xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision faa16bc4)
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *	Additional technical information is available on
7  *	http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *	David Woodhouse for adding multichip support
14  *
15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *	rework for 2K page size chips
17  *
18  *  TODO:
19  *	Enable cached programming for 2k page size chips
20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *	if we have HW ECC support.
22  *	BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/nmi.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/rawnand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/nand_bch.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of.h>
50 
51 static int nand_get_device(struct mtd_info *mtd, int new_state);
52 
53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 			     struct mtd_oob_ops *ops);
55 
56 /* Define default oob placement schemes for large and small page devices */
57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 				 struct mtd_oob_region *oobregion)
59 {
60 	struct nand_chip *chip = mtd_to_nand(mtd);
61 	struct nand_ecc_ctrl *ecc = &chip->ecc;
62 
63 	if (section > 1)
64 		return -ERANGE;
65 
66 	if (!section) {
67 		oobregion->offset = 0;
68 		if (mtd->oobsize == 16)
69 			oobregion->length = 4;
70 		else
71 			oobregion->length = 3;
72 	} else {
73 		if (mtd->oobsize == 8)
74 			return -ERANGE;
75 
76 		oobregion->offset = 6;
77 		oobregion->length = ecc->total - 4;
78 	}
79 
80 	return 0;
81 }
82 
83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84 				  struct mtd_oob_region *oobregion)
85 {
86 	if (section > 1)
87 		return -ERANGE;
88 
89 	if (mtd->oobsize == 16) {
90 		if (section)
91 			return -ERANGE;
92 
93 		oobregion->length = 8;
94 		oobregion->offset = 8;
95 	} else {
96 		oobregion->length = 2;
97 		if (!section)
98 			oobregion->offset = 3;
99 		else
100 			oobregion->offset = 6;
101 	}
102 
103 	return 0;
104 }
105 
106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107 	.ecc = nand_ooblayout_ecc_sp,
108 	.free = nand_ooblayout_free_sp,
109 };
110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
111 
112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113 				 struct mtd_oob_region *oobregion)
114 {
115 	struct nand_chip *chip = mtd_to_nand(mtd);
116 	struct nand_ecc_ctrl *ecc = &chip->ecc;
117 
118 	if (section || !ecc->total)
119 		return -ERANGE;
120 
121 	oobregion->length = ecc->total;
122 	oobregion->offset = mtd->oobsize - oobregion->length;
123 
124 	return 0;
125 }
126 
127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128 				  struct mtd_oob_region *oobregion)
129 {
130 	struct nand_chip *chip = mtd_to_nand(mtd);
131 	struct nand_ecc_ctrl *ecc = &chip->ecc;
132 
133 	if (section)
134 		return -ERANGE;
135 
136 	oobregion->length = mtd->oobsize - ecc->total - 2;
137 	oobregion->offset = 2;
138 
139 	return 0;
140 }
141 
142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143 	.ecc = nand_ooblayout_ecc_lp,
144 	.free = nand_ooblayout_free_lp,
145 };
146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
147 
148 /*
149  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150  * are placed at a fixed offset.
151  */
152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153 					 struct mtd_oob_region *oobregion)
154 {
155 	struct nand_chip *chip = mtd_to_nand(mtd);
156 	struct nand_ecc_ctrl *ecc = &chip->ecc;
157 
158 	if (section)
159 		return -ERANGE;
160 
161 	switch (mtd->oobsize) {
162 	case 64:
163 		oobregion->offset = 40;
164 		break;
165 	case 128:
166 		oobregion->offset = 80;
167 		break;
168 	default:
169 		return -EINVAL;
170 	}
171 
172 	oobregion->length = ecc->total;
173 	if (oobregion->offset + oobregion->length > mtd->oobsize)
174 		return -ERANGE;
175 
176 	return 0;
177 }
178 
179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180 					  struct mtd_oob_region *oobregion)
181 {
182 	struct nand_chip *chip = mtd_to_nand(mtd);
183 	struct nand_ecc_ctrl *ecc = &chip->ecc;
184 	int ecc_offset = 0;
185 
186 	if (section < 0 || section > 1)
187 		return -ERANGE;
188 
189 	switch (mtd->oobsize) {
190 	case 64:
191 		ecc_offset = 40;
192 		break;
193 	case 128:
194 		ecc_offset = 80;
195 		break;
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	if (section == 0) {
201 		oobregion->offset = 2;
202 		oobregion->length = ecc_offset - 2;
203 	} else {
204 		oobregion->offset = ecc_offset + ecc->total;
205 		oobregion->length = mtd->oobsize - oobregion->offset;
206 	}
207 
208 	return 0;
209 }
210 
211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
212 	.ecc = nand_ooblayout_ecc_lp_hamming,
213 	.free = nand_ooblayout_free_lp_hamming,
214 };
215 
216 static int check_offs_len(struct mtd_info *mtd,
217 					loff_t ofs, uint64_t len)
218 {
219 	struct nand_chip *chip = mtd_to_nand(mtd);
220 	int ret = 0;
221 
222 	/* Start address must align on block boundary */
223 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
224 		pr_debug("%s: unaligned address\n", __func__);
225 		ret = -EINVAL;
226 	}
227 
228 	/* Length must align on block boundary */
229 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
230 		pr_debug("%s: length not block aligned\n", __func__);
231 		ret = -EINVAL;
232 	}
233 
234 	return ret;
235 }
236 
237 /**
238  * nand_release_device - [GENERIC] release chip
239  * @mtd: MTD device structure
240  *
241  * Release chip lock and wake up anyone waiting on the device.
242  */
243 static void nand_release_device(struct mtd_info *mtd)
244 {
245 	struct nand_chip *chip = mtd_to_nand(mtd);
246 
247 	/* Release the controller and the chip */
248 	spin_lock(&chip->controller->lock);
249 	chip->controller->active = NULL;
250 	chip->state = FL_READY;
251 	wake_up(&chip->controller->wq);
252 	spin_unlock(&chip->controller->lock);
253 }
254 
255 /**
256  * nand_read_byte - [DEFAULT] read one byte from the chip
257  * @mtd: MTD device structure
258  *
259  * Default read function for 8bit buswidth
260  */
261 static uint8_t nand_read_byte(struct mtd_info *mtd)
262 {
263 	struct nand_chip *chip = mtd_to_nand(mtd);
264 	return readb(chip->IO_ADDR_R);
265 }
266 
267 /**
268  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
269  * @mtd: MTD device structure
270  *
271  * Default read function for 16bit buswidth with endianness conversion.
272  *
273  */
274 static uint8_t nand_read_byte16(struct mtd_info *mtd)
275 {
276 	struct nand_chip *chip = mtd_to_nand(mtd);
277 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
278 }
279 
280 /**
281  * nand_read_word - [DEFAULT] read one word from the chip
282  * @mtd: MTD device structure
283  *
284  * Default read function for 16bit buswidth without endianness conversion.
285  */
286 static u16 nand_read_word(struct mtd_info *mtd)
287 {
288 	struct nand_chip *chip = mtd_to_nand(mtd);
289 	return readw(chip->IO_ADDR_R);
290 }
291 
292 /**
293  * nand_select_chip - [DEFAULT] control CE line
294  * @mtd: MTD device structure
295  * @chipnr: chipnumber to select, -1 for deselect
296  *
297  * Default select function for 1 chip devices.
298  */
299 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
300 {
301 	struct nand_chip *chip = mtd_to_nand(mtd);
302 
303 	switch (chipnr) {
304 	case -1:
305 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
306 		break;
307 	case 0:
308 		break;
309 
310 	default:
311 		BUG();
312 	}
313 }
314 
315 /**
316  * nand_write_byte - [DEFAULT] write single byte to chip
317  * @mtd: MTD device structure
318  * @byte: value to write
319  *
320  * Default function to write a byte to I/O[7:0]
321  */
322 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323 {
324 	struct nand_chip *chip = mtd_to_nand(mtd);
325 
326 	chip->write_buf(mtd, &byte, 1);
327 }
328 
329 /**
330  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
331  * @mtd: MTD device structure
332  * @byte: value to write
333  *
334  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335  */
336 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337 {
338 	struct nand_chip *chip = mtd_to_nand(mtd);
339 	uint16_t word = byte;
340 
341 	/*
342 	 * It's not entirely clear what should happen to I/O[15:8] when writing
343 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344 	 *
345 	 *    When the host supports a 16-bit bus width, only data is
346 	 *    transferred at the 16-bit width. All address and command line
347 	 *    transfers shall use only the lower 8-bits of the data bus. During
348 	 *    command transfers, the host may place any value on the upper
349 	 *    8-bits of the data bus. During address transfers, the host shall
350 	 *    set the upper 8-bits of the data bus to 00h.
351 	 *
352 	 * One user of the write_byte callback is nand_set_features. The
353 	 * four parameters are specified to be written to I/O[7:0], but this is
354 	 * neither an address nor a command transfer. Let's assume a 0 on the
355 	 * upper I/O lines is OK.
356 	 */
357 	chip->write_buf(mtd, (uint8_t *)&word, 2);
358 }
359 
360 /**
361  * nand_write_buf - [DEFAULT] write buffer to chip
362  * @mtd: MTD device structure
363  * @buf: data buffer
364  * @len: number of bytes to write
365  *
366  * Default write function for 8bit buswidth.
367  */
368 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
369 {
370 	struct nand_chip *chip = mtd_to_nand(mtd);
371 
372 	iowrite8_rep(chip->IO_ADDR_W, buf, len);
373 }
374 
375 /**
376  * nand_read_buf - [DEFAULT] read chip data into buffer
377  * @mtd: MTD device structure
378  * @buf: buffer to store date
379  * @len: number of bytes to read
380  *
381  * Default read function for 8bit buswidth.
382  */
383 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
384 {
385 	struct nand_chip *chip = mtd_to_nand(mtd);
386 
387 	ioread8_rep(chip->IO_ADDR_R, buf, len);
388 }
389 
390 /**
391  * nand_write_buf16 - [DEFAULT] write buffer to chip
392  * @mtd: MTD device structure
393  * @buf: data buffer
394  * @len: number of bytes to write
395  *
396  * Default write function for 16bit buswidth.
397  */
398 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
399 {
400 	struct nand_chip *chip = mtd_to_nand(mtd);
401 	u16 *p = (u16 *) buf;
402 
403 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
404 }
405 
406 /**
407  * nand_read_buf16 - [DEFAULT] read chip data into buffer
408  * @mtd: MTD device structure
409  * @buf: buffer to store date
410  * @len: number of bytes to read
411  *
412  * Default read function for 16bit buswidth.
413  */
414 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
415 {
416 	struct nand_chip *chip = mtd_to_nand(mtd);
417 	u16 *p = (u16 *) buf;
418 
419 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
420 }
421 
422 /**
423  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
424  * @mtd: MTD device structure
425  * @ofs: offset from device start
426  *
427  * Check, if the block is bad.
428  */
429 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
430 {
431 	int page, page_end, res;
432 	struct nand_chip *chip = mtd_to_nand(mtd);
433 	u8 bad;
434 
435 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
436 		ofs += mtd->erasesize - mtd->writesize;
437 
438 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
439 	page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
440 
441 	for (; page < page_end; page++) {
442 		res = chip->ecc.read_oob(mtd, chip, page);
443 		if (res)
444 			return res;
445 
446 		bad = chip->oob_poi[chip->badblockpos];
447 
448 		if (likely(chip->badblockbits == 8))
449 			res = bad != 0xFF;
450 		else
451 			res = hweight8(bad) < chip->badblockbits;
452 		if (res)
453 			return res;
454 	}
455 
456 	return 0;
457 }
458 
459 /**
460  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
461  * @mtd: MTD device structure
462  * @ofs: offset from device start
463  *
464  * This is the default implementation, which can be overridden by a hardware
465  * specific driver. It provides the details for writing a bad block marker to a
466  * block.
467  */
468 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
469 {
470 	struct nand_chip *chip = mtd_to_nand(mtd);
471 	struct mtd_oob_ops ops;
472 	uint8_t buf[2] = { 0, 0 };
473 	int ret = 0, res, i = 0;
474 
475 	memset(&ops, 0, sizeof(ops));
476 	ops.oobbuf = buf;
477 	ops.ooboffs = chip->badblockpos;
478 	if (chip->options & NAND_BUSWIDTH_16) {
479 		ops.ooboffs &= ~0x01;
480 		ops.len = ops.ooblen = 2;
481 	} else {
482 		ops.len = ops.ooblen = 1;
483 	}
484 	ops.mode = MTD_OPS_PLACE_OOB;
485 
486 	/* Write to first/last page(s) if necessary */
487 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
488 		ofs += mtd->erasesize - mtd->writesize;
489 	do {
490 		res = nand_do_write_oob(mtd, ofs, &ops);
491 		if (!ret)
492 			ret = res;
493 
494 		i++;
495 		ofs += mtd->writesize;
496 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
497 
498 	return ret;
499 }
500 
501 /**
502  * nand_block_markbad_lowlevel - mark a block bad
503  * @mtd: MTD device structure
504  * @ofs: offset from device start
505  *
506  * This function performs the generic NAND bad block marking steps (i.e., bad
507  * block table(s) and/or marker(s)). We only allow the hardware driver to
508  * specify how to write bad block markers to OOB (chip->block_markbad).
509  *
510  * We try operations in the following order:
511  *
512  *  (1) erase the affected block, to allow OOB marker to be written cleanly
513  *  (2) write bad block marker to OOB area of affected block (unless flag
514  *      NAND_BBT_NO_OOB_BBM is present)
515  *  (3) update the BBT
516  *
517  * Note that we retain the first error encountered in (2) or (3), finish the
518  * procedures, and dump the error in the end.
519 */
520 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
521 {
522 	struct nand_chip *chip = mtd_to_nand(mtd);
523 	int res, ret = 0;
524 
525 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
526 		struct erase_info einfo;
527 
528 		/* Attempt erase before marking OOB */
529 		memset(&einfo, 0, sizeof(einfo));
530 		einfo.addr = ofs;
531 		einfo.len = 1ULL << chip->phys_erase_shift;
532 		nand_erase_nand(mtd, &einfo, 0);
533 
534 		/* Write bad block marker to OOB */
535 		nand_get_device(mtd, FL_WRITING);
536 		ret = chip->block_markbad(mtd, ofs);
537 		nand_release_device(mtd);
538 	}
539 
540 	/* Mark block bad in BBT */
541 	if (chip->bbt) {
542 		res = nand_markbad_bbt(mtd, ofs);
543 		if (!ret)
544 			ret = res;
545 	}
546 
547 	if (!ret)
548 		mtd->ecc_stats.badblocks++;
549 
550 	return ret;
551 }
552 
553 /**
554  * nand_check_wp - [GENERIC] check if the chip is write protected
555  * @mtd: MTD device structure
556  *
557  * Check, if the device is write protected. The function expects, that the
558  * device is already selected.
559  */
560 static int nand_check_wp(struct mtd_info *mtd)
561 {
562 	struct nand_chip *chip = mtd_to_nand(mtd);
563 	u8 status;
564 	int ret;
565 
566 	/* Broken xD cards report WP despite being writable */
567 	if (chip->options & NAND_BROKEN_XD)
568 		return 0;
569 
570 	/* Check the WP bit */
571 	ret = nand_status_op(chip, &status);
572 	if (ret)
573 		return ret;
574 
575 	return status & NAND_STATUS_WP ? 0 : 1;
576 }
577 
578 /**
579  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
580  * @mtd: MTD device structure
581  * @ofs: offset from device start
582  *
583  * Check if the block is marked as reserved.
584  */
585 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
586 {
587 	struct nand_chip *chip = mtd_to_nand(mtd);
588 
589 	if (!chip->bbt)
590 		return 0;
591 	/* Return info from the table */
592 	return nand_isreserved_bbt(mtd, ofs);
593 }
594 
595 /**
596  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
597  * @mtd: MTD device structure
598  * @ofs: offset from device start
599  * @allowbbt: 1, if its allowed to access the bbt area
600  *
601  * Check, if the block is bad. Either by reading the bad block table or
602  * calling of the scan function.
603  */
604 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
605 {
606 	struct nand_chip *chip = mtd_to_nand(mtd);
607 
608 	if (!chip->bbt)
609 		return chip->block_bad(mtd, ofs);
610 
611 	/* Return info from the table */
612 	return nand_isbad_bbt(mtd, ofs, allowbbt);
613 }
614 
615 /**
616  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
617  * @mtd: MTD device structure
618  * @timeo: Timeout
619  *
620  * Helper function for nand_wait_ready used when needing to wait in interrupt
621  * context.
622  */
623 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
624 {
625 	struct nand_chip *chip = mtd_to_nand(mtd);
626 	int i;
627 
628 	/* Wait for the device to get ready */
629 	for (i = 0; i < timeo; i++) {
630 		if (chip->dev_ready(mtd))
631 			break;
632 		touch_softlockup_watchdog();
633 		mdelay(1);
634 	}
635 }
636 
637 /**
638  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
639  * @mtd: MTD device structure
640  *
641  * Wait for the ready pin after a command, and warn if a timeout occurs.
642  */
643 void nand_wait_ready(struct mtd_info *mtd)
644 {
645 	struct nand_chip *chip = mtd_to_nand(mtd);
646 	unsigned long timeo = 400;
647 
648 	if (in_interrupt() || oops_in_progress)
649 		return panic_nand_wait_ready(mtd, timeo);
650 
651 	/* Wait until command is processed or timeout occurs */
652 	timeo = jiffies + msecs_to_jiffies(timeo);
653 	do {
654 		if (chip->dev_ready(mtd))
655 			return;
656 		cond_resched();
657 	} while (time_before(jiffies, timeo));
658 
659 	if (!chip->dev_ready(mtd))
660 		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
661 }
662 EXPORT_SYMBOL_GPL(nand_wait_ready);
663 
664 /**
665  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
666  * @mtd: MTD device structure
667  * @timeo: Timeout in ms
668  *
669  * Wait for status ready (i.e. command done) or timeout.
670  */
671 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
672 {
673 	register struct nand_chip *chip = mtd_to_nand(mtd);
674 	int ret;
675 
676 	timeo = jiffies + msecs_to_jiffies(timeo);
677 	do {
678 		u8 status;
679 
680 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
681 		if (ret)
682 			return;
683 
684 		if (status & NAND_STATUS_READY)
685 			break;
686 		touch_softlockup_watchdog();
687 	} while (time_before(jiffies, timeo));
688 };
689 
690 /**
691  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
692  * @chip: NAND chip structure
693  * @timeout_ms: Timeout in ms
694  *
695  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
696  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
697  * returned.
698  *
699  * This helper is intended to be used when the controller does not have access
700  * to the NAND R/B pin.
701  *
702  * Be aware that calling this helper from an ->exec_op() implementation means
703  * ->exec_op() must be re-entrant.
704  *
705  * Return 0 if the NAND chip is ready, a negative error otherwise.
706  */
707 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
708 {
709 	const struct nand_sdr_timings *timings;
710 	u8 status = 0;
711 	int ret;
712 
713 	if (!chip->exec_op)
714 		return -ENOTSUPP;
715 
716 	/* Wait tWB before polling the STATUS reg. */
717 	timings = nand_get_sdr_timings(&chip->data_interface);
718 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
719 
720 	ret = nand_status_op(chip, NULL);
721 	if (ret)
722 		return ret;
723 
724 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
725 	do {
726 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
727 		if (ret)
728 			break;
729 
730 		if (status & NAND_STATUS_READY)
731 			break;
732 
733 		/*
734 		 * Typical lowest execution time for a tR on most NANDs is 10us,
735 		 * use this as polling delay before doing something smarter (ie.
736 		 * deriving a delay from the timeout value, timeout_ms/ratio).
737 		 */
738 		udelay(10);
739 	} while	(time_before(jiffies, timeout_ms));
740 
741 	/*
742 	 * We have to exit READ_STATUS mode in order to read real data on the
743 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
744 	 * instruction.
745 	 */
746 	nand_exit_status_op(chip);
747 
748 	if (ret)
749 		return ret;
750 
751 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
752 };
753 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
754 
755 /**
756  * nand_command - [DEFAULT] Send command to NAND device
757  * @mtd: MTD device structure
758  * @command: the command to be sent
759  * @column: the column address for this command, -1 if none
760  * @page_addr: the page address for this command, -1 if none
761  *
762  * Send command to NAND device. This function is used for small page devices
763  * (512 Bytes per page).
764  */
765 static void nand_command(struct mtd_info *mtd, unsigned int command,
766 			 int column, int page_addr)
767 {
768 	register struct nand_chip *chip = mtd_to_nand(mtd);
769 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
770 
771 	/* Write out the command to the device */
772 	if (command == NAND_CMD_SEQIN) {
773 		int readcmd;
774 
775 		if (column >= mtd->writesize) {
776 			/* OOB area */
777 			column -= mtd->writesize;
778 			readcmd = NAND_CMD_READOOB;
779 		} else if (column < 256) {
780 			/* First 256 bytes --> READ0 */
781 			readcmd = NAND_CMD_READ0;
782 		} else {
783 			column -= 256;
784 			readcmd = NAND_CMD_READ1;
785 		}
786 		chip->cmd_ctrl(mtd, readcmd, ctrl);
787 		ctrl &= ~NAND_CTRL_CHANGE;
788 	}
789 	if (command != NAND_CMD_NONE)
790 		chip->cmd_ctrl(mtd, command, ctrl);
791 
792 	/* Address cycle, when necessary */
793 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
794 	/* Serially input address */
795 	if (column != -1) {
796 		/* Adjust columns for 16 bit buswidth */
797 		if (chip->options & NAND_BUSWIDTH_16 &&
798 				!nand_opcode_8bits(command))
799 			column >>= 1;
800 		chip->cmd_ctrl(mtd, column, ctrl);
801 		ctrl &= ~NAND_CTRL_CHANGE;
802 	}
803 	if (page_addr != -1) {
804 		chip->cmd_ctrl(mtd, page_addr, ctrl);
805 		ctrl &= ~NAND_CTRL_CHANGE;
806 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
807 		if (chip->options & NAND_ROW_ADDR_3)
808 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
809 	}
810 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
811 
812 	/*
813 	 * Program and erase have their own busy handlers status and sequential
814 	 * in needs no delay
815 	 */
816 	switch (command) {
817 
818 	case NAND_CMD_NONE:
819 	case NAND_CMD_PAGEPROG:
820 	case NAND_CMD_ERASE1:
821 	case NAND_CMD_ERASE2:
822 	case NAND_CMD_SEQIN:
823 	case NAND_CMD_STATUS:
824 	case NAND_CMD_READID:
825 	case NAND_CMD_SET_FEATURES:
826 		return;
827 
828 	case NAND_CMD_RESET:
829 		if (chip->dev_ready)
830 			break;
831 		udelay(chip->chip_delay);
832 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
833 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
834 		chip->cmd_ctrl(mtd,
835 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
836 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
837 		nand_wait_status_ready(mtd, 250);
838 		return;
839 
840 		/* This applies to read commands */
841 	case NAND_CMD_READ0:
842 		/*
843 		 * READ0 is sometimes used to exit GET STATUS mode. When this
844 		 * is the case no address cycles are requested, and we can use
845 		 * this information to detect that we should not wait for the
846 		 * device to be ready.
847 		 */
848 		if (column == -1 && page_addr == -1)
849 			return;
850 
851 	default:
852 		/*
853 		 * If we don't have access to the busy pin, we apply the given
854 		 * command delay
855 		 */
856 		if (!chip->dev_ready) {
857 			udelay(chip->chip_delay);
858 			return;
859 		}
860 	}
861 	/*
862 	 * Apply this short delay always to ensure that we do wait tWB in
863 	 * any case on any machine.
864 	 */
865 	ndelay(100);
866 
867 	nand_wait_ready(mtd);
868 }
869 
870 static void nand_ccs_delay(struct nand_chip *chip)
871 {
872 	/*
873 	 * The controller already takes care of waiting for tCCS when the RNDIN
874 	 * or RNDOUT command is sent, return directly.
875 	 */
876 	if (!(chip->options & NAND_WAIT_TCCS))
877 		return;
878 
879 	/*
880 	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
881 	 * (which should be safe for all NANDs).
882 	 */
883 	if (chip->setup_data_interface)
884 		ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
885 	else
886 		ndelay(500);
887 }
888 
889 /**
890  * nand_command_lp - [DEFAULT] Send command to NAND large page device
891  * @mtd: MTD device structure
892  * @command: the command to be sent
893  * @column: the column address for this command, -1 if none
894  * @page_addr: the page address for this command, -1 if none
895  *
896  * Send command to NAND device. This is the version for the new large page
897  * devices. We don't have the separate regions as we have in the small page
898  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
899  */
900 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
901 			    int column, int page_addr)
902 {
903 	register struct nand_chip *chip = mtd_to_nand(mtd);
904 
905 	/* Emulate NAND_CMD_READOOB */
906 	if (command == NAND_CMD_READOOB) {
907 		column += mtd->writesize;
908 		command = NAND_CMD_READ0;
909 	}
910 
911 	/* Command latch cycle */
912 	if (command != NAND_CMD_NONE)
913 		chip->cmd_ctrl(mtd, command,
914 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
915 
916 	if (column != -1 || page_addr != -1) {
917 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
918 
919 		/* Serially input address */
920 		if (column != -1) {
921 			/* Adjust columns for 16 bit buswidth */
922 			if (chip->options & NAND_BUSWIDTH_16 &&
923 					!nand_opcode_8bits(command))
924 				column >>= 1;
925 			chip->cmd_ctrl(mtd, column, ctrl);
926 			ctrl &= ~NAND_CTRL_CHANGE;
927 
928 			/* Only output a single addr cycle for 8bits opcodes. */
929 			if (!nand_opcode_8bits(command))
930 				chip->cmd_ctrl(mtd, column >> 8, ctrl);
931 		}
932 		if (page_addr != -1) {
933 			chip->cmd_ctrl(mtd, page_addr, ctrl);
934 			chip->cmd_ctrl(mtd, page_addr >> 8,
935 				       NAND_NCE | NAND_ALE);
936 			if (chip->options & NAND_ROW_ADDR_3)
937 				chip->cmd_ctrl(mtd, page_addr >> 16,
938 					       NAND_NCE | NAND_ALE);
939 		}
940 	}
941 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
942 
943 	/*
944 	 * Program and erase have their own busy handlers status, sequential
945 	 * in and status need no delay.
