1 /* 2 * Overview: 3 * This is the generic MTD driver for NAND flash devices. It should be 4 * capable of working with almost all NAND chips currently available. 5 * 6 * Additional technical information is available on 7 * http://www.linux-mtd.infradead.org/doc/nand.html 8 * 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 11 * 12 * Credits: 13 * David Woodhouse for adding multichip support 14 * 15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 16 * rework for 2K page size chips 17 * 18 * TODO: 19 * Enable cached programming for 2k page size chips 20 * Check, if mtd->ecctype should be set to MTD_ECC_HW 21 * if we have HW ECC support. 22 * BBT table is not serialized, has to be fixed 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License version 2 as 26 * published by the Free Software Foundation. 27 * 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #include <linux/module.h> 33 #include <linux/delay.h> 34 #include <linux/errno.h> 35 #include <linux/err.h> 36 #include <linux/sched.h> 37 #include <linux/slab.h> 38 #include <linux/mm.h> 39 #include <linux/nmi.h> 40 #include <linux/types.h> 41 #include <linux/mtd/mtd.h> 42 #include <linux/mtd/rawnand.h> 43 #include <linux/mtd/nand_ecc.h> 44 #include <linux/mtd/nand_bch.h> 45 #include <linux/interrupt.h> 46 #include <linux/bitops.h> 47 #include <linux/io.h> 48 #include <linux/mtd/partitions.h> 49 #include <linux/of.h> 50 51 static int nand_get_device(struct mtd_info *mtd, int new_state); 52 53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, 54 struct mtd_oob_ops *ops); 55 56 /* Define default oob placement schemes for large and small page devices */ 57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 58 struct mtd_oob_region *oobregion) 59 { 60 struct nand_chip *chip = mtd_to_nand(mtd); 61 struct nand_ecc_ctrl *ecc = &chip->ecc; 62 63 if (section > 1) 64 return -ERANGE; 65 66 if (!section) { 67 oobregion->offset = 0; 68 if (mtd->oobsize == 16) 69 oobregion->length = 4; 70 else 71 oobregion->length = 3; 72 } else { 73 if (mtd->oobsize == 8) 74 return -ERANGE; 75 76 oobregion->offset = 6; 77 oobregion->length = ecc->total - 4; 78 } 79 80 return 0; 81 } 82 83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 84 struct mtd_oob_region *oobregion) 85 { 86 if (section > 1) 87 return -ERANGE; 88 89 if (mtd->oobsize == 16) { 90 if (section) 91 return -ERANGE; 92 93 oobregion->length = 8; 94 oobregion->offset = 8; 95 } else { 96 oobregion->length = 2; 97 if (!section) 98 oobregion->offset = 3; 99 else 100 oobregion->offset = 6; 101 } 102 103 return 0; 104 } 105 106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 107 .ecc = nand_ooblayout_ecc_sp, 108 .free = nand_ooblayout_free_sp, 109 }; 110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 111 112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 113 struct mtd_oob_region *oobregion) 114 { 115 struct nand_chip *chip = mtd_to_nand(mtd); 116 struct nand_ecc_ctrl *ecc = &chip->ecc; 117 118 if (section || !ecc->total) 119 return -ERANGE; 120 121 oobregion->length = ecc->total; 122 oobregion->offset = mtd->oobsize - oobregion->length; 123 124 return 0; 125 } 126 127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 128 struct mtd_oob_region *oobregion) 129 { 130 struct nand_chip *chip = mtd_to_nand(mtd); 131 struct nand_ecc_ctrl *ecc = &chip->ecc; 132 133 if (section) 134 return -ERANGE; 135 136 oobregion->length = mtd->oobsize - ecc->total - 2; 137 oobregion->offset = 2; 138 139 return 0; 140 } 141 142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 143 .ecc = nand_ooblayout_ecc_lp, 144 .free = nand_ooblayout_free_lp, 145 }; 146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 147 148 /* 149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 150 * are placed at a fixed offset. 151 */ 152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 153 struct mtd_oob_region *oobregion) 154 { 155 struct nand_chip *chip = mtd_to_nand(mtd); 156 struct nand_ecc_ctrl *ecc = &chip->ecc; 157 158 if (section) 159 return -ERANGE; 160 161 switch (mtd->oobsize) { 162 case 64: 163 oobregion->offset = 40; 164 break; 165 case 128: 166 oobregion->offset = 80; 167 break; 168 default: 169 return -EINVAL; 170 } 171 172 oobregion->length = ecc->total; 173 if (oobregion->offset + oobregion->length > mtd->oobsize) 174 return -ERANGE; 175 176 return 0; 177 } 178 179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 180 struct mtd_oob_region *oobregion) 181 { 182 struct nand_chip *chip = mtd_to_nand(mtd); 183 struct nand_ecc_ctrl *ecc = &chip->ecc; 184 int ecc_offset = 0; 185 186 if (section < 0 || section > 1) 187 return -ERANGE; 188 189 switch (mtd->oobsize) { 190 case 64: 191 ecc_offset = 40; 192 break; 193 case 128: 194 ecc_offset = 80; 195 break; 196 default: 197 return -EINVAL; 198 } 199 200 if (section == 0) { 201 oobregion->offset = 2; 202 oobregion->length = ecc_offset - 2; 203 } else { 204 oobregion->offset = ecc_offset + ecc->total; 205 oobregion->length = mtd->oobsize - oobregion->offset; 206 } 207 208 return 0; 209 } 210 211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 212 .ecc = nand_ooblayout_ecc_lp_hamming, 213 .free = nand_ooblayout_free_lp_hamming, 214 }; 215 216 static int check_offs_len(struct mtd_info *mtd, 217 loff_t ofs, uint64_t len) 218 { 219 struct nand_chip *chip = mtd_to_nand(mtd); 220 int ret = 0; 221 222 /* Start address must align on block boundary */ 223 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 224 pr_debug("%s: unaligned address\n", __func__); 225 ret = -EINVAL; 226 } 227 228 /* Length must align on block boundary */ 229 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 230 pr_debug("%s: length not block aligned\n", __func__); 231 ret = -EINVAL; 232 } 233 234 return ret; 235 } 236 237 /** 238 * nand_release_device - [GENERIC] release chip 239 * @mtd: MTD device structure 240 * 241 * Release chip lock and wake up anyone waiting on the device. 242 */ 243 static void nand_release_device(struct mtd_info *mtd) 244 { 245 struct nand_chip *chip = mtd_to_nand(mtd); 246 247 /* Release the controller and the chip */ 248 spin_lock(&chip->controller->lock); 249 chip->controller->active = NULL; 250 chip->state = FL_READY; 251 wake_up(&chip->controller->wq); 252 spin_unlock(&chip->controller->lock); 253 } 254 255 /** 256 * nand_read_byte - [DEFAULT] read one byte from the chip 257 * @mtd: MTD device structure 258 * 259 * Default read function for 8bit buswidth 260 */ 261 static uint8_t nand_read_byte(struct mtd_info *mtd) 262 { 263 struct nand_chip *chip = mtd_to_nand(mtd); 264 return readb(chip->IO_ADDR_R); 265 } 266 267 /** 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip 269 * @mtd: MTD device structure 270 * 271 * Default read function for 16bit buswidth with endianness conversion. 272 * 273 */ 274 static uint8_t nand_read_byte16(struct mtd_info *mtd) 275 { 276 struct nand_chip *chip = mtd_to_nand(mtd); 277 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); 278 } 279 280 /** 281 * nand_read_word - [DEFAULT] read one word from the chip 282 * @mtd: MTD device structure 283 * 284 * Default read function for 16bit buswidth without endianness conversion. 285 */ 286 static u16 nand_read_word(struct mtd_info *mtd) 287 { 288 struct nand_chip *chip = mtd_to_nand(mtd); 289 return readw(chip->IO_ADDR_R); 290 } 291 292 /** 293 * nand_select_chip - [DEFAULT] control CE line 294 * @mtd: MTD device structure 295 * @chipnr: chipnumber to select, -1 for deselect 296 * 297 * Default select function for 1 chip devices. 298 */ 299 static void nand_select_chip(struct mtd_info *mtd, int chipnr) 300 { 301 struct nand_chip *chip = mtd_to_nand(mtd); 302 303 switch (chipnr) { 304 case -1: 305 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 306 break; 307 case 0: 308 break; 309 310 default: 311 BUG(); 312 } 313 } 314 315 /** 316 * nand_write_byte - [DEFAULT] write single byte to chip 317 * @mtd: MTD device structure 318 * @byte: value to write 319 * 320 * Default function to write a byte to I/O[7:0] 321 */ 322 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) 323 { 324 struct nand_chip *chip = mtd_to_nand(mtd); 325 326 chip->write_buf(mtd, &byte, 1); 327 } 328 329 /** 330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 331 * @mtd: MTD device structure 332 * @byte: value to write 333 * 334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. 335 */ 336 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) 337 { 338 struct nand_chip *chip = mtd_to_nand(mtd); 339 uint16_t word = byte; 340 341 /* 342 * It's not entirely clear what should happen to I/O[15:8] when writing 343 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: 344 * 345 * When the host supports a 16-bit bus width, only data is 346 * transferred at the 16-bit width. All address and command line 347 * transfers shall use only the lower 8-bits of the data bus. During 348 * command transfers, the host may place any value on the upper 349 * 8-bits of the data bus. During address transfers, the host shall 350 * set the upper 8-bits of the data bus to 00h. 351 * 352 * One user of the write_byte callback is nand_set_features. The 353 * four parameters are specified to be written to I/O[7:0], but this is 354 * neither an address nor a command transfer. Let's assume a 0 on the 355 * upper I/O lines is OK. 356 */ 357 chip->write_buf(mtd, (uint8_t *)&word, 2); 358 } 359 360 /** 361 * nand_write_buf - [DEFAULT] write buffer to chip 362 * @mtd: MTD device structure 363 * @buf: data buffer 364 * @len: number of bytes to write 365 * 366 * Default write function for 8bit buswidth. 367 */ 368 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) 369 { 370 struct nand_chip *chip = mtd_to_nand(mtd); 371 372 iowrite8_rep(chip->IO_ADDR_W, buf, len); 373 } 374 375 /** 376 * nand_read_buf - [DEFAULT] read chip data into buffer 377 * @mtd: MTD device structure 378 * @buf: buffer to store date 379 * @len: number of bytes to read 380 * 381 * Default read function for 8bit buswidth. 382 */ 383 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) 384 { 385 struct nand_chip *chip = mtd_to_nand(mtd); 386 387 ioread8_rep(chip->IO_ADDR_R, buf, len); 388 } 389 390 /** 391 * nand_write_buf16 - [DEFAULT] write buffer to chip 392 * @mtd: MTD device structure 393 * @buf: data buffer 394 * @len: number of bytes to write 395 * 396 * Default write function for 16bit buswidth. 