2405 /**
2406  * nand_get_features - wrapper to perform a GET_FEATURE
2407  * @chip: NAND chip info structure
2408  * @addr: feature address
2409  * @subfeature_param: the subfeature parameters, a four bytes array
2410  *
2411  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2412  * operation cannot be handled.
2413  */
2414 int nand_get_features(struct nand_chip *chip, int addr,
2415 		      u8 *subfeature_param)
2416 {
2417 	if (!nand_supports_get_features(chip, addr))
2418 		return -ENOTSUPP;
2419 
2420 	if (chip->legacy.get_features)
2421 		return chip->legacy.get_features(chip, addr, subfeature_param);
2422 
2423 	return nand_get_features_op(chip, addr, subfeature_param);
2424 }
2425 
2426 /**
2427  * nand_set_features - wrapper to perform a SET_FEATURE
2428  * @chip: NAND chip info structure
2429  * @addr: feature address
2430  * @subfeature_param: the subfeature parameters, a four bytes array
2431  *
2432  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2433  * operation cannot be handled.
2434  */
2435 int nand_set_features(struct nand_chip *chip, int addr,
2436 		      u8 *subfeature_param)
2437 {
2438 	if (!nand_supports_set_features(chip, addr))
2439 		return -ENOTSUPP;
2440 
2441 	if (chip->legacy.set_features)
2442 		return chip->legacy.set_features(chip, addr, subfeature_param);
2443 
2444 	return nand_set_features_op(chip, addr, subfeature_param);
2445 }
2446 
2447 /**
2448  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2449  * @buf: buffer to test
2450  * @len: buffer length
2451  * @bitflips_threshold: maximum number of bitflips
2452  *
2453  * Check if a buffer contains only 0xff, which means the underlying region
2454  * has been erased and is ready to be programmed.
2455  * The bitflips_threshold specify the maximum number of bitflips before
2456  * considering the region is not erased.
2457  * Note: The logic of this function has been extracted from the memweight
2458  * implementation, except that nand_check_erased_buf function exit before
2459  * testing the whole buffer if the number of bitflips exceed the
2460  * bitflips_threshold value.
2461  *
2462  * Returns a positive number of bitflips less than or equal to
2463  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2464  * threshold.
2465  */
2466 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2467 {
2468 	const unsigned char *bitmap = buf;
2469 	int bitflips = 0;
2470 	int weight;
2471 
2472 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2473 	     len--, bitmap++) {
2474 		weight = hweight8(*bitmap);
2475 		bitflips += BITS_PER_BYTE - weight;
2476 		if (unlikely(bitflips > bitflips_threshold))
2477 			return -EBADMSG;
2478 	}
2479 
2480 	for (; len >= sizeof(long);
2481 	     len -= sizeof(long), bitmap += sizeof(long)) {
2482 		unsigned long d = *((unsigned long *)bitmap);
2483 		if (d == ~0UL)
2484 			continue;
2485 		weight = hweight_long(d);
2486 		bitflips += BITS_PER_LONG - weight;
2487 		if (unlikely(bitflips > bitflips_threshold))
2488 			return -EBADMSG;
2489 	}
2490 
2491 	for (; len > 0; len--, bitmap++) {
2492 		weight = hweight8(*bitmap);
2493 		bitflips += BITS_PER_BYTE - weight;
2494 		if (unlikely(bitflips > bitflips_threshold))
2495 			return -EBADMSG;
2496 	}
2497 
2498 	return bitflips;
2499 }
2500 
2501 /**
2502  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2503  *				 0xff data
2504  * @data: data buffer to test
2505  * @datalen: data length
2506  * @ecc: ECC buffer
2507  * @ecclen: ECC length
2508  * @extraoob: extra OOB buffer
2509  * @extraooblen: extra OOB length
2510  * @bitflips_threshold: maximum number of bitflips
2511  *
2512  * Check if a data buffer and its associated ECC and OOB data contains only
2513  * 0xff pattern, which means the underlying region has been erased and is
2514  * ready to be programmed.
2515  * The bitflips_threshold specify the maximum number of bitflips before
2516  * considering the region as not erased.
2517  *
2518  * Note:
2519  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2520  *    different from the NAND page size. When fixing bitflips, ECC engines will
2521  *    report the number of errors per chunk, and the NAND core infrastructure
2522  *    expect you to return the maximum number of bitflips for the whole page.
2523  *    This is why you should always use this function on a single chunk and
2524  *    not on the whole page. After checking each chunk you should update your
2525  *    max_bitflips value accordingly.
2526  * 2/ When checking for bitflips in erased pages you should not only check
2527  *    the payload data but also their associated ECC data, because a user might
2528  *    have programmed almost all bits to 1 but a few. In this case, we
2529  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2530  *    this case.
2531  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2532  *    data are protected by the ECC engine.
2533  *    It could also be used if you support subpages and want to attach some
2534  *    extra OOB data to an ECC chunk.
2535  *
2536  * Returns a positive number of bitflips less than or equal to
2537  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2538  * threshold. In case of success, the passed buffers are filled with 0xff.
2539  */
2540 int nand_check_erased_ecc_chunk(void *data, int datalen,
2541 				void *ecc, int ecclen,
2542 				void *extraoob, int extraooblen,
2543 				int bitflips_threshold)
2544 {
2545 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2546 
2547 	data_bitflips = nand_check_erased_buf(data, datalen,
2548 					      bitflips_threshold);
2549 	if (data_bitflips < 0)
2550 		return data_bitflips;
2551 
2552 	bitflips_threshold -= data_bitflips;
2553 
2554 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2555 	if (ecc_bitflips < 0)
2556 		return ecc_bitflips;
2557 
2558 	bitflips_threshold -= ecc_bitflips;
2559 
2560 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2561 						  bitflips_threshold);
2562 	if (extraoob_bitflips < 0)
2563 		return extraoob_bitflips;
2564 
2565 	if (data_bitflips)
2566 		memset(data, 0xff, datalen);
2567 
2568 	if (ecc_bitflips)
2569 		memset(ecc, 0xff, ecclen);
2570 
2571 	if (extraoob_bitflips)
2572 		memset(extraoob, 0xff, extraooblen);
2573 
2574 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2575 }
2576 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2577 
2578 /**
2579  * nand_read_page_raw_notsupp - dummy read raw page function
2580  * @chip: nand chip info structure
2581  * @buf: buffer to store read data
2582  * @oob_required: caller requires OOB data read to chip->oob_poi
2583  * @page: page number to read
2584  *
2585  * Returns -ENOTSUPP unconditionally.
2586  */
2587 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2588 			       int oob_required, int page)
2589 {
2590 	return -ENOTSUPP;
2591 }
2592 
2593 /**
2594  * nand_read_page_raw - [INTERN] read raw page data without ecc
2595  * @chip: nand chip info structure
2596  * @buf: buffer to store read data
2597  * @oob_required: caller requires OOB data read to chip->oob_poi
2598  * @page: page number to read
2599  *
2600  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2601  */
2602 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2603 		       int page)
2604 {
2605 	struct mtd_info *mtd = nand_to_mtd(chip);
2606 	int ret;
2607 
2608 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2609 	if (ret)
2610 		return ret;
2611 
2612 	if (oob_required) {
2613 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2614 					false);
2615 		if (ret)
2616 			return ret;
2617 	}
2618 
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL(nand_read_page_raw);
2622 
2623 /**
2624  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2625  * @chip: nand chip info structure
2626  * @buf: buffer to store read data
2627  * @oob_required: caller requires OOB data read to chip->oob_poi
2628  * @page: page number to read
2629  *
2630  * We need a special oob layout and handling even when OOB isn't used.
2631  */
2632 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2633 				       int oob_required, int page)
2634 {
2635 	struct mtd_info *mtd = nand_to_mtd(chip);
2636 	int eccsize = chip->ecc.size;
2637 	int eccbytes = chip->ecc.bytes;
2638 	uint8_t *oob = chip->oob_poi;
2639 	int steps, size, ret;
2640 
2641 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2642 	if (ret)
2643 		return ret;
2644 
2645 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2646 		ret = nand_read_data_op(chip, buf, eccsize, false);
2647 		if (ret)
2648 			return ret;
2649 
2650 		buf += eccsize;
2651 
2652 		if (chip->ecc.prepad) {
2653 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2654 						false);
2655 			if (ret)
2656 				return ret;
2657 
2658 			oob += chip->ecc.prepad;
2659 		}
2660 
2661 		ret = nand_read_data_op(chip, oob, eccbytes, false);
2662 		if (ret)
2663 			return ret;
2664 
2665 		oob += eccbytes;
2666 
2667 		if (chip->ecc.postpad) {
2668 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2669 						false);
2670 			if (ret)
2671 				return ret;
2672 
2673 			oob += chip->ecc.postpad;
2674 		}
2675 	}
2676 
2677 	size = mtd->oobsize - (oob - chip->oob_poi);
2678 	if (size) {
2679 		ret = nand_read_data_op(chip, oob, size, false);
2680 		if (ret)
2681 			return ret;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 /**
2688  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2689  * @chip: nand chip info structure
2690  * @buf: buffer to store read data
2691  * @oob_required: caller requires OOB data read to chip->oob_poi
2692  * @page: page number to read
2693  */
2694 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2695 				int oob_required, int page)
2696 {
2697 	struct mtd_info *mtd = nand_to_mtd(chip);
2698 	int i, eccsize = chip->ecc.size, ret;
2699 	int eccbytes = chip->ecc.bytes;
2700 	int eccsteps = chip->ecc.steps;
2701 	uint8_t *p = buf;
2702 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2703 	uint8_t *ecc_code = chip->ecc.code_buf;
2704 	unsigned int max_bitflips = 0;
2705 
2706 	chip->ecc.read_page_raw(chip, buf, 1, page);
2707 
2708 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2709 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2710 
2711 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2712 					 chip->ecc.total);
2713 	if (ret)
2714 		return ret;
2715 
2716 	eccsteps = chip->ecc.steps;
2717 	p = buf;
2718 
2719 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2720 		int stat;
2721 
2722 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2723 		if (stat < 0) {
2724 			mtd->ecc_stats.failed++;
2725 		} else {
2726 			mtd->ecc_stats.corrected += stat;
2727 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2728 		}
2729 	}
2730 	return max_bitflips;
2731 }
2732 
2733 /**
2734  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2735  * @chip: nand chip info structure
2736  * @data_offs: offset of requested data within the page
2737  * @readlen: data length
2738  * @bufpoi: buffer to store read data
2739  * @page: page number to read
2740  */
2741 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2742 			     uint32_t readlen, uint8_t *bufpoi, int page)
2743 {
2744 	struct mtd_info *mtd = nand_to_mtd(chip);
2745 	int start_step, end_step, num_steps, ret;
2746 	uint8_t *p;
2747 	int data_col_addr, i, gaps = 0;
2748 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2749 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2750 	int index, section = 0;
2751 	unsigned int max_bitflips = 0;
2752 	struct mtd_oob_region oobregion = { };
2753 
2754 	/* Column address within the page aligned to ECC size (256bytes) */
2755 	start_step = data_offs / chip->ecc.size;
2756 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2757 	num_steps = end_step - start_step + 1;
2758 	index = start_step * chip->ecc.bytes;
2759 
2760 	/* Data size aligned to ECC ecc.size */
2761 	datafrag_len = num_steps * chip->ecc.size;
2762 	eccfrag_len = num_steps * chip->ecc.bytes;
2763 
2764 	data_col_addr = start_step * chip->ecc.size;
2765 	/* If we read not a page aligned data */
2766 	p = bufpoi + data_col_addr;
2767 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2768 	if (ret)
2769 		return ret;
2770 
2771 	/* Calculate ECC */
2772 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2773 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2774 
2775 	/*
2776 	 * The performance is faster if we position offsets according to
2777 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2778 	 */
2779 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2780 	if (ret)
2781 		return ret;
2782 
2783 	if (oobregion.length < eccfrag_len)
2784 		gaps = 1;
2785 
2786 	if (gaps) {
2787 		ret = nand_change_read_column_op(chip, mtd->writesize,
2788 						 chip->oob_poi, mtd->oobsize,
2789 						 false);
2790 		if (ret)
2791 			return ret;
2792 	} else {
2793 		/*
2794 		 * Send the command to read the particular ECC bytes take care
2795 		 * about buswidth alignment in read_buf.
2796 		 */
2797 		aligned_pos = oobregion.offset & ~(busw - 1);
2798 		aligned_len = eccfrag_len;
2799 		if (oobregion.offset & (busw - 1))
2800 			aligned_len++;
2801 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2802 		    (busw - 1))
2803 			aligned_len++;
2804 
2805 		ret = nand_change_read_column_op(chip,
2806 						 mtd->writesize + aligned_pos,
2807 						 &chip->oob_poi[aligned_pos],
2808 						 aligned_len, false);
2809 		if (ret)
2810 			return ret;
2811 	}
2812 
2813 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2814 					 chip->oob_poi, index, eccfrag_len);
2815 	if (ret)
2816 		return ret;
2817 
2818 	p = bufpoi + data_col_addr;
2819 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2820 		int stat;
2821 
2822 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2823 					 &chip->ecc.calc_buf[i]);
2824 		if (stat == -EBADMSG &&
2825 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2826 			/* check for empty pages with bitflips */
2827 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2828 						&chip->ecc.code_buf[i],
2829 						chip->ecc.bytes,
2830 						NULL, 0,
2831 						chip->ecc.strength);
2832 		}
2833 
2834 		if (stat < 0) {
2835 			mtd->ecc_stats.failed++;
2836 		} else {
2837 			mtd->ecc_stats.corrected += stat;
2838 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2839 		}
2840 	}
2841 	return max_bitflips;
2842 }
2843 
2844 /**
2845  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2846  * @chip: nand chip info structure
2847  * @buf: buffer to store read data
2848  * @oob_required: caller requires OOB data read to chip->oob_poi
2849  * @page: page number to read
2850  *
2851  * Not for syndrome calculating ECC controllers which need a special oob layout.