946 	 */
947 	switch (command) {
948 
949 	case NAND_CMD_NONE:
950 	case NAND_CMD_CACHEDPROG:
951 	case NAND_CMD_PAGEPROG:
952 	case NAND_CMD_ERASE1:
953 	case NAND_CMD_ERASE2:
954 	case NAND_CMD_SEQIN:
955 	case NAND_CMD_STATUS:
956 	case NAND_CMD_READID:
957 	case NAND_CMD_SET_FEATURES:
958 		return;
959 
960 	case NAND_CMD_RNDIN:
961 		nand_ccs_delay(chip);
962 		return;
963 
964 	case NAND_CMD_RESET:
965 		if (chip->dev_ready)
966 			break;
967 		udelay(chip->chip_delay);
968 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
969 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
970 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
971 			       NAND_NCE | NAND_CTRL_CHANGE);
972 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
973 		nand_wait_status_ready(mtd, 250);
974 		return;
975 
976 	case NAND_CMD_RNDOUT:
977 		/* No ready / busy check necessary */
978 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
979 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
980 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
981 			       NAND_NCE | NAND_CTRL_CHANGE);
982 
983 		nand_ccs_delay(chip);
984 		return;
985 
986 	case NAND_CMD_READ0:
987 		/*
988 		 * READ0 is sometimes used to exit GET STATUS mode. When this
989 		 * is the case no address cycles are requested, and we can use
990 		 * this information to detect that READSTART should not be
991 		 * issued.
992 		 */
993 		if (column == -1 && page_addr == -1)
994 			return;
995 
996 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
997 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
998 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
999 			       NAND_NCE | NAND_CTRL_CHANGE);
1000 
1001 		/* This applies to read commands */
1002 	default:
1003 		/*
1004 		 * If we don't have access to the busy pin, we apply the given
1005 		 * command delay.
1006 		 */
1007 		if (!chip->dev_ready) {
1008 			udelay(chip->chip_delay);
1009 			return;
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * Apply this short delay always to ensure that we do wait tWB in
1015 	 * any case on any machine.
1016 	 */
1017 	ndelay(100);
1018 
1019 	nand_wait_ready(mtd);
1020 }
1021 
1022 /**
1023  * panic_nand_get_device - [GENERIC] Get chip for selected access
1024  * @chip: the nand chip descriptor
1025  * @mtd: MTD device structure
1026  * @new_state: the state which is requested
1027  *
1028  * Used when in panic, no locks are taken.
1029  */
1030 static void panic_nand_get_device(struct nand_chip *chip,
1031 		      struct mtd_info *mtd, int new_state)
1032 {
1033 	/* Hardware controller shared among independent devices */
1034 	chip->controller->active = chip;
1035 	chip->state = new_state;
1036 }
1037 
1038 /**
1039  * nand_get_device - [GENERIC] Get chip for selected access
1040  * @mtd: MTD device structure
1041  * @new_state: the state which is requested
1042  *
1043  * Get the device and lock it for exclusive access
1044  */
1045 static int
1046 nand_get_device(struct mtd_info *mtd, int new_state)
1047 {
1048 	struct nand_chip *chip = mtd_to_nand(mtd);
1049 	spinlock_t *lock = &chip->controller->lock;
1050 	wait_queue_head_t *wq = &chip->controller->wq;
1051 	DECLARE_WAITQUEUE(wait, current);
1052 retry:
1053 	spin_lock(lock);
1054 
1055 	/* Hardware controller shared among independent devices */
1056 	if (!chip->controller->active)
1057 		chip->controller->active = chip;
1058 
1059 	if (chip->controller->active == chip && chip->state == FL_READY) {
1060 		chip->state = new_state;
1061 		spin_unlock(lock);
1062 		return 0;
1063 	}
1064 	if (new_state == FL_PM_SUSPENDED) {
1065 		if (chip->controller->active->state == FL_PM_SUSPENDED) {
1066 			chip->state = FL_PM_SUSPENDED;
1067 			spin_unlock(lock);
1068 			return 0;
1069 		}
1070 	}
1071 	set_current_state(TASK_UNINTERRUPTIBLE);
1072 	add_wait_queue(wq, &wait);
1073 	spin_unlock(lock);
1074 	schedule();
1075 	remove_wait_queue(wq, &wait);
1076 	goto retry;
1077 }
1078 
1079 /**
1080  * panic_nand_wait - [GENERIC] wait until the command is done
1081  * @mtd: MTD device structure
1082  * @chip: NAND chip structure
1083  * @timeo: timeout
1084  *
1085  * Wait for command done. This is a helper function for nand_wait used when
1086  * we are in interrupt context. May happen when in panic and trying to write
1087  * an oops through mtdoops.
1088  */
1089 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1090 			    unsigned long timeo)
1091 {
1092 	int i;
1093 	for (i = 0; i < timeo; i++) {
1094 		if (chip->dev_ready) {
1095 			if (chip->dev_ready(mtd))
1096 				break;
1097 		} else {
1098 			int ret;
1099 			u8 status;
1100 
1101 			ret = nand_read_data_op(chip, &status, sizeof(status),
1102 						true);
1103 			if (ret)
1104 				return;
1105 
1106 			if (status & NAND_STATUS_READY)
1107 				break;
1108 		}
1109 		mdelay(1);
1110 	}
1111 }
1112 
1113 /**
1114  * nand_wait - [DEFAULT] wait until the command is done
1115  * @mtd: MTD device structure
1116  * @chip: NAND chip structure
1117  *
1118  * Wait for command done. This applies to erase and program only.
1119  */
1120 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1121 {
1122 
1123 	unsigned long timeo = 400;
1124 	u8 status;
1125 	int ret;
1126 
1127 	/*
1128 	 * Apply this short delay always to ensure that we do wait tWB in any
1129 	 * case on any machine.
1130 	 */
1131 	ndelay(100);
1132 
1133 	ret = nand_status_op(chip, NULL);
1134 	if (ret)
1135 		return ret;
1136 
1137 	if (in_interrupt() || oops_in_progress)
1138 		panic_nand_wait(mtd, chip, timeo);
1139 	else {
1140 		timeo = jiffies + msecs_to_jiffies(timeo);
1141 		do {
1142 			if (chip->dev_ready) {
1143 				if (chip->dev_ready(mtd))
1144 					break;
1145 			} else {
1146 				ret = nand_read_data_op(chip, &status,
1147 							sizeof(status), true);
1148 				if (ret)
1149 					return ret;
1150 
1151 				if (status & NAND_STATUS_READY)
1152 					break;
1153 			}
1154 			cond_resched();
1155 		} while (time_before(jiffies, timeo));
1156 	}
1157 
1158 	ret = nand_read_data_op(chip, &status, sizeof(status), true);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/* This can happen if in case of timeout or buggy dev_ready */
1163 	WARN_ON(!(status & NAND_STATUS_READY));
1164 	return status;
1165 }
1166 
1167 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
1168 {
1169 	return (chip->parameters.supports_set_get_features &&
1170 		test_bit(addr, chip->parameters.get_feature_list));
1171 }
1172 
1173 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
1174 {
1175 	return (chip->parameters.supports_set_get_features &&
1176 		test_bit(addr, chip->parameters.set_feature_list));
1177 }
1178 
1179 /**
1180  * nand_get_features - wrapper to perform a GET_FEATURE
1181  * @chip: NAND chip info structure
1182  * @addr: feature address
1183  * @subfeature_param: the subfeature parameters, a four bytes array
1184  *
1185  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1186  * operation cannot be handled.
1187  */
1188 int nand_get_features(struct nand_chip *chip, int addr,
1189 		      u8 *subfeature_param)
1190 {
1191 	struct mtd_info *mtd = nand_to_mtd(chip);
1192 
1193 	if (!nand_supports_get_features(chip, addr))
1194 		return -ENOTSUPP;
1195 
1196 	return chip->get_features(mtd, chip, addr, subfeature_param);
1197 }
1198 EXPORT_SYMBOL_GPL(nand_get_features);
1199 
1200 /**
1201  * nand_set_features - wrapper to perform a SET_FEATURE
1202  * @chip: NAND chip info structure
1203  * @addr: feature address
1204  * @subfeature_param: the subfeature parameters, a four bytes array
1205  *
1206  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1207  * operation cannot be handled.
1208  */
1209 int nand_set_features(struct nand_chip *chip, int addr,
1210 		      u8 *subfeature_param)
1211 {
1212 	struct mtd_info *mtd = nand_to_mtd(chip);
1213 
1214 	if (!nand_supports_set_features(chip, addr))
1215 		return -ENOTSUPP;
1216 
1217 	return chip->set_features(mtd, chip, addr, subfeature_param);
1218 }
1219 EXPORT_SYMBOL_GPL(nand_set_features);
1220 
1221 /**
1222  * nand_reset_data_interface - Reset data interface and timings
1223  * @chip: The NAND chip
1224  * @chipnr: Internal die id
1225  *
1226  * Reset the Data interface and timings to ONFI mode 0.
1227  *
1228  * Returns 0 for success or negative error code otherwise.
1229  */
1230 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
1231 {
1232 	struct mtd_info *mtd = nand_to_mtd(chip);
1233 	int ret;
1234 
1235 	if (!chip->setup_data_interface)
1236 		return 0;
1237 
1238 	/*
1239 	 * The ONFI specification says:
1240 	 * "
1241 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
1242 	 * interface, the host shall use the Reset (FFh) command
1243 	 * using SDR timing mode 0. A device in any timing mode is
1244 	 * required to recognize Reset (FFh) command issued in SDR
1245 	 * timing mode 0.
1246 	 * "
1247 	 *
1248 	 * Configure the data interface in SDR mode and set the
1249 	 * timings to timing mode 0.
1250 	 */
1251 
1252 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
1253 	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
1254 	if (ret)
1255 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * nand_setup_data_interface - Setup the best data interface and timings
1262  * @chip: The NAND chip
1263  * @chipnr: Internal die id
1264  *
1265  * Find and configure the best data interface and NAND timings supported by
1266  * the chip and the driver.
1267  * First tries to retrieve supported timing modes from ONFI information,
1268  * and if the NAND chip does not support ONFI, relies on the
1269  * ->onfi_timing_mode_default specified in the nand_ids table.
1270  *
1271  * Returns 0 for success or negative error code otherwise.
1272  */
1273 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
1274 {
1275 	struct mtd_info *mtd = nand_to_mtd(chip);
1276 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1277 		chip->onfi_timing_mode_default,
1278 	};
1279 	int ret;
1280 
1281 	if (!chip->setup_data_interface)
1282 		return 0;
1283 
1284 	/* Change the mode on the chip side (if supported by the NAND chip) */
1285 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
1286 		chip->select_chip(mtd, chipnr);
1287 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1288 					tmode_param);
1289 		chip->select_chip(mtd, -1);
1290 		if (ret)
1291 			return ret;
1292 	}
1293 
1294 	/* Change the mode on the controller side */
1295 	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
1296 	if (ret)
1297 		return ret;
1298 
1299 	/* Check the mode has been accepted by the chip, if supported */
1300 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
1301 		return 0;
1302 
1303 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
1304 	chip->select_chip(mtd, chipnr);
1305 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1306 				tmode_param);
1307 	chip->select_chip(mtd, -1);
1308 	if (ret)
1309 		goto err_reset_chip;
1310 
1311 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
1312 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
1313 			chip->onfi_timing_mode_default);
1314 		goto err_reset_chip;
1315 	}
1316 
1317 	return 0;
1318 
1319 err_reset_chip:
1320 	/*
1321 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
1322 	 * timing mode.
1323 	 */
1324 	nand_reset_data_interface(chip, chipnr);
1325 	chip->select_chip(mtd, chipnr);
1326 	nand_reset_op(chip);
1327 	chip->select_chip(mtd, -1);
1328 
1329 	return ret;
1330 }
1331 
1332 /**
1333  * nand_init_data_interface - find the best data interface and timings
1334  * @chip: The NAND chip
1335  *
1336  * Find the best data interface and NAND timings supported by the chip
1337  * and the driver.
1338  * First tries to retrieve supported timing modes from ONFI information,
1339  * and if the NAND chip does not support ONFI, relies on the
1340  * ->onfi_timing_mode_default specified in the nand_ids table. After this
1341  * function nand_chip->data_interface is initialized with the best timing mode
1342  * available.
1343  *
1344  * Returns 0 for success or negative error code otherwise.
1345  */
1346 static int nand_init_data_interface(struct nand_chip *chip)
1347 {
1348 	struct mtd_info *mtd = nand_to_mtd(chip);
1349 	int modes, mode, ret;
1350 
1351 	if (!chip->setup_data_interface)
1352 		return 0;
1353 
1354 	/*
1355 	 * First try to identify the best timings from ONFI parameters and
1356 	 * if the NAND does not support ONFI, fallback to the default ONFI
1357 	 * timing mode.
1358 	 */
1359 	modes = onfi_get_async_timing_mode(chip);
1360 	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1361 		if (!chip->onfi_timing_mode_default)
1362 			return 0;
1363 
1364 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
1365 	}
1366 
1367 
1368 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
1369 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
1370 		if (ret)
1371 			continue;
1372 
1373 		/*
1374 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
1375 		 * controller supports the requested timings.
1376 		 */
1377 		ret = chip->setup_data_interface(mtd,
1378 						 NAND_DATA_IFACE_CHECK_ONLY,
1379 						 &chip->data_interface);
1380 		if (!ret) {
1381 			chip->onfi_timing_mode_default = mode;
1382 			break;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  * nand_fill_column_cycles - fill the column cycles of an address
1391  * @chip: The NAND chip
1392  * @addrs: Array of address cycles to fill
1393  * @offset_in_page: The offset in the page
1394  *
1395  * Fills the first or the first two bytes of the @addrs field depending
1396  * on the NAND bus width and the page size.
1397  *
1398  * Returns the number of cycles needed to encode the column, or a negative
1399  * error code in case one of the arguments is invalid.
1400  */
1401 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1402 				   unsigned int offset_in_page)
1403 {
1404 	struct mtd_info *mtd = nand_to_mtd(chip);
1405 
1406 	/* Make sure the offset is less than the actual page size. */
1407 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1408 		return -EINVAL;
1409 
1410 	/*
1411 	 * On small page NANDs, there's a dedicated command to access the OOB
1412 	 * area, and the column address is relative to the start of the OOB
1413 	 * area, not the start of the page. Asjust the address accordingly.
1414 	 */
1415 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1416 		offset_in_page -= mtd->writesize;
1417 
1418 	/*
1419 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1420 	 * wide, then it must be divided by 2.
1421 	 */
1422 	if (chip->options & NAND_BUSWIDTH_16) {
1423 		if (WARN_ON(offset_in_page % 2))
1424 			return -EINVAL;
1425 
1426 		offset_in_page /= 2;
1427 	}
1428 
1429 	addrs[0] = offset_in_page;
1430 
1431 	/*
1432 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1433 	 * need 2
1434 	 */
1435 	if (mtd->writesize <= 512)
1436 		return 1;
1437 
1438 	addrs[1] = offset_in_page >> 8;
1439 
1440 	return 2;
1441 }
1442 
1443 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1444 				     unsigned int offset_in_page, void *buf,
1445 				     unsigned int len)
1446 {
1447 	struct mtd_info *mtd = nand_to_mtd(chip);
1448 	const struct nand_sdr_timings *sdr =
1449 		nand_get_sdr_timings(&chip->data_interface);
1450 	u8 addrs[4];
1451 	struct nand_op_instr instrs[] = {
1452 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1453 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1454 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1455 				 PSEC_TO_NSEC(sdr->tRR_min)),
1456 		NAND_OP_DATA_IN(len, buf, 0),
1457 	};
1458 	struct nand_operation op = NAND_OPERATION(instrs);
1459 	int ret;
1460 
1461 	/* Drop the DATA_IN instruction if len is set to 0. */
1462 	if (!len)
1463 		op.ninstrs--;
1464 
1465 	if (offset_in_page >= mtd->writesize)
1466 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1467 	else if (offset_in_page >= 256 &&
1468 		 !(chip->options & NAND_BUSWIDTH_16))
1469 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1470 
1471 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	addrs[1] = page;
1476 	addrs[2] = page >> 8;
1477 
1478 	if (chip->options & NAND_ROW_ADDR_3) {
1479 		addrs[3] = page >> 16;
1480 		instrs[1].ctx.addr.naddrs++;
1481 	}
1482 
1483 	return nand_exec_op(chip, &op);
1484 }
1485 
1486 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1487 				     unsigned int offset_in_page, void *buf,
1488 				     unsigned int len)
1489 {
1490 	const struct nand_sdr_timings *sdr =
1491 		nand_get_sdr_timings(&chip->data_interface);
1492 	u8 addrs[5];
1493 	struct nand_op_instr instrs[] = {
1494 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1495 		NAND_OP_ADDR(4, addrs, 0),
1496 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1497 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1498 				 PSEC_TO_NSEC(sdr->tRR_min)),
1499 		NAND_OP_DATA_IN(len, buf, 0),
1500 	};
1501 	struct nand_operation op = NAND_OPERATION(instrs);
1502 	int ret;
1503 
1504 	/* Drop the DATA_IN instruction if len is set to 0. */
1505 	if (!len)
1506 		op.ninstrs--;
1507 
1508 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1509 	if (ret < 0)
1510 		return ret;
1511 
1512 	addrs[2] = page;
1513 	addrs[3] = page >> 8;
1514 
1515 	if (chip->options & NAND_ROW_ADDR_3) {
1516 		addrs[4] = page >> 16;
1517 		instrs[1].ctx.addr.naddrs++;
1518 	}
1519 
1520 	return nand_exec_op(chip, &op);
1521 }
1522 
1523 /**
1524  * nand_read_page_op - Do a READ PAGE operation
1525  * @chip: The NAND chip
1526  * @page: page to read
1527  * @offset_in_page: offset within the page
1528  * @buf: buffer used to store the data
1529  * @len: length of the buffer
1530  *
1531  * This function issues a READ PAGE operation.
1532  * This function does not select/unselect the CS line.
1533  *
1534  * Returns 0 on success, a negative error code otherwise.
1535  */
1536 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1537 		      unsigned int offset_in_page, void *buf, unsigned int len)
1538 {
1539 	struct mtd_info *mtd = nand_to_mtd(chip);
1540 
1541 	if (len && !buf)
1542 		return -EINVAL;
1543 
1544 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1545 		return -EINVAL;
1546 
1547 	if (chip->exec_op) {
1548 		if (mtd->writesize > 512)
1549 			return nand_lp_exec_read_page_op(chip, page,
1550 							 offset_in_page, buf,
1551 							 len);
1552 
1553 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1554 						 buf, len);
1555 	}
1556 
1557 	chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1558 	if (len)
1559 		chip->read_buf(mtd, buf, len);
1560 
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(nand_read_page_op);
1564 
1565 /**
1566  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1567  * @chip: The NAND chip
1568  * @page: parameter page to read
1569  * @buf: buffer used to store the data
1570  * @len: length of the buffer
1571  *
1572  * This function issues a READ PARAMETER PAGE operation.
1573  * This function does not select/unselect the CS line.
1574  *
1575  * Returns 0 on success, a negative error code otherwise.
1576  */
1577 static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1578 				   unsigned int len)
1579 {
1580 	struct mtd_info *mtd = nand_to_mtd(chip);
1581 	unsigned int i;
1582 	u8 *p = buf;
1583 
1584 	if (len && !buf)
1585 		return -EINVAL;
1586 
1587 	if (chip->exec_op) {
1588 		const struct nand_sdr_timings *sdr =
1589 			nand_get_sdr_timings(&chip->data_interface);
1590 		struct nand_op_instr instrs[] = {
1591 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1592 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1593 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1594 					 PSEC_TO_NSEC(sdr->tRR_min)),
1595 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1596 		};
1597 		struct nand_operation op = NAND_OPERATION(instrs);
1598 
1599 		/* Drop the DATA_IN instruction if len is set to 0. */
1600 		if (!len)
1601 			op.ninstrs--;
1602 
1603 		return nand_exec_op(chip, &op);
1604 	}
1605 
1606 	chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1607 	for (i = 0; i < len; i++)
1608 		p[i] = chip->read_byte(mtd);
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1615  * @chip: The NAND chip
1616  * @offset_in_page: offset within the page
1617  * @buf: buffer used to store the data
1618  * @len: length of the buffer
1619  * @force_8bit: force 8-bit bus access
1620  *
1621  * This function issues a CHANGE READ COLUMN operation.
1622  * This function does not select/unselect the CS line.
1623  *
1624  * Returns 0 on success, a negative error code otherwise.
1625  */
1626 int nand_change_read_column_op(struct nand_chip *chip,
1627 			       unsigned int offset_in_page, void *buf,
1628 			       unsigned int len, bool force_8bit)
1629 {
1630 	struct mtd_info *mtd = nand_to_mtd(chip);
1631 
1632 	if (len && !buf)
1633 		return -EINVAL;
1634 
1635 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1636 		return -EINVAL;
1637 
1638 	/* Small page NANDs do not support column change. */
1639 	if (mtd->writesize <= 512)
1640 		return -ENOTSUPP;
1641 
1642 	if (chip->exec_op) {
1643 		const struct nand_sdr_timings *sdr =
1644 			nand_get_sdr_timings(&chip->data_interface);
1645 		u8 addrs[2] = {};
1646 		struct nand_op_instr instrs[] = {
1647 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1648 			NAND_OP_ADDR(2, addrs, 0),
1649 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1650 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1651 			NAND_OP_DATA_IN(len, buf, 0),
1652 		};
1653 		struct nand_operation op = NAND_OPERATION(instrs);
1654 		int ret;
1655 
1656 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1657 		if (ret < 0)
1658 			return ret;
1659 
1660 		/* Drop the DATA_IN instruction if len is set to 0. */
1661 		if (!len)
1662 			op.ninstrs--;
1663 
1664 		instrs[3].ctx.data.force_8bit = force_8bit;
1665 
1666 		return nand_exec_op(chip, &op);
1667 	}
1668 
1669 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1670 	if (len)
1671 		chip->read_buf(mtd, buf, len);
1672 
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1676 
1677 /**
1678  * nand_read_oob_op - Do a READ OOB operation
1679  * @chip: The NAND chip
1680  * @page: page to read
1681  * @offset_in_oob: offset within the OOB area
1682  * @buf: buffer used to store the data
1683  * @len: length of the buffer
1684  *
1685  * This function issues a READ OOB operation.
1686  * This function does not select/unselect the CS line.
1687  *
1688  * Returns 0 on success, a negative error code otherwise.
1689  */
1690 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1691 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1692 {
1693 	struct mtd_info *mtd = nand_to_mtd(chip);
1694 
1695 	if (len && !buf)
1696 		return -EINVAL;
1697 
1698 	if (offset_in_oob + len > mtd->oobsize)
1699 		return -EINVAL;
1700 
1701 	if (chip->exec_op)
1702 		return nand_read_page_op(chip, page,
1703 					 mtd->writesize + offset_in_oob,
1704 					 buf, len);
1705 
1706 	chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1707 	if (len)
1708 		chip->read_buf(mtd, buf, len);
1709 
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1713 
1714 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1715 				  unsigned int offset_in_page, const void *buf,
1716 				  unsigned int len, bool prog)
1717 {
1718 	struct mtd_info *mtd = nand_to_mtd(chip);
1719 	const struct nand_sdr_timings *sdr =
1720 		nand_get_sdr_timings(&chip->data_interface);
1721 	u8 addrs[5] = {};
1722 	struct nand_op_instr instrs[] = {
1723 		/*
1724 		 * The first instruction will be dropped if we're dealing
1725 		 * with a large page NAND and adjusted if we're dealing
1726 		 * with a small page NAND and the page offset is > 255.
1727 		 */
1728 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1729 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1730 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1731 		NAND_OP_DATA_OUT(len, buf, 0),
1732 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1733 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1734 	};
1735 	struct nand_operation op = NAND_OPERATION(instrs);
1736 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1737 	int ret;
1738 	u8 status;
1739 
1740 	if (naddrs < 0)
1741 		return naddrs;
1742 
1743 	addrs[naddrs++] = page;
1744 	addrs[naddrs++] = page >> 8;
1745 	if (chip->options & NAND_ROW_ADDR_3)
1746 		addrs[naddrs++] = page >> 16;
1747 
1748 	instrs[2].ctx.addr.naddrs = naddrs;
1749 
1750 	/* Drop the last two instructions if we're not programming the page. */
1751 	if (!prog) {
1752 		op.ninstrs -= 2;
1753 		/* Also drop the DATA_OUT instruction if empty. */
1754 		if (!len)
1755 			op.ninstrs--;
1756 	}
1757 
1758 	if (mtd->writesize <= 512) {
1759 		/*
1760 		 * Small pages need some more tweaking: we have to adjust the
1761 		 * first instruction depending on the page offset we're trying
1762 		 * to access.
1763 		 */
1764 		if (offset_in_page >= mtd->writesize)
1765 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1766 		else if (offset_in_page >= 256 &&
1767 			 !(chip->options & NAND_BUSWIDTH_16))
1768 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1769 	} else {
1770 		/*
1771 		 * Drop the first command if we're dealing with a large page
1772 		 * NAND.
1773 		 */
1774 		op.instrs++;
1775 		op.ninstrs--;
1776 	}
1777 
1778 	ret = nand_exec_op(chip, &op);
1779 	if (!prog || ret)
1780 		return ret;
1781 
1782 	ret = nand_status_op(chip, &status);
1783 	if (ret)
1784 		return ret;
1785 
1786 	return status;
1787 }
1788 
1789 /**
1790  * nand_prog_page_begin_op - starts a PROG PAGE operation
1791  * @chip: The NAND chip
1792  * @page: page to write
1793  * @offset_in_page: offset within the page
1794  * @buf: buffer containing the data to write to the page
1795  * @len: length of the buffer
1796  *
1797  * This function issues the first half of a PROG PAGE operation.