397 */ 398 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) 399 { 400 struct nand_chip *chip = mtd_to_nand(mtd); 401 u16 *p = (u16 *) buf; 402 403 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); 404 } 405 406 /** 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer 408 * @mtd: MTD device structure 409 * @buf: buffer to store date 410 * @len: number of bytes to read 411 * 412 * Default read function for 16bit buswidth. 413 */ 414 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) 415 { 416 struct nand_chip *chip = mtd_to_nand(mtd); 417 u16 *p = (u16 *) buf; 418 419 ioread16_rep(chip->IO_ADDR_R, p, len >> 1); 420 } 421 422 /** 423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 424 * @mtd: MTD device structure 425 * @ofs: offset from device start 426 * 427 * Check, if the block is bad. 428 */ 429 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) 430 { 431 int page, page_end, res; 432 struct nand_chip *chip = mtd_to_nand(mtd); 433 u8 bad; 434 435 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 436 ofs += mtd->erasesize - mtd->writesize; 437 438 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 439 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); 440 441 for (; page < page_end; page++) { 442 res = chip->ecc.read_oob(mtd, chip, page); 443 if (res) 444 return res; 445 446 bad = chip->oob_poi[chip->badblockpos]; 447 448 if (likely(chip->badblockbits == 8)) 449 res = bad != 0xFF; 450 else 451 res = hweight8(bad) < chip->badblockbits; 452 if (res) 453 return res; 454 } 455 456 return 0; 457 } 458 459 /** 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 461 * @mtd: MTD device structure 462 * @ofs: offset from device start 463 * 464 * This is the default implementation, which can be overridden by a hardware 465 * specific driver. It provides the details for writing a bad block marker to a 466 * block. 467 */ 468 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 469 { 470 struct nand_chip *chip = mtd_to_nand(mtd); 471 struct mtd_oob_ops ops; 472 uint8_t buf[2] = { 0, 0 }; 473 int ret = 0, res, i = 0; 474 475 memset(&ops, 0, sizeof(ops)); 476 ops.oobbuf = buf; 477 ops.ooboffs = chip->badblockpos; 478 if (chip->options & NAND_BUSWIDTH_16) { 479 ops.ooboffs &= ~0x01; 480 ops.len = ops.ooblen = 2; 481 } else { 482 ops.len = ops.ooblen = 1; 483 } 484 ops.mode = MTD_OPS_PLACE_OOB; 485 486 /* Write to first/last page(s) if necessary */ 487 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 488 ofs += mtd->erasesize - mtd->writesize; 489 do { 490 res = nand_do_write_oob(mtd, ofs, &ops); 491 if (!ret) 492 ret = res; 493 494 i++; 495 ofs += mtd->writesize; 496 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); 497 498 return ret; 499 } 500 501 /** 502 * nand_block_markbad_lowlevel - mark a block bad 503 * @mtd: MTD device structure 504 * @ofs: offset from device start 505 * 506 * This function performs the generic NAND bad block marking steps (i.e., bad 507 * block table(s) and/or marker(s)). We only allow the hardware driver to 508 * specify how to write bad block markers to OOB (chip->block_markbad). 509 * 510 * We try operations in the following order: 511 * 512 * (1) erase the affected block, to allow OOB marker to be written cleanly 513 * (2) write bad block marker to OOB area of affected block (unless flag 514 * NAND_BBT_NO_OOB_BBM is present) 515 * (3) update the BBT 516 * 517 * Note that we retain the first error encountered in (2) or (3), finish the 518 * procedures, and dump the error in the end. 519 */ 520 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) 521 { 522 struct nand_chip *chip = mtd_to_nand(mtd); 523 int res, ret = 0; 524 525 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 526 struct erase_info einfo; 527 528 /* Attempt erase before marking OOB */ 529 memset(&einfo, 0, sizeof(einfo)); 530 einfo.addr = ofs; 531 einfo.len = 1ULL << chip->phys_erase_shift; 532 nand_erase_nand(mtd, &einfo, 0); 533 534 /* Write bad block marker to OOB */ 535 nand_get_device(mtd, FL_WRITING); 536 ret = chip->block_markbad(mtd, ofs); 537 nand_release_device(mtd); 538 } 539 540 /* Mark block bad in BBT */ 541 if (chip->bbt) { 542 res = nand_markbad_bbt(mtd, ofs); 543 if (!ret) 544 ret = res; 545 } 546 547 if (!ret) 548 mtd->ecc_stats.badblocks++; 549 550 return ret; 551 } 552 553 /** 554 * nand_check_wp - [GENERIC] check if the chip is write protected 555 * @mtd: MTD device structure 556 * 557 * Check, if the device is write protected. The function expects, that the 558 * device is already selected. 559 */ 560 static int nand_check_wp(struct mtd_info *mtd) 561 { 562 struct nand_chip *chip = mtd_to_nand(mtd); 563 u8 status; 564 int ret; 565 566 /* Broken xD cards report WP despite being writable */ 567 if (chip->options & NAND_BROKEN_XD) 568 return 0; 569 570 /* Check the WP bit */ 571 ret = nand_status_op(chip, &status); 572 if (ret) 573 return ret; 574 575 return status & NAND_STATUS_WP ? 