2852  */
2853 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2854 				int oob_required, int page)
2855 {
2856 	struct mtd_info *mtd = nand_to_mtd(chip);
2857 	int i, eccsize = chip->ecc.size, ret;
2858 	int eccbytes = chip->ecc.bytes;
2859 	int eccsteps = chip->ecc.steps;
2860 	uint8_t *p = buf;
2861 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2862 	uint8_t *ecc_code = chip->ecc.code_buf;
2863 	unsigned int max_bitflips = 0;
2864 
2865 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2866 	if (ret)
2867 		return ret;
2868 
2869 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2870 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2871 
2872 		ret = nand_read_data_op(chip, p, eccsize, false);
2873 		if (ret)
2874 			return ret;
2875 
2876 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2877 	}
2878 
2879 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2880 	if (ret)
2881 		return ret;
2882 
2883 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2884 					 chip->ecc.total);
2885 	if (ret)
2886 		return ret;
2887 
2888 	eccsteps = chip->ecc.steps;
2889 	p = buf;
2890 
2891 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2892 		int stat;
2893 
2894 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2895 		if (stat == -EBADMSG &&
2896 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2897 			/* check for empty pages with bitflips */
2898 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2899 						&ecc_code[i], eccbytes,
2900 						NULL, 0,
2901 						chip->ecc.strength);
2902 		}
2903 
2904 		if (stat < 0) {
2905 			mtd->ecc_stats.failed++;
2906 		} else {
2907 			mtd->ecc_stats.corrected += stat;
2908 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2909 		}
2910 	}
2911 	return max_bitflips;
2912 }
2913 
2914 /**
2915  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2916  * @chip: nand chip info structure
2917  * @buf: buffer to store read data
2918  * @oob_required: caller requires OOB data read to chip->oob_poi
2919  * @page: page number to read
2920  *
2921  * Hardware ECC for large page chips, require OOB to be read first. For this
2922  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2923  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2924  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2925  * the data area, by overwriting the NAND manufacturer bad block markings.
2926  */
2927 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2928 					  int oob_required, int page)
2929 {
2930 	struct mtd_info *mtd = nand_to_mtd(chip);
2931 	int i, eccsize = chip->ecc.size, ret;
2932 	int eccbytes = chip->ecc.bytes;
2933 	int eccsteps = chip->ecc.steps;
2934 	uint8_t *p = buf;
2935 	uint8_t *ecc_code = chip->ecc.code_buf;
2936 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2937 	unsigned int max_bitflips = 0;
2938 
2939 	/* Read the OOB area first */
2940 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2941 	if (ret)
2942 		return ret;
2943 
2944 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2945 	if (ret)
2946 		return ret;
2947 
2948 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2949 					 chip->ecc.total);
2950 	if (ret)
2951 		return ret;
2952 
2953 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2954 		int stat;
2955 
2956 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2957 
2958 		ret = nand_read_data_op(chip, p, eccsize, false);
2959 		if (ret)
2960 			return ret;
2961 
2962 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2963 
2964 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
2965 		if (stat == -EBADMSG &&
2966 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2967 			/* check for empty pages with bitflips */
2968 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2969 						&ecc_code[i], eccbytes,
2970 						NULL, 0,
2971 						chip->ecc.strength);
2972 		}
2973 
2974 		if (stat < 0) {
2975 			mtd->ecc_stats.failed++;
2976 		} else {
2977 			mtd->ecc_stats.corrected += stat;
2978 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2979 		}
2980 	}
2981 	return max_bitflips;
2982 }
2983 
2984 /**
2985  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2986  * @chip: nand chip info structure
2987  * @buf: buffer to store read data
2988  * @oob_required: caller requires OOB data read to chip->oob_poi
2989  * @page: page number to read
2990  *
2991  * The hw generator calculates the error syndrome automatically. Therefore we
2992  * need a special oob layout and handling.
2993  */
2994 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
2995 				   int oob_required, int page)
2996 {
2997 	struct mtd_info *mtd = nand_to_mtd(chip);
2998 	int ret, i, eccsize = chip->ecc.size;
2999 	int eccbytes = chip->ecc.bytes;
3000 	int eccsteps = chip->ecc.steps;
3001 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3002 	uint8_t *p = buf;
3003 	uint8_t *oob = chip->oob_poi;
3004 	unsigned int max_bitflips = 0;
3005 
3006 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3007 	if (ret)
3008 		return ret;
3009 
3010 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3011 		int stat;
3012 
3013 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3014 
3015 		ret = nand_read_data_op(chip, p, eccsize, false);
3016 		if (ret)
3017 			return ret;
3018 
3019 		if (chip->ecc.prepad) {
3020 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3021 						false);
3022 			if (ret)
3023 				return ret;
3024 
3025 			oob += chip->ecc.prepad;
3026 		}
3027 
3028 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3029 
3030 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3031 		if (ret)
3032 			return ret;
3033 
3034 		stat = chip->ecc.correct(chip, p, oob, NULL);
3035 
3036 		oob += eccbytes;
3037 
3038 		if (chip->ecc.postpad) {
3039 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3040 						false);
3041 			if (ret)
3042 				return ret;
3043 
3044 			oob += chip->ecc.postpad;
3045 		}
3046 
3047 		if (stat == -EBADMSG &&
3048 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3049 			/* check for empty pages with bitflips */
3050 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3051 							   oob - eccpadbytes,
3052 							   eccpadbytes,
3053 							   NULL, 0,
3054 							   chip->ecc.strength);
3055 		}
3056 
3057 		if (stat < 0) {
3058 			mtd->ecc_stats.failed++;
3059 		} else {
3060 			mtd->ecc_stats.corrected += stat;
3061 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3062 		}
3063 	}
3064 
3065 	/* Calculate remaining oob bytes */
3066 	i = mtd->oobsize - (oob - chip->oob_poi);
3067 	if (i) {
3068 		ret = nand_read_data_op(chip, oob, i, false);
3069 		if (ret)
3070 			return ret;
3071 	}
3072 
3073 	return max_bitflips;
3074 }
3075 
3076 /**
3077  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3078  * @chip: NAND chip object
3079  * @oob: oob destination address
3080  * @ops: oob ops structure
3081  * @len: size of oob to transfer
3082  */
3083 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3084 				  struct mtd_oob_ops *ops, size_t len)
3085 {
3086 	struct mtd_info *mtd = nand_to_mtd(chip);
3087 	int ret;
3088 
3089 	switch (ops->mode) {
3090 
3091 	case MTD_OPS_PLACE_OOB:
3092 	case MTD_OPS_RAW:
3093 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3094 		return oob + len;
3095 
3096 	case MTD_OPS_AUTO_OOB:
3097 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3098 						  ops->ooboffs, len);
3099 		BUG_ON(ret);
3100 		return oob + len;
3101 
3102 	default:
3103 		BUG();
3104 	}
3105 	return NULL;
3106 }
3107 
3108 /**
3109  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3110  * @chip: NAND chip object
3111  * @retry_mode: the retry mode to use
3112  *
3113  * Some vendors supply a special command to shift the Vt threshold, to be used
3114  * when there are too many bitflips in a page (i.e., ECC error). After setting
3115  * a new threshold, the host should retry reading the page.
3116  */
3117 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3118 {
3119 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3120 
3121 	if (retry_mode >= chip->read_retries)
3122 		return -EINVAL;
3123 
3124 	if (!chip->setup_read_retry)
3125 		return -EOPNOTSUPP;
3126 
3127 	return chip->setup_read_retry(chip, retry_mode);
3128 }
3129 
3130 static void nand_wait_readrdy(struct nand_chip *chip)
3131 {
3132 	const struct nand_sdr_timings *sdr;
3133 
3134 	if (!(chip->options & NAND_NEED_READRDY))
3135 		return;
3136 
3137 	sdr = nand_get_sdr_timings(&chip->data_interface);
3138 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3139 }
3140 
3141 /**
3142  * nand_do_read_ops - [INTERN] Read data with ECC
3143  * @chip: NAND chip object
3144  * @from: offset to read from
3145  * @ops: oob ops structure
3146  *
3147  * Internal function. Called with chip held.
3148  */
3149 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3150 			    struct mtd_oob_ops *ops)
3151 {
3152 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3153 	struct mtd_info *mtd = nand_to_mtd(chip);
3154 	int ret = 0;
3155 	uint32_t readlen = ops->len;
3156 	uint32_t oobreadlen = ops->ooblen;
3157 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3158 
3159 	uint8_t *bufpoi, *oob, *buf;
3160 	int use_bufpoi;
3161 	unsigned int max_bitflips = 0;
3162 	int retry_mode = 0;
3163 	bool ecc_fail = false;
3164 
3165 	chipnr = (int)(from >> chip->chip_shift);
3166 	nand_select_target(chip, chipnr);
3167 
3168 	realpage = (int)(from >> chip->page_shift);
3169 	page = realpage & chip->pagemask;
3170 
3171 	col = (int)(from & (mtd->writesize - 1));
3172 
3173 	buf = ops->datbuf;
3174 	oob = ops->oobbuf;
3175 	oob_required = oob ? 1 : 0;
3176 
3177 	while (1) {
3178 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3179 
3180 		bytes = min(mtd->writesize - col, readlen);
3181 		aligned = (bytes == mtd->writesize);
3182 
3183 		if (!aligned)
3184 			use_bufpoi = 1;
3185 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3186 			use_bufpoi = !virt_addr_valid(buf) ||
3187 				     !IS_ALIGNED((unsigned long)buf,
3188 						 chip->buf_align);
3189 		else
3190 			use_bufpoi = 0;
3191 
3192 		/* Is the current page in the buffer? */
3193 		if (realpage != chip->pagecache.page || oob) {
3194 			bufpoi = use_bufpoi ? chip->data_buf : buf;
3195 
3196 			if (use_bufpoi && aligned)
3197 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3198 						 __func__, buf);
3199 
3200 read_retry:
3201 			/*
3202 			 * Now read the page into the buffer.  Absent an error,
3203 			 * the read methods return max bitflips per ecc step.