1798  * This function does not select/unselect the CS line.
1799  *
1800  * Returns 0 on success, a negative error code otherwise.
1801  */
1802 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1803 			    unsigned int offset_in_page, const void *buf,
1804 			    unsigned int len)
1805 {
1806 	struct mtd_info *mtd = nand_to_mtd(chip);
1807 
1808 	if (len && !buf)
1809 		return -EINVAL;
1810 
1811 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1812 		return -EINVAL;
1813 
1814 	if (chip->exec_op)
1815 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1816 					      len, false);
1817 
1818 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1819 
1820 	if (buf)
1821 		chip->write_buf(mtd, buf, len);
1822 
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1826 
1827 /**
1828  * nand_prog_page_end_op - ends a PROG PAGE operation
1829  * @chip: The NAND chip
1830  *
1831  * This function issues the second half of a PROG PAGE operation.
1832  * This function does not select/unselect the CS line.
1833  *
1834  * Returns 0 on success, a negative error code otherwise.
1835  */
1836 int nand_prog_page_end_op(struct nand_chip *chip)
1837 {
1838 	struct mtd_info *mtd = nand_to_mtd(chip);
1839 	int ret;
1840 	u8 status;
1841 
1842 	if (chip->exec_op) {
1843 		const struct nand_sdr_timings *sdr =
1844 			nand_get_sdr_timings(&chip->data_interface);
1845 		struct nand_op_instr instrs[] = {
1846 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1847 				    PSEC_TO_NSEC(sdr->tWB_max)),
1848 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1849 		};
1850 		struct nand_operation op = NAND_OPERATION(instrs);
1851 
1852 		ret = nand_exec_op(chip, &op);
1853 		if (ret)
1854 			return ret;
1855 
1856 		ret = nand_status_op(chip, &status);
1857 		if (ret)
1858 			return ret;
1859 	} else {
1860 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1861 		ret = chip->waitfunc(mtd, chip);
1862 		if (ret < 0)
1863 			return ret;
1864 
1865 		status = ret;
1866 	}
1867 
1868 	if (status & NAND_STATUS_FAIL)
1869 		return -EIO;
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1874 
1875 /**
1876  * nand_prog_page_op - Do a full PROG PAGE operation
1877  * @chip: The NAND chip
1878  * @page: page to write
1879  * @offset_in_page: offset within the page
1880  * @buf: buffer containing the data to write to the page
1881  * @len: length of the buffer
1882  *
1883  * This function issues a full PROG PAGE operation.
1884  * This function does not select/unselect the CS line.
1885  *
1886  * Returns 0 on success, a negative error code otherwise.
1887  */
1888 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1889 		      unsigned int offset_in_page, const void *buf,
1890 		      unsigned int len)
1891 {
1892 	struct mtd_info *mtd = nand_to_mtd(chip);
1893 	int status;
1894 
1895 	if (!len || !buf)
1896 		return -EINVAL;
1897 
1898 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1899 		return -EINVAL;
1900 
1901 	if (chip->exec_op) {
1902 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1903 						len, true);
1904 	} else {
1905 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1906 		chip->write_buf(mtd, buf, len);
1907 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1908 		status = chip->waitfunc(mtd, chip);
1909 	}
1910 
1911 	if (status & NAND_STATUS_FAIL)
1912 		return -EIO;
1913 
1914 	return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1917 
1918 /**
1919  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1920  * @chip: The NAND chip
1921  * @offset_in_page: offset within the page
1922  * @buf: buffer containing the data to send to the NAND
1923  * @len: length of the buffer
1924  * @force_8bit: force 8-bit bus access
1925  *
1926  * This function issues a CHANGE WRITE COLUMN operation.
1927  * This function does not select/unselect the CS line.
1928  *
1929  * Returns 0 on success, a negative error code otherwise.
1930  */
1931 int nand_change_write_column_op(struct nand_chip *chip,
1932 				unsigned int offset_in_page,
1933 				const void *buf, unsigned int len,
1934 				bool force_8bit)
1935 {
1936 	struct mtd_info *mtd = nand_to_mtd(chip);
1937 
1938 	if (len && !buf)
1939 		return -EINVAL;
1940 
1941 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1942 		return -EINVAL;
1943 
1944 	/* Small page NANDs do not support column change. */
1945 	if (mtd->writesize <= 512)
1946 		return -ENOTSUPP;
1947 
1948 	if (chip->exec_op) {
1949 		const struct nand_sdr_timings *sdr =
1950 			nand_get_sdr_timings(&chip->data_interface);
1951 		u8 addrs[2];
1952 		struct nand_op_instr instrs[] = {
1953 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1954 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1955 			NAND_OP_DATA_OUT(len, buf, 0),
1956 		};
1957 		struct nand_operation op = NAND_OPERATION(instrs);
1958 		int ret;
1959 
1960 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1961 		if (ret < 0)
1962 			return ret;
1963 
1964 		instrs[2].ctx.data.force_8bit = force_8bit;
1965 
1966 		/* Drop the DATA_OUT instruction if len is set to 0. */
1967 		if (!len)
1968 			op.ninstrs--;
1969 
1970 		return nand_exec_op(chip, &op);
1971 	}
1972 
1973 	chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1974 	if (len)
1975 		chip->write_buf(mtd, buf, len);
1976 
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1980 
1981 /**
1982  * nand_readid_op - Do a READID operation
1983  * @chip: The NAND chip
1984  * @addr: address cycle to pass after the READID command
1985  * @buf: buffer used to store the ID
1986  * @len: length of the buffer
1987  *
1988  * This function sends a READID command and reads back the ID returned by the
1989  * NAND.
1990  * This function does not select/unselect the CS line.
1991  *
1992  * Returns 0 on success, a negative error code otherwise.
1993  */
1994 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1995 		   unsigned int len)
1996 {
1997 	struct mtd_info *mtd = nand_to_mtd(chip);
1998 	unsigned int i;
1999 	u8 *id = buf;
2000 
2001 	if (len && !buf)
2002 		return -EINVAL;
2003 
2004 	if (chip->exec_op) {
2005 		const struct nand_sdr_timings *sdr =
2006 			nand_get_sdr_timings(&chip->data_interface);
2007 		struct nand_op_instr instrs[] = {
2008 			NAND_OP_CMD(NAND_CMD_READID, 0),
2009 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
2010 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
2011 		};
2012 		struct nand_operation op = NAND_OPERATION(instrs);
2013 
2014 		/* Drop the DATA_IN instruction if len is set to 0. */
2015 		if (!len)
2016 			op.ninstrs--;
2017 
2018 		return nand_exec_op(chip, &op);
2019 	}
2020 
2021 	chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
2022 
2023 	for (i = 0; i < len; i++)
2024 		id[i] = chip->read_byte(mtd);
2025 
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(nand_readid_op);
2029 
2030 /**
2031  * nand_status_op - Do a STATUS operation
2032  * @chip: The NAND chip
2033  * @status: out variable to store the NAND status
2034  *
2035  * This function sends a STATUS command and reads back the status returned by
2036  * the NAND.
2037  * This function does not select/unselect the CS line.
2038  *
2039  * Returns 0 on success, a negative error code otherwise.
2040  */
2041 int nand_status_op(struct nand_chip *chip, u8 *status)
2042 {
2043 	struct mtd_info *mtd = nand_to_mtd(chip);
2044 
2045 	if (chip->exec_op) {
2046 		const struct nand_sdr_timings *sdr =
2047 			nand_get_sdr_timings(&chip->data_interface);
2048 		struct nand_op_instr instrs[] = {
2049 			NAND_OP_CMD(NAND_CMD_STATUS,
2050 				    PSEC_TO_NSEC(sdr->tADL_min)),
2051 			NAND_OP_8BIT_DATA_IN(1, status, 0),
2052 		};
2053 		struct nand_operation op = NAND_OPERATION(instrs);
2054 
2055 		if (!status)
2056 			op.ninstrs--;
2057 
2058 		return nand_exec_op(chip, &op);
2059 	}
2060 
2061 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
2062 	if (status)
2063 		*status = chip->read_byte(mtd);
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL_GPL(nand_status_op);
2068 
2069 /**
2070  * nand_exit_status_op - Exit a STATUS operation
2071  * @chip: The NAND chip
2072  *
2073  * This function sends a READ0 command to cancel the effect of the STATUS
2074  * command to avoid reading only the status until a new read command is sent.
2075  *
2076  * This function does not select/unselect the CS line.
2077  *
2078  * Returns 0 on success, a negative error code otherwise.
2079  */
2080 int nand_exit_status_op(struct nand_chip *chip)
2081 {
2082 	struct mtd_info *mtd = nand_to_mtd(chip);
2083 
2084 	if (chip->exec_op) {
2085 		struct nand_op_instr instrs[] = {
2086 			NAND_OP_CMD(NAND_CMD_READ0, 0),
2087 		};
2088 		struct nand_operation op = NAND_OPERATION(instrs);
2089 
2090 		return nand_exec_op(chip, &op);
2091 	}
2092 
2093 	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
2094 
2095 	return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(nand_exit_status_op);
2098 
2099 /**
2100  * nand_erase_op - Do an erase operation
2101  * @chip: The NAND chip
2102  * @eraseblock: block to erase
2103  *
2104  * This function sends an ERASE command and waits for the NAND to be ready
2105  * before returning.
2106  * This function does not select/unselect the CS line.
2107  *
2108  * Returns 0 on success, a negative error code otherwise.
2109  */
2110 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
2111 {
2112 	struct mtd_info *mtd = nand_to_mtd(chip);
2113 	unsigned int page = eraseblock <<
2114 			    (chip->phys_erase_shift - chip->page_shift);
2115 	int ret;
2116 	u8 status;
2117 
2118 	if (chip->exec_op) {
2119 		const struct nand_sdr_timings *sdr =
2120 			nand_get_sdr_timings(&chip->data_interface);
2121 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
2122 		struct nand_op_instr instrs[] = {
2123 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
2124 			NAND_OP_ADDR(2, addrs, 0),
2125 			NAND_OP_CMD(NAND_CMD_ERASE2,
2126 				    PSEC_TO_MSEC(sdr->tWB_max)),
2127 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
2128 		};
2129 		struct nand_operation op = NAND_OPERATION(instrs);
2130 
2131 		if (chip->options & NAND_ROW_ADDR_3)
2132 			instrs[1].ctx.addr.naddrs++;
2133 
2134 		ret = nand_exec_op(chip, &op);
2135 		if (ret)
2136 			return ret;
2137 
2138 		ret = nand_status_op(chip, &status);
2139 		if (ret)
2140 			return ret;
2141 	} else {
2142 		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2143 		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2144 
2145 		ret = chip->waitfunc(mtd, chip);
2146 		if (ret < 0)
2147 			return ret;
2148 
2149 		status = ret;
2150 	}
2151 
2152 	if (status & NAND_STATUS_FAIL)
2153 		return -EIO;
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(nand_erase_op);
2158 
2159 /**
2160  * nand_set_features_op - Do a SET FEATURES operation
2161  * @chip: The NAND chip
2162  * @feature: feature id
2163  * @data: 4 bytes of data
2164  *
2165  * This function sends a SET FEATURES command and waits for the NAND to be
2166  * ready before returning.
2167  * This function does not select/unselect the CS line.
2168  *
2169  * Returns 0 on success, a negative error code otherwise.
2170  */
2171 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2172 				const void *data)
2173 {
2174 	struct mtd_info *mtd = nand_to_mtd(chip);
2175 	const u8 *params = data;
2176 	int i, ret;
2177 
2178 	if (chip->exec_op) {
2179 		const struct nand_sdr_timings *sdr =
2180 			nand_get_sdr_timings(&chip->data_interface);
2181 		struct nand_op_instr instrs[] = {
2182 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2183 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
2184 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2185 					      PSEC_TO_NSEC(sdr->tWB_max)),
2186 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
2187 		};
2188 		struct nand_operation op = NAND_OPERATION(instrs);
2189 
2190 		return nand_exec_op(chip, &op);
2191 	}
2192 
2193 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
2194 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2195 		chip->write_byte(mtd, params[i]);
2196 
2197 	ret = chip->waitfunc(mtd, chip);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	if (ret & NAND_STATUS_FAIL)
2202 		return -EIO;
2203 
2204 	return 0;
2205 }
2206 
2207 /**
2208  * nand_get_features_op - Do a GET FEATURES operation
2209  * @chip: The NAND chip
2210  * @feature: feature id
2211  * @data: 4 bytes of data
2212  *
2213  * This function sends a GET FEATURES command and waits for the NAND to be
2214  * ready before returning.
2215  * This function does not select/unselect the CS line.
2216  *
2217  * Returns 0 on success, a negative error code otherwise.
2218  */
2219 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2220 				void *data)
2221 {
2222 	struct mtd_info *mtd = nand_to_mtd(chip);
2223 	u8 *params = data;
2224 	int i;
2225 
2226 	if (chip->exec_op) {
2227 		const struct nand_sdr_timings *sdr =
2228 			nand_get_sdr_timings(&chip->data_interface);
2229 		struct nand_op_instr instrs[] = {
2230 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2231 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
2232 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
2233 					 PSEC_TO_NSEC(sdr->tRR_min)),
2234 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2235 					     data, 0),
2236 		};
2237 		struct nand_operation op = NAND_OPERATION(instrs);
2238 
2239 		return nand_exec_op(chip, &op);
2240 	}
2241 
2242 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
2243 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2244 		params[i] = chip->read_byte(mtd);
2245 
2246 	return 0;
2247 }
2248 
2249 /**
2250  * nand_reset_op - Do a reset operation
2251  * @chip: The NAND chip
2252  *
2253  * This function sends a RESET command and waits for the NAND to be ready
2254  * before returning.
2255  * This function does not select/unselect the CS line.
2256  *
2257  * Returns 0 on success, a negative error code otherwise.
2258  */
2259 int nand_reset_op(struct nand_chip *chip)
2260 {
2261 	struct mtd_info *mtd = nand_to_mtd(chip);
2262 
2263 	if (chip->exec_op) {
2264 		const struct nand_sdr_timings *sdr =
2265 			nand_get_sdr_timings(&chip->data_interface);
2266 		struct nand_op_instr instrs[] = {
2267 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
2268 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
2269 		};
2270 		struct nand_operation op = NAND_OPERATION(instrs);
2271 
2272 		return nand_exec_op(chip, &op);
2273 	}
2274 
2275 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2276 
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL_GPL(nand_reset_op);
2280 
2281 /**
2282  * nand_read_data_op - Read data from the NAND
2283  * @chip: The NAND chip
2284  * @buf: buffer used to store the data
2285  * @len: length of the buffer
2286  * @force_8bit: force 8-bit bus access
2287  *
2288  * This function does a raw data read on the bus. Usually used after launching
2289  * another NAND operation like nand_read_page_op().
2290  * This function does not select/unselect the CS line.
2291  *
2292  * Returns 0 on success, a negative error code otherwise.
2293  */
2294 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2295 		      bool force_8bit)
2296 {
2297 	struct mtd_info *mtd = nand_to_mtd(chip);
2298 
2299 	if (!len || !buf)
2300 		return -EINVAL;
2301 
2302 	if (chip->exec_op) {
2303 		struct nand_op_instr instrs[] = {
2304 			NAND_OP_DATA_IN(len, buf, 0),
2305 		};
2306 		struct nand_operation op = NAND_OPERATION(instrs);
2307 
2308 		instrs[0].ctx.data.force_8bit = force_8bit;
2309 
2310 		return nand_exec_op(chip, &op);
2311 	}
2312 
2313 	if (force_8bit) {
2314 		u8 *p = buf;
2315 		unsigned int i;
2316 
2317 		for (i = 0; i < len; i++)
2318 			p[i] = chip->read_byte(mtd);
2319 	} else {
2320 		chip->read_buf(mtd, buf, len);
2321 	}
2322 
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL_GPL(nand_read_data_op);
2326 
2327 /**
2328  * nand_write_data_op - Write data from the NAND
2329  * @chip: The NAND chip
2330  * @buf: buffer containing the data to send on the bus
2331  * @len: length of the buffer
2332  * @force_8bit: force 8-bit bus access
2333  *
2334  * This function does a raw data write on the bus. Usually used after launching
2335  * another NAND operation like nand_write_page_begin_op().
2336  * This function does not select/unselect the CS line.
2337  *
2338  * Returns 0 on success, a negative error code otherwise.
2339  */
2340 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2341 		       unsigned int len, bool force_8bit)
2342 {
2343 	struct mtd_info *mtd = nand_to_mtd(chip);
2344 
2345 	if (!len || !buf)
2346 		return -EINVAL;
2347 
2348 	if (chip->exec_op) {
2349 		struct nand_op_instr instrs[] = {
2350 			NAND_OP_DATA_OUT(len, buf, 0),
2351 		};
2352 		struct nand_operation op = NAND_OPERATION(instrs);
2353 
2354 		instrs[0].ctx.data.force_8bit = force_8bit;
2355 
2356 		return nand_exec_op(chip, &op);
2357 	}
2358 
2359 	if (force_8bit) {
2360 		const u8 *p = buf;
2361 		unsigned int i;
2362 
2363 		for (i = 0; i < len; i++)
2364 			chip->write_byte(mtd, p[i]);
2365 	} else {
2366 		chip->write_buf(mtd, buf, len);
2367 	}
2368 
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(nand_write_data_op);
2372 
2373 /**
2374  * struct nand_op_parser_ctx - Context used by the parser
2375  * @instrs: array of all the instructions that must be addressed
2376  * @ninstrs: length of the @instrs array
2377  * @subop: Sub-operation to be passed to the NAND controller
2378  *
2379  * This structure is used by the core to split NAND operations into
2380  * sub-operations that can be handled by the NAND controller.
2381  */
2382 struct nand_op_parser_ctx {
2383 	const struct nand_op_instr *instrs;
2384 	unsigned int ninstrs;
2385 	struct nand_subop subop;
2386 };
2387 
2388 /**
2389  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2390  * @pat: the parser pattern element that matches @instr
2391  * @instr: pointer to the instruction to check
2392  * @start_offset: this is an in/out parameter. If @instr has already been
2393  *		  split, then @start_offset is the offset from which to start
2394  *		  (either an address cycle or an offset in the data buffer).
2395  *		  Conversely, if the function returns true (ie. instr must be
2396  *		  split), this parameter is updated to point to the first
2397  *		  data/address cycle that has not been taken care of.
2398  *
2399  * Some NAND controllers are limited and cannot send X address cycles with a
2400  * unique operation, or cannot read/write more than Y bytes at the same time.
2401  * In this case, split the instruction that does not fit in a single
2402  * controller-operation into two or more chunks.
2403  *
2404  * Returns true if the instruction must be split, false otherwise.
2405  * The @start_offset parameter is also updated to the offset at which the next
2406  * bundle of instruction must start (if an address or a data instruction).
2407  */
2408 static bool
2409 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2410 				const struct nand_op_instr *instr,
2411 				unsigned int *start_offset)
2412 {
2413 	switch (pat->type) {
2414 	case NAND_OP_ADDR_INSTR:
2415 		if (!pat->ctx.addr.maxcycles)
2416 			break;
2417 
2418 		if (instr->ctx.addr.naddrs - *start_offset >
2419 		    pat->ctx.addr.maxcycles) {
2420 			*start_offset += pat->ctx.addr.maxcycles;
2421 			return true;
2422 		}
2423 		break;
2424 
2425 	case NAND_OP_DATA_IN_INSTR:
2426 	case NAND_OP_DATA_OUT_INSTR:
2427 		if (!pat->ctx.data.maxlen)
2428 			break;
2429 
2430 		if (instr->ctx.data.len - *start_offset >
2431 		    pat->ctx.data.maxlen) {
2432 			*start_offset += pat->ctx.data.maxlen;
2433 			return true;
2434 		}
2435 		break;
2436 
2437 	default:
2438 		break;
2439 	}
2440 
2441 	return false;
2442 }
2443 
2444 /**
2445  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2446  *			      remaining in the parser context
2447  * @pat: the pattern to test
2448  * @ctx: the parser context structure to match with the pattern @pat
2449  *
2450  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2451  * Returns true if this is the case, false ortherwise. When true is returned,
2452  * @ctx->subop is updated with the set of instructions to be passed to the
2453  * controller driver.
2454  */
2455 static bool
2456 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2457 			 struct nand_op_parser_ctx *ctx)
2458 {
2459 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2460 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2461 	const struct nand_op_instr *instr = ctx->subop.instrs;
2462 	unsigned int i, ninstrs;
2463 
2464 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2465 		/*
2466 		 * The pattern instruction does not match the operation
2467 		 * instruction. If the instruction is marked optional in the
2468 		 * pattern definition, we skip the pattern element and continue
2469 		 * to the next one. If the element is mandatory, there's no
2470 		 * match and we can return false directly.
2471 		 */
2472 		if (instr->type != pat->elems[i].type) {
2473 			if (!pat->elems[i].optional)
2474 				return false;
2475 
2476 			continue;
2477 		}
2478 
2479 		/*
2480 		 * Now check the pattern element constraints. If the pattern is
2481 		 * not able to handle the whole instruction in a single step,
2482 		 * we have to split it.
2483 		 * The last_instr_end_off value comes back updated to point to
2484 		 * the position where we have to split the instruction (the
2485 		 * start of the next subop chunk).
2486 		 */
2487 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2488 						    &instr_offset)) {
2489 			ninstrs++;
2490 			i++;
2491 			break;
2492 		}
2493 
2494 		instr++;
2495 		ninstrs++;
2496 		instr_offset = 0;
2497 	}
2498 
2499 	/*
2500 	 * This can happen if all instructions of a pattern are optional.
2501 	 * Still, if there's not at least one instruction handled by this
2502 	 * pattern, this is not a match, and we should try the next one (if
2503 	 * any).
2504 	 */
2505 	if (!ninstrs)
2506 		return false;
2507 
2508 	/*
2509 	 * We had a match on the pattern head, but the pattern may be longer
2510 	 * than the instructions we're asked to execute. We need to make sure
2511 	 * there's no mandatory elements in the pattern tail.
2512 	 */
2513 	for (; i < pat->nelems; i++) {
2514 		if (!pat->elems[i].optional)
2515 			return false;
2516 	}
2517 
2518 	/*
2519 	 * We have a match: update the subop structure accordingly and return
2520 	 * true.
2521 	 */
2522 	ctx->subop.ninstrs = ninstrs;
2523 	ctx->subop.last_instr_end_off = instr_offset;
2524 
2525 	return true;
2526 }
2527 
2528 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2529 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2530 {
2531 	const struct nand_op_instr *instr;
2532 	char *prefix = "      ";
2533 	unsigned int i;
2534 
2535 	pr_debug("executing subop:\n");
2536 
2537 	for (i = 0; i < ctx->ninstrs; i++) {
2538 		instr = &ctx->instrs[i];
2539 
2540 		if (instr == &ctx->subop.instrs[0])
2541 			prefix = "    ->";
2542 
2543 		switch (instr->type) {
2544 		case NAND_OP_CMD_INSTR:
2545 			pr_debug("%sCMD      [0x%02x]\n", prefix,
2546 				 instr->ctx.cmd.opcode);
2547 			break;
2548 		case NAND_OP_ADDR_INSTR:
2549 			pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
2550 				 instr->ctx.addr.naddrs,
2551 				 instr->ctx.addr.naddrs < 64 ?
2552 				 instr->ctx.addr.naddrs : 64,
2553 				 instr->ctx.addr.addrs);
2554 			break;
2555 		case NAND_OP_DATA_IN_INSTR:
2556 			pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
2557 				 instr->ctx.data.len,
2558 				 instr->ctx.data.force_8bit ?
2559 				 ", force 8-bit" : "");
2560 			break;
2561 		case NAND_OP_DATA_OUT_INSTR:
2562 			pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2563 				 instr->ctx.data.len,
2564 				 instr->ctx.data.force_8bit ?
2565 				 ", force 8-bit" : "");
2566 			break;
2567 		case NAND_OP_WAITRDY_INSTR:
2568 			pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
2569 				 instr->ctx.waitrdy.timeout_ms);
2570 			break;
2571 		}
2572 
2573 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2574 			prefix = "      ";
2575 	}
2576 }
2577 #else
2578 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2579 {
2580 	/* NOP */
2581 }
2582 #endif
2583 
2584 /**
2585  * nand_op_parser_exec_op - exec_op parser
2586  * @chip: the NAND chip
2587  * @parser: patterns description provided by the controller driver
2588  * @op: the NAND operation to address
2589  * @check_only: when true, the function only checks if @op can be handled but
2590  *		does not execute the operation
2591  *
2592  * Helper function designed to ease integration of NAND controller drivers that
2593  * only support a limited set of instruction sequences. The supported sequences
2594  * are described in @parser, and the framework takes care of splitting @op into
2595  * multiple sub-operations (if required) and pass them back to the ->exec()
2596  * callback of the matching pattern if @check_only is set to false.
2597  *
2598  * NAND controller drivers should call this function from their own ->exec_op()
2599  * implementation.
2600  *
2601  * Returns 0 on success, a negative error code otherwise. A failure can be
2602  * caused by an unsupported operation (none of the supported patterns is able
2603  * to handle the requested operation), or an error returned by one of the
2604  * matching pattern->exec() hook.