0 : 1; 576 } 577 578 /** 579 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 580 * @mtd: MTD device structure 581 * @ofs: offset from device start 582 * 583 * Check if the block is marked as reserved. 584 */ 585 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 586 { 587 struct nand_chip *chip = mtd_to_nand(mtd); 588 589 if (!chip->bbt) 590 return 0; 591 /* Return info from the table */ 592 return nand_isreserved_bbt(mtd, ofs); 593 } 594 595 /** 596 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 597 * @mtd: MTD device structure 598 * @ofs: offset from device start 599 * @allowbbt: 1, if its allowed to access the bbt area 600 * 601 * Check, if the block is bad. Either by reading the bad block table or 602 * calling of the scan function. 603 */ 604 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) 605 { 606 struct nand_chip *chip = mtd_to_nand(mtd); 607 608 if (!chip->bbt) 609 return chip->block_bad(mtd, ofs); 610 611 /* Return info from the table */ 612 return nand_isbad_bbt(mtd, ofs, allowbbt); 613 } 614 615 /** 616 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 617 * @mtd: MTD device structure 618 * @timeo: Timeout 619 * 620 * Helper function for nand_wait_ready used when needing to wait in interrupt 621 * context. 622 */ 623 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) 624 { 625 struct nand_chip *chip = mtd_to_nand(mtd); 626 int i; 627 628 /* Wait for the device to get ready */ 629 for (i = 0; i < timeo; i++) { 630 if (chip->dev_ready(mtd)) 631 break; 632 touch_softlockup_watchdog(); 633 mdelay(1); 634 } 635 } 636 637 /** 638 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 639 * @mtd: MTD device structure 640 * 641 * Wait for the ready pin after a command, and warn if a timeout occurs. 642 */ 643 void nand_wait_ready(struct mtd_info *mtd) 644 { 645 struct nand_chip *chip = mtd_to_nand(mtd); 646 unsigned long timeo = 400; 647 648 if (in_interrupt() || oops_in_progress) 649 return panic_nand_wait_ready(mtd, timeo); 650 651 /* Wait until command is processed or timeout occurs */ 652 timeo = jiffies + msecs_to_jiffies(timeo); 653 do { 654 if (chip->dev_ready(mtd)) 655 return; 656 cond_resched(); 657 } while (time_before(jiffies, timeo)); 658 659 if (!chip->dev_ready(mtd)) 660 pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); 661 } 662 EXPORT_SYMBOL_GPL(nand_wait_ready); 663 664 /** 665 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. 666 * @mtd: MTD device structure 667 * @timeo: Timeout in ms 668 * 669 * Wait for status ready (i.e. command done) or timeout. 670 */ 671 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) 672 { 673 register struct nand_chip *chip = mtd_to_nand(mtd); 674 int ret; 675 676 timeo = jiffies + msecs_to_jiffies(timeo); 677 do { 678 u8 status; 679 680 ret = nand_read_data_op(chip, &status, sizeof(status), true); 681 if (ret) 682 return; 683 684 if (status & NAND_STATUS_READY) 685 break; 686 touch_softlockup_watchdog(); 687 } while (time_before(jiffies, timeo)); 688 }; 689 690 /** 691 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 692 * @chip: NAND chip structure 693 * @timeout_ms: Timeout in ms 694 * 695 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 696 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 697 * returned. 698 * 699 * This helper is intended to be used when the controller does not have access 700 * to the NAND R/B pin. 701 * 702 * Be aware that calling this helper from an ->exec_op() implementation means 703 * ->exec_op() must be re-entrant. 704 * 705 * Return 0 if the NAND chip is ready, a negative error otherwise. 706 */ 707 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 708 { 709 const struct nand_sdr_timings *timings; 710 u8 status = 0; 711 int ret; 712 713 if (!chip->exec_op) 714 return -ENOTSUPP; 715 716 /* Wait tWB before polling the STATUS reg. */ 717 timings = nand_get_sdr_timings(&chip->data_interface); 718 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 719 720 ret = nand_status_op(chip, NULL); 721 if (ret) 722 return ret; 723 724 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 725 do { 726 ret = nand_read_data_op(chip, &status, sizeof(status), true); 727 if (ret) 728 break; 729 730 if (status & NAND_STATUS_READY) 731 break; 732 733 /* 734 * Typical lowest execution time for a tR on most NANDs is 10us, 735 * use this as polling delay before doing something smarter (ie. 736 * deriving a delay from the timeout value, timeout_ms/ratio). 737 */ 738 udelay(10); 739 } while (time_before(jiffies, timeout_ms)); 740 741 /* 742 * We have to exit READ_STATUS mode in order to read real data on the 743 * bus in case the WAITRDY instruction is preceding a DATA_IN 744 * instruction. 745 */ 746 nand_exit_status_op(chip); 747 748 if (ret) 749 return ret; 750 751 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 752 }; 753 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 754 755 /** 756 * nand_command - [DEFAULT] Send command to NAND device 757 * @mtd: MTD device structure 758 * @command: the command to be sent 759 * @column: the column address for this command, -1 if none 760 * @page_addr: the page address for this command, -1 if none 761 * 762 * Send command to NAND device. This function is used for small page devices 763 * (512 Bytes per page). 