3204 			 */
3205 			if (unlikely(ops->mode == MTD_OPS_RAW))
3206 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3207 							      oob_required,
3208 							      page);
3209 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3210 				 !oob)
3211 				ret = chip->ecc.read_subpage(chip, col, bytes,
3212 							     bufpoi, page);
3213 			else
3214 				ret = chip->ecc.read_page(chip, bufpoi,
3215 							  oob_required, page);
3216 			if (ret < 0) {
3217 				if (use_bufpoi)
3218 					/* Invalidate page cache */
3219 					chip->pagecache.page = -1;
3220 				break;
3221 			}
3222 
3223 			/* Transfer not aligned data */
3224 			if (use_bufpoi) {
3225 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3226 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3227 				    (ops->mode != MTD_OPS_RAW)) {
3228 					chip->pagecache.page = realpage;
3229 					chip->pagecache.bitflips = ret;
3230 				} else {
3231 					/* Invalidate page cache */
3232 					chip->pagecache.page = -1;
3233 				}
3234 				memcpy(buf, chip->data_buf + col, bytes);
3235 			}
3236 
3237 			if (unlikely(oob)) {
3238 				int toread = min(oobreadlen, max_oobsize);
3239 
3240 				if (toread) {
3241 					oob = nand_transfer_oob(chip, oob, ops,
3242 								toread);
3243 					oobreadlen -= toread;
3244 				}
3245 			}
3246 
3247 			nand_wait_readrdy(chip);
3248 
3249 			if (mtd->ecc_stats.failed - ecc_failures) {
3250 				if (retry_mode + 1 < chip->read_retries) {
3251 					retry_mode++;
3252 					ret = nand_setup_read_retry(chip,
3253 							retry_mode);
3254 					if (ret < 0)
3255 						break;
3256 
3257 					/* Reset failures; retry */
3258 					mtd->ecc_stats.failed = ecc_failures;
3259 					goto read_retry;
3260 				} else {
3261 					/* No more retry modes; real failure */
3262 					ecc_fail = true;
3263 				}
3264 			}
3265 
3266 			buf += bytes;
3267 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3268 		} else {
3269 			memcpy(buf, chip->data_buf + col, bytes);
3270 			buf += bytes;
3271 			max_bitflips = max_t(unsigned int, max_bitflips,
3272 					     chip->pagecache.bitflips);
3273 		}
3274 
3275 		readlen -= bytes;
3276 
3277 		/* Reset to retry mode 0 */
3278 		if (retry_mode) {
3279 			ret = nand_setup_read_retry(chip, 0);
3280 			if (ret < 0)
3281 				break;
3282 			retry_mode = 0;
3283 		}
3284 
3285 		if (!readlen)
3286 			break;
3287 
3288 		/* For subsequent reads align to page boundary */
3289 		col = 0;
3290 		/* Increment page address */
3291 		realpage++;
3292 
3293 		page = realpage & chip->pagemask;
3294 		/* Check, if we cross a chip boundary */
3295 		if (!page) {
3296 			chipnr++;
3297 			nand_deselect_target(chip);
3298 			nand_select_target(chip, chipnr);
3299 		}
3300 	}
3301 	nand_deselect_target(chip);
3302 
3303 	ops->retlen = ops->len - (size_t) readlen;
3304 	if (oob)
3305 		ops->oobretlen = ops->ooblen - oobreadlen;
3306 
3307 	if (ret < 0)
3308 		return ret;
3309 
3310 	if (ecc_fail)
3311 		return -EBADMSG;
3312 
3313 	return max_bitflips;
3314 }
3315 
3316 /**
3317  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3318  * @chip: nand chip info structure
3319  * @page: page number to read
3320  */
3321 int nand_read_oob_std(struct nand_chip *chip, int page)
3322 {
3323 	struct mtd_info *mtd = nand_to_mtd(chip);
3324 
3325 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3326 }
3327 EXPORT_SYMBOL(nand_read_oob_std);
3328 
3329 /**
3330  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3331  *			    with syndromes
3332  * @chip: nand chip info structure
3333  * @page: page number to read
3334  */
3335 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3336 {
3337 	struct mtd_info *mtd = nand_to_mtd(chip);
3338 	int length = mtd->oobsize;
3339 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3340 	int eccsize = chip->ecc.size;
3341 	uint8_t *bufpoi = chip->oob_poi;
3342 	int i, toread, sndrnd = 0, pos, ret;
3343 
3344 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3345 	if (ret)
3346 		return ret;
3347 
3348 	for (i = 0; i < chip->ecc.steps; i++) {
3349 		if (sndrnd) {
3350 			int ret;
3351 
3352 			pos = eccsize + i * (eccsize + chunk);
3353 			if (mtd->writesize > 512)
3354 				ret = nand_change_read_column_op(chip, pos,
3355 								 NULL, 0,
3356 								 false);
3357 			else
3358 				ret = nand_read_page_op(chip, page, pos, NULL,
3359 							0);
3360 
3361 			if (ret)
3362 				return ret;
3363 		} else
3364 			sndrnd = 1;
3365 		toread = min_t(int, length, chunk);
3366 
3367 		ret = nand_read_data_op(chip, bufpoi, toread, false);
3368 		if (ret)
3369 			return ret;
3370 
3371 		bufpoi += toread;
3372 		length -= toread;
3373 	}
3374 	if (length > 0) {
3375 		ret = nand_read_data_op(chip, bufpoi, length, false);
3376 		if (ret)
3377 			return ret;
3378 	}
3379 
3380 	return 0;
3381 }
3382 
3383 /**
3384  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3385  * @chip: nand chip info structure
3386  * @page: page number to write
3387  */
3388 int nand_write_oob_std(struct nand_chip *chip, int page)
3389 {
3390 	struct mtd_info *mtd = nand_to_mtd(chip);
3391 
3392 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3393 				 mtd->oobsize);
3394 }
3395 EXPORT_SYMBOL(nand_write_oob_std);
3396 
3397 /**
3398  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3399  *			     with syndrome - only for large page flash
3400  * @chip: nand chip info structure
3401  * @page: page number to write
3402  */
3403 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3404 {
3405 	struct mtd_info *mtd = nand_to_mtd(chip);
3406 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3407 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3408 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3409 	const uint8_t *bufpoi = chip->oob_poi;
3410 
3411 	/*
3412 	 * data-ecc-data-ecc ... ecc-oob
3413 	 * or
3414 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3415 	 */
3416 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3417 		pos = steps * (eccsize + chunk);
3418 		steps = 0;
3419 	} else
3420 		pos = eccsize;
3421 
3422 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3423 	if (ret)
3424 		return ret;
3425 
3426 	for (i = 0; i < steps; i++) {
3427 		if (sndcmd) {
3428 			if (mtd->writesize <= 512) {
3429 				uint32_t fill = 0xFFFFFFFF;
3430 
3431 				len = eccsize;
3432 				while (len > 0) {
3433 					int num = min_t(int, len, 4);
3434 
3435 					ret = nand_write_data_op(chip, &fill,
3436 								 num, false);
3437 					if (ret)
3438 						return ret;
3439 
3440 					len -= num;
3441 				}
3442 			} else {
3443 				pos = eccsize + i * (eccsize + chunk);
3444 				ret = nand_change_write_column_op(chip, pos,
3445 								  NULL, 0,
3446 								  false);
3447 				if (ret)
3448 					return ret;
3449 			}
3450 		} else
3451 			sndcmd = 1;
3452 		len = min_t(int, length, chunk);
3453 
3454 		ret = nand_write_data_op(chip, bufpoi, len, false);
3455 		if (ret)
3456 			return ret;
3457 
3458 		bufpoi += len;
3459 		length -= len;
3460 	}
3461 	if (length > 0) {
3462 		ret = nand_write_data_op(chip, bufpoi, length, false);
3463 		if (ret)
3464 			return ret;
3465 	}
3466 
3467 	return nand_prog_page_end_op(chip);
3468 }
3469 
3470 /**
3471  * nand_do_read_oob - [INTERN] NAND read out-of-band
3472  * @chip: NAND chip object
3473  * @from: offset to read from
3474  * @ops: oob operations description structure
3475  *
3476  * NAND read out-of-band data from the spare area.
3477  */
3478 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3479 			    struct mtd_oob_ops *ops)
3480 {
3481 	struct mtd_info *mtd = nand_to_mtd(chip);
3482 	unsigned int max_bitflips = 0;
3483 	int page, realpage, chipnr;
3484 	struct mtd_ecc_stats stats;
3485 	int readlen = ops->ooblen;
3486 	int len;
3487 	uint8_t *buf = ops->oobbuf;
3488 	int ret = 0;
3489 
3490 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3491 			__func__, (unsigned long long)from, readlen);
3492 
3493 	stats = mtd->ecc_stats;
3494 
3495 	len = mtd_oobavail(mtd, ops);
3496 
3497 	chipnr = (int)(from >> chip->chip_shift);
3498 	nand_select_target(chip, chipnr);
3499 
3500 	/* Shift to get page */
3501 	realpage = (int)(from >> chip->page_shift);
3502 	page = realpage & chip->pagemask;
3503 
3504 	while (1) {
3505 		if (ops->mode == MTD_OPS_RAW)
3506 			ret = chip->ecc.read_oob_raw(chip, page);
3507 		else
3508 			ret = chip->ecc.read_oob(chip, page);
3509 
3510 		if (ret < 0)
3511 			break;
3512 
3513 		len = min(len, readlen);
3514 		buf = nand_transfer_oob(chip, buf, ops, len);
3515 
3516 		nand_wait_readrdy(chip);
3517 
3518 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3519 
3520 		readlen -= len;
3521 		if (!readlen)
3522 			break;
3523 
3524 		/* Increment page address */
3525 		realpage++;
3526 
3527 		page = realpage & chip->pagemask;
3528 		/* Check, if we cross a chip boundary */
3529 		if (!page) {
3530 			chipnr++;
3531 			nand_deselect_target(chip);
3532 			nand_select_target(chip, chipnr);
3533 		}
3534 	}
3535 	nand_deselect_target(chip);
3536 
3537 	ops->oobretlen = ops->ooblen - readlen;
3538 
3539 	if (ret < 0)
3540 		return ret;
3541 
3542 	if (mtd->ecc_stats.failed - stats.failed)
3543 		return -EBADMSG;
3544 
3545 	return max_bitflips;
3546 }
3547 
3548 /**
3549  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3550  * @mtd: MTD device structure
3551  * @from: offset to read from
3552  * @ops: oob operation description structure
3553  *
3554  * NAND read data and/or out-of-band data.
3555  */
3556 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3557 			 struct mtd_oob_ops *ops)
3558 {
3559 	struct nand_chip *chip = mtd_to_nand(mtd);
3560 	int ret;
3561 
3562 	ops->retlen = 0;
3563 
3564 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3565 	    ops->mode != MTD_OPS_AUTO_OOB &&
3566 	    ops->mode != MTD_OPS_RAW)
3567 		return -ENOTSUPP;
3568 
3569 	ret = nand_get_device(chip);
3570 	if (ret)
3571 		return ret;
3572 
3573 	if (!ops->datbuf)
3574 		ret = nand_do_read_oob(chip, from, ops);
3575 	else
3576 		ret = nand_do_read_ops(chip, from, ops);
3577 
3578 	nand_release_device(chip);
3579 	return ret;
3580 }
3581 
3582 /**
3583  * nand_write_page_raw_notsupp - dummy raw page write function
3584  * @chip: nand chip info structure
3585  * @buf: data buffer
3586  * @oob_required: must write chip->oob_poi to OOB
3587  * @page: page number to write
3588  *
3589  * Returns -ENOTSUPP unconditionally.
3590  */
3591 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3592 				int oob_required, int page)
3593 {
3594 	return -ENOTSUPP;
3595 }
3596 
3597 /**
3598  * nand_write_page_raw - [INTERN] raw page write function
3599  * @chip: nand chip info structure
3600  * @buf: data buffer
3601  * @oob_required: must write chip->oob_poi to OOB
3602  * @page: page number to write
3603  *
3604  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3605  */
3606 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3607 			int oob_required, int page)
3608 {
3609 	struct mtd_info *mtd = nand_to_mtd(chip);
3610 	int ret;
3611 
3612 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3613 	if (ret)
3614 		return ret;
3615 
3616 	if (oob_required) {
3617 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3618 					 false);
3619 		if (ret)
3620 			return ret;
3621 	}
3622 
3623 	return nand_prog_page_end_op(chip);
3624 }
3625 EXPORT_SYMBOL(nand_write_page_raw);
3626 
3627 /**
3628  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3629  * @chip: nand chip info structure
3630  * @buf: data buffer
3631  * @oob_required: must write chip->oob_poi to OOB
3632  * @page: page number to write
3633  *
3634  * We need a special oob layout and handling even when ECC isn't checked.
3635  */
3636 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3637 					const uint8_t *buf, int oob_required,
3638 					int page)
3639 {
3640 	struct mtd_info *mtd = nand_to_mtd(chip);
3641 	int eccsize = chip->ecc.size;
3642 	int eccbytes = chip->ecc.bytes;
3643 	uint8_t *oob = chip->oob_poi;
3644 	int steps, size, ret;
3645 
3646 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3647 	if (ret)
3648 		return ret;
3649 
3650 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3651 		ret = nand_write_data_op(chip, buf, eccsize, false);
3652 		if (ret)
3653 			return ret;
3654 
3655 		buf += eccsize;
3656 
3657 		if (chip->ecc.prepad) {
3658 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3659 						 false);
3660 			if (ret)
3661 				return ret;
3662 
3663 			oob += chip->ecc.prepad;
3664 		}
3665 
3666 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3667 		if (ret)
3668 			return ret;
3669 
3670 		oob += eccbytes;
3671 
3672 		if (chip->ecc.postpad) {
3673 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3674 						 false);
3675 			if (ret)
3676 				return ret;
3677 
3678 			oob += chip->ecc.postpad;
3679 		}
3680 	}
3681 
3682 	size = mtd->oobsize - (oob - chip->oob_poi);
3683 	if (size) {
3684 		ret = nand_write_data_op(chip, oob, size, false);
3685 		if (ret)
3686 			return ret;
3687 	}
3688 
3689 	return nand_prog_page_end_op(chip);
3690 }
3691 /**
3692  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3693  * @chip: nand chip info structure
3694  * @buf: data buffer
3695  * @oob_required: must write chip->oob_poi to OOB
3696  * @page: page number to write
3697  */
3698 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3699 				 int oob_required, int page)
3700 {
3701 	struct mtd_info *mtd = nand_to_mtd(chip);
3702 	int i, eccsize = chip->ecc.size, ret;
3703 	int eccbytes = chip->ecc.bytes;
3704 	int eccsteps = chip->ecc.steps;
3705 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3706 	const uint8_t *p = buf;
3707 
3708 	/* Software ECC calculation */
3709 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3710 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3711 
3712 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3713 					 chip->ecc.total);
3714 	if (ret)
3715 		return ret;
3716 
3717 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3718 }
3719 
3720 /**
3721  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3722  * @chip: nand chip info structure
3723  * @buf: data buffer
3724  * @oob_required: must write chip->oob_poi to OOB
3725  * @page: page number to write
3726  */
3727 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3728 				 int oob_required, int page)
3729 {
3730 	struct mtd_info *mtd = nand_to_mtd(chip);
3731 	int i, eccsize = chip->ecc.size, ret;
3732 	int eccbytes = chip->ecc.bytes;
3733 	int eccsteps = chip->ecc.steps;
3734 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3735 	const uint8_t *p = buf;
3736 
3737 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3738 	if (ret)
3739 		return ret;
3740 
3741 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3742 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3743 
3744 		ret = nand_write_data_op(chip, p, eccsize, false);
3745 		if (ret)
3746 			return ret;
3747 
3748 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3749 	}
3750 
3751 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3752 					 chip->ecc.total);
3753 	if (ret)
3754 		return ret;
3755 
3756 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3757 	if (ret)
3758 		return ret;
3759 
3760 	return nand_prog_page_end_op(chip);
3761 }
3762 
3763 
3764 /**
3765  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3766  * @chip:	nand chip info structure
3767  * @offset:	column address of subpage within the page
3768  * @data_len:	data length
3769  * @buf:	data buffer
3770  * @oob_required: must write chip->oob_poi to OOB
3771  * @page: page number to write
3772  */
3773 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3774 				    uint32_t data_len, const uint8_t *buf,
3775 				    int oob_required, int page)
3776 {
3777 	struct mtd_info *mtd = nand_to_mtd(chip);
3778 	uint8_t *oob_buf  = chip->oob_poi;
3779 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3780 	int ecc_size      = chip->ecc.size;
3781 	int ecc_bytes     = chip->ecc.bytes;
3782 	int ecc_steps     = chip->ecc.steps;
3783 	uint32_t start_step = offset / ecc_size;
3784 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3785 	int oob_bytes       = mtd->oobsize / ecc_steps;
3786 	int step, ret;
3787 
3788 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3789 	if (ret)
3790 		return ret;
3791 
3792 	for (step = 0; step < ecc_steps; step++) {
3793 		/* configure controller for WRITE access */
3794 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3795 
3796 		/* write data (untouched subpages already masked by 0xFF) */
3797 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3798 		if (ret)
3799 			return ret;
3800 
3801 		/* mask ECC of un-touched subpages by padding 0xFF */
3802 		if ((step < start_step) || (step > end_step))
3803 			memset(ecc_calc, 0xff, ecc_bytes);
3804 		else
3805 			chip->ecc.calculate(chip, buf, ecc_calc);
3806 
3807 		/* mask OOB of un-touched subpages by padding 0xFF */
3808 		/* if oob_required, preserve OOB metadata of written subpage */
3809 		if (!oob_required || (step < start_step) || (step > end_step))
3810 			memset(oob_buf, 0xff, oob_bytes);
3811 
3812 		buf += ecc_size;
3813 		ecc_calc += ecc_bytes;
3814 		oob_buf  += oob_bytes;
3815 	}
3816 
3817 	/* copy calculated ECC for whole page to chip->buffer->oob */
3818 	/* this include masked-value(0xFF) for unwritten subpages */
3819 	ecc_calc = chip->ecc.calc_buf;
3820 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3821 					 chip->ecc.total);
3822 	if (ret)
3823 		return ret;
3824 
3825 	/* write OOB buffer to NAND device */
3826 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3827 	if (ret)
3828 		return ret;
3829 
3830 	return nand_prog_page_end_op(chip);
3831 }
3832 
3833 
3834 /**
3835  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3836  * @chip: nand chip info structure
3837  * @buf: data buffer
3838  * @oob_required: must write chip->oob_poi to OOB
3839  * @page: page number to write
3840  *
3841  * The hw generator calculates the error syndrome automatically. Therefore we
3842  * need a special oob layout and handling.