2605  */
2606 int nand_op_parser_exec_op(struct nand_chip *chip,
2607 			   const struct nand_op_parser *parser,
2608 			   const struct nand_operation *op, bool check_only)
2609 {
2610 	struct nand_op_parser_ctx ctx = {
2611 		.subop.instrs = op->instrs,
2612 		.instrs = op->instrs,
2613 		.ninstrs = op->ninstrs,
2614 	};
2615 	unsigned int i;
2616 
2617 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2618 		int ret;
2619 
2620 		for (i = 0; i < parser->npatterns; i++) {
2621 			const struct nand_op_parser_pattern *pattern;
2622 
2623 			pattern = &parser->patterns[i];
2624 			if (!nand_op_parser_match_pat(pattern, &ctx))
2625 				continue;
2626 
2627 			nand_op_parser_trace(&ctx);
2628 
2629 			if (check_only)
2630 				break;
2631 
2632 			ret = pattern->exec(chip, &ctx.subop);
2633 			if (ret)
2634 				return ret;
2635 
2636 			break;
2637 		}
2638 
2639 		if (i == parser->npatterns) {
2640 			pr_debug("->exec_op() parser: pattern not found!\n");
2641 			return -ENOTSUPP;
2642 		}
2643 
2644 		/*
2645 		 * Update the context structure by pointing to the start of the
2646 		 * next subop.
2647 		 */
2648 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2649 		if (ctx.subop.last_instr_end_off)
2650 			ctx.subop.instrs -= 1;
2651 
2652 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2653 	}
2654 
2655 	return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2658 
2659 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2660 {
2661 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2662 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2663 }
2664 
2665 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2666 				      unsigned int instr_idx)
2667 {
2668 	return subop && instr_idx < subop->ninstrs;
2669 }
2670 
2671 static int nand_subop_get_start_off(const struct nand_subop *subop,
2672 				    unsigned int instr_idx)
2673 {
2674 	if (instr_idx)
2675 		return 0;
2676 
2677 	return subop->first_instr_start_off;
2678 }
2679 
2680 /**
2681  * nand_subop_get_addr_start_off - Get the start offset in an address array
2682  * @subop: The entire sub-operation
2683  * @instr_idx: Index of the instruction inside the sub-operation
2684  *
2685  * During driver development, one could be tempted to directly use the
2686  * ->addr.addrs field of address instructions. This is wrong as address
2687  * instructions might be split.
2688  *
2689  * Given an address instruction, returns the offset of the first cycle to issue.
2690  */
2691 int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2692 				  unsigned int instr_idx)
2693 {
2694 	if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2695 	    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2696 		return -EINVAL;
2697 
2698 	return nand_subop_get_start_off(subop, instr_idx);
2699 }
2700 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2701 
2702 /**
2703  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2704  * @subop: The entire sub-operation
2705  * @instr_idx: Index of the instruction inside the sub-operation
2706  *
2707  * During driver development, one could be tempted to directly use the
2708  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2709  * might be split.
2710  *
2711  * Given an address instruction, returns the number of address cycle to issue.
2712  */
2713 int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2714 				unsigned int instr_idx)
2715 {
2716 	int start_off, end_off;
2717 
2718 	if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2719 	    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2720 		return -EINVAL;
2721 
2722 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2723 
2724 	if (instr_idx == subop->ninstrs - 1 &&
2725 	    subop->last_instr_end_off)
2726 		end_off = subop->last_instr_end_off;
2727 	else
2728 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2729 
2730 	return end_off - start_off;
2731 }
2732 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2733 
2734 /**
2735  * nand_subop_get_data_start_off - Get the start offset in a data array
2736  * @subop: The entire sub-operation
2737  * @instr_idx: Index of the instruction inside the sub-operation
2738  *
2739  * During driver development, one could be tempted to directly use the
2740  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2741  * instructions might be split.
2742  *
2743  * Given a data instruction, returns the offset to start from.
2744  */
2745 int nand_subop_get_data_start_off(const struct nand_subop *subop,
2746 				  unsigned int instr_idx)
2747 {
2748 	if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2749 	    !nand_instr_is_data(&subop->instrs[instr_idx]))
2750 		return -EINVAL;
2751 
2752 	return nand_subop_get_start_off(subop, instr_idx);
2753 }
2754 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2755 
2756 /**
2757  * nand_subop_get_data_len - Get the number of bytes to retrieve
2758  * @subop: The entire sub-operation
2759  * @instr_idx: Index of the instruction inside the sub-operation
2760  *
2761  * During driver development, one could be tempted to directly use the
2762  * ->data->len field of a data instruction. This is wrong as data instructions
2763  * might be split.
2764  *
2765  * Returns the length of the chunk of data to send/receive.
2766  */
2767 int nand_subop_get_data_len(const struct nand_subop *subop,
2768 			    unsigned int instr_idx)
2769 {
2770 	int start_off = 0, end_off;
2771 
2772 	if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2773 	    !nand_instr_is_data(&subop->instrs[instr_idx]))
2774 		return -EINVAL;
2775 
2776 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2777 
2778 	if (instr_idx == subop->ninstrs - 1 &&
2779 	    subop->last_instr_end_off)
2780 		end_off = subop->last_instr_end_off;
2781 	else
2782 		end_off = subop->instrs[instr_idx].ctx.data.len;
2783 
2784 	return end_off - start_off;
2785 }
2786 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2787 
2788 /**
2789  * nand_reset - Reset and initialize a NAND device
2790  * @chip: The NAND chip
2791  * @chipnr: Internal die id
2792  *
2793  * Save the timings data structure, then apply SDR timings mode 0 (see
2794  * nand_reset_data_interface for details), do the reset operation, and
2795  * apply back the previous timings.
2796  *
2797  * Returns 0 on success, a negative error code otherwise.
2798  */
2799 int nand_reset(struct nand_chip *chip, int chipnr)
2800 {
2801 	struct mtd_info *mtd = nand_to_mtd(chip);
2802 	struct nand_data_interface saved_data_intf = chip->data_interface;
2803 	int ret;
2804 
2805 	ret = nand_reset_data_interface(chip, chipnr);
2806 	if (ret)
2807 		return ret;
2808 
2809 	/*
2810 	 * The CS line has to be released before we can apply the new NAND
2811 	 * interface settings, hence this weird ->select_chip() dance.
2812 	 */
2813 	chip->select_chip(mtd, chipnr);
2814 	ret = nand_reset_op(chip);
2815 	chip->select_chip(mtd, -1);
2816 	if (ret)
2817 		return ret;
2818 
2819 	/*
2820 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2821 	 * controller in timings mode 0. If the default mode for this chip is
2822 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2823 	 * nand_setup_data_interface() uses ->set/get_features() which would
2824 	 * fail anyway as the parameter page is not available yet.
2825 	 */
2826 	if (!chip->onfi_timing_mode_default)
2827 		return 0;
2828 
2829 	chip->data_interface = saved_data_intf;
2830 	ret = nand_setup_data_interface(chip, chipnr);
2831 	if (ret)
2832 		return ret;
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(nand_reset);
2837 
2838 /**
2839  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2840  * @buf: buffer to test
2841  * @len: buffer length
2842  * @bitflips_threshold: maximum number of bitflips
2843  *
2844  * Check if a buffer contains only 0xff, which means the underlying region
2845  * has been erased and is ready to be programmed.
2846  * The bitflips_threshold specify the maximum number of bitflips before
2847  * considering the region is not erased.
2848  * Note: The logic of this function has been extracted from the memweight
2849  * implementation, except that nand_check_erased_buf function exit before
2850  * testing the whole buffer if the number of bitflips exceed the
2851  * bitflips_threshold value.
2852  *
2853  * Returns a positive number of bitflips less than or equal to
2854  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2855  * threshold.
2856  */
2857 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2858 {
2859 	const unsigned char *bitmap = buf;
2860 	int bitflips = 0;
2861 	int weight;
2862 
2863 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2864 	     len--, bitmap++) {
2865 		weight = hweight8(*bitmap);
2866 		bitflips += BITS_PER_BYTE - weight;
2867 		if (unlikely(bitflips > bitflips_threshold))
2868 			return -EBADMSG;
2869 	}
2870 
2871 	for (; len >= sizeof(long);
2872 	     len -= sizeof(long), bitmap += sizeof(long)) {
2873 		unsigned long d = *((unsigned long *)bitmap);
2874 		if (d == ~0UL)
2875 			continue;
2876 		weight = hweight_long(d);
2877 		bitflips += BITS_PER_LONG - weight;
2878 		if (unlikely(bitflips > bitflips_threshold))
2879 			return -EBADMSG;
2880 	}
2881 
2882 	for (; len > 0; len--, bitmap++) {
2883 		weight = hweight8(*bitmap);
2884 		bitflips += BITS_PER_BYTE - weight;
2885 		if (unlikely(bitflips > bitflips_threshold))
2886 			return -EBADMSG;
2887 	}
2888 
2889 	return bitflips;
2890 }
2891 
2892 /**
2893  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2894  *				 0xff data
2895  * @data: data buffer to test
2896  * @datalen: data length
2897  * @ecc: ECC buffer
2898  * @ecclen: ECC length
2899  * @extraoob: extra OOB buffer
2900  * @extraooblen: extra OOB length
2901  * @bitflips_threshold: maximum number of bitflips
2902  *
2903  * Check if a data buffer and its associated ECC and OOB data contains only
2904  * 0xff pattern, which means the underlying region has been erased and is
2905  * ready to be programmed.
2906  * The bitflips_threshold specify the maximum number of bitflips before
2907  * considering the region as not erased.
2908  *
2909  * Note:
2910  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2911  *    different from the NAND page size. When fixing bitflips, ECC engines will
2912  *    report the number of errors per chunk, and the NAND core infrastructure
2913  *    expect you to return the maximum number of bitflips for the whole page.
2914  *    This is why you should always use this function on a single chunk and
2915  *    not on the whole page. After checking each chunk you should update your
2916  *    max_bitflips value accordingly.
2917  * 2/ When checking for bitflips in erased pages you should not only check
2918  *    the payload data but also their associated ECC data, because a user might
2919  *    have programmed almost all bits to 1 but a few. In this case, we
2920  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2921  *    this case.
2922  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2923  *    data are protected by the ECC engine.
2924  *    It could also be used if you support subpages and want to attach some
2925  *    extra OOB data to an ECC chunk.
2926  *
2927  * Returns a positive number of bitflips less than or equal to
2928  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2929  * threshold. In case of success, the passed buffers are filled with 0xff.
2930  */
2931 int nand_check_erased_ecc_chunk(void *data, int datalen,
2932 				void *ecc, int ecclen,
2933 				void *extraoob, int extraooblen,
2934 				int bitflips_threshold)
2935 {
2936 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2937 
2938 	data_bitflips = nand_check_erased_buf(data, datalen,
2939 					      bitflips_threshold);
2940 	if (data_bitflips < 0)
2941 		return data_bitflips;
2942 
2943 	bitflips_threshold -= data_bitflips;
2944 
2945 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2946 	if (ecc_bitflips < 0)
2947 		return ecc_bitflips;
2948 
2949 	bitflips_threshold -= ecc_bitflips;
2950 
2951 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2952 						  bitflips_threshold);
2953 	if (extraoob_bitflips < 0)
2954 		return extraoob_bitflips;
2955 
2956 	if (data_bitflips)
2957 		memset(data, 0xff, datalen);
2958 
2959 	if (ecc_bitflips)
2960 		memset(ecc, 0xff, ecclen);
2961 
2962 	if (extraoob_bitflips)
2963 		memset(extraoob, 0xff, extraooblen);
2964 
2965 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2966 }
2967 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2968 
2969 /**
2970  * nand_read_page_raw - [INTERN] read raw page data without ecc
2971  * @mtd: mtd info structure
2972  * @chip: nand chip info structure
2973  * @buf: buffer to store read data
2974  * @oob_required: caller requires OOB data read to chip->oob_poi
2975  * @page: page number to read
2976  *
2977  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2978  */
2979 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2980 		       uint8_t *buf, int oob_required, int page)
2981 {
2982 	int ret;
2983 
2984 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2985 	if (ret)
2986 		return ret;
2987 
2988 	if (oob_required) {
2989 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2990 					false);
2991 		if (ret)
2992 			return ret;
2993 	}
2994 
2995 	return 0;
2996 }
2997 EXPORT_SYMBOL(nand_read_page_raw);
2998 
2999 /**
3000  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
3001  * @mtd: mtd info structure
3002  * @chip: nand chip info structure
3003  * @buf: buffer to store read data
3004  * @oob_required: caller requires OOB data read to chip->oob_poi
3005  * @page: page number to read
3006  *
3007  * We need a special oob layout and handling even when OOB isn't used.
3008  */
3009 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
3010 				       struct nand_chip *chip, uint8_t *buf,
3011 				       int oob_required, int page)
3012 {
3013 	int eccsize = chip->ecc.size;
3014 	int eccbytes = chip->ecc.bytes;
3015 	uint8_t *oob = chip->oob_poi;
3016 	int steps, size, ret;
3017 
3018 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3019 	if (ret)
3020 		return ret;
3021 
3022 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3023 		ret = nand_read_data_op(chip, buf, eccsize, false);
3024 		if (ret)
3025 			return ret;
3026 
3027 		buf += eccsize;
3028 
3029 		if (chip->ecc.prepad) {
3030 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3031 						false);
3032 			if (ret)
3033 				return ret;
3034 
3035 			oob += chip->ecc.prepad;
3036 		}
3037 
3038 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3039 		if (ret)
3040 			return ret;
3041 
3042 		oob += eccbytes;
3043 
3044 		if (chip->ecc.postpad) {
3045 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3046 						false);
3047 			if (ret)
3048 				return ret;
3049 
3050 			oob += chip->ecc.postpad;
3051 		}
3052 	}
3053 
3054 	size = mtd->oobsize - (oob - chip->oob_poi);
3055 	if (size) {
3056 		ret = nand_read_data_op(chip, oob, size, false);
3057 		if (ret)
3058 			return ret;
3059 	}
3060 
3061 	return 0;
3062 }
3063 
3064 /**
3065  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3066  * @mtd: mtd info structure
3067  * @chip: nand chip info structure
3068  * @buf: buffer to store read data
3069  * @oob_required: caller requires OOB data read to chip->oob_poi
3070  * @page: page number to read
3071  */
3072 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
3073 				uint8_t *buf, int oob_required, int page)
3074 {
3075 	int i, eccsize = chip->ecc.size, ret;
3076 	int eccbytes = chip->ecc.bytes;
3077 	int eccsteps = chip->ecc.steps;
3078 	uint8_t *p = buf;
3079 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3080 	uint8_t *ecc_code = chip->ecc.code_buf;
3081 	unsigned int max_bitflips = 0;
3082 
3083 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
3084 
3085 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3086 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3087 
3088 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3089 					 chip->ecc.total);
3090 	if (ret)
3091 		return ret;
3092 
3093 	eccsteps = chip->ecc.steps;
3094 	p = buf;
3095 
3096 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3097 		int stat;
3098 
3099 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3100 		if (stat < 0) {
3101 			mtd->ecc_stats.failed++;
3102 		} else {
3103 			mtd->ecc_stats.corrected += stat;
3104 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3105 		}
3106 	}
3107 	return max_bitflips;
3108 }
3109 
3110 /**
3111  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3112  * @mtd: mtd info structure
3113  * @chip: nand chip info structure
3114  * @data_offs: offset of requested data within the page
3115  * @readlen: data length
3116  * @bufpoi: buffer to store read data
3117  * @page: page number to read
3118  */
3119 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
3120 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
3121 			int page)
3122 {
3123 	int start_step, end_step, num_steps, ret;
3124 	uint8_t *p;
3125 	int data_col_addr, i, gaps = 0;
3126 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3127 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3128 	int index, section = 0;
3129 	unsigned int max_bitflips = 0;
3130 	struct mtd_oob_region oobregion = { };
3131 
3132 	/* Column address within the page aligned to ECC size (256bytes) */
3133 	start_step = data_offs / chip->ecc.size;
3134 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3135 	num_steps = end_step - start_step + 1;
3136 	index = start_step * chip->ecc.bytes;
3137 
3138 	/* Data size aligned to ECC ecc.size */
3139 	datafrag_len = num_steps * chip->ecc.size;
3140 	eccfrag_len = num_steps * chip->ecc.bytes;
3141 
3142 	data_col_addr = start_step * chip->ecc.size;
3143 	/* If we read not a page aligned data */
3144 	p = bufpoi + data_col_addr;
3145 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3146 	if (ret)
3147 		return ret;
3148 
3149 	/* Calculate ECC */
3150 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3151 		chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
3152 
3153 	/*
3154 	 * The performance is faster if we position offsets according to
3155 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3156 	 */
3157 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3158 	if (ret)
3159 		return ret;
3160 
3161 	if (oobregion.length < eccfrag_len)
3162 		gaps = 1;
3163 
3164 	if (gaps) {
3165 		ret = nand_change_read_column_op(chip, mtd->writesize,
3166 						 chip->oob_poi, mtd->oobsize,
3167 						 false);
3168 		if (ret)
3169 			return ret;
3170 	} else {
3171 		/*
3172 		 * Send the command to read the particular ECC bytes take care
3173 		 * about buswidth alignment in read_buf.
3174 		 */
3175 		aligned_pos = oobregion.offset & ~(busw - 1);
3176 		aligned_len = eccfrag_len;
3177 		if (oobregion.offset & (busw - 1))
3178 			aligned_len++;
3179 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3180 		    (busw - 1))
3181 			aligned_len++;
3182 
3183 		ret = nand_change_read_column_op(chip,
3184 						 mtd->writesize + aligned_pos,
3185 						 &chip->oob_poi[aligned_pos],
3186 						 aligned_len, false);
3187 		if (ret)
3188 			return ret;
3189 	}
3190 
3191 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3192 					 chip->oob_poi, index, eccfrag_len);
3193 	if (ret)
3194 		return ret;
3195 
3196 	p = bufpoi + data_col_addr;
3197 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3198 		int stat;
3199 
3200 		stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
3201 					 &chip->ecc.calc_buf[i]);
3202 		if (stat == -EBADMSG &&
3203 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3204 			/* check for empty pages with bitflips */
3205 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3206 						&chip->ecc.code_buf[i],
3207 						chip->ecc.bytes,
3208 						NULL, 0,
3209 						chip->ecc.strength);
3210 		}
3211 
3212 		if (stat < 0) {
3213 			mtd->ecc_stats.failed++;
3214 		} else {
3215 			mtd->ecc_stats.corrected += stat;
3216 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3217 		}
3218 	}
3219 	return max_bitflips;
3220 }
3221 
3222 /**
3223  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3224  * @mtd: mtd info structure
3225  * @chip: nand chip info structure
3226  * @buf: buffer to store read data
3227  * @oob_required: caller requires OOB data read to chip->oob_poi
3228  * @page: page number to read
3229  *
3230  * Not for syndrome calculating ECC controllers which need a special oob layout.
3231  */
3232 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
3233 				uint8_t *buf, int oob_required, int page)
3234 {
3235 	int i, eccsize = chip->ecc.size, ret;
3236 	int eccbytes = chip->ecc.bytes;
3237 	int eccsteps = chip->ecc.steps;
3238 	uint8_t *p = buf;
3239 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3240 	uint8_t *ecc_code = chip->ecc.code_buf;
3241 	unsigned int max_bitflips = 0;
3242 
3243 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3244 	if (ret)
3245 		return ret;
3246 
3247 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3248 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
3249 
3250 		ret = nand_read_data_op(chip, p, eccsize, false);
3251 		if (ret)
3252 			return ret;
3253 
3254 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3255 	}
3256 
3257 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3258 	if (ret)
3259 		return ret;
3260 
3261 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3262 					 chip->ecc.total);
3263 	if (ret)
3264 		return ret;
3265 
3266 	eccsteps = chip->ecc.steps;
3267 	p = buf;
3268 
3269 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3270 		int stat;
3271 
3272 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3273 		if (stat == -EBADMSG &&
3274 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3275 			/* check for empty pages with bitflips */
3276 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3277 						&ecc_code[i], eccbytes,
3278 						NULL, 0,
3279 						chip->ecc.strength);
3280 		}
3281 
3282 		if (stat < 0) {
3283 			mtd->ecc_stats.failed++;
3284 		} else {
3285 			mtd->ecc_stats.corrected += stat;
3286 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3287 		}
3288 	}
3289 	return max_bitflips;
3290 }
3291 
3292 /**
3293  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
3294  * @mtd: mtd info structure
3295  * @chip: nand chip info structure
3296  * @buf: buffer to store read data
3297  * @oob_required: caller requires OOB data read to chip->oob_poi
3298  * @page: page number to read
3299  *
3300  * Hardware ECC for large page chips, require OOB to be read first. For this
3301  * ECC mode, the write_page method is re-used from ECC_HW. These methods
3302  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
3303  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
3304  * the data area, by overwriting the NAND manufacturer bad block markings.
3305  */
3306 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
3307 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
3308 {
3309 	int i, eccsize = chip->ecc.size, ret;
3310 	int eccbytes = chip->ecc.bytes;
3311 	int eccsteps = chip->ecc.steps;
3312 	uint8_t *p = buf;
3313 	uint8_t *ecc_code = chip->ecc.code_buf;
3314 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3315 	unsigned int max_bitflips = 0;
3316 
3317 	/* Read the OOB area first */
3318 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3319 	if (ret)
3320 		return ret;
3321 
3322 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3323 	if (ret)
3324 		return ret;
3325 
3326 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3327 					 chip->ecc.total);
3328 	if (ret)
3329 		return ret;
3330 
3331 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3332 		int stat;
3333 
3334 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
3335 
3336 		ret = nand_read_data_op(chip, p, eccsize, false);
3337 		if (ret)
3338 			return ret;
3339 
3340 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3341 
3342 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3343 		if (stat == -EBADMSG &&
3344 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3345 			/* check for empty pages with bitflips */
3346 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3347 						&ecc_code[i], eccbytes,
3348 						NULL, 0,
3349 						chip->ecc.strength);
3350 		}
3351 
3352 		if (stat < 0) {
3353 			mtd->ecc_stats.failed++;
3354 		} else {
3355 			mtd->ecc_stats.corrected += stat;
3356 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3357 		}
3358 	}
3359 	return max_bitflips;
3360 }
3361 
3362 /**
3363  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3364  * @mtd: mtd info structure
3365  * @chip: nand chip info structure
3366  * @buf: buffer to store read data
3367  * @oob_required: caller requires OOB data read to chip->oob_poi
3368  * @page: page number to read
3369  *
3370  * The hw generator calculates the error syndrome automatically. Therefore we
3371  * need a special oob layout and handling.
3372  */
3373 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3374 				   uint8_t *buf, int oob_required, int page)
3375 {
3376 	int ret, i, eccsize = chip->ecc.size;
3377 	int eccbytes = chip->ecc.bytes;
3378 	int eccsteps = chip->ecc.steps;
3379 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3380 	uint8_t *p = buf;
3381 	uint8_t *oob = chip->oob_poi;
3382 	unsigned int max_bitflips = 0;
3383 
3384 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3385 	if (ret)
3386 		return ret;
3387 
3388 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3389 		int stat;
3390 
3391 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
3392 
3393 		ret = nand_read_data_op(chip, p, eccsize, false);
3394 		if (ret)
3395 			return ret;
3396 
3397 		if (chip->ecc.prepad) {
3398 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3399 						false);
3400 			if (ret)
3401 				return ret;
3402 
3403 			oob += chip->ecc.prepad;
3404 		}
3405 
3406 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
3407 
3408 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3409 		if (ret)
3410 			return ret;
3411 
3412 		stat = chip->ecc.correct(mtd, p, oob, NULL);
3413 
3414 		oob += eccbytes;
3415 
3416 		if (chip->ecc.postpad) {
3417 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3418 						false);
3419 			if (ret)
3420 				return ret;
3421 
3422 			oob += chip->ecc.postpad;
3423 		}
3424 
3425 		if (stat == -EBADMSG &&
3426 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3427 			/* check for empty pages with bitflips */
3428 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3429 							   oob - eccpadbytes,
3430 							   eccpadbytes,
3431 							   NULL, 0,
3432 							   chip->ecc.strength);
3433 		}
3434 
3435 		if (stat < 0) {
3436 			mtd->ecc_stats.failed++;
3437 		} else {
3438 			mtd->ecc_stats.corrected += stat;
3439 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3440 		}
3441 	}
3442 
3443 	/* Calculate remaining oob bytes */
3444 	i = mtd->oobsize - (oob - chip->oob_poi);
3445 	if (i) {
3446 		ret = nand_read_data_op(chip, oob, i, false);
3447 		if (ret)
3448 			return ret;
3449 	}
3450 
3451 	return max_bitflips;
3452 }
3453 
3454 /**
3455  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3456  * @mtd: mtd info structure
3457  * @oob: oob destination address
3458  * @ops: oob ops structure
3459  * @len: size of oob to transfer
3460  */
3461 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
3462 				  struct mtd_oob_ops *ops, size_t len)
3463 {
3464 	struct nand_chip *chip = mtd_to_nand(mtd);
3465 	int ret;
3466 
3467 	switch (ops->mode) {
3468 
3469 	case MTD_OPS_PLACE_OOB:
3470 	case MTD_OPS_RAW:
3471 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3472 		return oob + len;
3473 
3474 	case MTD_OPS_AUTO_OOB:
3475 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3476 						  ops->ooboffs, len);
3477 		BUG_ON(ret);
3478 		return oob + len;
3479 
3480 	default:
3481 		BUG();
3482 	}
3483 	return NULL;
3484 }
3485 
3486 /**
3487  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3488  * @mtd: MTD device structure
3489  * @retry_mode: the retry mode to use
3490  *
3491  * Some vendors supply a special command to shift the Vt threshold, to be used
3492  * when there are too many bitflips in a page (i.e., ECC error). After setting
3493  * a new threshold, the host should retry reading the page.
3494  */
3495 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
3496 {
3497 	struct nand_chip *chip = mtd_to_nand(mtd);
3498 
3499 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3500 
3501 	if (retry_mode >= chip->read_retries)
3502 		return -EINVAL;
3503 
3504 	if (!chip->setup_read_retry)
3505 		return -EOPNOTSUPP;
3506 
3507 	return chip->setup_read_retry(mtd, retry_mode);
3508 }
3509 
3510 /**
3511  * nand_do_read_ops - [INTERN] Read data with ECC
3512  * @mtd: MTD device structure
3513  * @from: offset to read from
3514  * @ops: oob ops structure
3515  *
3516  * Internal function. Called with chip held.