764 */ 765 static void nand_command(struct mtd_info *mtd, unsigned int command, 766 int column, int page_addr) 767 { 768 register struct nand_chip *chip = mtd_to_nand(mtd); 769 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; 770 771 /* Write out the command to the device */ 772 if (command == NAND_CMD_SEQIN) { 773 int readcmd; 774 775 if (column >= mtd->writesize) { 776 /* OOB area */ 777 column -= mtd->writesize; 778 readcmd = NAND_CMD_READOOB; 779 } else if (column < 256) { 780 /* First 256 bytes --> READ0 */ 781 readcmd = NAND_CMD_READ0; 782 } else { 783 column -= 256; 784 readcmd = NAND_CMD_READ1; 785 } 786 chip->cmd_ctrl(mtd, readcmd, ctrl); 787 ctrl &= ~NAND_CTRL_CHANGE; 788 } 789 if (command != NAND_CMD_NONE) 790 chip->cmd_ctrl(mtd, command, ctrl); 791 792 /* Address cycle, when necessary */ 793 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; 794 /* Serially input address */ 795 if (column != -1) { 796 /* Adjust columns for 16 bit buswidth */ 797 if (chip->options & NAND_BUSWIDTH_16 && 798 !nand_opcode_8bits(command)) 799 column >>= 1; 800 chip->cmd_ctrl(mtd, column, ctrl); 801 ctrl &= ~NAND_CTRL_CHANGE; 802 } 803 if (page_addr != -1) { 804 chip->cmd_ctrl(mtd, page_addr, ctrl); 805 ctrl &= ~NAND_CTRL_CHANGE; 806 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); 807 if (chip->options & NAND_ROW_ADDR_3) 808 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); 809 } 810 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 811 812 /* 813 * Program and erase have their own busy handlers status and sequential 814 * in needs no delay 815 */ 816 switch (command) { 817 818 case NAND_CMD_NONE: 819 case NAND_CMD_PAGEPROG: 820 case NAND_CMD_ERASE1: 821 case NAND_CMD_ERASE2: 822 case NAND_CMD_SEQIN: 823 case NAND_CMD_STATUS: 824 case NAND_CMD_READID: 825 case NAND_CMD_SET_FEATURES: 826 return; 827 828 case NAND_CMD_RESET: 829 if (chip->dev_ready) 830 break; 831 udelay(chip->chip_delay); 832 chip->cmd_ctrl(mtd, NAND_CMD_STATUS, 833 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 834 chip->cmd_ctrl(mtd, 835 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 836 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 837 nand_wait_status_ready(mtd, 250); 838 return; 839 840 /* This applies to read commands */ 841 case NAND_CMD_READ0: 842 /* 843 * READ0 is sometimes used to exit GET STATUS mode. When this 844 * is the case no address cycles are requested, and we can use 845 * this information to detect that we should not wait for the 846 * device to be ready. 847 */ 848 if (column == -1 && page_addr == -1) 849 return; 850 851 default: 852 /* 853 * If we don't have access to the busy pin, we apply the given 854 * command delay 855 */ 856 if (!chip->dev_ready) { 857 udelay(chip->chip_delay); 858 return; 859 } 860 } 861 /* 862 * Apply this short delay always to ensure that we do wait tWB in 863 * any case on any machine. 864 */ 865 ndelay(100); 866 867 nand_wait_ready(mtd); 868 } 869 870 static void nand_ccs_delay(struct nand_chip *chip) 871 { 872 /* 873 * The controller already takes care of waiting for tCCS when the RNDIN 874 * or RNDOUT command is sent, return directly. 875 */ 876 if (!(chip->options & NAND_WAIT_TCCS)) 877 return; 878 879 /* 880 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns 881 * (which should be safe for all NANDs). 882 */ 883 if (chip->setup_data_interface) 884 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); 885 else 886 ndelay(500); 887 } 888 889 /** 890 * nand_command_lp - [DEFAULT] Send command to NAND large page device 891 * @mtd: MTD device structure 892 * @command: the command to be sent 893 * @column: the column address for this command, -1 if none 894 * @page_addr: the page address for this command, -1 if none 895 * 896 * Send command to NAND device. This is the version for the new large page 897 * devices. We don't have the separate regions as we have in the small page 898 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. 899 */ 900 static void nand_command_lp(struct mtd_info *mtd, unsigned int command, 901 int column, int page_addr) 902 { 903 register struct nand_chip *chip = mtd_to_nand(mtd); 904 905 /* Emulate NAND_CMD_READOOB */ 906 if (command == NAND_CMD_READOOB) { 907 column += mtd->writesize; 908 command = NAND_CMD_READ0; 909 } 910 911 /* Command latch cycle */ 912 if (command != NAND_CMD_NONE) 913 chip->cmd_ctrl(mtd, command, 914 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 915 916 if (column != -1 || page_addr != -1) { 917 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; 918 919 /* Serially input address */ 920 if (column != -1) { 921 /* Adjust columns for 16 bit buswidth */ 922 if (chip->options & NAND_BUSWIDTH_16 && 923 !nand_opcode_8bits(command)) 924 column >>= 1; 925 chip->cmd_ctrl(mtd, column, ctrl); 926 ctrl &= ~NAND_CTRL_CHANGE; 927 928 /* Only output a single addr cycle for 8bits opcodes. */ 929 if (!nand_opcode_8bits(command)) 930 chip->cmd_ctrl(mtd, column >> 8, ctrl); 931 } 932 if (page_addr != -1) { 933 chip->cmd_ctrl(mtd, page_addr, ctrl); 934 chip->cmd_ctrl(mtd, page_addr >> 8, 935 NAND_NCE | NAND_ALE); 936 if (chip->options & NAND_ROW_ADDR_3) 937 chip->cmd_ctrl(mtd, page_addr >> 16, 938 NAND_NCE | NAND_ALE); 939 } 940 } 941 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 942 943 /* 944 * Program and erase have their own busy handlers status, sequential 945 * in and status need no delay. 