3843  */
3844 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3845 				    int oob_required, int page)
3846 {
3847 	struct mtd_info *mtd = nand_to_mtd(chip);
3848 	int i, eccsize = chip->ecc.size;
3849 	int eccbytes = chip->ecc.bytes;
3850 	int eccsteps = chip->ecc.steps;
3851 	const uint8_t *p = buf;
3852 	uint8_t *oob = chip->oob_poi;
3853 	int ret;
3854 
3855 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3856 	if (ret)
3857 		return ret;
3858 
3859 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3860 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3861 
3862 		ret = nand_write_data_op(chip, p, eccsize, false);
3863 		if (ret)
3864 			return ret;
3865 
3866 		if (chip->ecc.prepad) {
3867 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3868 						 false);
3869 			if (ret)
3870 				return ret;
3871 
3872 			oob += chip->ecc.prepad;
3873 		}
3874 
3875 		chip->ecc.calculate(chip, p, oob);
3876 
3877 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3878 		if (ret)
3879 			return ret;
3880 
3881 		oob += eccbytes;
3882 
3883 		if (chip->ecc.postpad) {
3884 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3885 						 false);
3886 			if (ret)
3887 				return ret;
3888 
3889 			oob += chip->ecc.postpad;
3890 		}
3891 	}
3892 
3893 	/* Calculate remaining oob bytes */
3894 	i = mtd->oobsize - (oob - chip->oob_poi);
3895 	if (i) {
3896 		ret = nand_write_data_op(chip, oob, i, false);
3897 		if (ret)
3898 			return ret;
3899 	}
3900 
3901 	return nand_prog_page_end_op(chip);
3902 }
3903 
3904 /**
3905  * nand_write_page - write one page
3906  * @chip: NAND chip descriptor
3907  * @offset: address offset within the page
3908  * @data_len: length of actual data to be written
3909  * @buf: the data to write
3910  * @oob_required: must write chip->oob_poi to OOB
3911  * @page: page number to write
3912  * @raw: use _raw version of write_page
3913  */
3914 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3915 			   int data_len, const uint8_t *buf, int oob_required,
3916 			   int page, int raw)
3917 {
3918 	struct mtd_info *mtd = nand_to_mtd(chip);
3919 	int status, subpage;
3920 
3921 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3922 		chip->ecc.write_subpage)
3923 		subpage = offset || (data_len < mtd->writesize);
3924 	else
3925 		subpage = 0;
3926 
3927 	if (unlikely(raw))
3928 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
3929 						  page);
3930 	else if (subpage)
3931 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3932 						 oob_required, page);
3933 	else
3934 		status = chip->ecc.write_page(chip, buf, oob_required, page);
3935 
3936 	if (status < 0)
3937 		return status;
3938 
3939 	return 0;
3940 }
3941 
3942 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
3943 
3944 /**
3945  * nand_do_write_ops - [INTERN] NAND write with ECC
3946  * @chip: NAND chip object
3947  * @to: offset to write to
3948  * @ops: oob operations description structure
3949  *
3950  * NAND write with ECC.
3951  */
3952 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
3953 			     struct mtd_oob_ops *ops)
3954 {
3955 	struct mtd_info *mtd = nand_to_mtd(chip);
3956 	int chipnr, realpage, page, column;
3957 	uint32_t writelen = ops->len;
3958 
3959 	uint32_t oobwritelen = ops->ooblen;
3960 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3961 
3962 	uint8_t *oob = ops->oobbuf;
3963 	uint8_t *buf = ops->datbuf;
3964 	int ret;
3965 	int oob_required = oob ? 1 : 0;
3966 
3967 	ops->retlen = 0;
3968 	if (!writelen)
3969 		return 0;
3970 
3971 	/* Reject writes, which are not page aligned */
3972 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3973 		pr_notice("%s: attempt to write non page aligned data\n",
3974 			   __func__);
3975 		return -EINVAL;
3976 	}
3977 
3978 	column = to & (mtd->writesize - 1);
3979 
3980 	chipnr = (int)(to >> chip->chip_shift);
3981 	nand_select_target(chip, chipnr);
3982 
3983 	/* Check, if it is write protected */
3984 	if (nand_check_wp(chip)) {
3985 		ret = -EIO;
3986 		goto err_out;
3987 	}
3988 
3989 	realpage = (int)(to >> chip->page_shift);
3990 	page = realpage & chip->pagemask;
3991 
3992 	/* Invalidate the page cache, when we write to the cached page */
3993 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
3994 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
3995 		chip->pagecache.page = -1;
3996 
3997 	/* Don't allow multipage oob writes with offset */
3998 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
3999 		ret = -EINVAL;
4000 		goto err_out;
4001 	}
4002 
4003 	while (1) {
4004 		int bytes = mtd->writesize;
4005 		uint8_t *wbuf = buf;
4006 		int use_bufpoi;
4007 		int part_pagewr = (column || writelen < mtd->writesize);
4008 
4009 		if (part_pagewr)
4010 			use_bufpoi = 1;
4011 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4012 			use_bufpoi = !virt_addr_valid(buf) ||
4013 				     !IS_ALIGNED((unsigned long)buf,
4014 						 chip->buf_align);
4015 		else
4016 			use_bufpoi = 0;
4017 
4018 		/* Partial page write?, or need to use bounce buffer */
4019 		if (use_bufpoi) {
4020 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4021 					 __func__, buf);
4022 			if (part_pagewr)
4023 				bytes = min_t(int, bytes - column, writelen);
4024 			wbuf = nand_get_data_buf(chip);
4025 			memset(wbuf, 0xff, mtd->writesize);
4026 			memcpy(&wbuf[column], buf, bytes);
4027 		}
4028 
4029 		if (unlikely(oob)) {
4030 			size_t len = min(oobwritelen, oobmaxlen);
4031 			oob = nand_fill_oob(chip, oob, len, ops);
4032 			oobwritelen -= len;
4033 		} else {
4034 			/* We still need to erase leftover OOB data */
4035 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4036 		}
4037 
4038 		ret = nand_write_page(chip, column, bytes, wbuf,
4039 				      oob_required, page,
4040 				      (ops->mode == MTD_OPS_RAW));
4041 		if (ret)
4042 			break;
4043 
4044 		writelen -= bytes;
4045 		if (!writelen)
4046 			break;
4047 
4048 		column = 0;
4049 		buf += bytes;
4050 		realpage++;
4051 
4052 		page = realpage & chip->pagemask;
4053 		/* Check, if we cross a chip boundary */
4054 		if (!page) {
4055 			chipnr++;
4056 			nand_deselect_target(chip);
4057 			nand_select_target(chip, chipnr);
4058 		}
4059 	}
4060 
4061 	ops->retlen = ops->len - writelen;
4062 	if (unlikely(oob))
4063 		ops->oobretlen = ops->ooblen;
4064 
4065 err_out:
4066 	nand_deselect_target(chip);
4067 	return ret;
4068 }
4069 
4070 /**
4071  * panic_nand_write - [MTD Interface] NAND write with ECC
4072  * @mtd: MTD device structure
4073  * @to: offset to write to
4074  * @len: number of bytes to write
4075  * @retlen: pointer to variable to store the number of written bytes
4076  * @buf: the data to write
4077  *
4078  * NAND write with ECC. Used when performing writes in interrupt context, this
4079  * may for example be called by mtdoops when writing an oops while in panic.
4080  */
4081 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4082 			    size_t *retlen, const uint8_t *buf)
4083 {
4084 	struct nand_chip *chip = mtd_to_nand(mtd);
4085 	int chipnr = (int)(to >> chip->chip_shift);
4086 	struct mtd_oob_ops ops;
4087 	int ret;
4088 
4089 	nand_select_target(chip, chipnr);
4090 
4091 	/* Wait for the device to get ready */
4092 	panic_nand_wait(chip, 400);
4093 
4094 	memset(&ops, 0, sizeof(ops));
4095 	ops.len = len;
4096 	ops.datbuf = (uint8_t *)buf;
4097 	ops.mode = MTD_OPS_PLACE_OOB;
4098 
4099 	ret = nand_do_write_ops(chip, to, &ops);
4100 
4101 	*retlen = ops.retlen;
4102 	return ret;
4103 }
4104 
4105 /**
4106  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4107  * @mtd: MTD device structure
4108  * @to: offset to write to
4109  * @ops: oob operation description structure
4110  */
4111 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4112 			  struct mtd_oob_ops *ops)
4113 {
4114 	struct nand_chip *chip = mtd_to_nand(mtd);
4115 	int ret;
4116 
4117 	ops->retlen = 0;
4118 
4119 	ret = nand_get_device(chip);
4120 	if (ret)
4121 		return ret;
4122 
4123 	switch (ops->mode) {
4124 	case MTD_OPS_PLACE_OOB:
4125 	case MTD_OPS_AUTO_OOB:
4126 	case MTD_OPS_RAW:
4127 		break;
4128 
4129 	default:
4130 		goto out;
4131 	}
4132 
4133 	if (!ops->datbuf)
4134 		ret = nand_do_write_oob(chip, to, ops);
4135 	else
4136 		ret = nand_do_write_ops(chip, to, ops);
4137 
4138 out:
4139 	nand_release_device(chip);
4140 	return ret;
4141 }
4142 
4143 /**
4144  * nand_erase - [MTD Interface] erase block(s)
4145  * @mtd: MTD device structure
4146  * @instr: erase instruction
4147  *
4148  * Erase one ore more blocks.
4149  */
4150 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4151 {
4152 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4153 }
4154 
4155 /**
4156  * nand_erase_nand - [INTERN] erase block(s)
4157  * @chip: NAND chip object
4158  * @instr: erase instruction
4159  * @allowbbt: allow erasing the bbt area
4160  *
4161  * Erase one ore more blocks.
4162  */
4163 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4164 		    int allowbbt)
4165 {
4166 	int page, pages_per_block, ret, chipnr;
4167 	loff_t len;
4168 
4169 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4170 			__func__, (unsigned long long)instr->addr,
4171 			(unsigned long long)instr->len);
4172 
4173 	if (check_offs_len(chip, instr->addr, instr->len))
4174 		return -EINVAL;
4175 
4176 	/* Grab the lock and see if the device is available */
4177 	ret = nand_get_device(chip);
4178 	if (ret)
4179 		return ret;
4180 
4181 	/* Shift to get first page */
4182 	page = (int)(instr->addr >> chip->page_shift);
4183 	chipnr = (int)(instr->addr >> chip->chip_shift);
4184 
4185 	/* Calculate pages in each block */
4186 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4187 
4188 	/* Select the NAND device */
4189 	nand_select_target(chip, chipnr);
4190 
4191 	/* Check, if it is write protected */
4192 	if (nand_check_wp(chip)) {
4193 		pr_debug("%s: device is write protected!\n",
4194 				__func__);
4195 		ret = -EIO;
4196 		goto erase_exit;
4197 	}
4198 
4199 	/* Loop through the pages */
4200 	len = instr->len;
4201 
4202 	while (len) {
4203 		/* Check if we have a bad block, we do not erase bad blocks! */
4204 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4205 					chip->page_shift, allowbbt)) {
4206 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4207 				    __func__, page);
4208 			ret = -EIO;
4209 			goto erase_exit;
4210 		}
4211 
4212 		/*
4213 		 * Invalidate the page cache, if we erase the block which
4214 		 * contains the current cached page.
4215 		 */
4216 		if (page <= chip->pagecache.page && chip->pagecache.page <
4217 		    (page + pages_per_block))
4218 			chip->pagecache.page = -1;
4219 
4220 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4221 				    (chip->phys_erase_shift - chip->page_shift));
4222 		if (ret) {
4223 			pr_debug("%s: failed erase, page 0x%08x\n",
4224 					__func__, page);
4225 			instr->fail_addr =
4226 				((loff_t)page << chip->page_shift);
4227 			goto erase_exit;
4228 		}
4229 
4230 		/* Increment page address and decrement length */
4231 		len -= (1ULL << chip->phys_erase_shift);
4232 		page += pages_per_block;
4233 
4234 		/* Check, if we cross a chip boundary */
4235 		if (len && !(page & chip->pagemask)) {
4236 			chipnr++;
4237 			nand_deselect_target(chip);
4238 			nand_select_target(chip, chipnr);
4239 		}
4240 	}
4241 
4242 	ret = 0;
4243 erase_exit:
4244 
4245 	/* Deselect and wake up anyone waiting on the device */
4246 	nand_deselect_target(chip);
4247 	nand_release_device(chip);
4248 
4249 	/* Return more or less happy */
4250 	return ret;
4251 }
4252 
4253 /**
4254  * nand_sync - [MTD Interface] sync
4255  * @mtd: MTD device structure
4256  *
4257  * Sync is actually a wait for chip ready function.