3517  */
3518 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
3519 			    struct mtd_oob_ops *ops)
3520 {
3521 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3522 	struct nand_chip *chip = mtd_to_nand(mtd);
3523 	int ret = 0;
3524 	uint32_t readlen = ops->len;
3525 	uint32_t oobreadlen = ops->ooblen;
3526 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3527 
3528 	uint8_t *bufpoi, *oob, *buf;
3529 	int use_bufpoi;
3530 	unsigned int max_bitflips = 0;
3531 	int retry_mode = 0;
3532 	bool ecc_fail = false;
3533 
3534 	chipnr = (int)(from >> chip->chip_shift);
3535 	chip->select_chip(mtd, chipnr);
3536 
3537 	realpage = (int)(from >> chip->page_shift);
3538 	page = realpage & chip->pagemask;
3539 
3540 	col = (int)(from & (mtd->writesize - 1));
3541 
3542 	buf = ops->datbuf;
3543 	oob = ops->oobbuf;
3544 	oob_required = oob ? 1 : 0;
3545 
3546 	while (1) {
3547 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3548 
3549 		bytes = min(mtd->writesize - col, readlen);
3550 		aligned = (bytes == mtd->writesize);
3551 
3552 		if (!aligned)
3553 			use_bufpoi = 1;
3554 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3555 			use_bufpoi = !virt_addr_valid(buf) ||
3556 				     !IS_ALIGNED((unsigned long)buf,
3557 						 chip->buf_align);
3558 		else
3559 			use_bufpoi = 0;
3560 
3561 		/* Is the current page in the buffer? */
3562 		if (realpage != chip->pagebuf || oob) {
3563 			bufpoi = use_bufpoi ? chip->data_buf : buf;
3564 
3565 			if (use_bufpoi && aligned)
3566 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3567 						 __func__, buf);
3568 
3569 read_retry:
3570 			/*
3571 			 * Now read the page into the buffer.  Absent an error,
3572 			 * the read methods return max bitflips per ecc step.
3573 			 */
3574 			if (unlikely(ops->mode == MTD_OPS_RAW))
3575 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
3576 							      oob_required,
3577 							      page);
3578 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3579 				 !oob)
3580 				ret = chip->ecc.read_subpage(mtd, chip,
3581 							col, bytes, bufpoi,
3582 							page);
3583 			else
3584 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
3585 							  oob_required, page);
3586 			if (ret < 0) {
3587 				if (use_bufpoi)
3588 					/* Invalidate page cache */
3589 					chip->pagebuf = -1;
3590 				break;
3591 			}
3592 
3593 			/* Transfer not aligned data */
3594 			if (use_bufpoi) {
3595 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3596 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3597 				    (ops->mode != MTD_OPS_RAW)) {
3598 					chip->pagebuf = realpage;
3599 					chip->pagebuf_bitflips = ret;
3600 				} else {
3601 					/* Invalidate page cache */
3602 					chip->pagebuf = -1;
3603 				}
3604 				memcpy(buf, chip->data_buf + col, bytes);
3605 			}
3606 
3607 			if (unlikely(oob)) {
3608 				int toread = min(oobreadlen, max_oobsize);
3609 
3610 				if (toread) {
3611 					oob = nand_transfer_oob(mtd,
3612 						oob, ops, toread);
3613 					oobreadlen -= toread;
3614 				}
3615 			}
3616 
3617 			if (chip->options & NAND_NEED_READRDY) {
3618 				/* Apply delay or wait for ready/busy pin */
3619 				if (!chip->dev_ready)
3620 					udelay(chip->chip_delay);
3621 				else
3622 					nand_wait_ready(mtd);
3623 			}
3624 
3625 			if (mtd->ecc_stats.failed - ecc_failures) {
3626 				if (retry_mode + 1 < chip->read_retries) {
3627 					retry_mode++;
3628 					ret = nand_setup_read_retry(mtd,
3629 							retry_mode);
3630 					if (ret < 0)
3631 						break;
3632 
3633 					/* Reset failures; retry */
3634 					mtd->ecc_stats.failed = ecc_failures;
3635 					goto read_retry;
3636 				} else {
3637 					/* No more retry modes; real failure */
3638 					ecc_fail = true;
3639 				}
3640 			}
3641 
3642 			buf += bytes;
3643 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3644 		} else {
3645 			memcpy(buf, chip->data_buf + col, bytes);
3646 			buf += bytes;
3647 			max_bitflips = max_t(unsigned int, max_bitflips,
3648 					     chip->pagebuf_bitflips);
3649 		}
3650 
3651 		readlen -= bytes;
3652 
3653 		/* Reset to retry mode 0 */
3654 		if (retry_mode) {
3655 			ret = nand_setup_read_retry(mtd, 0);
3656 			if (ret < 0)
3657 				break;
3658 			retry_mode = 0;
3659 		}
3660 
3661 		if (!readlen)
3662 			break;
3663 
3664 		/* For subsequent reads align to page boundary */
3665 		col = 0;
3666 		/* Increment page address */
3667 		realpage++;
3668 
3669 		page = realpage & chip->pagemask;
3670 		/* Check, if we cross a chip boundary */
3671 		if (!page) {
3672 			chipnr++;
3673 			chip->select_chip(mtd, -1);
3674 			chip->select_chip(mtd, chipnr);
3675 		}
3676 	}
3677 	chip->select_chip(mtd, -1);
3678 
3679 	ops->retlen = ops->len - (size_t) readlen;
3680 	if (oob)
3681 		ops->oobretlen = ops->ooblen - oobreadlen;
3682 
3683 	if (ret < 0)
3684 		return ret;
3685 
3686 	if (ecc_fail)
3687 		return -EBADMSG;
3688 
3689 	return max_bitflips;
3690 }
3691 
3692 /**
3693  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3694  * @mtd: mtd info structure
3695  * @chip: nand chip info structure
3696  * @page: page number to read
3697  */
3698 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
3699 {
3700 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3701 }
3702 EXPORT_SYMBOL(nand_read_oob_std);
3703 
3704 /**
3705  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3706  *			    with syndromes
3707  * @mtd: mtd info structure
3708  * @chip: nand chip info structure
3709  * @page: page number to read
3710  */
3711 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3712 			   int page)
3713 {
3714 	int length = mtd->oobsize;
3715 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3716 	int eccsize = chip->ecc.size;
3717 	uint8_t *bufpoi = chip->oob_poi;
3718 	int i, toread, sndrnd = 0, pos, ret;
3719 
3720 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3721 	if (ret)
3722 		return ret;
3723 
3724 	for (i = 0; i < chip->ecc.steps; i++) {
3725 		if (sndrnd) {
3726 			int ret;
3727 
3728 			pos = eccsize + i * (eccsize + chunk);
3729 			if (mtd->writesize > 512)
3730 				ret = nand_change_read_column_op(chip, pos,
3731 								 NULL, 0,
3732 								 false);
3733 			else
3734 				ret = nand_read_page_op(chip, page, pos, NULL,
3735 							0);
3736 
3737 			if (ret)
3738 				return ret;
3739 		} else
3740 			sndrnd = 1;
3741 		toread = min_t(int, length, chunk);
3742 
3743 		ret = nand_read_data_op(chip, bufpoi, toread, false);
3744 		if (ret)
3745 			return ret;
3746 
3747 		bufpoi += toread;
3748 		length -= toread;
3749 	}
3750 	if (length > 0) {
3751 		ret = nand_read_data_op(chip, bufpoi, length, false);
3752 		if (ret)
3753 			return ret;
3754 	}
3755 
3756 	return 0;
3757 }
3758 EXPORT_SYMBOL(nand_read_oob_syndrome);
3759 
3760 /**
3761  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3762  * @mtd: mtd info structure
3763  * @chip: nand chip info structure
3764  * @page: page number to write
3765  */
3766 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
3767 {
3768 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3769 				 mtd->oobsize);
3770 }
3771 EXPORT_SYMBOL(nand_write_oob_std);
3772 
3773 /**
3774  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3775  *			     with syndrome - only for large page flash
3776  * @mtd: mtd info structure
3777  * @chip: nand chip info structure
3778  * @page: page number to write
3779  */
3780 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3781 			    int page)
3782 {
3783 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3784 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3785 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3786 	const uint8_t *bufpoi = chip->oob_poi;
3787 
3788 	/*
3789 	 * data-ecc-data-ecc ... ecc-oob
3790 	 * or
3791 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3792 	 */
3793 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3794 		pos = steps * (eccsize + chunk);
3795 		steps = 0;
3796 	} else
3797 		pos = eccsize;
3798 
3799 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3800 	if (ret)
3801 		return ret;
3802 
3803 	for (i = 0; i < steps; i++) {
3804 		if (sndcmd) {
3805 			if (mtd->writesize <= 512) {
3806 				uint32_t fill = 0xFFFFFFFF;
3807 
3808 				len = eccsize;
3809 				while (len > 0) {
3810 					int num = min_t(int, len, 4);
3811 
3812 					ret = nand_write_data_op(chip, &fill,
3813 								 num, false);
3814 					if (ret)
3815 						return ret;
3816 
3817 					len -= num;
3818 				}
3819 			} else {
3820 				pos = eccsize + i * (eccsize + chunk);
3821 				ret = nand_change_write_column_op(chip, pos,
3822 								  NULL, 0,
3823 								  false);
3824 				if (ret)
3825 					return ret;
3826 			}
3827 		} else
3828 			sndcmd = 1;
3829 		len = min_t(int, length, chunk);
3830 
3831 		ret = nand_write_data_op(chip, bufpoi, len, false);
3832 		if (ret)
3833 			return ret;
3834 
3835 		bufpoi += len;
3836 		length -= len;
3837 	}
3838 	if (length > 0) {
3839 		ret = nand_write_data_op(chip, bufpoi, length, false);
3840 		if (ret)
3841 			return ret;
3842 	}
3843 
3844 	return nand_prog_page_end_op(chip);
3845 }
3846 EXPORT_SYMBOL(nand_write_oob_syndrome);
3847 
3848 /**
3849  * nand_do_read_oob - [INTERN] NAND read out-of-band
3850  * @mtd: MTD device structure
3851  * @from: offset to read from
3852  * @ops: oob operations description structure
3853  *
3854  * NAND read out-of-band data from the spare area.
3855  */
3856 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
3857 			    struct mtd_oob_ops *ops)
3858 {
3859 	unsigned int max_bitflips = 0;
3860 	int page, realpage, chipnr;
3861 	struct nand_chip *chip = mtd_to_nand(mtd);
3862 	struct mtd_ecc_stats stats;
3863 	int readlen = ops->ooblen;
3864 	int len;
3865 	uint8_t *buf = ops->oobbuf;
3866 	int ret = 0;
3867 
3868 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3869 			__func__, (unsigned long long)from, readlen);
3870 
3871 	stats = mtd->ecc_stats;
3872 
3873 	len = mtd_oobavail(mtd, ops);
3874 
3875 	chipnr = (int)(from >> chip->chip_shift);
3876 	chip->select_chip(mtd, chipnr);
3877 
3878 	/* Shift to get page */
3879 	realpage = (int)(from >> chip->page_shift);
3880 	page = realpage & chip->pagemask;
3881 
3882 	while (1) {
3883 		if (ops->mode == MTD_OPS_RAW)
3884 			ret = chip->ecc.read_oob_raw(mtd, chip, page);
3885 		else
3886 			ret = chip->ecc.read_oob(mtd, chip, page);
3887 
3888 		if (ret < 0)
3889 			break;
3890 
3891 		len = min(len, readlen);
3892 		buf = nand_transfer_oob(mtd, buf, ops, len);
3893 
3894 		if (chip->options & NAND_NEED_READRDY) {
3895 			/* Apply delay or wait for ready/busy pin */
3896 			if (!chip->dev_ready)
3897 				udelay(chip->chip_delay);
3898 			else
3899 				nand_wait_ready(mtd);
3900 		}
3901 
3902 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3903 
3904 		readlen -= len;
3905 		if (!readlen)
3906 			break;
3907 
3908 		/* Increment page address */
3909 		realpage++;
3910 
3911 		page = realpage & chip->pagemask;
3912 		/* Check, if we cross a chip boundary */
3913 		if (!page) {
3914 			chipnr++;
3915 			chip->select_chip(mtd, -1);
3916 			chip->select_chip(mtd, chipnr);
3917 		}
3918 	}
3919 	chip->select_chip(mtd, -1);
3920 
3921 	ops->oobretlen = ops->ooblen - readlen;
3922 
3923 	if (ret < 0)
3924 		return ret;
3925 
3926 	if (mtd->ecc_stats.failed - stats.failed)
3927 		return -EBADMSG;
3928 
3929 	return max_bitflips;
3930 }
3931 
3932 /**
3933  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3934  * @mtd: MTD device structure
3935  * @from: offset to read from
3936  * @ops: oob operation description structure
3937  *
3938  * NAND read data and/or out-of-band data.
3939  */
3940 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3941 			 struct mtd_oob_ops *ops)
3942 {
3943 	int ret;
3944 
3945 	ops->retlen = 0;
3946 
3947 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3948 	    ops->mode != MTD_OPS_AUTO_OOB &&
3949 	    ops->mode != MTD_OPS_RAW)
3950 		return -ENOTSUPP;
3951 
3952 	nand_get_device(mtd, FL_READING);
3953 
3954 	if (!ops->datbuf)
3955 		ret = nand_do_read_oob(mtd, from, ops);
3956 	else
3957 		ret = nand_do_read_ops(mtd, from, ops);
3958 
3959 	nand_release_device(mtd);
3960 	return ret;
3961 }
3962 
3963 
3964 /**
3965  * nand_write_page_raw - [INTERN] raw page write function
3966  * @mtd: mtd info structure
3967  * @chip: nand chip info structure
3968  * @buf: data buffer
3969  * @oob_required: must write chip->oob_poi to OOB
3970  * @page: page number to write
3971  *
3972  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3973  */
3974 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
3975 			const uint8_t *buf, int oob_required, int page)
3976 {
3977 	int ret;
3978 
3979 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3980 	if (ret)
3981 		return ret;
3982 
3983 	if (oob_required) {
3984 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3985 					 false);
3986 		if (ret)
3987 			return ret;
3988 	}
3989 
3990 	return nand_prog_page_end_op(chip);
3991 }
3992 EXPORT_SYMBOL(nand_write_page_raw);
3993 
3994 /**
3995  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3996  * @mtd: mtd info structure
3997  * @chip: nand chip info structure
3998  * @buf: data buffer
3999  * @oob_required: must write chip->oob_poi to OOB
4000  * @page: page number to write
4001  *
4002  * We need a special oob layout and handling even when ECC isn't checked.
4003  */
4004 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
4005 					struct nand_chip *chip,
4006 					const uint8_t *buf, int oob_required,
4007 					int page)
4008 {
4009 	int eccsize = chip->ecc.size;
4010 	int eccbytes = chip->ecc.bytes;
4011 	uint8_t *oob = chip->oob_poi;
4012 	int steps, size, ret;
4013 
4014 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4015 	if (ret)
4016 		return ret;
4017 
4018 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4019 		ret = nand_write_data_op(chip, buf, eccsize, false);
4020 		if (ret)
4021 			return ret;
4022 
4023 		buf += eccsize;
4024 
4025 		if (chip->ecc.prepad) {
4026 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4027 						 false);
4028 			if (ret)
4029 				return ret;
4030 
4031 			oob += chip->ecc.prepad;
4032 		}
4033 
4034 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4035 		if (ret)
4036 			return ret;
4037 
4038 		oob += eccbytes;
4039 
4040 		if (chip->ecc.postpad) {
4041 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4042 						 false);
4043 			if (ret)
4044 				return ret;
4045 
4046 			oob += chip->ecc.postpad;
4047 		}
4048 	}
4049 
4050 	size = mtd->oobsize - (oob - chip->oob_poi);
4051 	if (size) {
4052 		ret = nand_write_data_op(chip, oob, size, false);
4053 		if (ret)
4054 			return ret;
4055 	}
4056 
4057 	return nand_prog_page_end_op(chip);
4058 }
4059 /**
4060  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4061  * @mtd: mtd info structure
4062  * @chip: nand chip info structure
4063  * @buf: data buffer
4064  * @oob_required: must write chip->oob_poi to OOB
4065  * @page: page number to write
4066  */
4067 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
4068 				 const uint8_t *buf, int oob_required,
4069 				 int page)
4070 {
4071 	int i, eccsize = chip->ecc.size, ret;
4072 	int eccbytes = chip->ecc.bytes;
4073 	int eccsteps = chip->ecc.steps;
4074 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4075 	const uint8_t *p = buf;
4076 
4077 	/* Software ECC calculation */
4078 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4079 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
4080 
4081 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4082 					 chip->ecc.total);
4083 	if (ret)
4084 		return ret;
4085 
4086 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
4087 }
4088 
4089 /**
4090  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4091  * @mtd: mtd info structure
4092  * @chip: nand chip info structure
4093  * @buf: data buffer
4094  * @oob_required: must write chip->oob_poi to OOB
4095  * @page: page number to write
4096  */
4097 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
4098 				  const uint8_t *buf, int oob_required,
4099 				  int page)
4100 {
4101 	int i, eccsize = chip->ecc.size, ret;
4102 	int eccbytes = chip->ecc.bytes;
4103 	int eccsteps = chip->ecc.steps;
4104 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4105 	const uint8_t *p = buf;
4106 
4107 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4108 	if (ret)
4109 		return ret;
4110 
4111 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4112 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4113 
4114 		ret = nand_write_data_op(chip, p, eccsize, false);
4115 		if (ret)
4116 			return ret;
4117 
4118 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
4119 	}
4120 
4121 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4122 					 chip->ecc.total);
4123 	if (ret)
4124 		return ret;
4125 
4126 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4127 	if (ret)
4128 		return ret;
4129 
4130 	return nand_prog_page_end_op(chip);
4131 }
4132 
4133 
4134 /**
4135  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4136  * @mtd:	mtd info structure
4137  * @chip:	nand chip info structure
4138  * @offset:	column address of subpage within the page
4139  * @data_len:	data length
4140  * @buf:	data buffer
4141  * @oob_required: must write chip->oob_poi to OOB
4142  * @page: page number to write
4143  */
4144 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
4145 				struct nand_chip *chip, uint32_t offset,
4146 				uint32_t data_len, const uint8_t *buf,
4147 				int oob_required, int page)
4148 {
4149 	uint8_t *oob_buf  = chip->oob_poi;
4150 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4151 	int ecc_size      = chip->ecc.size;
4152 	int ecc_bytes     = chip->ecc.bytes;
4153 	int ecc_steps     = chip->ecc.steps;
4154 	uint32_t start_step = offset / ecc_size;
4155 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4156 	int oob_bytes       = mtd->oobsize / ecc_steps;
4157 	int step, ret;
4158 
4159 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4160 	if (ret)
4161 		return ret;
4162 
4163 	for (step = 0; step < ecc_steps; step++) {
4164 		/* configure controller for WRITE access */
4165 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4166 
4167 		/* write data (untouched subpages already masked by 0xFF) */
4168 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4169 		if (ret)
4170 			return ret;
4171 
4172 		/* mask ECC of un-touched subpages by padding 0xFF */
4173 		if ((step < start_step) || (step > end_step))
4174 			memset(ecc_calc, 0xff, ecc_bytes);
4175 		else
4176 			chip->ecc.calculate(mtd, buf, ecc_calc);
4177 
4178 		/* mask OOB of un-touched subpages by padding 0xFF */
4179 		/* if oob_required, preserve OOB metadata of written subpage */
4180 		if (!oob_required || (step < start_step) || (step > end_step))
4181 			memset(oob_buf, 0xff, oob_bytes);
4182 
4183 		buf += ecc_size;
4184 		ecc_calc += ecc_bytes;
4185 		oob_buf  += oob_bytes;
4186 	}
4187 
4188 	/* copy calculated ECC for whole page to chip->buffer->oob */
4189 	/* this include masked-value(0xFF) for unwritten subpages */
4190 	ecc_calc = chip->ecc.calc_buf;
4191 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4192 					 chip->ecc.total);
4193 	if (ret)
4194 		return ret;
4195 
4196 	/* write OOB buffer to NAND device */
4197 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4198 	if (ret)
4199 		return ret;
4200 
4201 	return nand_prog_page_end_op(chip);
4202 }
4203 
4204 
4205 /**
4206  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4207  * @mtd: mtd info structure
4208  * @chip: nand chip info structure
4209  * @buf: data buffer
4210  * @oob_required: must write chip->oob_poi to OOB
4211  * @page: page number to write
4212  *
4213  * The hw generator calculates the error syndrome automatically. Therefore we
4214  * need a special oob layout and handling.
4215  */
4216 static int nand_write_page_syndrome(struct mtd_info *mtd,
4217 				    struct nand_chip *chip,
4218 				    const uint8_t *buf, int oob_required,
4219 				    int page)
4220 {
4221 	int i, eccsize = chip->ecc.size;
4222 	int eccbytes = chip->ecc.bytes;
4223 	int eccsteps = chip->ecc.steps;
4224 	const uint8_t *p = buf;
4225 	uint8_t *oob = chip->oob_poi;
4226 	int ret;
4227 
4228 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4229 	if (ret)
4230 		return ret;
4231 
4232 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4233 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4234 
4235 		ret = nand_write_data_op(chip, p, eccsize, false);
4236 		if (ret)
4237 			return ret;
4238 
4239 		if (chip->ecc.prepad) {
4240 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4241 						 false);
4242 			if (ret)
4243 				return ret;
4244 
4245 			oob += chip->ecc.prepad;
4246 		}
4247 
4248 		chip->ecc.calculate(mtd, p, oob);
4249 
4250 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4251 		if (ret)
4252 			return ret;
4253 
4254 		oob += eccbytes;
4255 
4256 		if (chip->ecc.postpad) {
4257 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4258 						 false);
4259 			if (ret)
4260 				return ret;
4261 
4262 			oob += chip->ecc.postpad;
4263 		}
4264 	}
4265 
4266 	/* Calculate remaining oob bytes */
4267 	i = mtd->oobsize - (oob - chip->oob_poi);
4268 	if (i) {
4269 		ret = nand_write_data_op(chip, oob, i, false);
4270 		if (ret)
4271 			return ret;
4272 	}
4273 
4274 	return nand_prog_page_end_op(chip);
4275 }
4276 
4277 /**
4278  * nand_write_page - write one page
4279  * @mtd: MTD device structure
4280  * @chip: NAND chip descriptor
4281  * @offset: address offset within the page
4282  * @data_len: length of actual data to be written
4283  * @buf: the data to write
4284  * @oob_required: must write chip->oob_poi to OOB
4285  * @page: page number to write
4286  * @raw: use _raw version of write_page
4287  */
4288 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
4289 		uint32_t offset, int data_len, const uint8_t *buf,
4290 		int oob_required, int page, int raw)
4291 {
4292 	int status, subpage;
4293 
4294 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4295 		chip->ecc.write_subpage)
4296 		subpage = offset || (data_len < mtd->writesize);
4297 	else
4298 		subpage = 0;
4299 
4300 	if (unlikely(raw))
4301 		status = chip->ecc.write_page_raw(mtd, chip, buf,
4302 						  oob_required, page);
4303 	else if (subpage)
4304 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
4305 						 buf, oob_required, page);
4306 	else
4307 		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
4308 					      page);
4309 
4310 	if (status < 0)
4311 		return status;
4312 
4313 	return 0;
4314 }
4315 
4316 /**
4317  * nand_fill_oob - [INTERN] Transfer client buffer to oob
4318  * @mtd: MTD device structure
4319  * @oob: oob data buffer
4320  * @len: oob data write length
4321  * @ops: oob ops structure
4322  */
4323 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
4324 			      struct mtd_oob_ops *ops)
4325 {
4326 	struct nand_chip *chip = mtd_to_nand(mtd);
4327 	int ret;
4328 
4329 	/*
4330 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
4331 	 * data from a previous OOB read.
4332 	 */
4333 	memset(chip->oob_poi, 0xff, mtd->oobsize);
4334 
4335 	switch (ops->mode) {
4336 
4337 	case MTD_OPS_PLACE_OOB:
4338 	case MTD_OPS_RAW:
4339 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
4340 		return oob + len;
4341 
4342 	case MTD_OPS_AUTO_OOB:
4343 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
4344 						  ops->ooboffs, len);
4345 		BUG_ON(ret);
4346 		return oob + len;
4347 
4348 	default:
4349 		BUG();
4350 	}
4351 	return NULL;
4352 }
4353 
4354 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4355 
4356 /**
4357  * nand_do_write_ops - [INTERN] NAND write with ECC
4358  * @mtd: MTD device structure
4359  * @to: offset to write to
4360  * @ops: oob operations description structure
4361  *
4362  * NAND write with ECC.