946 */ 947 switch (command) { 948 949 case NAND_CMD_NONE: 950 case NAND_CMD_CACHEDPROG: 951 case NAND_CMD_PAGEPROG: 952 case NAND_CMD_ERASE1: 953 case NAND_CMD_ERASE2: 954 case NAND_CMD_SEQIN: 955 case NAND_CMD_STATUS: 956 case NAND_CMD_READID: 957 case NAND_CMD_SET_FEATURES: 958 return; 959 960 case NAND_CMD_RNDIN: 961 nand_ccs_delay(chip); 962 return; 963 964 case NAND_CMD_RESET: 965 if (chip->dev_ready) 966 break; 967 udelay(chip->chip_delay); 968 chip->cmd_ctrl(mtd, NAND_CMD_STATUS, 969 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 970 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 971 NAND_NCE | NAND_CTRL_CHANGE); 972 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 973 nand_wait_status_ready(mtd, 250); 974 return; 975 976 case NAND_CMD_RNDOUT: 977 /* No ready / busy check necessary */ 978 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, 979 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 980 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 981 NAND_NCE | NAND_CTRL_CHANGE); 982 983 nand_ccs_delay(chip); 984 return; 985 986 case NAND_CMD_READ0: 987 /* 988 * READ0 is sometimes used to exit GET STATUS mode. When this 989 * is the case no address cycles are requested, and we can use 990 * this information to detect that READSTART should not be 991 * issued. 992 */ 993 if (column == -1 && page_addr == -1) 994 return; 995 996 chip->cmd_ctrl(mtd, NAND_CMD_READSTART, 997 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 998 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 999 NAND_NCE | NAND_CTRL_CHANGE); 1000 1001 /* This applies to read commands */ 1002 default: 1003 /* 1004 * If we don't have access to the busy pin, we apply the given 1005 * command delay. 1006 */ 1007 if (!chip->dev_ready) { 1008 udelay(chip->chip_delay); 1009 return; 1010 } 1011 } 1012 1013 /* 1014 * Apply this short delay always to ensure that we do wait tWB in 1015 * any case on any machine. 1016 */ 1017 ndelay(100); 1018 1019 nand_wait_ready(mtd); 1020 } 1021 1022 /** 1023 * panic_nand_get_device - [GENERIC] Get chip for selected access 1024 * @chip: the nand chip descriptor 1025 * @mtd: MTD device structure 1026 * @new_state: the state which is requested 1027 * 1028 * Used when in panic, no locks are taken. 1029 */ 1030 static void panic_nand_get_device(struct nand_chip *chip, 1031 struct mtd_info *mtd, int new_state) 1032 { 1033 /* Hardware controller shared among independent devices */ 1034 chip->controller->active = chip; 1035 chip->state = new_state; 1036 } 1037 1038 /** 1039 * nand_get_device - [GENERIC] Get chip for selected access 1040 * @mtd: MTD device structure 1041 * @new_state: the state which is requested 1042 * 1043 * Get the device and lock it for exclusive access 1044 */ 1045 static int 1046 nand_get_device(struct mtd_info *mtd, int new_state) 1047 { 1048 struct nand_chip *chip = mtd_to_nand(mtd); 1049 spinlock_t *lock = &chip->controller->lock; 1050 wait_queue_head_t *wq = &chip->controller->wq; 1051 DECLARE_WAITQUEUE(wait, current); 1052 retry: 1053 spin_lock(lock); 1054 1055 /* Hardware controller shared among independent devices */ 1056 if (!chip->controller->active) 1057 chip->controller->active = chip; 1058 1059 if (chip->controller->active == chip && chip->state == FL_READY) { 1060 chip->state = new_state; 1061 spin_unlock(lock); 1062 return 0; 1063 } 1064 if (new_state == FL_PM_SUSPENDED) { 1065 if (chip->controller->active->state == FL_PM_SUSPENDED) { 1066 chip->state = FL_PM_SUSPENDED; 1067 spin_unlock(lock); 1068 return 0; 1069 } 1070 } 1071 set_current_state(TASK_UNINTERRUPTIBLE); 1072 add_wait_queue(wq, &wait); 1073 spin_unlock(lock); 1074 schedule(); 1075 remove_wait_queue(wq, &wait); 1076 goto retry; 1077 } 1078 1079 /** 1080 * panic_nand_wait - [GENERIC] wait until the command is done 1081 * @mtd: MTD device structure 1082 * @chip: NAND chip structure 1083 * @timeo: timeout 1084 * 1085 * Wait for command done. This is a helper function for nand_wait used when 1086 * we are in interrupt context. May happen when in panic and trying to write 1087 * an oops through mtdoops. 1088 */ 1089 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, 1090 unsigned long timeo) 1091 { 1092 int i; 1093 for (i = 0; i < timeo; i++) { 1094 if (chip->dev_ready) { 1095 if (chip->dev_ready(mtd)) 1096 break; 1097 } else { 1098 int ret; 1099 u8 status; 1100 1101 ret = nand_read_data_op(chip, &status, sizeof(status), 1102 true); 1103 if (ret) 1104 return; 1105 1106 if (status & NAND_STATUS_READY) 1107 break; 1108 } 1109 mdelay(1); 1110 } 1111 } 1112 1113 /** 1114 * nand_wait - [DEFAULT] wait until the command is done 1115 * @mtd: MTD device structure 1116 * @chip: NAND chip structure 1117 * 1118 * Wait for command done. This applies to erase and program only. 1119 */ 1120 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) 1121 { 1122 1123 unsigned long timeo = 400; 1124 u8 status; 1125 int ret; 1126 1127 /* 1128 * Apply this short delay always to ensure that we do wait tWB in any 1129 * case on any machine. 