4258  */
4259 static void nand_sync(struct mtd_info *mtd)
4260 {
4261 	struct nand_chip *chip = mtd_to_nand(mtd);
4262 
4263 	pr_debug("%s: called\n", __func__);
4264 
4265 	/* Grab the lock and see if the device is available */
4266 	WARN_ON(nand_get_device(chip));
4267 	/* Release it and go back */
4268 	nand_release_device(chip);
4269 }
4270 
4271 /**
4272  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4273  * @mtd: MTD device structure
4274  * @offs: offset relative to mtd start
4275  */
4276 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4277 {
4278 	struct nand_chip *chip = mtd_to_nand(mtd);
4279 	int chipnr = (int)(offs >> chip->chip_shift);
4280 	int ret;
4281 
4282 	/* Select the NAND device */
4283 	ret = nand_get_device(chip);
4284 	if (ret)
4285 		return ret;
4286 
4287 	nand_select_target(chip, chipnr);
4288 
4289 	ret = nand_block_checkbad(chip, offs, 0);
4290 
4291 	nand_deselect_target(chip);
4292 	nand_release_device(chip);
4293 
4294 	return ret;
4295 }
4296 
4297 /**
4298  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4299  * @mtd: MTD device structure
4300  * @ofs: offset relative to mtd start
4301  */
4302 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4303 {
4304 	int ret;
4305 
4306 	ret = nand_block_isbad(mtd, ofs);
4307 	if (ret) {
4308 		/* If it was bad already, return success and do nothing */
4309 		if (ret > 0)
4310 			return 0;
4311 		return ret;
4312 	}
4313 
4314 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4315 }
4316 
4317 /**
4318  * nand_suspend - [MTD Interface] Suspend the NAND flash
4319  * @mtd: MTD device structure
4320  */
4321 static int nand_suspend(struct mtd_info *mtd)
4322 {
4323 	struct nand_chip *chip = mtd_to_nand(mtd);
4324 
4325 	mutex_lock(&chip->lock);
4326 	chip->suspended = 1;
4327 	mutex_unlock(&chip->lock);
4328 
4329 	return 0;
4330 }
4331 
4332 /**
4333  * nand_resume - [MTD Interface] Resume the NAND flash
4334  * @mtd: MTD device structure
4335  */
4336 static void nand_resume(struct mtd_info *mtd)
4337 {
4338 	struct nand_chip *chip = mtd_to_nand(mtd);
4339 
4340 	mutex_lock(&chip->lock);
4341 	if (chip->suspended)
4342 		chip->suspended = 0;
4343 	else
4344 		pr_err("%s called for a chip which is not in suspended state\n",
4345 			__func__);
4346 	mutex_unlock(&chip->lock);
4347 }
4348 
4349 /**
4350  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4351  *                 prevent further operations
4352  * @mtd: MTD device structure
4353  */
4354 static void nand_shutdown(struct mtd_info *mtd)
4355 {
4356 	nand_suspend(mtd);
4357 }
4358 
4359 /* Set default functions */
4360 static void nand_set_defaults(struct nand_chip *chip)
4361 {
4362 	/* If no controller is provided, use the dummy, legacy one. */
4363 	if (!chip->controller) {
4364 		chip->controller = &chip->legacy.dummy_controller;
4365 		nand_controller_init(chip->controller);
4366 	}
4367 
4368 	nand_legacy_set_defaults(chip);
4369 
4370 	if (!chip->buf_align)
4371 		chip->buf_align = 1;
4372 }
4373 
4374 /* Sanitize ONFI strings so we can safely print them */
4375 void sanitize_string(uint8_t *s, size_t len)
4376 {
4377 	ssize_t i;
4378 
4379 	/* Null terminate */
4380 	s[len - 1] = 0;
4381 
4382 	/* Remove non printable chars */
4383 	for (i = 0; i < len - 1; i++) {
4384 		if (s[i] < ' ' || s[i] > 127)
4385 			s[i] = '?';
4386 	}
4387 
4388 	/* Remove trailing spaces */
4389 	strim(s);
4390 }
4391 
4392 /*
4393  * nand_id_has_period - Check if an ID string has a given wraparound period
4394  * @id_data: the ID string
4395  * @arrlen: the length of the @id_data array
4396  * @period: the period of repitition
4397  *
4398  * Check if an ID string is repeated within a given sequence of bytes at
4399  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4400  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4401  * if the repetition has a period of @period; otherwise, returns zero.
4402  */
4403 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4404 {
4405 	int i, j;
4406 	for (i = 0; i < period; i++)
4407 		for (j = i + period; j < arrlen; j += period)
4408 			if (id_data[i] != id_data[j])
4409 				return 0;
4410 	return 1;
4411 }
4412 
4413 /*
4414  * nand_id_len - Get the length of an ID string returned by CMD_READID
4415  * @id_data: the ID string
4416  * @arrlen: the length of the @id_data array
4417 
4418  * Returns the length of the ID string, according to known wraparound/trailing
4419  * zero patterns. If no pattern exists, returns the length of the array.
4420  */
4421 static int nand_id_len(u8 *id_data, int arrlen)
4422 {
4423 	int last_nonzero, period;
4424 
4425 	/* Find last non-zero byte */
4426 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4427 		if (id_data[last_nonzero])
4428 			break;
4429 
4430 	/* All zeros */
4431 	if (last_nonzero < 0)
4432 		return 0;
4433 
4434 	/* Calculate wraparound period */
4435 	for (period = 1; period < arrlen; period++)
4436 		if (nand_id_has_period(id_data, arrlen, period))
4437 			break;
4438 
4439 	/* There's a repeated pattern */
4440 	if (period < arrlen)
4441 		return period;
4442 
4443 	/* There are trailing zeros */
4444 	if (last_nonzero < arrlen - 1)
4445 		return last_nonzero + 1;
4446 
4447 	/* No pattern detected */
4448 	return arrlen;
4449 }
4450 
4451 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4452 static int nand_get_bits_per_cell(u8 cellinfo)
4453 {
4454 	int bits;
4455 
4456 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4457 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4458 	return bits + 1;
4459 }
4460 
4461 /*
4462  * Many new NAND share similar device ID codes, which represent the size of the
4463  * chip. The rest of the parameters must be decoded according to generic or
4464  * manufacturer-specific "extended ID" decoding patterns.
4465  */
4466 void nand_decode_ext_id(struct nand_chip *chip)
4467 {
4468 	struct nand_memory_organization *memorg;
4469 	struct mtd_info *mtd = nand_to_mtd(chip);
4470 	int extid;
4471 	u8 *id_data = chip->id.data;
4472 
4473 	memorg = nanddev_get_memorg(&chip->base);
4474 
4475 	/* The 3rd id byte holds MLC / multichip data */
4476 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4477 	/* The 4th id byte is the important one */
4478 	extid = id_data[3];
4479 
4480 	/* Calc pagesize */
4481 	memorg->pagesize = 1024 << (extid & 0x03);
4482 	mtd->writesize = memorg->pagesize;
4483 	extid >>= 2;
4484 	/* Calc oobsize */
4485 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4486 	mtd->oobsize = memorg->oobsize;
4487 	extid >>= 2;
4488 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4489 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4490 				       memorg->pagesize;
4491 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4492 	extid >>= 2;
4493 	/* Get buswidth information */
4494 	if (extid & 0x1)
4495 		chip->options |= NAND_BUSWIDTH_16;
4496 }
4497 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4498 
4499 /*
4500  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4501  * decodes a matching ID table entry and assigns the MTD size parameters for
4502  * the chip.
4503  */
4504 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4505 {
4506 	struct mtd_info *mtd = nand_to_mtd(chip);
4507 	struct nand_memory_organization *memorg;
4508 
4509 	memorg = nanddev_get_memorg(&chip->base);
4510 
4511 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4512 	mtd->erasesize = type->erasesize;
4513 	memorg->pagesize = type->pagesize;
4514 	mtd->writesize = memorg->pagesize;
4515 	memorg->oobsize = memorg->pagesize / 32;
4516 	mtd->oobsize = memorg->oobsize;
4517 
4518 	/* All legacy ID NAND are small-page, SLC */
4519 	memorg->bits_per_cell = 1;
4520 }
4521 
4522 /*
4523  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4524  * heuristic patterns using various detected parameters (e.g., manufacturer,
4525  * page size, cell-type information).
4526  */
4527 static void nand_decode_bbm_options(struct nand_chip *chip)
4528 {
4529 	struct mtd_info *mtd = nand_to_mtd(chip);
4530 
4531 	/* Set the bad block position */
4532 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4533 		chip->badblockpos = NAND_BBM_POS_LARGE;
4534 	else
4535 		chip->badblockpos = NAND_BBM_POS_SMALL;
4536 }
4537 
4538 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4539 {
4540 	return type->id_len;
4541 }
4542 
4543 static bool find_full_id_nand(struct nand_chip *chip,
4544 			      struct nand_flash_dev *type)
4545 {
4546 	struct mtd_info *mtd = nand_to_mtd(chip);
4547 	struct nand_memory_organization *memorg;
4548 	u8 *id_data = chip->id.data;
4549 
4550 	memorg = nanddev_get_memorg(&chip->base);
4551 
4552 	if (!strncmp(type->id, id_data, type->id_len)) {
4553 		memorg->pagesize = type->pagesize;
4554 		mtd->writesize = memorg->pagesize;
4555 		memorg->pages_per_eraseblock = type->erasesize /
4556 					       type->pagesize;
4557 		mtd->erasesize = type->erasesize;
4558 		memorg->oobsize = type->oobsize;
4559 		mtd->oobsize = memorg->oobsize;
4560 
4561 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4562 		memorg->eraseblocks_per_lun =
4563 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4564 					   memorg->pagesize *
4565 					   memorg->pages_per_eraseblock);
4566 		chip->options |= type->options;
4567 		chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4568 		chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4569 		chip->onfi_timing_mode_default =
4570 					type->onfi_timing_mode_default;
4571 
4572 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4573 		if (!chip->parameters.model)
4574 			return false;
4575 
4576 		return true;
4577 	}
4578 	return false;
4579 }
4580 
4581 /*
4582  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4583  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4584  * table.
4585  */
4586 static void nand_manufacturer_detect(struct nand_chip *chip)
4587 {
4588 	/*
4589 	 * Try manufacturer detection if available and use
4590 	 * nand_decode_ext_id() otherwise.
4591 	 */
4592 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4593 	    chip->manufacturer.desc->ops->detect) {
4594 		struct nand_memory_organization *memorg;
4595 
4596 		memorg = nanddev_get_memorg(&chip->base);
4597 
4598 		/* The 3rd id byte holds MLC / multichip data */
4599 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4600 		chip->manufacturer.desc->ops->detect(chip);
4601 	} else {
4602 		nand_decode_ext_id(chip);
4603 	}
4604 }
4605 
4606 /*
4607  * Manufacturer initialization. This function is called for all NANDs including
4608  * ONFI and JEDEC compliant ones.
4609  * Manufacturer drivers should put all their specific initialization code in
4610  * their ->init() hook.
4611  */
4612 static int nand_manufacturer_init(struct nand_chip *chip)
4613 {
4614 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4615 	    !chip->manufacturer.desc->ops->init)
4616 		return 0;
4617 
4618 	return chip->manufacturer.desc->ops->init(chip);
4619 }
4620 
4621 /*
4622  * Manufacturer cleanup. This function is called for all NANDs including
4623  * ONFI and JEDEC compliant ones.
4624  * Manufacturer drivers should put all their specific cleanup code in their
4625  * ->cleanup() hook.
4626  */
4627 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4628 {
4629 	/* Release manufacturer private data */
4630 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4631 	    chip->manufacturer.desc->ops->cleanup)
4632 		chip->manufacturer.desc->ops->cleanup(chip);
4633 }
4634 
4635 static const char *
4636 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4637 {
4638 	return manufacturer ? manufacturer->name : "Unknown";
4639 }
4640 
4641 /*
4642  * Get the flash and manufacturer id and lookup if the type is supported.
4643  */
4644 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4645 {
4646 	const struct nand_manufacturer *manufacturer;
4647 	struct mtd_info *mtd = nand_to_mtd(chip);
4648 	struct nand_memory_organization *memorg;
4649 	int busw, ret;
4650 	u8 *id_data = chip->id.data;
4651 	u8 maf_id, dev_id;
4652 	u64 targetsize;
4653 
4654 	/*
4655 	 * Let's start by initializing memorg fields that might be left
4656 	 * unassigned by the ID-based detection logic.
4657 	 */
4658 	memorg = nanddev_get_memorg(&chip->base);
4659 	memorg->planes_per_lun = 1;
4660 	memorg->luns_per_target = 1;
4661 
4662 	/*
4663 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4664 	 * after power-up.
4665 	 */
4666 	ret = nand_reset(chip, 0);
4667 	if (ret)
4668 		return ret;
4669 
4670 	/* Select the device */
4671 	nand_select_target(chip, 0);
4672 
4673 	/* Send the command for reading device ID */
4674 	ret = nand_readid_op(chip, 0, id_data, 2);
4675 	if (ret)
4676 		return ret;
4677 
4678 	/* Read manufacturer and device IDs */
4679 	maf_id = id_data[0];
4680 	dev_id = id_data[1];
4681 
4682 	/*
4683 	 * Try again to make sure, as some systems the bus-hold or other
4684 	 * interface concerns can cause random data which looks like a
4685 	 * possibly credible NAND flash to appear. If the two results do
4686 	 * not match, ignore the device completely.