4363  */
4364 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
4365 			     struct mtd_oob_ops *ops)
4366 {
4367 	int chipnr, realpage, page, column;
4368 	struct nand_chip *chip = mtd_to_nand(mtd);
4369 	uint32_t writelen = ops->len;
4370 
4371 	uint32_t oobwritelen = ops->ooblen;
4372 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4373 
4374 	uint8_t *oob = ops->oobbuf;
4375 	uint8_t *buf = ops->datbuf;
4376 	int ret;
4377 	int oob_required = oob ? 1 : 0;
4378 
4379 	ops->retlen = 0;
4380 	if (!writelen)
4381 		return 0;
4382 
4383 	/* Reject writes, which are not page aligned */
4384 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4385 		pr_notice("%s: attempt to write non page aligned data\n",
4386 			   __func__);
4387 		return -EINVAL;
4388 	}
4389 
4390 	column = to & (mtd->writesize - 1);
4391 
4392 	chipnr = (int)(to >> chip->chip_shift);
4393 	chip->select_chip(mtd, chipnr);
4394 
4395 	/* Check, if it is write protected */
4396 	if (nand_check_wp(mtd)) {
4397 		ret = -EIO;
4398 		goto err_out;
4399 	}
4400 
4401 	realpage = (int)(to >> chip->page_shift);
4402 	page = realpage & chip->pagemask;
4403 
4404 	/* Invalidate the page cache, when we write to the cached page */
4405 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
4406 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
4407 		chip->pagebuf = -1;
4408 
4409 	/* Don't allow multipage oob writes with offset */
4410 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4411 		ret = -EINVAL;
4412 		goto err_out;
4413 	}
4414 
4415 	while (1) {
4416 		int bytes = mtd->writesize;
4417 		uint8_t *wbuf = buf;
4418 		int use_bufpoi;
4419 		int part_pagewr = (column || writelen < mtd->writesize);
4420 
4421 		if (part_pagewr)
4422 			use_bufpoi = 1;
4423 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4424 			use_bufpoi = !virt_addr_valid(buf) ||
4425 				     !IS_ALIGNED((unsigned long)buf,
4426 						 chip->buf_align);
4427 		else
4428 			use_bufpoi = 0;
4429 
4430 		/* Partial page write?, or need to use bounce buffer */
4431 		if (use_bufpoi) {
4432 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4433 					 __func__, buf);
4434 			if (part_pagewr)
4435 				bytes = min_t(int, bytes - column, writelen);
4436 			chip->pagebuf = -1;
4437 			memset(chip->data_buf, 0xff, mtd->writesize);
4438 			memcpy(&chip->data_buf[column], buf, bytes);
4439 			wbuf = chip->data_buf;
4440 		}
4441 
4442 		if (unlikely(oob)) {
4443 			size_t len = min(oobwritelen, oobmaxlen);
4444 			oob = nand_fill_oob(mtd, oob, len, ops);
4445 			oobwritelen -= len;
4446 		} else {
4447 			/* We still need to erase leftover OOB data */
4448 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4449 		}
4450 
4451 		ret = nand_write_page(mtd, chip, column, bytes, wbuf,
4452 				      oob_required, page,
4453 				      (ops->mode == MTD_OPS_RAW));
4454 		if (ret)
4455 			break;
4456 
4457 		writelen -= bytes;
4458 		if (!writelen)
4459 			break;
4460 
4461 		column = 0;
4462 		buf += bytes;
4463 		realpage++;
4464 
4465 		page = realpage & chip->pagemask;
4466 		/* Check, if we cross a chip boundary */
4467 		if (!page) {
4468 			chipnr++;
4469 			chip->select_chip(mtd, -1);
4470 			chip->select_chip(mtd, chipnr);
4471 		}
4472 	}
4473 
4474 	ops->retlen = ops->len - writelen;
4475 	if (unlikely(oob))
4476 		ops->oobretlen = ops->ooblen;
4477 
4478 err_out:
4479 	chip->select_chip(mtd, -1);
4480 	return ret;
4481 }
4482 
4483 /**
4484  * panic_nand_write - [MTD Interface] NAND write with ECC
4485  * @mtd: MTD device structure
4486  * @to: offset to write to
4487  * @len: number of bytes to write
4488  * @retlen: pointer to variable to store the number of written bytes
4489  * @buf: the data to write
4490  *
4491  * NAND write with ECC. Used when performing writes in interrupt context, this
4492  * may for example be called by mtdoops when writing an oops while in panic.
4493  */
4494 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4495 			    size_t *retlen, const uint8_t *buf)
4496 {
4497 	struct nand_chip *chip = mtd_to_nand(mtd);
4498 	int chipnr = (int)(to >> chip->chip_shift);
4499 	struct mtd_oob_ops ops;
4500 	int ret;
4501 
4502 	/* Grab the device */
4503 	panic_nand_get_device(chip, mtd, FL_WRITING);
4504 
4505 	chip->select_chip(mtd, chipnr);
4506 
4507 	/* Wait for the device to get ready */
4508 	panic_nand_wait(mtd, chip, 400);
4509 
4510 	memset(&ops, 0, sizeof(ops));
4511 	ops.len = len;
4512 	ops.datbuf = (uint8_t *)buf;
4513 	ops.mode = MTD_OPS_PLACE_OOB;
4514 
4515 	ret = nand_do_write_ops(mtd, to, &ops);
4516 
4517 	*retlen = ops.retlen;
4518 	return ret;
4519 }
4520 
4521 /**
4522  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
4523  * @mtd: MTD device structure
4524  * @to: offset to write to
4525  * @ops: oob operation description structure
4526  *
4527  * NAND write out-of-band.
4528  */
4529 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
4530 			     struct mtd_oob_ops *ops)
4531 {
4532 	int chipnr, page, status, len;
4533 	struct nand_chip *chip = mtd_to_nand(mtd);
4534 
4535 	pr_debug("%s: to = 0x%08x, len = %i\n",
4536 			 __func__, (unsigned int)to, (int)ops->ooblen);
4537 
4538 	len = mtd_oobavail(mtd, ops);
4539 
4540 	/* Do not allow write past end of page */
4541 	if ((ops->ooboffs + ops->ooblen) > len) {
4542 		pr_debug("%s: attempt to write past end of page\n",
4543 				__func__);
4544 		return -EINVAL;
4545 	}
4546 
4547 	chipnr = (int)(to >> chip->chip_shift);
4548 
4549 	/*
4550 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
4551 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
4552 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
4553 	 * it in the doc2000 driver in August 1999.  dwmw2.
4554 	 */
4555 	nand_reset(chip, chipnr);
4556 
4557 	chip->select_chip(mtd, chipnr);
4558 
4559 	/* Shift to get page */
4560 	page = (int)(to >> chip->page_shift);
4561 
4562 	/* Check, if it is write protected */
4563 	if (nand_check_wp(mtd)) {
4564 		chip->select_chip(mtd, -1);
4565 		return -EROFS;
4566 	}
4567 
4568 	/* Invalidate the page cache, if we write to the cached page */
4569 	if (page == chip->pagebuf)
4570 		chip->pagebuf = -1;
4571 
4572 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
4573 
4574 	if (ops->mode == MTD_OPS_RAW)
4575 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
4576 	else
4577 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
4578 
4579 	chip->select_chip(mtd, -1);
4580 
4581 	if (status)
4582 		return status;
4583 
4584 	ops->oobretlen = ops->ooblen;
4585 
4586 	return 0;
4587 }
4588 
4589 /**
4590  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4591  * @mtd: MTD device structure
4592  * @to: offset to write to
4593  * @ops: oob operation description structure
4594  */
4595 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4596 			  struct mtd_oob_ops *ops)
4597 {
4598 	int ret = -ENOTSUPP;
4599 
4600 	ops->retlen = 0;
4601 
4602 	nand_get_device(mtd, FL_WRITING);
4603 
4604 	switch (ops->mode) {
4605 	case MTD_OPS_PLACE_OOB:
4606 	case MTD_OPS_AUTO_OOB:
4607 	case MTD_OPS_RAW:
4608 		break;
4609 
4610 	default:
4611 		goto out;
4612 	}
4613 
4614 	if (!ops->datbuf)
4615 		ret = nand_do_write_oob(mtd, to, ops);
4616 	else
4617 		ret = nand_do_write_ops(mtd, to, ops);
4618 
4619 out:
4620 	nand_release_device(mtd);
4621 	return ret;
4622 }
4623 
4624 /**
4625  * single_erase - [GENERIC] NAND standard block erase command function
4626  * @mtd: MTD device structure
4627  * @page: the page address of the block which will be erased
4628  *
4629  * Standard erase command for NAND chips. Returns NAND status.
4630  */
4631 static int single_erase(struct mtd_info *mtd, int page)
4632 {
4633 	struct nand_chip *chip = mtd_to_nand(mtd);
4634 	unsigned int eraseblock;
4635 
4636 	/* Send commands to erase a block */
4637 	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
4638 
4639 	return nand_erase_op(chip, eraseblock);
4640 }
4641 
4642 /**
4643  * nand_erase - [MTD Interface] erase block(s)
4644  * @mtd: MTD device structure
4645  * @instr: erase instruction
4646  *
4647  * Erase one ore more blocks.
4648  */
4649 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4650 {
4651 	return nand_erase_nand(mtd, instr, 0);
4652 }
4653 
4654 /**
4655  * nand_erase_nand - [INTERN] erase block(s)
4656  * @mtd: MTD device structure
4657  * @instr: erase instruction
4658  * @allowbbt: allow erasing the bbt area
4659  *
4660  * Erase one ore more blocks.
4661  */
4662 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
4663 		    int allowbbt)
4664 {
4665 	int page, status, pages_per_block, ret, chipnr;
4666 	struct nand_chip *chip = mtd_to_nand(mtd);
4667 	loff_t len;
4668 
4669 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4670 			__func__, (unsigned long long)instr->addr,
4671 			(unsigned long long)instr->len);
4672 
4673 	if (check_offs_len(mtd, instr->addr, instr->len))
4674 		return -EINVAL;
4675 
4676 	/* Grab the lock and see if the device is available */
4677 	nand_get_device(mtd, FL_ERASING);
4678 
4679 	/* Shift to get first page */
4680 	page = (int)(instr->addr >> chip->page_shift);
4681 	chipnr = (int)(instr->addr >> chip->chip_shift);
4682 
4683 	/* Calculate pages in each block */
4684 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4685 
4686 	/* Select the NAND device */
4687 	chip->select_chip(mtd, chipnr);
4688 
4689 	/* Check, if it is write protected */
4690 	if (nand_check_wp(mtd)) {
4691 		pr_debug("%s: device is write protected!\n",
4692 				__func__);
4693 		ret = -EIO;
4694 		goto erase_exit;
4695 	}
4696 
4697 	/* Loop through the pages */
4698 	len = instr->len;
4699 
4700 	while (len) {
4701 		/* Check if we have a bad block, we do not erase bad blocks! */
4702 		if (nand_block_checkbad(mtd, ((loff_t) page) <<
4703 					chip->page_shift, allowbbt)) {
4704 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4705 				    __func__, page);
4706 			ret = -EIO;
4707 			goto erase_exit;
4708 		}
4709 
4710 		/*
4711 		 * Invalidate the page cache, if we erase the block which
4712 		 * contains the current cached page.
4713 		 */
4714 		if (page <= chip->pagebuf && chip->pagebuf <
4715 		    (page + pages_per_block))
4716 			chip->pagebuf = -1;
4717 
4718 		status = chip->erase(mtd, page & chip->pagemask);
4719 
4720 		/* See if block erase succeeded */
4721 		if (status) {
4722 			pr_debug("%s: failed erase, page 0x%08x\n",
4723 					__func__, page);
4724 			ret = -EIO;
4725 			instr->fail_addr =
4726 				((loff_t)page << chip->page_shift);
4727 			goto erase_exit;
4728 		}
4729 
4730 		/* Increment page address and decrement length */
4731 		len -= (1ULL << chip->phys_erase_shift);
4732 		page += pages_per_block;
4733 
4734 		/* Check, if we cross a chip boundary */
4735 		if (len && !(page & chip->pagemask)) {
4736 			chipnr++;
4737 			chip->select_chip(mtd, -1);
4738 			chip->select_chip(mtd, chipnr);
4739 		}
4740 	}
4741 
4742 	ret = 0;
4743 erase_exit:
4744 
4745 	/* Deselect and wake up anyone waiting on the device */
4746 	chip->select_chip(mtd, -1);
4747 	nand_release_device(mtd);
4748 
4749 	/* Return more or less happy */
4750 	return ret;
4751 }
4752 
4753 /**
4754  * nand_sync - [MTD Interface] sync
4755  * @mtd: MTD device structure
4756  *
4757  * Sync is actually a wait for chip ready function.
4758  */
4759 static void nand_sync(struct mtd_info *mtd)
4760 {
4761 	pr_debug("%s: called\n", __func__);
4762 
4763 	/* Grab the lock and see if the device is available */
4764 	nand_get_device(mtd, FL_SYNCING);
4765 	/* Release it and go back */
4766 	nand_release_device(mtd);
4767 }
4768 
4769 /**
4770  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4771  * @mtd: MTD device structure
4772  * @offs: offset relative to mtd start
4773  */
4774 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4775 {
4776 	struct nand_chip *chip = mtd_to_nand(mtd);
4777 	int chipnr = (int)(offs >> chip->chip_shift);
4778 	int ret;
4779 
4780 	/* Select the NAND device */
4781 	nand_get_device(mtd, FL_READING);
4782 	chip->select_chip(mtd, chipnr);
4783 
4784 	ret = nand_block_checkbad(mtd, offs, 0);
4785 
4786 	chip->select_chip(mtd, -1);
4787 	nand_release_device(mtd);
4788 
4789 	return ret;
4790 }
4791 
4792 /**
4793  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4794  * @mtd: MTD device structure
4795  * @ofs: offset relative to mtd start
4796  */
4797 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4798 {
4799 	int ret;
4800 
4801 	ret = nand_block_isbad(mtd, ofs);
4802 	if (ret) {
4803 		/* If it was bad already, return success and do nothing */
4804 		if (ret > 0)
4805 			return 0;
4806 		return ret;
4807 	}
4808 
4809 	return nand_block_markbad_lowlevel(mtd, ofs);
4810 }
4811 
4812 /**
4813  * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4814  * @mtd: MTD device structure
4815  * @ofs: offset relative to mtd start
4816  * @len: length of mtd
4817  */
4818 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4819 {
4820 	struct nand_chip *chip = mtd_to_nand(mtd);
4821 	u32 part_start_block;
4822 	u32 part_end_block;
4823 	u32 part_start_die;
4824 	u32 part_end_die;
4825 
4826 	/*
4827 	 * max_bb_per_die and blocks_per_die used to determine
4828 	 * the maximum bad block count.
4829 	 */
4830 	if (!chip->max_bb_per_die || !chip->blocks_per_die)
4831 		return -ENOTSUPP;
4832 
4833 	/* Get the start and end of the partition in erase blocks. */
4834 	part_start_block = mtd_div_by_eb(ofs, mtd);
4835 	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4836 
4837 	/* Get the start and end LUNs of the partition. */
4838 	part_start_die = part_start_block / chip->blocks_per_die;
4839 	part_end_die = part_end_block / chip->blocks_per_die;
4840 
4841 	/*
4842 	 * Look up the bad blocks per unit and multiply by the number of units
4843 	 * that the partition spans.
4844 	 */
4845 	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4846 }
4847 
4848 /**
4849  * nand_default_set_features- [REPLACEABLE] set NAND chip features
4850  * @mtd: MTD device structure
4851  * @chip: nand chip info structure
4852  * @addr: feature address.
4853  * @subfeature_param: the subfeature parameters, a four bytes array.
4854  */
4855 static int nand_default_set_features(struct mtd_info *mtd,
4856 				     struct nand_chip *chip, int addr,
4857 				     uint8_t *subfeature_param)
4858 {
4859 	return nand_set_features_op(chip, addr, subfeature_param);
4860 }
4861 
4862 /**
4863  * nand_default_get_features- [REPLACEABLE] get NAND chip features
4864  * @mtd: MTD device structure
4865  * @chip: nand chip info structure
4866  * @addr: feature address.
4867  * @subfeature_param: the subfeature parameters, a four bytes array.
4868  */
4869 static int nand_default_get_features(struct mtd_info *mtd,
4870 				     struct nand_chip *chip, int addr,
4871 				     uint8_t *subfeature_param)
4872 {
4873 	return nand_get_features_op(chip, addr, subfeature_param);
4874 }
4875 
4876 /**
4877  * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
4878  * @mtd: MTD device structure
4879  * @chip: nand chip info structure
4880  * @addr: feature address.
4881  * @subfeature_param: the subfeature parameters, a four bytes array.
4882  *
4883  * Should be used by NAND controller drivers that do not support the SET/GET
4884  * FEATURES operations.
4885  */
4886 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
4887 				  int addr, u8 *subfeature_param)
4888 {
4889 	return -ENOTSUPP;
4890 }
4891 EXPORT_SYMBOL(nand_get_set_features_notsupp);
4892 
4893 /**
4894  * nand_suspend - [MTD Interface] Suspend the NAND flash
4895  * @mtd: MTD device structure
4896  */
4897 static int nand_suspend(struct mtd_info *mtd)
4898 {
4899 	return nand_get_device(mtd, FL_PM_SUSPENDED);
4900 }
4901 
4902 /**
4903  * nand_resume - [MTD Interface] Resume the NAND flash
4904  * @mtd: MTD device structure
4905  */
4906 static void nand_resume(struct mtd_info *mtd)
4907 {
4908 	struct nand_chip *chip = mtd_to_nand(mtd);
4909 
4910 	if (chip->state == FL_PM_SUSPENDED)
4911 		nand_release_device(mtd);
4912 	else
4913 		pr_err("%s called for a chip which is not in suspended state\n",
4914 			__func__);
4915 }
4916 
4917 /**
4918  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4919  *                 prevent further operations
4920  * @mtd: MTD device structure
4921  */
4922 static void nand_shutdown(struct mtd_info *mtd)
4923 {
4924 	nand_get_device(mtd, FL_PM_SUSPENDED);
4925 }
4926 
4927 /* Set default functions */
4928 static void nand_set_defaults(struct nand_chip *chip)
4929 {
4930 	unsigned int busw = chip->options & NAND_BUSWIDTH_16;
4931 
4932 	/* check for proper chip_delay setup, set 20us if not */
4933 	if (!chip->chip_delay)
4934 		chip->chip_delay = 20;
4935 
4936 	/* check, if a user supplied command function given */
4937 	if (!chip->cmdfunc && !chip->exec_op)
4938 		chip->cmdfunc = nand_command;
4939 
4940 	/* check, if a user supplied wait function given */
4941 	if (chip->waitfunc == NULL)
4942 		chip->waitfunc = nand_wait;
4943 
4944 	if (!chip->select_chip)
4945 		chip->select_chip = nand_select_chip;
4946 
4947 	/* set for ONFI nand */
4948 	if (!chip->set_features)
4949 		chip->set_features = nand_default_set_features;
4950 	if (!chip->get_features)
4951 		chip->get_features = nand_default_get_features;
4952 
4953 	/* If called twice, pointers that depend on busw may need to be reset */
4954 	if (!chip->read_byte || chip->read_byte == nand_read_byte)
4955 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
4956 	if (!chip->read_word)
4957 		chip->read_word = nand_read_word;
4958 	if (!chip->block_bad)
4959 		chip->block_bad = nand_block_bad;
4960 	if (!chip->block_markbad)
4961 		chip->block_markbad = nand_default_block_markbad;
4962 	if (!chip->write_buf || chip->write_buf == nand_write_buf)
4963 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
4964 	if (!chip->write_byte || chip->write_byte == nand_write_byte)
4965 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
4966 	if (!chip->read_buf || chip->read_buf == nand_read_buf)
4967 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
4968 	if (!chip->scan_bbt)
4969 		chip->scan_bbt = nand_default_bbt;
4970 
4971 	if (!chip->controller) {
4972 		chip->controller = &chip->hwcontrol;
4973 		nand_hw_control_init(chip->controller);
4974 	}
4975 
4976 	if (!chip->buf_align)
4977 		chip->buf_align = 1;
4978 }
4979 
4980 /* Sanitize ONFI strings so we can safely print them */
4981 static void sanitize_string(uint8_t *s, size_t len)
4982 {
4983 	ssize_t i;
4984 
4985 	/* Null terminate */
4986 	s[len - 1] = 0;
4987 
4988 	/* Remove non printable chars */
4989 	for (i = 0; i < len - 1; i++) {
4990 		if (s[i] < ' ' || s[i] > 127)
4991 			s[i] = '?';
4992 	}
4993 
4994 	/* Remove trailing spaces */
4995 	strim(s);
4996 }
4997 
4998 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
4999 {
5000 	int i;
5001 	while (len--) {
5002 		crc ^= *p++ << 8;
5003 		for (i = 0; i < 8; i++)
5004 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
5005 	}
5006 
5007 	return crc;
5008 }
5009 
5010 /* Parse the Extended Parameter Page. */
5011 static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
5012 					    struct nand_onfi_params *p)
5013 {
5014 	struct onfi_ext_param_page *ep;
5015 	struct onfi_ext_section *s;
5016 	struct onfi_ext_ecc_info *ecc;
5017 	uint8_t *cursor;
5018 	int ret;
5019 	int len;
5020 	int i;
5021 
5022 	len = le16_to_cpu(p->ext_param_page_length) * 16;
5023 	ep = kmalloc(len, GFP_KERNEL);
5024 	if (!ep)
5025 		return -ENOMEM;
5026 
5027 	/* Send our own NAND_CMD_PARAM. */
5028 	ret = nand_read_param_page_op(chip, 0, NULL, 0);
5029 	if (ret)
5030 		goto ext_out;
5031 
5032 	/* Use the Change Read Column command to skip the ONFI param pages. */
5033 	ret = nand_change_read_column_op(chip,
5034 					 sizeof(*p) * p->num_of_param_pages,
5035 					 ep, len, true);
5036 	if (ret)
5037 		goto ext_out;
5038 
5039 	ret = -EINVAL;
5040 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
5041 		!= le16_to_cpu(ep->crc))) {
5042 		pr_debug("fail in the CRC.\n");
5043 		goto ext_out;
5044 	}
5045 
5046 	/*
5047 	 * Check the signature.
5048 	 * Do not strictly follow the ONFI spec, maybe changed in future.
5049 	 */
5050 	if (strncmp(ep->sig, "EPPS", 4)) {
5051 		pr_debug("The signature is invalid.\n");
5052 		goto ext_out;
5053 	}
5054 
5055 	/* find the ECC section. */
5056 	cursor = (uint8_t *)(ep + 1);
5057 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
5058 		s = ep->sections + i;
5059 		if (s->type == ONFI_SECTION_TYPE_2)
5060 			break;
5061 		cursor += s->length * 16;
5062 	}
5063 	if (i == ONFI_EXT_SECTION_MAX) {
5064 		pr_debug("We can not find the ECC section.\n");
5065 		goto ext_out;
5066 	}
5067 
5068 	/* get the info we want. */
5069 	ecc = (struct onfi_ext_ecc_info *)cursor;
5070 
5071 	if (!ecc->codeword_size) {
5072 		pr_debug("Invalid codeword size\n");
5073 		goto ext_out;
5074 	}
5075 
5076 	chip->ecc_strength_ds = ecc->ecc_bits;
5077 	chip->ecc_step_ds = 1 << ecc->codeword_size;
5078 	ret = 0;
5079 
5080 ext_out:
5081 	kfree(ep);
5082 	return ret;
5083 }
5084 
5085 /*
5086  * Recover data with bit-wise majority
5087  */
5088 static void nand_bit_wise_majority(const void **srcbufs,
5089 				   unsigned int nsrcbufs,
5090 				   void *dstbuf,
5091 				   unsigned int bufsize)
5092 {
5093 	int i, j, k;
5094 
5095 	for (i = 0; i < bufsize; i++) {
5096 		u8 val = 0;
5097 
5098 		for (j = 0; j < 8; j++) {
5099 			unsigned int cnt = 0;
5100 
5101 			for (k = 0; k < nsrcbufs; k++) {
5102 				const u8 *srcbuf = srcbufs[k];
5103 
5104 				if (srcbuf[i] & BIT(j))
5105 					cnt++;
5106 			}
5107 
5108 			if (cnt > nsrcbufs / 2)
5109 				val |= BIT(j);
5110 		}
5111 
5112 		((u8 *)dstbuf)[i] = val;
5113 	}
5114 }
5115 
5116 /*
5117  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
5118  */
5119 static int nand_flash_detect_onfi(struct nand_chip *chip)
5120 {
5121 	struct mtd_info *mtd = nand_to_mtd(chip);
5122 	struct nand_onfi_params *p;
5123 	char id[4];
5124 	int i, ret, val;
5125 
5126 	/* Try ONFI for unknown chip or LP */
5127 	ret = nand_readid_op(chip, 0x20, id, sizeof(id));
5128 	if (ret || strncmp(id, "ONFI", 4))
5129 		return 0;
5130 
5131 	/* ONFI chip: allocate a buffer to hold its parameter page */
5132 	p = kzalloc((sizeof(*p) * 3), GFP_KERNEL);
5133 	if (!p)
5134 		return -ENOMEM;
5135 
5136 	ret = nand_read_param_page_op(chip, 0, NULL, 0);
5137 	if (ret) {
5138 		ret = 0;
5139 		goto free_onfi_param_page;
5140 	}
5141 
5142 	for (i = 0; i < 3; i++) {
5143 		ret = nand_read_data_op(chip, &p[i], sizeof(*p), true);
5144 		if (ret) {
5145 			ret = 0;
5146 			goto free_onfi_param_page;
5147 		}
5148 
5149 		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) ==
5150 				le16_to_cpu(p->crc)) {
5151 			if (i)
5152 				memcpy(p, &p[i], sizeof(*p));
5153 			break;
5154 		}
5155 	}
5156 
5157 	if (i == 3) {
5158 		const void *srcbufs[3] = {p, p + 1, p + 2};
5159 
5160 		pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n");
5161 		nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p,
5162 				       sizeof(*p));
5163 
5164 		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) !=
5165 				le16_to_cpu(p->crc)) {
5166 			pr_err("ONFI parameter recovery failed, aborting\n");
5167 			goto free_onfi_param_page;
5168 		}
5169 	}
5170 
5171 	/* Check version */
5172 	val = le16_to_cpu(p->revision);
5173 	if (val & (1 << 5))
5174 		chip->parameters.onfi.version = 23;
5175 	else if (val & (1 << 4))
5176 		chip->parameters.onfi.version = 22;
5177 	else if (val & (1 << 3))
5178 		chip->parameters.onfi.version = 21;
5179 	else if (val & (1 << 2))
5180 		chip->parameters.onfi.version = 20;
5181 	else if (val & (1 << 1))
5182 		chip->parameters.onfi.version = 10;
5183 
5184 	if (!chip->parameters.onfi.version) {
5185 		pr_info("unsupported ONFI version: %d\n", val);
5186 		goto free_onfi_param_page;
5187 	} else {
5188 		ret = 1;
5189 	}
5190 
5191 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5192 	sanitize_string(p->model, sizeof(p->model));
5193 	strncpy(chip->parameters.model, p->model,
5194 		sizeof(chip->parameters.model) - 1);
5195 
5196 	mtd->writesize = le32_to_cpu(p->byte_per_page);
5197 
5198 	/*
5199 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
5200 	 * (don't ask me who thought of this...). MTD assumes that these
5201 	 * dimensions will be power-of-2, so just truncate the remaining area.