1130 */ 1131 ndelay(100); 1132 1133 ret = nand_status_op(chip, NULL); 1134 if (ret) 1135 return ret; 1136 1137 if (in_interrupt() || oops_in_progress) 1138 panic_nand_wait(mtd, chip, timeo); 1139 else { 1140 timeo = jiffies + msecs_to_jiffies(timeo); 1141 do { 1142 if (chip->dev_ready) { 1143 if (chip->dev_ready(mtd)) 1144 break; 1145 } else { 1146 ret = nand_read_data_op(chip, &status, 1147 sizeof(status), true); 1148 if (ret) 1149 return ret; 1150 1151 if (status & NAND_STATUS_READY) 1152 break; 1153 } 1154 cond_resched(); 1155 } while (time_before(jiffies, timeo)); 1156 } 1157 1158 ret = nand_read_data_op(chip, &status, sizeof(status), true); 1159 if (ret) 1160 return ret; 1161 1162 /* This can happen if in case of timeout or buggy dev_ready */ 1163 WARN_ON(!(status & NAND_STATUS_READY)); 1164 return status; 1165 } 1166 1167 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 1168 { 1169 return (chip->parameters.supports_set_get_features && 1170 test_bit(addr, chip->parameters.get_feature_list)); 1171 } 1172 1173 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 1174 { 1175 return (chip->parameters.supports_set_get_features && 1176 test_bit(addr, chip->parameters.set_feature_list)); 1177 } 1178 1179 /** 1180 * nand_get_features - wrapper to perform a GET_FEATURE 1181 * @chip: NAND chip info structure 1182 * @addr: feature address 1183 * @subfeature_param: the subfeature parameters, a four bytes array 1184 * 1185 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 1186 * operation cannot be handled. 1187 */ 1188 int nand_get_features(struct nand_chip *chip, int addr, 1189 u8 *subfeature_param) 1190 { 1191 struct mtd_info *mtd = nand_to_mtd(chip); 1192 1193 if (!nand_supports_get_features(chip, addr)) 1194 return -ENOTSUPP; 1195 1196 return chip->get_features(mtd, chip, addr, subfeature_param); 1197 } 1198 EXPORT_SYMBOL_GPL(nand_get_features); 1199 1200 /** 1201 * nand_set_features - wrapper to perform a SET_FEATURE 1202 * @chip: NAND chip info structure 1203 * @addr: feature address 1204 * @subfeature_param: the subfeature parameters, a four bytes array 1205 * 1206 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 1207 * operation cannot be handled. 1208 */ 1209 int nand_set_features(struct nand_chip *chip, int addr, 1210 u8 *subfeature_param) 1211 { 1212 struct mtd_info *mtd = nand_to_mtd(chip); 1213 1214 if (!nand_supports_set_features(chip, addr)) 1215 return -ENOTSUPP; 1216 1217 return chip->set_features(mtd, chip, addr, subfeature_param); 1218 } 1219 EXPORT_SYMBOL_GPL(nand_set_features); 1220 1221 /** 1222 * nand_reset_data_interface - Reset data interface and timings 1223 * @chip: The NAND chip 1224 * @chipnr: Internal die id 1225 * 1226 * Reset the Data interface and timings to ONFI mode 0. 1227 * 1228 * Returns 0 for success or negative error code otherwise. 1229 */ 1230 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) 1231 { 1232 struct mtd_info *mtd = nand_to_mtd(chip); 1233 int ret; 1234 1235 if (!chip->setup_data_interface) 1236 return 0; 1237 1238 /* 1239 * The ONFI specification says: 1240 * " 1241 * To transition from NV-DDR or NV-DDR2 to the SDR data 1242 * interface, the host shall use the Reset (FFh) command 1243 * using SDR timing mode 0. A device in any timing mode is 1244 * required to recognize Reset (FFh) command issued in SDR 1245 * timing mode 0. 1246 * " 1247 * 1248 * Configure the data interface in SDR mode and set the 1249 * timings to timing mode 0. 1250 */ 1251 1252 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 1253 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); 1254 if (ret) 1255 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 1256 1257 return ret; 1258 } 1259 1260 /** 1261 * nand_setup_data_interface - Setup the best data interface and timings 1262 * @chip: The NAND chip 1263 * @chipnr: Internal die id 1264 * 1265 * Find and configure the best data interface and NAND timings supported by 1266 * the chip and the driver. 1267 * First tries to retrieve supported timing modes from ONFI information, 1268 * and if the NAND chip does not support ONFI, relies on the 1269 * ->onfi_timing_mode_default specified in the nand_ids table. 1270 * 1271 * Returns 0 for success or negative error code otherwise. 