4687 	 */
4688 
4689 	/* Read entire ID string */
4690 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4691 	if (ret)
4692 		return ret;
4693 
4694 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4695 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4696 			maf_id, dev_id, id_data[0], id_data[1]);
4697 		return -ENODEV;
4698 	}
4699 
4700 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4701 
4702 	/* Try to identify manufacturer */
4703 	manufacturer = nand_get_manufacturer(maf_id);
4704 	chip->manufacturer.desc = manufacturer;
4705 
4706 	if (!type)
4707 		type = nand_flash_ids;
4708 
4709 	/*
4710 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4711 	 * override it.
4712 	 * This is required to make sure initial NAND bus width set by the
4713 	 * NAND controller driver is coherent with the real NAND bus width
4714 	 * (extracted by auto-detection code).
4715 	 */
4716 	busw = chip->options & NAND_BUSWIDTH_16;
4717 
4718 	/*
4719 	 * The flag is only set (never cleared), reset it to its default value
4720 	 * before starting auto-detection.
4721 	 */
4722 	chip->options &= ~NAND_BUSWIDTH_16;
4723 
4724 	for (; type->name != NULL; type++) {
4725 		if (is_full_id_nand(type)) {
4726 			if (find_full_id_nand(chip, type))
4727 				goto ident_done;
4728 		} else if (dev_id == type->dev_id) {
4729 			break;
4730 		}
4731 	}
4732 
4733 	if (!type->name || !type->pagesize) {
4734 		/* Check if the chip is ONFI compliant */
4735 		ret = nand_onfi_detect(chip);
4736 		if (ret < 0)
4737 			return ret;
4738 		else if (ret)
4739 			goto ident_done;
4740 
4741 		/* Check if the chip is JEDEC compliant */
4742 		ret = nand_jedec_detect(chip);
4743 		if (ret < 0)
4744 			return ret;
4745 		else if (ret)
4746 			goto ident_done;
4747 	}
4748 
4749 	if (!type->name)
4750 		return -ENODEV;
4751 
4752 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4753 	if (!chip->parameters.model)
4754 		return -ENOMEM;
4755 
4756 	if (!type->pagesize)
4757 		nand_manufacturer_detect(chip);
4758 	else
4759 		nand_decode_id(chip, type);
4760 
4761 	/* Get chip options */
4762 	chip->options |= type->options;
4763 
4764 	memorg->eraseblocks_per_lun =
4765 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4766 					   memorg->pagesize *
4767 					   memorg->pages_per_eraseblock);
4768 
4769 ident_done:
4770 	if (!mtd->name)
4771 		mtd->name = chip->parameters.model;
4772 
4773 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4774 		WARN_ON(busw & NAND_BUSWIDTH_16);
4775 		nand_set_defaults(chip);
4776 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4777 		/*
4778 		 * Check, if buswidth is correct. Hardware drivers should set
4779 		 * chip correct!
4780 		 */
4781 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4782 			maf_id, dev_id);
4783 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4784 			mtd->name);
4785 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4786 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4787 		ret = -EINVAL;
4788 
4789 		goto free_detect_allocation;
4790 	}
4791 
4792 	nand_decode_bbm_options(chip);
4793 
4794 	/* Calculate the address shift from the page size */
4795 	chip->page_shift = ffs(mtd->writesize) - 1;
4796 	/* Convert chipsize to number of pages per chip -1 */
4797 	targetsize = nanddev_target_size(&chip->base);
4798 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
4799 
4800 	chip->bbt_erase_shift = chip->phys_erase_shift =
4801 		ffs(mtd->erasesize) - 1;
4802 	if (targetsize & 0xffffffff)
4803 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
4804 	else {
4805 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4806 		chip->chip_shift += 32 - 1;
4807 	}
4808 
4809 	if (chip->chip_shift - chip->page_shift > 16)
4810 		chip->options |= NAND_ROW_ADDR_3;
4811 
4812 	chip->badblockbits = 8;
4813 
4814 	nand_legacy_adjust_cmdfunc(chip);
4815 
4816 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4817 		maf_id, dev_id);
4818 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4819 		chip->parameters.model);
4820 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4821 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4822 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4823 	return 0;
4824 
4825 free_detect_allocation:
4826 	kfree(chip->parameters.model);
4827 
4828 	return ret;
4829 }
4830 
4831 static const char * const nand_ecc_modes[] = {
4832 	[NAND_ECC_NONE]		= "none",
4833 	[NAND_ECC_SOFT]		= "soft",
4834 	[NAND_ECC_HW]		= "hw",
4835 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
4836 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
4837 	[NAND_ECC_ON_DIE]	= "on-die",
4838 };
4839 
4840 static int of_get_nand_ecc_mode(struct device_node *np)
4841 {
4842 	const char *pm;
4843 	int err, i;
4844 
4845 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4846 	if (err < 0)
4847 		return err;
4848 
4849 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4850 		if (!strcasecmp(pm, nand_ecc_modes[i]))
4851 			return i;
4852 
4853 	/*
4854 	 * For backward compatibility we support few obsoleted values that don't
4855 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
4856 	 * with other enums).
4857 	 */
4858 	if (!strcasecmp(pm, "soft_bch"))
4859 		return NAND_ECC_SOFT;
4860 
4861 	return -ENODEV;
4862 }
4863 
4864 static const char * const nand_ecc_algos[] = {
4865 	[NAND_ECC_HAMMING]	= "hamming",
4866 	[NAND_ECC_BCH]		= "bch",
4867 	[NAND_ECC_RS]		= "rs",
4868 };
4869 
4870 static int of_get_nand_ecc_algo(struct device_node *np)
4871 {
4872 	const char *pm;
4873 	int err, i;
4874 
4875 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
4876 	if (!err) {
4877 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4878 			if (!strcasecmp(pm, nand_ecc_algos[i]))
4879 				return i;
4880 		return -ENODEV;
4881 	}
4882 
4883 	/*
4884 	 * For backward compatibility we also read "nand-ecc-mode" checking
4885 	 * for some obsoleted values that were specifying ECC algorithm.
4886 	 */
4887 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4888 	if (err < 0)
4889 		return err;
4890 
4891 	if (!strcasecmp(pm, "soft"))
4892 		return NAND_ECC_HAMMING;
4893 	else if (!strcasecmp(pm, "soft_bch"))
4894 		return NAND_ECC_BCH;
4895 
4896 	return -ENODEV;
4897 }
4898 
4899 static int of_get_nand_ecc_step_size(struct device_node *np)
4900 {
4901 	int ret;
4902 	u32 val;
4903 
4904 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4905 	return ret ? ret : val;
4906 }
4907 
4908 static int of_get_nand_ecc_strength(struct device_node *np)
4909 {
4910 	int ret;
4911 	u32 val;
4912 
4913 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4914 	return ret ? ret : val;
4915 }
4916 
4917 static int of_get_nand_bus_width(struct device_node *np)
4918 {
4919 	u32 val;
4920 
4921 	if (of_property_read_u32(np, "nand-bus-width", &val))
4922 		return 8;
4923 
4924 	switch (val) {
4925 	case 8:
4926 	case 16:
4927 		return val;
4928 	default:
4929 		return -EIO;
4930 	}
4931 }
4932 
4933 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4934 {
4935 	return of_property_read_bool(np, "nand-on-flash-bbt");
4936 }
4937 
4938 static int nand_dt_init(struct nand_chip *chip)
4939 {
4940 	struct device_node *dn = nand_get_flash_node(chip);
4941 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4942 
4943 	if (!dn)
4944 		return 0;
4945 
4946 	if (of_get_nand_bus_width(dn) == 16)
4947 		chip->options |= NAND_BUSWIDTH_16;
4948 
4949 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
4950 		chip->options |= NAND_IS_BOOT_MEDIUM;
4951 
4952 	if (of_get_nand_on_flash_bbt(dn))
4953 		chip->bbt_options |= NAND_BBT_USE_FLASH;
4954 
4955 	ecc_mode = of_get_nand_ecc_mode(dn);
4956 	ecc_algo = of_get_nand_ecc_algo(dn);
4957 	ecc_strength = of_get_nand_ecc_strength(dn);
4958 	ecc_step = of_get_nand_ecc_step_size(dn);
4959 
4960 	if (ecc_mode >= 0)
4961 		chip->ecc.mode = ecc_mode;
4962 
4963 	if (ecc_algo >= 0)
4964 		chip->ecc.algo = ecc_algo;
4965 
4966 	if (ecc_strength >= 0)
4967 		chip->ecc.strength = ecc_strength;
4968 
4969 	if (ecc_step > 0)
4970 		chip->ecc.size = ecc_step;
4971 
4972 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
4973 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
4974 
4975 	return 0;
4976 }
4977 
4978 /**
4979  * nand_scan_ident - Scan for the NAND device
4980  * @chip: NAND chip object
4981  * @maxchips: number of chips to scan for
4982  * @table: alternative NAND ID table
4983  *
4984  * This is the first phase of the normal nand_scan() function. It reads the
4985  * flash ID and sets up MTD fields accordingly.
4986  *
4987  * This helper used to be called directly from controller drivers that needed
4988  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
4989  * prevented dynamic allocations during this phase which was unconvenient and
4990  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
4991  */
4992 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
4993 			   struct nand_flash_dev *table)
4994 {
4995 	struct mtd_info *mtd = nand_to_mtd(chip);
4996 	struct nand_memory_organization *memorg;
4997 	int nand_maf_id, nand_dev_id;
4998 	unsigned int i;
4999 	int ret;
5000 
5001 	memorg = nanddev_get_memorg(&chip->base);
5002 
5003 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5004 	chip->cur_cs = -1;
5005 
5006 	mutex_init(&chip->lock);
5007 
5008 	/* Enforce the right timings for reset/detection */
5009 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5010 
5011 	ret = nand_dt_init(chip);
5012 	if (ret)
5013 		return ret;
5014 
5015 	if (!mtd->name && mtd->dev.parent)
5016 		mtd->name = dev_name(mtd->dev.parent);
5017 
5018 	/* Set the default functions */
5019 	nand_set_defaults(chip);
5020 
5021 	ret = nand_legacy_check_hooks(chip);
5022 	if (ret)
5023 		return ret;
5024 
5025 	memorg->ntargets = maxchips;
5026 
5027 	/* Read the flash type */
5028 	ret = nand_detect(chip, table);
5029 	if (ret) {
5030 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5031 			pr_warn("No NAND device found\n");
5032 		nand_deselect_target(chip);
5033 		return ret;
5034 	}
5035 
5036 	nand_maf_id = chip->id.data[0];
5037 	nand_dev_id = chip->id.data[1];
5038 
5039 	nand_deselect_target(chip);
5040 
5041 	/* Check for a chip array */
5042 	for (i = 1; i < maxchips; i++) {
5043 		u8 id[2];
5044 
5045 		/* See comment in nand_get_flash_type for reset */
5046 		ret = nand_reset(chip, i);
5047 		if (ret)
5048 			break;
5049 
5050 		nand_select_target(chip, i);
5051 		/* Send the command for reading device ID */
5052 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5053 		if (ret)
5054 			break;
5055 		/* Read manufacturer and device IDs */
5056 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5057 			nand_deselect_target(chip);
5058 			break;
5059 		}
5060 		nand_deselect_target(chip);
5061 	}
5062 	if (i > 1)
5063 		pr_info("%d chips detected\n", i);
5064 
5065 	/* Store the number of chips and calc total size for mtd */
5066 	memorg->ntargets = i;
5067 	mtd->size = i * nanddev_target_size(&chip->base);
5068 
5069 	return 0;
5070 }
5071 
5072 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5073 {
5074 	kfree(chip->parameters.model);
5075 	kfree(chip->parameters.onfi);
5076 }
5077 
5078 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5079 {
5080 	struct mtd_info *mtd = nand_to_mtd(chip);
5081 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5082 
5083 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5084 		return -EINVAL;
5085 
5086 	switch (ecc->algo) {
5087 	case NAND_ECC_HAMMING:
5088 		ecc->calculate = nand_calculate_ecc;
5089 		ecc->correct = nand_correct_data;
5090 		ecc->read_page = nand_read_page_swecc;
5091 		ecc->read_subpage = nand_read_subpage;
5092 		ecc->write_page = nand_write_page_swecc;
5093 		ecc->read_page_raw = nand_read_page_raw;
5094 		ecc->write_page_raw = nand_write_page_raw;
5095 		ecc->read_oob = nand_read_oob_std;
5096 		ecc->write_oob = nand_write_oob_std;
5097 		if (!ecc->size)
5098 			ecc->size = 256;
5099 		ecc->bytes = 3;
5100 		ecc->strength = 1;
5101 
5102 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5103 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5104 
5105 		return 0;
5106 	case NAND_ECC_BCH:
5107 		if (!mtd_nand_has_bch()) {
5108 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5109 			return -EINVAL;
5110 		}
5111 		ecc->calculate = nand_bch_calculate_ecc;
5112 		ecc->correct = nand_bch_correct_data;
5113 		ecc->read_page = nand_read_page_swecc;
5114 		ecc->read_subpage = nand_read_subpage;
5115 		ecc->write_page = nand_write_page_swecc;
5116 		ecc->read_page_raw = nand_read_page_raw;
5117 		ecc->write_page_raw = nand_write_page_raw;
5118 		ecc->read_oob = nand_read_oob_std;
5119 		ecc->write_oob = nand_write_oob_std;
5120 
5121 		/*
5122 		* Board driver should supply ecc.size and ecc.strength
5123 		* values to select how many bits are correctable.