5202 	 */
5203 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5204 	mtd->erasesize *= mtd->writesize;
5205 
5206 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5207 
5208 	/* See erasesize comment */
5209 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5210 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5211 	chip->bits_per_cell = p->bits_per_cell;
5212 
5213 	chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
5214 	chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
5215 
5216 	if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
5217 		chip->options |= NAND_BUSWIDTH_16;
5218 
5219 	if (p->ecc_bits != 0xff) {
5220 		chip->ecc_strength_ds = p->ecc_bits;
5221 		chip->ecc_step_ds = 512;
5222 	} else if (chip->parameters.onfi.version >= 21 &&
5223 		(le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
5224 
5225 		/*
5226 		 * The nand_flash_detect_ext_param_page() uses the
5227 		 * Change Read Column command which maybe not supported
5228 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
5229 		 * now. We do not replace user supplied command function.
5230 		 */
5231 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5232 			chip->cmdfunc = nand_command_lp;
5233 
5234 		/* The Extended Parameter Page is supported since ONFI 2.1. */
5235 		if (nand_flash_detect_ext_param_page(chip, p))
5236 			pr_warn("Failed to detect ONFI extended param page\n");
5237 	} else {
5238 		pr_warn("Could not retrieve ONFI ECC requirements\n");
5239 	}
5240 
5241 	/* Save some parameters from the parameter page for future use */
5242 	if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
5243 		chip->parameters.supports_set_get_features = true;
5244 		bitmap_set(chip->parameters.get_feature_list,
5245 			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5246 		bitmap_set(chip->parameters.set_feature_list,
5247 			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5248 	}
5249 	chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog);
5250 	chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers);
5251 	chip->parameters.onfi.tR = le16_to_cpu(p->t_r);
5252 	chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs);
5253 	chip->parameters.onfi.async_timing_mode =
5254 		le16_to_cpu(p->async_timing_mode);
5255 	chip->parameters.onfi.vendor_revision =
5256 		le16_to_cpu(p->vendor_revision);
5257 	memcpy(chip->parameters.onfi.vendor, p->vendor,
5258 	       sizeof(p->vendor));
5259 
5260 free_onfi_param_page:
5261 	kfree(p);
5262 	return ret;
5263 }
5264 
5265 /*
5266  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
5267  */
5268 static int nand_flash_detect_jedec(struct nand_chip *chip)
5269 {
5270 	struct mtd_info *mtd = nand_to_mtd(chip);
5271 	struct nand_jedec_params *p;
5272 	struct jedec_ecc_info *ecc;
5273 	int jedec_version = 0;
5274 	char id[5];
5275 	int i, val, ret;
5276 
5277 	/* Try JEDEC for unknown chip or LP */
5278 	ret = nand_readid_op(chip, 0x40, id, sizeof(id));
5279 	if (ret || strncmp(id, "JEDEC", sizeof(id)))
5280 		return 0;
5281 
5282 	/* JEDEC chip: allocate a buffer to hold its parameter page */
5283 	p = kzalloc(sizeof(*p), GFP_KERNEL);
5284 	if (!p)
5285 		return -ENOMEM;
5286 
5287 	ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
5288 	if (ret) {
5289 		ret = 0;
5290 		goto free_jedec_param_page;
5291 	}
5292 
5293 	for (i = 0; i < 3; i++) {
5294 		ret = nand_read_data_op(chip, p, sizeof(*p), true);
5295 		if (ret) {
5296 			ret = 0;
5297 			goto free_jedec_param_page;
5298 		}
5299 
5300 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
5301 				le16_to_cpu(p->crc))
5302 			break;
5303 	}
5304 
5305 	if (i == 3) {
5306 		pr_err("Could not find valid JEDEC parameter page; aborting\n");
5307 		goto free_jedec_param_page;
5308 	}
5309 
5310 	/* Check version */
5311 	val = le16_to_cpu(p->revision);
5312 	if (val & (1 << 2))
5313 		jedec_version = 10;
5314 	else if (val & (1 << 1))
5315 		jedec_version = 1; /* vendor specific version */
5316 
5317 	if (!jedec_version) {
5318 		pr_info("unsupported JEDEC version: %d\n", val);
5319 		goto free_jedec_param_page;
5320 	}
5321 
5322 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5323 	sanitize_string(p->model, sizeof(p->model));
5324 	strncpy(chip->parameters.model, p->model,
5325 		sizeof(chip->parameters.model) - 1);
5326 
5327 	mtd->writesize = le32_to_cpu(p->byte_per_page);
5328 
5329 	/* Please reference to the comment for nand_flash_detect_onfi. */
5330 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5331 	mtd->erasesize *= mtd->writesize;
5332 
5333 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5334 
5335 	/* Please reference to the comment for nand_flash_detect_onfi. */
5336 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5337 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5338 	chip->bits_per_cell = p->bits_per_cell;
5339 
5340 	if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
5341 		chip->options |= NAND_BUSWIDTH_16;
5342 
5343 	/* ECC info */
5344 	ecc = &p->ecc_info[0];
5345 
5346 	if (ecc->codeword_size >= 9) {
5347 		chip->ecc_strength_ds = ecc->ecc_bits;
5348 		chip->ecc_step_ds = 1 << ecc->codeword_size;
5349 	} else {
5350 		pr_warn("Invalid codeword size\n");
5351 	}
5352 
5353 free_jedec_param_page:
5354 	kfree(p);
5355 	return ret;
5356 }
5357 
5358 /*
5359  * nand_id_has_period - Check if an ID string has a given wraparound period
5360  * @id_data: the ID string
5361  * @arrlen: the length of the @id_data array
5362  * @period: the period of repitition
5363  *
5364  * Check if an ID string is repeated within a given sequence of bytes at
5365  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
5366  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
5367  * if the repetition has a period of @period; otherwise, returns zero.
5368  */
5369 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
5370 {
5371 	int i, j;
5372 	for (i = 0; i < period; i++)
5373 		for (j = i + period; j < arrlen; j += period)
5374 			if (id_data[i] != id_data[j])
5375 				return 0;
5376 	return 1;
5377 }
5378 
5379 /*
5380  * nand_id_len - Get the length of an ID string returned by CMD_READID
5381  * @id_data: the ID string
5382  * @arrlen: the length of the @id_data array
5383 
5384  * Returns the length of the ID string, according to known wraparound/trailing
5385  * zero patterns. If no pattern exists, returns the length of the array.
5386  */
5387 static int nand_id_len(u8 *id_data, int arrlen)
5388 {
5389 	int last_nonzero, period;
5390 
5391 	/* Find last non-zero byte */
5392 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
5393 		if (id_data[last_nonzero])
5394 			break;
5395 
5396 	/* All zeros */
5397 	if (last_nonzero < 0)
5398 		return 0;
5399 
5400 	/* Calculate wraparound period */
5401 	for (period = 1; period < arrlen; period++)
5402 		if (nand_id_has_period(id_data, arrlen, period))
5403 			break;
5404 
5405 	/* There's a repeated pattern */
5406 	if (period < arrlen)
5407 		return period;
5408 
5409 	/* There are trailing zeros */
5410 	if (last_nonzero < arrlen - 1)
5411 		return last_nonzero + 1;
5412 
5413 	/* No pattern detected */
5414 	return arrlen;
5415 }
5416 
5417 /* Extract the bits of per cell from the 3rd byte of the extended ID */
5418 static int nand_get_bits_per_cell(u8 cellinfo)
5419 {
5420 	int bits;
5421 
5422 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
5423 	bits >>= NAND_CI_CELLTYPE_SHIFT;
5424 	return bits + 1;
5425 }
5426 
5427 /*
5428  * Many new NAND share similar device ID codes, which represent the size of the
5429  * chip. The rest of the parameters must be decoded according to generic or
5430  * manufacturer-specific "extended ID" decoding patterns.
5431  */
5432 void nand_decode_ext_id(struct nand_chip *chip)
5433 {
5434 	struct mtd_info *mtd = nand_to_mtd(chip);
5435 	int extid;
5436 	u8 *id_data = chip->id.data;
5437 	/* The 3rd id byte holds MLC / multichip data */
5438 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5439 	/* The 4th id byte is the important one */
5440 	extid = id_data[3];
5441 
5442 	/* Calc pagesize */
5443 	mtd->writesize = 1024 << (extid & 0x03);
5444 	extid >>= 2;
5445 	/* Calc oobsize */
5446 	mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5447 	extid >>= 2;
5448 	/* Calc blocksize. Blocksize is multiples of 64KiB */
5449 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
5450 	extid >>= 2;
5451 	/* Get buswidth information */
5452 	if (extid & 0x1)
5453 		chip->options |= NAND_BUSWIDTH_16;
5454 }
5455 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5456 
5457 /*
5458  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5459  * decodes a matching ID table entry and assigns the MTD size parameters for
5460  * the chip.
5461  */
5462 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5463 {
5464 	struct mtd_info *mtd = nand_to_mtd(chip);
5465 
5466 	mtd->erasesize = type->erasesize;
5467 	mtd->writesize = type->pagesize;
5468 	mtd->oobsize = mtd->writesize / 32;
5469 
5470 	/* All legacy ID NAND are small-page, SLC */
5471 	chip->bits_per_cell = 1;
5472 }
5473 
5474 /*
5475  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5476  * heuristic patterns using various detected parameters (e.g., manufacturer,
5477  * page size, cell-type information).
5478  */
5479 static void nand_decode_bbm_options(struct nand_chip *chip)
5480 {
5481 	struct mtd_info *mtd = nand_to_mtd(chip);
5482 
5483 	/* Set the bad block position */
5484 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5485 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
5486 	else
5487 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
5488 }
5489 
5490 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5491 {
5492 	return type->id_len;
5493 }
5494 
5495 static bool find_full_id_nand(struct nand_chip *chip,
5496 			      struct nand_flash_dev *type)
5497 {
5498 	struct mtd_info *mtd = nand_to_mtd(chip);
5499 	u8 *id_data = chip->id.data;
5500 
5501 	if (!strncmp(type->id, id_data, type->id_len)) {
5502 		mtd->writesize = type->pagesize;
5503 		mtd->erasesize = type->erasesize;
5504 		mtd->oobsize = type->oobsize;
5505 
5506 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5507 		chip->chipsize = (uint64_t)type->chipsize << 20;
5508 		chip->options |= type->options;
5509 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
5510 		chip->ecc_step_ds = NAND_ECC_STEP(type);
5511 		chip->onfi_timing_mode_default =
5512 					type->onfi_timing_mode_default;
5513 
5514 		strncpy(chip->parameters.model, type->name,
5515 			sizeof(chip->parameters.model) - 1);
5516 
5517 		return true;
5518 	}
5519 	return false;
5520 }
5521 
5522 /*
5523  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5524  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5525  * table.
5526  */
5527 static void nand_manufacturer_detect(struct nand_chip *chip)
5528 {
5529 	/*
5530 	 * Try manufacturer detection if available and use
5531 	 * nand_decode_ext_id() otherwise.
5532 	 */
5533 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5534 	    chip->manufacturer.desc->ops->detect) {
5535 		/* The 3rd id byte holds MLC / multichip data */
5536 		chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5537 		chip->manufacturer.desc->ops->detect(chip);
5538 	} else {
5539 		nand_decode_ext_id(chip);
5540 	}
5541 }
5542 
5543 /*
5544  * Manufacturer initialization. This function is called for all NANDs including
5545  * ONFI and JEDEC compliant ones.
5546  * Manufacturer drivers should put all their specific initialization code in
5547  * their ->init() hook.
5548  */
5549 static int nand_manufacturer_init(struct nand_chip *chip)
5550 {
5551 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5552 	    !chip->manufacturer.desc->ops->init)
5553 		return 0;
5554 
5555 	return chip->manufacturer.desc->ops->init(chip);
5556 }
5557 
5558 /*
5559  * Manufacturer cleanup. This function is called for all NANDs including
5560  * ONFI and JEDEC compliant ones.
5561  * Manufacturer drivers should put all their specific cleanup code in their
5562  * ->cleanup() hook.
5563  */
5564 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5565 {
5566 	/* Release manufacturer private data */
5567 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5568 	    chip->manufacturer.desc->ops->cleanup)
5569 		chip->manufacturer.desc->ops->cleanup(chip);
5570 }
5571 
5572 /*
5573  * Get the flash and manufacturer id and lookup if the type is supported.
5574  */
5575 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5576 {
5577 	const struct nand_manufacturer *manufacturer;
5578 	struct mtd_info *mtd = nand_to_mtd(chip);
5579 	int busw, ret;
5580 	u8 *id_data = chip->id.data;
5581 	u8 maf_id, dev_id;
5582 
5583 	/*
5584 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5585 	 * after power-up.
5586 	 */
5587 	ret = nand_reset(chip, 0);
5588 	if (ret)
5589 		return ret;
5590 
5591 	/* Select the device */
5592 	chip->select_chip(mtd, 0);
5593 
5594 	/* Send the command for reading device ID */
5595 	ret = nand_readid_op(chip, 0, id_data, 2);
5596 	if (ret)
5597 		return ret;
5598 
5599 	/* Read manufacturer and device IDs */
5600 	maf_id = id_data[0];
5601 	dev_id = id_data[1];
5602 
5603 	/*
5604 	 * Try again to make sure, as some systems the bus-hold or other
5605 	 * interface concerns can cause random data which looks like a
5606 	 * possibly credible NAND flash to appear. If the two results do
5607 	 * not match, ignore the device completely.
5608 	 */
5609 
5610 	/* Read entire ID string */
5611 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5612 	if (ret)
5613 		return ret;
5614 
5615 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5616 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5617 			maf_id, dev_id, id_data[0], id_data[1]);
5618 		return -ENODEV;
5619 	}
5620 
5621 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5622 
5623 	/* Try to identify manufacturer */
5624 	manufacturer = nand_get_manufacturer(maf_id);
5625 	chip->manufacturer.desc = manufacturer;
5626 
5627 	if (!type)
5628 		type = nand_flash_ids;
5629 
5630 	/*
5631 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5632 	 * override it.
5633 	 * This is required to make sure initial NAND bus width set by the
5634 	 * NAND controller driver is coherent with the real NAND bus width
5635 	 * (extracted by auto-detection code).
5636 	 */
5637 	busw = chip->options & NAND_BUSWIDTH_16;
5638 
5639 	/*
5640 	 * The flag is only set (never cleared), reset it to its default value
5641 	 * before starting auto-detection.
5642 	 */
5643 	chip->options &= ~NAND_BUSWIDTH_16;
5644 
5645 	for (; type->name != NULL; type++) {
5646 		if (is_full_id_nand(type)) {
5647 			if (find_full_id_nand(chip, type))
5648 				goto ident_done;
5649 		} else if (dev_id == type->dev_id) {
5650 			break;
5651 		}
5652 	}
5653 
5654 	chip->parameters.onfi.version = 0;
5655 	if (!type->name || !type->pagesize) {
5656 		/* Check if the chip is ONFI compliant */
5657 		ret = nand_flash_detect_onfi(chip);
5658 		if (ret < 0)
5659 			return ret;
5660 		else if (ret)
5661 			goto ident_done;
5662 
5663 		/* Check if the chip is JEDEC compliant */
5664 		ret = nand_flash_detect_jedec(chip);
5665 		if (ret < 0)
5666 			return ret;
5667 		else if (ret)
5668 			goto ident_done;
5669 	}
5670 
5671 	if (!type->name)
5672 		return -ENODEV;
5673 
5674 	strncpy(chip->parameters.model, type->name,
5675 		sizeof(chip->parameters.model) - 1);
5676 
5677 	chip->chipsize = (uint64_t)type->chipsize << 20;
5678 
5679 	if (!type->pagesize)
5680 		nand_manufacturer_detect(chip);
5681 	else
5682 		nand_decode_id(chip, type);
5683 
5684 	/* Get chip options */
5685 	chip->options |= type->options;
5686 
5687 ident_done:
5688 	if (!mtd->name)
5689 		mtd->name = chip->parameters.model;
5690 
5691 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5692 		WARN_ON(busw & NAND_BUSWIDTH_16);
5693 		nand_set_defaults(chip);
5694 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5695 		/*
5696 		 * Check, if buswidth is correct. Hardware drivers should set
5697 		 * chip correct!
5698 		 */
5699 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5700 			maf_id, dev_id);
5701 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5702 			mtd->name);
5703 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5704 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5705 		return -EINVAL;
5706 	}
5707 
5708 	nand_decode_bbm_options(chip);
5709 
5710 	/* Calculate the address shift from the page size */
5711 	chip->page_shift = ffs(mtd->writesize) - 1;
5712 	/* Convert chipsize to number of pages per chip -1 */
5713 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
5714 
5715 	chip->bbt_erase_shift = chip->phys_erase_shift =
5716 		ffs(mtd->erasesize) - 1;
5717 	if (chip->chipsize & 0xffffffff)
5718 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
5719 	else {
5720 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
5721 		chip->chip_shift += 32 - 1;
5722 	}
5723 
5724 	if (chip->chip_shift - chip->page_shift > 16)
5725 		chip->options |= NAND_ROW_ADDR_3;
5726 
5727 	chip->badblockbits = 8;
5728 	chip->erase = single_erase;
5729 
5730 	/* Do not replace user supplied command function! */
5731 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5732 		chip->cmdfunc = nand_command_lp;
5733 
5734 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5735 		maf_id, dev_id);
5736 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5737 		chip->parameters.model);
5738 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5739 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5740 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5741 	return 0;
5742 }
5743 
5744 static const char * const nand_ecc_modes[] = {
5745 	[NAND_ECC_NONE]		= "none",
5746 	[NAND_ECC_SOFT]		= "soft",
5747 	[NAND_ECC_HW]		= "hw",
5748 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5749 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
5750 	[NAND_ECC_ON_DIE]	= "on-die",
5751 };
5752 
5753 static int of_get_nand_ecc_mode(struct device_node *np)
5754 {
5755 	const char *pm;
5756 	int err, i;
5757 
5758 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5759 	if (err < 0)
5760 		return err;
5761 
5762 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
5763 		if (!strcasecmp(pm, nand_ecc_modes[i]))
5764 			return i;
5765 
5766 	/*
5767 	 * For backward compatibility we support few obsoleted values that don't
5768 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
5769 	 * with other enums).
5770 	 */
5771 	if (!strcasecmp(pm, "soft_bch"))
5772 		return NAND_ECC_SOFT;
5773 
5774 	return -ENODEV;
5775 }
5776 
5777 static const char * const nand_ecc_algos[] = {
5778 	[NAND_ECC_HAMMING]	= "hamming",
5779 	[NAND_ECC_BCH]		= "bch",
5780 };
5781 
5782 static int of_get_nand_ecc_algo(struct device_node *np)
5783 {
5784 	const char *pm;
5785 	int err, i;
5786 
5787 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
5788 	if (!err) {
5789 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
5790 			if (!strcasecmp(pm, nand_ecc_algos[i]))
5791 				return i;
5792 		return -ENODEV;
5793 	}
5794 
5795 	/*
5796 	 * For backward compatibility we also read "nand-ecc-mode" checking
5797 	 * for some obsoleted values that were specifying ECC algorithm.
5798 	 */
5799 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5800 	if (err < 0)
5801 		return err;
5802 
5803 	if (!strcasecmp(pm, "soft"))
5804 		return NAND_ECC_HAMMING;
5805 	else if (!strcasecmp(pm, "soft_bch"))
5806 		return NAND_ECC_BCH;
5807 
5808 	return -ENODEV;
5809 }
5810 
5811 static int of_get_nand_ecc_step_size(struct device_node *np)
5812 {
5813 	int ret;
5814 	u32 val;
5815 
5816 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5817 	return ret ? ret : val;
5818 }
5819 
5820 static int of_get_nand_ecc_strength(struct device_node *np)
5821 {
5822 	int ret;
5823 	u32 val;
5824 
5825 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5826 	return ret ? ret : val;
5827 }
5828 
5829 static int of_get_nand_bus_width(struct device_node *np)
5830 {
5831 	u32 val;
5832 
5833 	if (of_property_read_u32(np, "nand-bus-width", &val))
5834 		return 8;
5835 
5836 	switch (val) {
5837 	case 8:
5838 	case 16:
5839 		return val;
5840 	default:
5841 		return -EIO;
5842 	}
5843 }
5844 
5845 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5846 {
5847 	return of_property_read_bool(np, "nand-on-flash-bbt");
5848 }
5849 
5850 static int nand_dt_init(struct nand_chip *chip)
5851 {
5852 	struct device_node *dn = nand_get_flash_node(chip);
5853 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5854 
5855 	if (!dn)
5856 		return 0;
5857 
5858 	if (of_get_nand_bus_width(dn) == 16)
5859 		chip->options |= NAND_BUSWIDTH_16;
5860 
5861 	if (of_get_nand_on_flash_bbt(dn))
5862 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5863 
5864 	ecc_mode = of_get_nand_ecc_mode(dn);
5865 	ecc_algo = of_get_nand_ecc_algo(dn);
5866 	ecc_strength = of_get_nand_ecc_strength(dn);
5867 	ecc_step = of_get_nand_ecc_step_size(dn);
5868 
5869 	if (ecc_mode >= 0)
5870 		chip->ecc.mode = ecc_mode;
5871 
5872 	if (ecc_algo >= 0)
5873 		chip->ecc.algo = ecc_algo;
5874 
5875 	if (ecc_strength >= 0)
5876 		chip->ecc.strength = ecc_strength;
5877 
5878 	if (ecc_step > 0)
5879 		chip->ecc.size = ecc_step;
5880 
5881 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
5882 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
5883 
5884 	return 0;
5885 }
5886 
5887 /**
5888  * nand_scan_ident - [NAND Interface] Scan for the NAND device
5889  * @mtd: MTD device structure
5890  * @maxchips: number of chips to scan for
5891  * @table: alternative NAND ID table
5892  *
5893  * This is the first phase of the normal nand_scan() function. It reads the
5894  * flash ID and sets up MTD fields accordingly.
5895  *
5896  */
5897 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
5898 		    struct nand_flash_dev *table)
5899 {
5900 	int i, nand_maf_id, nand_dev_id;
5901 	struct nand_chip *chip = mtd_to_nand(mtd);
5902 	int ret;
5903 
5904 	/* Enforce the right timings for reset/detection */
5905 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5906 
5907 	ret = nand_dt_init(chip);
5908 	if (ret)
5909 		return ret;
5910 
5911 	if (!mtd->name && mtd->dev.parent)
5912 		mtd->name = dev_name(mtd->dev.parent);
5913 
5914 	/*
5915 	 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
5916 	 * populated.
5917 	 */
5918 	if (!chip->exec_op) {
5919 		/*
5920 		 * Default functions assigned for ->cmdfunc() and
5921 		 * ->select_chip() both expect ->cmd_ctrl() to be populated.
5922 		 */
5923 		if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
5924 			pr_err("->cmd_ctrl() should be provided\n");
5925 			return -EINVAL;
5926 		}
5927 	}
5928 
5929 	/* Set the default functions */
5930 	nand_set_defaults(chip);
5931 
5932 	/* Read the flash type */
5933 	ret = nand_detect(chip, table);
5934 	if (ret) {
5935 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5936 			pr_warn("No NAND device found\n");
5937 		chip->select_chip(mtd, -1);
5938 		return ret;
5939 	}
5940 
5941 	nand_maf_id = chip->id.data[0];
5942 	nand_dev_id = chip->id.data[1];
5943 
5944 	chip->select_chip(mtd, -1);
5945 
5946 	/* Check for a chip array */
5947 	for (i = 1; i < maxchips; i++) {
5948 		u8 id[2];
5949 
5950 		/* See comment in nand_get_flash_type for reset */
5951 		nand_reset(chip, i);
5952 
5953 		chip->select_chip(mtd, i);
5954 		/* Send the command for reading device ID */
5955 		nand_readid_op(chip, 0, id, sizeof(id));
5956 		/* Read manufacturer and device IDs */
5957 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5958 			chip->select_chip(mtd, -1);
5959 			break;
5960 		}
5961 		chip->select_chip(mtd, -1);
5962 	}
5963 	if (i > 1)
5964 		pr_info("%d chips detected\n", i);
5965 
5966 	/* Store the number of chips and calc total size for mtd */
5967 	chip->numchips = i;
5968 	mtd->size = i * chip->chipsize;
5969 
5970 	return 0;
5971 }
5972 EXPORT_SYMBOL(nand_scan_ident);
5973 
5974 static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
5975 {
5976 	struct nand_chip *chip = mtd_to_nand(mtd);
5977 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5978 
5979 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5980 		return -EINVAL;
5981 
5982 	switch (ecc->algo) {
5983 	case NAND_ECC_HAMMING:
5984 		ecc->calculate = nand_calculate_ecc;
5985 		ecc->correct = nand_correct_data;
5986 		ecc->read_page = nand_read_page_swecc;
5987 		ecc->read_subpage = nand_read_subpage;
5988 		ecc->write_page = nand_write_page_swecc;
5989 		ecc->read_page_raw = nand_read_page_raw;
5990 		ecc->write_page_raw = nand_write_page_raw;
5991 		ecc->read_oob = nand_read_oob_std;
5992 		ecc->write_oob = nand_write_oob_std;
5993 		if (!ecc->size)
5994 			ecc->size = 256;
5995 		ecc->bytes = 3;
5996 		ecc->strength = 1;
5997 		return 0;
5998 	case NAND_ECC_BCH:
5999 		if (!mtd_nand_has_bch()) {
6000 			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
6001 			return -EINVAL;
6002 		}
6003 		ecc->calculate = nand_bch_calculate_ecc;
6004 		ecc->correct = nand_bch_correct_data;
6005 		ecc->read_page = nand_read_page_swecc;
6006 		ecc->read_subpage = nand_read_subpage;
6007 		ecc->write_page = nand_write_page_swecc;
6008 		ecc->read_page_raw = nand_read_page_raw;
6009 		ecc->write_page_raw = nand_write_page_raw;
6010 		ecc->read_oob = nand_read_oob_std;
6011 		ecc->write_oob = nand_write_oob_std;
6012 
6013 		/*
6014 		* Board driver should supply ecc.size and ecc.strength
6015 		* values to select how many bits are correctable.
6016 		* Otherwise, default to 4 bits for large page devices.
6017 		*/
6018 		if (!ecc->size && (mtd->oobsize >= 64)) {
6019 			ecc->size = 512;
6020 			ecc->strength = 4;
6021 		}
6022 
6023 		/*
6024 		 * if no ecc placement scheme was provided pickup the default
6025 		 * large page one.
6026 		 */
6027 		if (!mtd->ooblayout) {
6028 			/* handle large page devices only */
6029 			if (mtd->oobsize < 64) {
6030 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
6031 				return -EINVAL;
6032 			}
6033 
6034 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
6035 
6036 		}
6037 
6038 		/*
6039 		 * We can only maximize ECC config when the default layout is
6040 		 * used, otherwise we don't know how many bytes can really be
6041 		 * used.
6042 		 */
6043 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
6044 		    ecc->options & NAND_ECC_MAXIMIZE) {
6045 			int steps, bytes;
6046 
6047 			/* Always prefer 1k blocks over 512bytes ones */
6048 			ecc->size = 1024;
6049 			steps = mtd->writesize / ecc->size;
6050 
6051 			/* Reserve 2 bytes for the BBM */
6052 			bytes = (mtd->oobsize - 2) / steps;
6053 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
6054 		}
6055 
6056 		/* See nand_bch_init() for details. */
6057 		ecc->bytes = 0;
6058 		ecc->priv = nand_bch_init(mtd);
6059 		if (!ecc->priv) {
6060 			WARN(1, "BCH ECC initialization failed!\n");
6061 			return -EINVAL;
6062 		}
6063 		return 0;
6064 	default:
6065 		WARN(1, "Unsupported ECC algorithm!\n");
6066 		return -EINVAL;
6067 	}
6068 }
6069 
6070 /**
6071  * nand_check_ecc_caps - check the sanity of preset ECC settings
6072  * @chip: nand chip info structure
6073  * @caps: ECC caps info structure
6074  * @oobavail: OOB size that the ECC engine can use
6075  *
6076  * When ECC step size and strength are already set, check if they are supported
6077  * by the controller and the calculated ECC bytes fit within the chip's OOB.
6078  * On success, the calculated ECC bytes is set.
6079  */
6080 int nand_check_ecc_caps(struct nand_chip *chip,
6081 			const struct nand_ecc_caps *caps, int oobavail)
6082 {
6083 	struct mtd_info *mtd = nand_to_mtd(chip);
6084 	const struct nand_ecc_step_info *stepinfo;
6085 	int preset_step = chip->ecc.size;
6086 	int preset_strength = chip->ecc.strength;
6087 	int nsteps, ecc_bytes;
6088 	int i, j;
6089 
6090 	if (WARN_ON(oobavail < 0))
6091 		return -EINVAL;
6092 
6093 	if (!preset_step || !preset_strength)
6094 		return -ENODATA;
6095 
6096 	nsteps = mtd->writesize / preset_step;
6097 
6098 	for (i = 0; i < caps->nstepinfos; i++) {
6099 		stepinfo = &caps->stepinfos[i];
6100 
6101 		if (stepinfo->stepsize != preset_step)
6102 			continue;
6103 
6104 		for (j = 0; j < stepinfo->nstrengths; j++) {
6105 			if (stepinfo->strengths[j] != preset_strength)
6106 				continue;
6107 
6108 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6109 							 preset_strength);
6110 			if (WARN_ON_ONCE(ecc_bytes < 0))
6111 				return ecc_bytes;
6112 
6113 			if (ecc_bytes * nsteps > oobavail) {
6114 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6115 				       preset_step, preset_strength);
6116 				return -ENOSPC;
6117 			}
6118 
6119 			chip->ecc.bytes = ecc_bytes;
6120 
6121 			return 0;
6122 		}
6123 	}
6124 
6125 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6126 	       preset_step, preset_strength);
6127 
6128 	return -ENOTSUPP;
6129 }
6130 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
6131 
6132 /**
6133  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6134  * @chip: nand chip info structure
6135  * @caps: ECC engine caps info structure
6136  * @oobavail: OOB size that the ECC engine can use
6137  *
6138  * If a chip's ECC requirement is provided, try to meet it with the least
6139  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6140  * On success, the chosen ECC settings are set.
6141  */
6142 int nand_match_ecc_req(struct nand_chip *chip,
6143 		       const struct nand_ecc_caps *caps, int oobavail)
6144 {
6145 	struct mtd_info *mtd = nand_to_mtd(chip);
6146 	const struct nand_ecc_step_info *stepinfo;
6147 	int req_step = chip->ecc_step_ds;
6148 	int req_strength = chip->ecc_strength_ds;
6149 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6150 	int best_step, best_strength, best_ecc_bytes;
6151 	int best_ecc_bytes_total = INT_MAX;
6152 	int i, j;
6153 
6154 	if (WARN_ON(oobavail < 0))
6155 		return -EINVAL;
6156 
6157 	/* No information provided by the NAND chip */
6158 	if (!req_step || !req_strength)
6159 		return -ENOTSUPP;
6160 
6161 	/* number of correctable bits the chip requires in a page */
6162 	req_corr = mtd->writesize / req_step * req_strength;
6163 
6164 	for (i = 0; i < caps->nstepinfos; i++) {
6165 		stepinfo = &caps->stepinfos[i];
6166 		step_size = stepinfo->stepsize;
6167 
6168 		for (j = 0; j < stepinfo->nstrengths; j++) {
6169 			strength = stepinfo->strengths[j];
6170 
6171 			/*
6172 			 * If both step size and strength are smaller than the
6173 			 * chip's requirement, it is not easy to compare the
6174 			 * resulted reliability.
6175 			 */
6176 			if (step_size < req_step && strength < req_strength)
6177 				continue;
6178 
6179 			if (mtd->writesize % step_size)
6180 				continue;
6181 
6182 			nsteps = mtd->writesize / step_size;
6183 
6184 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6185 			if (WARN_ON_ONCE(ecc_bytes < 0))
6186 				continue;
6187 			ecc_bytes_total = ecc_bytes * nsteps;
6188 
6189 			if (ecc_bytes_total > oobavail ||
6190 			    strength * nsteps < req_corr)
6191 				continue;
6192 
6193 			/*
6194 			 * We assume the best is to meet the chip's requrement
6195 			 * with the least number of ECC bytes.
6196 			 */
6197 			if (ecc_bytes_total < best_ecc_bytes_total) {
6198 				best_ecc_bytes_total = ecc_bytes_total;
6199 				best_step = step_size;
6200 				best_strength = strength;
6201 				best_ecc_bytes = ecc_bytes;
6202 			}
6203 		}
6204 	}
6205 
6206 	if (best_ecc_bytes_total == INT_MAX)
6207 		return -ENOTSUPP;
6208 
6209 	chip->ecc.size = best_step;
6210 	chip->ecc.strength = best_strength;
6211 	chip->ecc.bytes = best_ecc_bytes;
6212 
6213 	return 0;
6214 }
6215 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
6216 
6217 /**
6218  * nand_maximize_ecc - choose the max ECC strength available
6219  * @chip: nand chip info structure
6220  * @caps: ECC engine caps info structure
6221  * @oobavail: OOB size that the ECC engine can use
6222  *
6223  * Choose the max ECC strength that is supported on the controller, and can fit
6224  * within the chip's OOB.  On success, the chosen ECC settings are set.
6225  */
6226 int nand_maximize_ecc(struct nand_chip *chip,
6227 		      const struct nand_ecc_caps *caps, int oobavail)
6228 {
6229 	struct mtd_info *mtd = nand_to_mtd(chip);
6230 	const struct nand_ecc_step_info *stepinfo;
6231 	int step_size, strength, nsteps, ecc_bytes, corr;
6232 	int best_corr = 0;
6233 	int best_step = 0;
6234 	int best_strength, best_ecc_bytes;
6235 	int i, j;
6236 
6237 	if (WARN_ON(oobavail < 0))
6238 		return -EINVAL;
6239 
6240 	for (i = 0; i < caps->nstepinfos; i++) {
6241 		stepinfo = &caps->stepinfos[i];
6242 		step_size = stepinfo->stepsize;
6243 
6244 		/* If chip->ecc.size is already set, respect it */
6245 		if (chip->ecc.size && step_size != chip->ecc.size)
6246 			continue;
6247 
6248 		for (j = 0; j < stepinfo->nstrengths; j++) {
6249 			strength = stepinfo->strengths[j];
6250 
6251 			if (mtd->writesize % step_size)
6252 				continue;
6253 
6254 			nsteps = mtd->writesize / step_size;
6255 
6256 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6257 			if (WARN_ON_ONCE(ecc_bytes < 0))
6258 				continue;
6259 
6260 			if (ecc_bytes * nsteps > oobavail)
6261 				continue;
6262 
6263 			corr = strength * nsteps;
6264 
6265 			/*
6266 			 * If the number of correctable bits is the same,
6267 			 * bigger step_size has more reliability.
6268 			 */
6269 			if (corr > best_corr ||
6270 			    (corr == best_corr && step_size > best_step)) {
6271 				best_corr = corr;
6272 				best_step = step_size;
6273 				best_strength = strength;
6274 				best_ecc_bytes = ecc_bytes;
6275 			}
6276 		}
6277 	}
6278 
6279 	if (!best_corr)
6280 		return -ENOTSUPP;
6281 
6282 	chip->ecc.size = best_step;
6283 	chip->ecc.strength = best_strength;
6284 	chip->ecc.bytes = best_ecc_bytes;
6285 
6286 	return 0;
6287 }
6288 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
6289 
6290 /*
6291  * Check if the chip configuration meet the datasheet requirements.
6292 
6293  * If our configuration corrects A bits per B bytes and the minimum
6294  * required correction level is X bits per Y bytes, then we must ensure
6295  * both of the following are true:
6296  *
6297  * (1) A / B >= X / Y
6298  * (2) A >= X
6299  *
6300  * Requirement (1) ensures we can correct for the required bitflip density.
6301  * Requirement (2) ensures we can correct even when all bitflips are clumped
6302  * in the same sector.
6303  */
6304 static bool nand_ecc_strength_good(struct mtd_info *mtd)
6305 {
6306 	struct nand_chip *chip = mtd_to_nand(mtd);
6307 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6308 	int corr, ds_corr;
6309 
6310 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
6311 		/* Not enough information */
6312 		return true;
6313 
6314 	/*
6315 	 * We get the number of corrected bits per page to compare
6316 	 * the correction density.
6317 	 */
6318 	corr = (mtd->writesize * ecc->strength) / ecc->size;
6319 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
6320 
6321 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
6322 }
6323 
6324 /**
6325  * nand_scan_tail - [NAND Interface] Scan for the NAND device
6326  * @mtd: MTD device structure
6327  *
6328  * This is the second phase of the normal nand_scan() function. It fills out
6329  * all the uninitialized function pointers with the defaults and scans for a
6330  * bad block table if appropriate.
6331  */
6332 int nand_scan_tail(struct mtd_info *mtd)
6333 {
6334 	struct nand_chip *chip = mtd_to_nand(mtd);
6335 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6336 	int ret, i;
6337 
6338 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6339 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6340 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6341 		return -EINVAL;
6342 	}
6343 
6344 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6345 	if (!chip->data_buf)
6346 		return -ENOMEM;
6347 
6348 	/*
6349 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6350 	 * selected when manufacturer->init() is called. They should be fixed
6351 	 * to explictly select the relevant die when interacting with the NAND
6352 	 * chip.
6353 	 */
6354 	chip->select_chip(mtd, 0);
6355 	ret = nand_manufacturer_init(chip);
6356 	chip->select_chip(mtd, -1);
6357 	if (ret)
6358 		goto err_free_buf;
6359 
6360 	/* Set the internal oob buffer location, just after the page data */
6361 	chip->oob_poi = chip->data_buf + mtd->writesize;
6362 
6363 	/*
6364 	 * If no default placement scheme is given, select an appropriate one.
6365 	 */
6366 	if (!mtd->ooblayout &&
6367 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
6368 		switch (mtd->oobsize) {
6369 		case 8:
6370 		case 16:
6371 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
6372 			break;
6373 		case 64:
6374 		case 128:
6375 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
6376 			break;
6377 		default:
6378 			/*
6379 			 * Expose the whole OOB area to users if ECC_NONE
6380 			 * is passed. We could do that for all kind of
6381 			 * ->oobsize, but we must keep the old large/small
6382 			 * page with ECC layout when ->oobsize <= 128 for
6383 			 * compatibility reasons.
6384 			 */
6385 			if (ecc->mode == NAND_ECC_NONE) {
6386 				mtd_set_ooblayout(mtd,
6387 						&nand_ooblayout_lp_ops);
6388 				break;
6389 			}
6390 
6391 			WARN(1, "No oob scheme defined for oobsize %d\n",
6392 				mtd->oobsize);
6393 			ret = -EINVAL;
6394 			goto err_nand_manuf_cleanup;
6395 		}
6396 	}
6397 
6398 	/*
6399 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6400 	 * selected and we have 256 byte pagesize fallback to software ECC
6401 	 */
6402 
6403 	switch (ecc->mode) {
6404 	case NAND_ECC_HW_OOB_FIRST:
6405 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
6406 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
6407 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6408 			ret = -EINVAL;
6409 			goto err_nand_manuf_cleanup;
6410 		}
6411 		if (!ecc->read_page)
6412 			ecc->read_page = nand_read_page_hwecc_oob_first;
6413 
6414 	case NAND_ECC_HW:
6415 		/* Use standard hwecc read page function? */
6416 		if (!ecc->read_page)
6417 			ecc->read_page = nand_read_page_hwecc;
6418 		if (!ecc->write_page)
6419 			ecc->write_page = nand_write_page_hwecc;
6420 		if (!ecc->read_page_raw)
6421 			ecc->read_page_raw = nand_read_page_raw;
6422 		if (!ecc->write_page_raw)
6423 			ecc->write_page_raw = nand_write_page_raw;
6424 		if (!ecc->read_oob)
6425 			ecc->read_oob = nand_read_oob_std;
6426 		if (!ecc->write_oob)
6427 			ecc->write_oob = nand_write_oob_std;
6428 		if (!ecc->read_subpage)
6429 			ecc->read_subpage = nand_read_subpage;
6430 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
6431 			ecc->write_subpage = nand_write_subpage_hwecc;
6432 
6433 	case NAND_ECC_HW_SYNDROME:
6434 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
6435 		    (!ecc->read_page ||
6436 		     ecc->read_page == nand_read_page_hwecc ||
6437 		     !ecc->write_page ||
6438 		     ecc->write_page == nand_write_page_hwecc)) {
6439 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6440 			ret = -EINVAL;
6441 			goto err_nand_manuf_cleanup;
6442 		}
6443 		/* Use standard syndrome read/write page function? */
6444 		if (!ecc->read_page)
6445 			ecc->read_page = nand_read_page_syndrome;
6446 		if (!ecc->write_page)
6447 			ecc->write_page = nand_write_page_syndrome;
6448 		if (!ecc->read_page_raw)
6449 			ecc->read_page_raw = nand_read_page_raw_syndrome;
6450 		if (!ecc->write_page_raw)
6451 			ecc->write_page_raw = nand_write_page_raw_syndrome;
6452 		if (!ecc->read_oob)
6453 			ecc->read_oob = nand_read_oob_syndrome;
6454 		if (!ecc->write_oob)
6455 			ecc->write_oob = nand_write_oob_syndrome;
6456 
6457 		if (mtd->writesize >= ecc->size) {
6458 			if (!ecc->strength) {
6459 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6460 				ret = -EINVAL;
6461 				goto err_nand_manuf_cleanup;
6462 			}
6463 			break;
6464 		}
6465 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6466 			ecc->size, mtd->writesize);
6467 		ecc->mode = NAND_ECC_SOFT;
6468 		ecc->algo = NAND_ECC_HAMMING;
6469 
6470 	case NAND_ECC_SOFT:
6471 		ret = nand_set_ecc_soft_ops(mtd);
6472 		if (ret) {
6473 			ret = -EINVAL;
6474 			goto err_nand_manuf_cleanup;
6475 		}
6476 		break;
6477 
6478 	case NAND_ECC_ON_DIE:
6479 		if (!ecc->read_page || !ecc->write_page) {
6480 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6481 			ret = -EINVAL;
6482 			goto err_nand_manuf_cleanup;
6483 		}
6484 		if (!ecc->read_oob)
6485 			ecc->read_oob = nand_read_oob_std;
6486 		if (!ecc->write_oob)
6487 			ecc->write_oob = nand_write_oob_std;
6488 		break;
6489 
6490 	case NAND_ECC_NONE:
6491 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
6492 		ecc->read_page = nand_read_page_raw;
6493 		ecc->write_page = nand_write_page_raw;
6494 		ecc->read_oob = nand_read_oob_std;
6495 		ecc->read_page_raw = nand_read_page_raw;
6496 		ecc->write_page_raw = nand_write_page_raw;
6497 		ecc->write_oob = nand_write_oob_std;
6498 		ecc->size = mtd->writesize;
6499 		ecc->bytes = 0;
6500 		ecc->strength = 0;
6501 		break;
6502 
6503 	default:
6504 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
6505 		ret = -EINVAL;
6506 		goto err_nand_manuf_cleanup;
6507 	}
6508 
6509 	if (ecc->correct || ecc->calculate) {
6510 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6511 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6512 		if (!ecc->calc_buf || !ecc->code_buf) {
6513 			ret = -ENOMEM;
6514 			goto err_nand_manuf_cleanup;
6515 		}
6516 	}
6517 
6518 	/* For many systems, the standard OOB write also works for raw */
6519 	if (!ecc->read_oob_raw)
6520 		ecc->read_oob_raw = ecc->read_oob;
6521 	if (!ecc->write_oob_raw)
6522 		ecc->write_oob_raw = ecc->write_oob;
6523 
6524 	/* propagate ecc info to mtd_info */
6525 	mtd->ecc_strength = ecc->strength;
6526 	mtd->ecc_step_size = ecc->size;
6527 
6528 	/*
6529 	 * Set the number of read / write steps for one page depending on ECC
6530 	 * mode.
6531 	 */
6532 	ecc->steps = mtd->writesize / ecc->size;
6533 	if (ecc->steps * ecc->size != mtd->writesize) {
6534 		WARN(1, "Invalid ECC parameters\n");
6535 		ret = -EINVAL;
6536 		goto err_nand_manuf_cleanup;
6537 	}
6538 	ecc->total = ecc->steps * ecc->bytes;
6539 	if (ecc->total > mtd->oobsize) {
6540 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6541 		ret = -EINVAL;
6542 		goto err_nand_manuf_cleanup;
6543 	}
6544 
6545 	/*
6546 	 * The number of bytes available for a client to place data into
6547 	 * the out of band area.
6548 	 */
6549 	ret = mtd_ooblayout_count_freebytes(mtd);
6550 	if (ret < 0)
6551 		ret = 0;
6552 
6553 	mtd->oobavail = ret;
6554 
6555 	/* ECC sanity check: warn if it's too weak */
6556 	if (!nand_ecc_strength_good(mtd))
6557 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
6558 			mtd->name);
6559 
6560 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6561 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6562 		switch (ecc->steps) {
6563 		case 2:
6564 			mtd->subpage_sft = 1;
6565 			break;
6566 		case 4:
6567 		case 8:
6568 		case 16:
6569 			mtd->subpage_sft = 2;
6570 			break;
6571 		}
6572 	}
6573 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6574 
6575 	/* Initialize state */
6576 	chip->state = FL_READY;
6577 
6578 	/* Invalidate the pagebuffer reference */
6579 	chip->pagebuf = -1;
6580 
6581 	/* Large page NAND with SOFT_ECC should support subpage reads */
6582 	switch (ecc->mode) {
6583 	case NAND_ECC_SOFT:
6584 		if (chip->page_shift > 9)
6585 			chip->options |= NAND_SUBPAGE_READ;
6586 		break;
6587 
6588 	default:
6589 		break;
6590 	}
6591 
6592 	/* Fill in remaining MTD driver data */
6593 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
6594 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
6595 						MTD_CAP_NANDFLASH;
6596 	mtd->_erase = nand_erase;
6597 	mtd->_point = NULL;
6598 	mtd->_unpoint = NULL;
6599 	mtd->_panic_write = panic_nand_write;
6600 	mtd->_read_oob = nand_read_oob;
6601 	mtd->_write_oob = nand_write_oob;
6602 	mtd->_sync = nand_sync;
6603 	mtd->_lock = NULL;
6604 	mtd->_unlock = NULL;
6605 	mtd->_suspend = nand_suspend;
6606 	mtd->_resume = nand_resume;
6607 	mtd->_reboot = nand_shutdown;
6608 	mtd->_block_isreserved = nand_block_isreserved;
6609 	mtd->_block_isbad = nand_block_isbad;
6610 	mtd->_block_markbad = nand_block_markbad;
6611 	mtd->_max_bad_blocks = nand_max_bad_blocks;
6612 	mtd->writebufsize = mtd->writesize;
6613 
6614 	/*
6615 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6616 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6617 	 * properly set.
6618 	 */
6619 	if (!mtd->bitflip_threshold)
6620 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6621 
6622 	/* Initialize the ->data_interface field. */
6623 	ret = nand_init_data_interface(chip);
6624 	if (ret)
6625 		goto err_nand_manuf_cleanup;
6626 
6627 	/* Enter fastest possible mode on all dies. */
6628 	for (i = 0; i < chip->numchips; i++) {
6629 		ret = nand_setup_data_interface(chip, i);
6630 		if (ret)
6631 			goto err_nand_manuf_cleanup;
6632 	}
6633 
6634 	/* Check, if we should skip the bad block table scan */
6635 	if (chip->options & NAND_SKIP_BBTSCAN)
6636 		return 0;
6637 
6638 	/* Build bad block table */
6639 	ret = chip->scan_bbt(mtd);
6640 	if (ret)
6641 		goto err_nand_manuf_cleanup;
6642 
6643 	return 0;
6644 
6645 
6646 err_nand_manuf_cleanup:
6647 	nand_manufacturer_cleanup(chip);
6648 
6649 err_free_buf:
6650 	kfree(chip->data_buf);
6651 	kfree(ecc->code_buf);
6652 	kfree(ecc->calc_buf);
6653 
6654 	return ret;
6655 }
6656 EXPORT_SYMBOL(nand_scan_tail);
6657 
6658 /*
6659  * is_module_text_address() isn't exported, and it's mostly a pointless
6660  * test if this is a module _anyway_ -- they'd have to try _really_ hard
6661  * to call us from in-kernel code if the core NAND support is modular.
6662  */
6663 #ifdef MODULE
6664 #define caller_is_module() (1)
6665 #else
6666 #define caller_is_module() \
6667 	is_module_text_address((unsigned long)__builtin_return_address(0))
6668 #endif
6669 
6670 /**
6671  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6672  * @mtd: MTD device structure
6673  * @maxchips: number of chips to scan for
6674  * @ids: optional flash IDs table
6675  *
6676  * This fills out all the uninitialized function pointers with the defaults.
6677  * The flash ID is read and the mtd/chip structures are filled with the
6678  * appropriate values.
6679  */
6680 int nand_scan_with_ids(struct mtd_info *mtd, int maxchips,
6681 		       struct nand_flash_dev *ids)
6682 {
6683 	int ret;
6684 
6685 	ret = nand_scan_ident(mtd, maxchips, ids);
6686 	if (!ret)
6687 		ret = nand_scan_tail(mtd);
6688 	return ret;
6689 }
6690 EXPORT_SYMBOL(nand_scan_with_ids);
6691 
6692 /**
6693  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6694  * @chip: NAND chip object
6695  */
6696 void nand_cleanup(struct nand_chip *chip)
6697 {
6698 	if (chip->ecc.mode == NAND_ECC_SOFT &&
6699 	    chip->ecc.algo == NAND_ECC_BCH)
6700 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6701 
6702 	/* Free bad block table memory */
6703 	kfree(chip->bbt);
6704 	kfree(chip->data_buf);
6705 	kfree(chip->ecc.code_buf);
6706 	kfree(chip->ecc.calc_buf);
6707 
6708 	/* Free bad block descriptor memory */
6709 	if (chip->badblock_pattern && chip->badblock_pattern->options
6710 			& NAND_BBT_DYNAMICSTRUCT)
6711 		kfree(chip->badblock_pattern);
6712 
6713 	/* Free manufacturer priv data. */
6714 	nand_manufacturer_cleanup(chip);
6715 }
6716 EXPORT_SYMBOL_GPL(nand_cleanup);
6717 
6718 /**
6719  * nand_release - [NAND Interface] Unregister the MTD device and free resources
6720  *		  held by the NAND device
6721  * @mtd: MTD device structure
6722  */
6723 void nand_release(struct mtd_info *mtd)
6724 {
6725 	mtd_device_unregister(mtd);
6726 	nand_cleanup(mtd_to_nand(mtd));
6727 }
6728 EXPORT_SYMBOL_GPL(nand_release);
6729 
6730 MODULE_LICENSE("GPL");
6731 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6732 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6733 MODULE_DESCRIPTION("Generic NAND flash driver code");
6734