5124 		* Otherwise, default to 4 bits for large page devices.
5125 		*/
5126 		if (!ecc->size && (mtd->oobsize >= 64)) {
5127 			ecc->size = 512;
5128 			ecc->strength = 4;
5129 		}
5130 
5131 		/*
5132 		 * if no ecc placement scheme was provided pickup the default
5133 		 * large page one.
5134 		 */
5135 		if (!mtd->ooblayout) {
5136 			/* handle large page devices only */
5137 			if (mtd->oobsize < 64) {
5138 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5139 				return -EINVAL;
5140 			}
5141 
5142 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5143 
5144 		}
5145 
5146 		/*
5147 		 * We can only maximize ECC config when the default layout is
5148 		 * used, otherwise we don't know how many bytes can really be
5149 		 * used.
5150 		 */
5151 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5152 		    ecc->options & NAND_ECC_MAXIMIZE) {
5153 			int steps, bytes;
5154 
5155 			/* Always prefer 1k blocks over 512bytes ones */
5156 			ecc->size = 1024;
5157 			steps = mtd->writesize / ecc->size;
5158 
5159 			/* Reserve 2 bytes for the BBM */
5160 			bytes = (mtd->oobsize - 2) / steps;
5161 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5162 		}
5163 
5164 		/* See nand_bch_init() for details. */
5165 		ecc->bytes = 0;
5166 		ecc->priv = nand_bch_init(mtd);
5167 		if (!ecc->priv) {
5168 			WARN(1, "BCH ECC initialization failed!\n");
5169 			return -EINVAL;
5170 		}
5171 		return 0;
5172 	default:
5173 		WARN(1, "Unsupported ECC algorithm!\n");
5174 		return -EINVAL;
5175 	}
5176 }
5177 
5178 /**
5179  * nand_check_ecc_caps - check the sanity of preset ECC settings
5180  * @chip: nand chip info structure
5181  * @caps: ECC caps info structure
5182  * @oobavail: OOB size that the ECC engine can use
5183  *
5184  * When ECC step size and strength are already set, check if they are supported
5185  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5186  * On success, the calculated ECC bytes is set.
5187  */
5188 static int
5189 nand_check_ecc_caps(struct nand_chip *chip,
5190 		    const struct nand_ecc_caps *caps, int oobavail)
5191 {
5192 	struct mtd_info *mtd = nand_to_mtd(chip);
5193 	const struct nand_ecc_step_info *stepinfo;
5194 	int preset_step = chip->ecc.size;
5195 	int preset_strength = chip->ecc.strength;
5196 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5197 	int i, j;
5198 
5199 	for (i = 0; i < caps->nstepinfos; i++) {
5200 		stepinfo = &caps->stepinfos[i];
5201 
5202 		if (stepinfo->stepsize != preset_step)
5203 			continue;
5204 
5205 		for (j = 0; j < stepinfo->nstrengths; j++) {
5206 			if (stepinfo->strengths[j] != preset_strength)
5207 				continue;
5208 
5209 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5210 							 preset_strength);
5211 			if (WARN_ON_ONCE(ecc_bytes < 0))
5212 				return ecc_bytes;
5213 
5214 			if (ecc_bytes * nsteps > oobavail) {
5215 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5216 				       preset_step, preset_strength);
5217 				return -ENOSPC;
5218 			}
5219 
5220 			chip->ecc.bytes = ecc_bytes;
5221 
5222 			return 0;
5223 		}
5224 	}
5225 
5226 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5227 	       preset_step, preset_strength);
5228 
5229 	return -ENOTSUPP;
5230 }
5231 
5232 /**
5233  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5234  * @chip: nand chip info structure
5235  * @caps: ECC engine caps info structure
5236  * @oobavail: OOB size that the ECC engine can use
5237  *
5238  * If a chip's ECC requirement is provided, try to meet it with the least
5239  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5240  * On success, the chosen ECC settings are set.
5241  */
5242 static int
5243 nand_match_ecc_req(struct nand_chip *chip,
5244 		   const struct nand_ecc_caps *caps, int oobavail)
5245 {
5246 	struct mtd_info *mtd = nand_to_mtd(chip);
5247 	const struct nand_ecc_step_info *stepinfo;
5248 	int req_step = chip->base.eccreq.step_size;
5249 	int req_strength = chip->base.eccreq.strength;
5250 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5251 	int best_step, best_strength, best_ecc_bytes;
5252 	int best_ecc_bytes_total = INT_MAX;
5253 	int i, j;
5254 
5255 	/* No information provided by the NAND chip */
5256 	if (!req_step || !req_strength)
5257 		return -ENOTSUPP;
5258 
5259 	/* number of correctable bits the chip requires in a page */
5260 	req_corr = mtd->writesize / req_step * req_strength;
5261 
5262 	for (i = 0; i < caps->nstepinfos; i++) {
5263 		stepinfo = &caps->stepinfos[i];
5264 		step_size = stepinfo->stepsize;
5265 
5266 		for (j = 0; j < stepinfo->nstrengths; j++) {
5267 			strength = stepinfo->strengths[j];
5268 
5269 			/*
5270 			 * If both step size and strength are smaller than the
5271 			 * chip's requirement, it is not easy to compare the
5272 			 * resulted reliability.
5273 			 */
5274 			if (step_size < req_step && strength < req_strength)
5275 				continue;
5276 
5277 			if (mtd->writesize % step_size)
5278 				continue;
5279 
5280 			nsteps = mtd->writesize / step_size;
5281 
5282 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5283 			if (WARN_ON_ONCE(ecc_bytes < 0))
5284 				continue;
5285 			ecc_bytes_total = ecc_bytes * nsteps;
5286 
5287 			if (ecc_bytes_total > oobavail ||
5288 			    strength * nsteps < req_corr)
5289 				continue;
5290 
5291 			/*
5292 			 * We assume the best is to meet the chip's requrement
5293 			 * with the least number of ECC bytes.
5294 			 */
5295 			if (ecc_bytes_total < best_ecc_bytes_total) {
5296 				best_ecc_bytes_total = ecc_bytes_total;
5297 				best_step = step_size;
5298 				best_strength = strength;
5299 				best_ecc_bytes = ecc_bytes;
5300 			}
5301 		}
5302 	}
5303 
5304 	if (best_ecc_bytes_total == INT_MAX)
5305 		return -ENOTSUPP;
5306 
5307 	chip->ecc.size = best_step;
5308 	chip->ecc.strength = best_strength;
5309 	chip->ecc.bytes = best_ecc_bytes;
5310 
5311 	return 0;
5312 }
5313 
5314 /**
5315  * nand_maximize_ecc - choose the max ECC strength available
5316  * @chip: nand chip info structure
5317  * @caps: ECC engine caps info structure
5318  * @oobavail: OOB size that the ECC engine can use
5319  *
5320  * Choose the max ECC strength that is supported on the controller, and can fit
5321  * within the chip's OOB.  On success, the chosen ECC settings are set.
5322  */
5323 static int
5324 nand_maximize_ecc(struct nand_chip *chip,
5325 		  const struct nand_ecc_caps *caps, int oobavail)
5326 {
5327 	struct mtd_info *mtd = nand_to_mtd(chip);
5328 	const struct nand_ecc_step_info *stepinfo;
5329 	int step_size, strength, nsteps, ecc_bytes, corr;
5330 	int best_corr = 0;
5331 	int best_step = 0;
5332 	int best_strength, best_ecc_bytes;
5333 	int i, j;
5334 
5335 	for (i = 0; i < caps->nstepinfos; i++) {
5336 		stepinfo = &caps->stepinfos[i];
5337 		step_size = stepinfo->stepsize;
5338 
5339 		/* If chip->ecc.size is already set, respect it */
5340 		if (chip->ecc.size && step_size != chip->ecc.size)
5341 			continue;
5342 
5343 		for (j = 0; j < stepinfo->nstrengths; j++) {
5344 			strength = stepinfo->strengths[j];
5345 
5346 			if (mtd->writesize % step_size)
5347 				continue;
5348 
5349 			nsteps = mtd->writesize / step_size;
5350 
5351 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5352 			if (WARN_ON_ONCE(ecc_bytes < 0))
5353 				continue;
5354 
5355 			if (ecc_bytes * nsteps > oobavail)
5356 				continue;
5357 
5358 			corr = strength * nsteps;
5359 
5360 			/*
5361 			 * If the number of correctable bits is the same,
5362 			 * bigger step_size has more reliability.
5363 			 */
5364 			if (corr > best_corr ||
5365 			    (corr == best_corr && step_size > best_step)) {
5366 				best_corr = corr;
5367 				best_step = step_size;
5368 				best_strength = strength;
5369 				best_ecc_bytes = ecc_bytes;
5370 			}
5371 		}
5372 	}
5373 
5374 	if (!best_corr)
5375 		return -ENOTSUPP;
5376 
5377 	chip->ecc.size = best_step;
5378 	chip->ecc.strength = best_strength;
5379 	chip->ecc.bytes = best_ecc_bytes;
5380 
5381 	return 0;
5382 }
5383 
5384 /**
5385  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5386  * @chip: nand chip info structure
5387  * @caps: ECC engine caps info structure
5388  * @oobavail: OOB size that the ECC engine can use
5389  *
5390  * Choose the ECC configuration according to following logic
5391  *
5392  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5393  *    then check if it is supported by this controller.
5394  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5395  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5396  *    to the chip's requirement. If available OOB size can't fit the chip
5397  *    requirement then fallback to the maximum ECC step size and ECC strength.
5398  *
5399  * On success, the chosen ECC settings are set.
5400  */
5401 int nand_ecc_choose_conf(struct nand_chip *chip,
5402 			 const struct nand_ecc_caps *caps, int oobavail)
5403 {
5404 	struct mtd_info *mtd = nand_to_mtd(chip);
5405 
5406 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5407 		return -EINVAL;
5408 
5409 	if (chip->ecc.size && chip->ecc.strength)
5410 		return nand_check_ecc_caps(chip, caps, oobavail);
5411 
5412 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5413 		return nand_maximize_ecc(chip, caps, oobavail);
5414 
5415 	if (!nand_match_ecc_req(chip, caps, oobavail))
5416 		return 0;
5417 
5418 	return nand_maximize_ecc(chip, caps, oobavail);
5419 }
5420 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5421 
5422 /*
5423  * Check if the chip configuration meet the datasheet requirements.
5424 
5425  * If our configuration corrects A bits per B bytes and the minimum
5426  * required correction level is X bits per Y bytes, then we must ensure
5427  * both of the following are true:
5428  *
5429  * (1) A / B >= X / Y
5430  * (2) A >= X
5431  *
5432  * Requirement (1) ensures we can correct for the required bitflip density.
5433  * Requirement (2) ensures we can correct even when all bitflips are clumped
5434  * in the same sector.
5435  */
5436 static bool nand_ecc_strength_good(struct nand_chip *chip)
5437 {
5438 	struct mtd_info *mtd = nand_to_mtd(chip);
5439 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5440 	int corr, ds_corr;
5441 
5442 	if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5443 		/* Not enough information */
5444 		return true;
5445 
5446 	/*
5447 	 * We get the number of corrected bits per page to compare
5448 	 * the correction density.
5449 	 */
5450 	corr = (mtd->writesize * ecc->strength) / ecc->size;
5451 	ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5452 		  chip->base.eccreq.step_size;
5453 
5454 	return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5455 }
5456 
5457 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5458 {
5459 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5460 					      base);
5461 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5462 	int ret;
5463 
5464 	eb >>= nand->rowconv.eraseblock_addr_shift;
5465 
5466 	nand_select_target(chip, pos->target);
5467 	ret = nand_erase_op(chip, eb);
5468 	nand_deselect_target(chip);
5469 
5470 	return ret;
5471 }
5472 
5473 static int rawnand_markbad(struct nand_device *nand,
5474 			   const struct nand_pos *pos)
5475 {
5476 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5477 					      base);
5478 
5479 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5480 }
5481 
5482 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5483 {
5484 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5485 					      base);
5486 	int ret;
5487 
5488 	nand_select_target(chip, pos->target);
5489 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5490 	nand_deselect_target(chip);
5491 
5492 	return ret;
5493 }
5494 
5495 static const struct nand_ops rawnand_ops = {
5496 	.erase = rawnand_erase,
5497 	.markbad = rawnand_markbad,
5498 	.isbad = rawnand_isbad,
5499 };
5500 
5501 /**
5502  * nand_scan_tail - Scan for the NAND device
5503  * @chip: NAND chip object
5504  *
5505  * This is the second phase of the normal nand_scan() function. It fills out
5506  * all the uninitialized function pointers with the defaults and scans for a
5507  * bad block table if appropriate.
5508  */
5509 static int nand_scan_tail(struct nand_chip *chip)
5510 {
5511 	struct mtd_info *mtd = nand_to_mtd(chip);
5512 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5513 	int ret, i;
5514 
5515 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5516 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5517 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5518 		return -EINVAL;
5519 	}
5520 
5521 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5522 	if (!chip->data_buf)
5523 		return -ENOMEM;
5524 
5525 	/*
5526 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5527 	 * selected when manufacturer->init() is called. They should be fixed
5528 	 * to explictly select the relevant die when interacting with the NAND
5529 	 * chip.
5530 	 */
5531 	nand_select_target(chip, 0);
5532 	ret = nand_manufacturer_init(chip);
5533 	nand_deselect_target(chip);
5534 	if (ret)
5535 		goto err_free_buf;
5536 
5537 	/* Set the internal oob buffer location, just after the page data */
5538 	chip->oob_poi = chip->data_buf + mtd->writesize;
5539 
5540 	/*
5541 	 * If no default placement scheme is given, select an appropriate one.
5542 	 */
5543 	if (!mtd->ooblayout &&
5544 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5545 		switch (mtd->oobsize) {
5546 		case 8:
5547 		case 16:
5548 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5549 			break;
5550 		case 64:
5551 		case 128:
5552 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5553 			break;
5554 		default:
5555 			/*
5556 			 * Expose the whole OOB area to users if ECC_NONE
5557 			 * is passed. We could do that for all kind of
5558 			 * ->oobsize, but we must keep the old large/small
5559 			 * page with ECC layout when ->oobsize <= 128 for
5560 			 * compatibility reasons.
5561 			 */
5562 			if (ecc->mode == NAND_ECC_NONE) {
5563 				mtd_set_ooblayout(mtd,
5564 						&nand_ooblayout_lp_ops);
5565 				break;
5566 			}
5567 
5568 			WARN(1, "No oob scheme defined for oobsize %d\n",
5569 				mtd->oobsize);
5570 			ret = -EINVAL;
5571 			goto err_nand_manuf_cleanup;
5572 		}
5573 	}
5574 
5575 	/*
5576 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5577 	 * selected and we have 256 byte pagesize fallback to software ECC
5578 	 */
5579 
5580 	switch (ecc->mode) {
5581 	case NAND_ECC_HW_OOB_FIRST:
5582 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
5583 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5584 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5585 			ret = -EINVAL;
5586 			goto err_nand_manuf_cleanup;
5587 		}
5588 		if (!ecc->read_page)
5589 			ecc->read_page = nand_read_page_hwecc_oob_first;
5590 		/* fall through */
5591 
5592 	case NAND_ECC_HW:
5593 		/* Use standard hwecc read page function? */
5594 		if (!ecc->read_page)
5595 			ecc->read_page = nand_read_page_hwecc;
5596 		if (!ecc->write_page)
5597 			ecc->write_page = nand_write_page_hwecc;
5598 		if (!ecc->read_page_raw)
5599 			ecc->read_page_raw = nand_read_page_raw;
5600 		if (!ecc->write_page_raw)
5601 			ecc->write_page_raw = nand_write_page_raw;
5602 		if (!ecc->read_oob)
5603 			ecc->read_oob = nand_read_oob_std;
5604 		if (!ecc->write_oob)
5605 			ecc->write_oob = nand_write_oob_std;
5606 		if (!ecc->read_subpage)
5607 			ecc->read_subpage = nand_read_subpage;
5608 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5609 			ecc->write_subpage = nand_write_subpage_hwecc;
5610 		/* fall through */
5611 
5612 	case NAND_ECC_HW_SYNDROME:
5613 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5614 		    (!ecc->read_page ||
5615 		     ecc->read_page == nand_read_page_hwecc ||
5616 		     !ecc->write_page ||
5617 		     ecc->write_page == nand_write_page_hwecc)) {
5618 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5619 			ret = -EINVAL;
5620 			goto err_nand_manuf_cleanup;
5621 		}
5622 		/* Use standard syndrome read/write page function? */
5623 		if (!ecc->read_page)
5624 			ecc->read_page = nand_read_page_syndrome;
5625 		if (!ecc->write_page)
5626 			ecc->write_page = nand_write_page_syndrome;
5627 		if (!ecc->read_page_raw)
5628 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5629 		if (!ecc->write_page_raw)
5630 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5631 		if (!ecc->read_oob)
5632 			ecc->read_oob = nand_read_oob_syndrome;
5633 		if (!ecc->write_oob)
5634 			ecc->write_oob = nand_write_oob_syndrome;
5635 
5636 		if (mtd->writesize >= ecc->size) {
5637 			if (!ecc->strength) {
5638 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5639 				ret = -EINVAL;
5640 				goto err_nand_manuf_cleanup;
5641 			}
5642 			break;
5643 		}
5644 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5645 			ecc->size, mtd->writesize);
5646 		ecc->mode = NAND_ECC_SOFT;
5647 		ecc->algo = NAND_ECC_HAMMING;
5648 		/* fall through */
5649 
5650 	case NAND_ECC_SOFT:
5651 		ret = nand_set_ecc_soft_ops(chip);
5652 		if (ret) {
5653 			ret = -EINVAL;
5654 			goto err_nand_manuf_cleanup;
5655 		}
5656 		break;
5657 
5658 	case NAND_ECC_ON_DIE:
5659 		if (!ecc->read_page || !ecc->write_page) {
5660 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5661 			ret = -EINVAL;
5662 			goto err_nand_manuf_cleanup;
5663 		}
5664 		if (!ecc->read_oob)
5665 			ecc->read_oob = nand_read_oob_std;
5666 		if (!ecc->write_oob)
5667 			ecc->write_oob = nand_write_oob_std;
5668 		break;
5669 
5670 	case NAND_ECC_NONE:
5671 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5672 		ecc->read_page = nand_read_page_raw;
5673 		ecc->write_page = nand_write_page_raw;
5674 		ecc->read_oob = nand_read_oob_std;
5675 		ecc->read_page_raw = nand_read_page_raw;
5676 		ecc->write_page_raw = nand_write_page_raw;
5677 		ecc->write_oob = nand_write_oob_std;
5678 		ecc->size = mtd->writesize;
5679 		ecc->bytes = 0;
5680 		ecc->strength = 0;
5681 		break;
5682 
5683 	default:
5684 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5685 		ret = -EINVAL;
5686 		goto err_nand_manuf_cleanup;
5687 	}
5688 
5689 	if (ecc->correct || ecc->calculate) {
5690 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5691 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5692 		if (!ecc->calc_buf || !ecc->code_buf) {
5693 			ret = -ENOMEM;
5694 			goto err_nand_manuf_cleanup;
5695 		}
5696 	}
5697 
5698 	/* For many systems, the standard OOB write also works for raw */
5699 	if (!ecc->read_oob_raw)
5700 		ecc->read_oob_raw = ecc->read_oob;
5701 	if (!ecc->write_oob_raw)
5702 		ecc->write_oob_raw = ecc->write_oob;
5703 
5704 	/* propagate ecc info to mtd_info */
5705 	mtd->ecc_strength = ecc->strength;
5706 	mtd->ecc_step_size = ecc->size;
5707 
5708 	/*
5709 	 * Set the number of read / write steps for one page depending on ECC
5710 	 * mode.
5711 	 */
5712 	ecc->steps = mtd->writesize / ecc->size;
5713 	if (ecc->steps * ecc->size != mtd->writesize) {
5714 		WARN(1, "Invalid ECC parameters\n");
5715 		ret = -EINVAL;
5716 		goto err_nand_manuf_cleanup;
5717 	}
5718 	ecc->total = ecc->steps * ecc->bytes;
5719 	if (ecc->total > mtd->oobsize) {
5720 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5721 		ret = -EINVAL;
5722 		goto err_nand_manuf_cleanup;
5723 	}
5724 
5725 	/*
5726 	 * The number of bytes available for a client to place data into
5727 	 * the out of band area.
5728 	 */
5729 	ret = mtd_ooblayout_count_freebytes(mtd);
5730 	if (ret < 0)
5731 		ret = 0;
5732 
5733 	mtd->oobavail = ret;
5734 
5735 	/* ECC sanity check: warn if it's too weak */
5736 	if (!nand_ecc_strength_good(chip))
5737 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5738 			mtd->name);
5739 
5740 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5741 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5742 		switch (ecc->steps) {
5743 		case 2:
5744 			mtd->subpage_sft = 1;
5745 			break;
5746 		case 4:
5747 		case 8:
5748 		case 16:
5749 			mtd->subpage_sft = 2;
5750 			break;
5751 		}
5752 	}
5753 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5754 
5755 	/* Invalidate the pagebuffer reference */
5756 	chip->pagecache.page = -1;
5757 
5758 	/* Large page NAND with SOFT_ECC should support subpage reads */
5759 	switch (ecc->mode) {
5760 	case NAND_ECC_SOFT:
5761 		if (chip->page_shift > 9)
5762 			chip->options |= NAND_SUBPAGE_READ;
5763 		break;
5764 
5765 	default:
5766 		break;
5767 	}
5768 
5769 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5770 	if (ret)
5771 		goto err_nand_manuf_cleanup;
5772 
5773 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5774 	if (chip->options & NAND_ROM)
5775 		mtd->flags = MTD_CAP_ROM;
5776 
5777 	/* Fill in remaining MTD driver data */
5778 	mtd->_erase = nand_erase;
5779 	mtd->_point = NULL;
5780 	mtd->_unpoint = NULL;
5781 	mtd->_panic_write = panic_nand_write;
5782 	mtd->_read_oob = nand_read_oob;
5783 	mtd->_write_oob = nand_write_oob;
5784 	mtd->_sync = nand_sync;
5785 	mtd->_lock = NULL;
5786 	mtd->_unlock = NULL;
5787 	mtd->_suspend = nand_suspend;
5788 	mtd->_resume = nand_resume;
5789 	mtd->_reboot = nand_shutdown;
5790 	mtd->_block_isreserved = nand_block_isreserved;
5791 	mtd->_block_isbad = nand_block_isbad;
5792 	mtd->_block_markbad = nand_block_markbad;
5793 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5794 
5795 	/*
5796 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5797 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5798 	 * properly set.
5799 	 */
5800 	if (!mtd->bitflip_threshold)
5801 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5802 
5803 	/* Initialize the ->data_interface field. */
5804 	ret = nand_init_data_interface(chip);
5805 	if (ret)
5806 		goto err_nanddev_cleanup;
5807 
5808 	/* Enter fastest possible mode on all dies. */
5809 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
5810 		ret = nand_setup_data_interface(chip, i);
5811 		if (ret)
5812 			goto err_nanddev_cleanup;
5813 	}
5814 
5815 	/* Check, if we should skip the bad block table scan */
5816 	if (chip->options & NAND_SKIP_BBTSCAN)
5817 		return 0;
5818 
5819 	/* Build bad block table */
5820 	ret = nand_create_bbt(chip);
5821 	if (ret)
5822 		goto err_nanddev_cleanup;
5823 
5824 	return 0;
5825 
5826 
5827 err_nanddev_cleanup:
5828 	nanddev_cleanup(&chip->base);
5829 
5830 err_nand_manuf_cleanup:
5831 	nand_manufacturer_cleanup(chip);
5832 
5833 err_free_buf:
5834 	kfree(chip->data_buf);
5835 	kfree(ecc->code_buf);
5836 	kfree(ecc->calc_buf);
5837 
5838 	return ret;
5839 }
5840 
5841 static int nand_attach(struct nand_chip *chip)
5842 {
5843 	if (chip->controller->ops && chip->controller->ops->attach_chip)
5844 		return chip->controller->ops->attach_chip(chip);
5845 
5846 	return 0;
5847 }
5848 
5849 static void nand_detach(struct nand_chip *chip)
5850 {
5851 	if (chip->controller->ops && chip->controller->ops->detach_chip)
5852 		chip->controller->ops->detach_chip(chip);
5853 }
5854 
5855 /**
5856  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5857  * @chip: NAND chip object
5858  * @maxchips: number of chips to scan for.
5859  * @ids: optional flash IDs table
5860  *
5861  * This fills out all the uninitialized function pointers with the defaults.
5862  * The flash ID is read and the mtd/chip structures are filled with the
5863  * appropriate values.
5864  */
5865 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5866 		       struct nand_flash_dev *ids)
5867 {
5868 	int ret;
5869 
5870 	if (!maxchips)
5871 		return -EINVAL;
5872 
5873 	ret = nand_scan_ident(chip, maxchips, ids);
5874 	if (ret)
5875 		return ret;
5876 
5877 	ret = nand_attach(chip);
5878 	if (ret)
5879 		goto cleanup_ident;
5880 
5881 	ret = nand_scan_tail(chip);
5882 	if (ret)
5883 		goto detach_chip;
5884 
5885 	return 0;
5886 
5887 detach_chip:
5888 	nand_detach(chip);
5889 cleanup_ident:
5890 	nand_scan_ident_cleanup(chip);
5891 
5892 	return ret;
5893 }
5894 EXPORT_SYMBOL(nand_scan_with_ids);
5895 
5896 /**
5897  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5898  * @chip: NAND chip object
5899  */
5900 void nand_cleanup(struct nand_chip *chip)
5901 {
5902 	if (chip->ecc.mode == NAND_ECC_SOFT &&
5903 	    chip->ecc.algo == NAND_ECC_BCH)
5904 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5905 
5906 	/* Free bad block table memory */
5907 	kfree(chip->bbt);
5908 	kfree(chip->data_buf);
5909 	kfree(chip->ecc.code_buf);
5910 	kfree(chip->ecc.calc_buf);
5911 
5912 	/* Free bad block descriptor memory */
5913 	if (chip->badblock_pattern && chip->badblock_pattern->options
5914 			& NAND_BBT_DYNAMICSTRUCT)
5915 		kfree(chip->badblock_pattern);
5916 
5917 	/* Free manufacturer priv data. */
5918 	nand_manufacturer_cleanup(chip);
5919 
5920 	/* Free controller specific allocations after chip identification */
5921 	nand_detach(chip);
5922 
5923 	/* Free identification phase allocations */
5924 	nand_scan_ident_cleanup(chip);
5925 }
5926 
5927 EXPORT_SYMBOL_GPL(nand_cleanup);
5928 
5929 /**
5930  * nand_release - [NAND Interface] Unregister the MTD device and free resources
5931  *		  held by the NAND device
5932  * @chip: NAND chip object
5933  */
5934 void nand_release(struct nand_chip *chip)
5935 {
5936 	mtd_device_unregister(nand_to_mtd(chip));
5937 	nand_cleanup(chip);
5938 }
5939 EXPORT_SYMBOL_GPL(nand_release);
5940 
5941 MODULE_LICENSE("GPL");
5942 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5943 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5944 MODULE_DESCRIPTION("Generic NAND flash driver code");
5945