1272 */ 1273 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) 1274 { 1275 struct mtd_info *mtd = nand_to_mtd(chip); 1276 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { 1277 chip->onfi_timing_mode_default, 1278 }; 1279 int ret; 1280 1281 if (!chip->setup_data_interface) 1282 return 0; 1283 1284 /* Change the mode on the chip side (if supported by the NAND chip) */ 1285 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 1286 chip->select_chip(mtd, chipnr); 1287 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 1288 tmode_param); 1289 chip->select_chip(mtd, -1); 1290 if (ret) 1291 return ret; 1292 } 1293 1294 /* Change the mode on the controller side */ 1295 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); 1296 if (ret) 1297 return ret; 1298 1299 /* Check the mode has been accepted by the chip, if supported */ 1300 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 1301 return 0; 1302 1303 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 1304 chip->select_chip(mtd, chipnr); 1305 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 1306 tmode_param); 1307 chip->select_chip(mtd, -1); 1308 if (ret) 1309 goto err_reset_chip; 1310 1311 if (tmode_param[0] != chip->onfi_timing_mode_default) { 1312 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 1313 chip->onfi_timing_mode_default); 1314 goto err_reset_chip; 1315 } 1316 1317 return 0; 1318 1319 err_reset_chip: 1320 /* 1321 * Fallback to mode 0 if the chip explicitly did not ack the chosen 1322 * timing mode. 1323 */ 1324 nand_reset_data_interface(chip, chipnr); 1325 chip->select_chip(mtd, chipnr); 1326 nand_reset_op(chip); 1327 chip->select_chip(mtd, -1); 1328 1329 return ret; 1330 } 1331 1332 /** 1333 * nand_init_data_interface - find the best data interface and timings 1334 * @chip: The NAND chip 1335 * 1336 * Find the best data interface and NAND timings supported by the chip 1337 * and the driver. 1338 * First tries to retrieve supported timing modes from ONFI information, 1339 * and if the NAND chip does not support ONFI, relies on the 1340 * ->onfi_timing_mode_default specified in the nand_ids table. After this 1341 * function nand_chip->data_interface is initialized with the best timing mode 1342 * available. 1343 * 1344 * Returns 0 for success or negative error code otherwise. 1345 */ 1346 static int nand_init_data_interface(struct nand_chip *chip) 1347 { 1348 struct mtd_info *mtd = nand_to_mtd(chip); 1349 int modes, mode, ret; 1350 1351 if (!chip->setup_data_interface) 1352 return 0; 1353 1354 /* 1355 * First try to identify the best timings from ONFI parameters and 1356 * if the NAND does not support ONFI, fallback to the default ONFI 1357 * timing mode. 1358 */ 1359 modes = onfi_get_async_timing_mode(chip); 1360 if (modes == ONFI_TIMING_MODE_UNKNOWN) { 1361 if (!chip->onfi_timing_mode_default) 1362 return 0; 1363 1364 modes = GENMASK(chip->onfi_timing_mode_default, 0); 1365 } 1366 1367 1368 for (mode = fls(modes) - 1; mode >= 0; mode--) { 1369 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); 1370 if (ret) 1371 continue; 1372 1373 /* 1374 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the 1375 * controller supports the requested timings. 1376 */ 1377 ret = chip->setup_data_interface(mtd, 1378 NAND_DATA_IFACE_CHECK_ONLY, 1379 &chip->data_interface); 1380 if (!ret) { 1381 chip->onfi_timing_mode_default = mode; 1382 break; 1383 } 1384 } 1385 1386 return 0; 1387 } 1388 1389 /** 1390 * nand_fill_column_cycles - fill the column cycles of an address 1391 * @chip: The NAND chip 1392 * @addrs: Array of address cycles to fill 1393 * @offset_in_page: The offset in the page 1394 * 1395 * Fills the first or the first two bytes of the @addrs field depending 1396 * on the NAND bus width and the page size. 1397 * 1398 * Returns the number of cycles needed to encode the column, or a negative 1399 * error code in case one of the arguments is invalid. 1400 */ 1401 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1402 unsigned int offset_in_page) 1403 { 1404 struct mtd_info *mtd = nand_to_mtd(chip); 1405 1406 /* Make sure the offset is less than the actual page size. */ 1407 if (offset_in_page > mtd->writesize + mtd->oobsize) 1408 return -EINVAL; 1409 1410 /* 1411 * On small page NANDs, there's a dedicated command to access the OOB 1412 * area, and the column address is relative to the start of the OOB 1413 * area, not the start of the page. Asjust the address accordingly. 1414 */ 1415 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1416 offset_in_page -= mtd->writesize; 1417 1418 /* 1419 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1420 * wide, then it must be divided by 2. 1421 */ 1422 if (chip->options & NAND_BUSWIDTH_16) { 1423 if (WARN_ON(offset_in_page % 2)) 1424 return -EINVAL; 1425 1426 offset_in_page /= 2; 1427 } 1428 1429 addrs[0] = offset_in_page; 1430 1431 /* 1432 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1433 * need 2 1434 */ 1435 if (mtd->writesize <= 512) 1436 return 1; 1437 1438 addrs[1] = offset_in_page >> 8; 1439 1440 return 2; 1441 } 1442 1443 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1444 unsigned int offset_in_page, void *buf, 1445 unsigned int len) 1446 { 1447 struct mtd_info *mtd = nand_to_mtd(chip); 1448 const struct nand_sdr_timings *sdr = 1449 nand_get_sdr_timings(&chip->data_interface); 1450 u8 addrs[4]; 1451 struct nand_op_instr instrs[] = { 1452 NAND_OP_CMD(NAND_CMD_READ0, 0), 1453 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1454 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1455 PSEC_TO_NSEC(sdr->tRR_min)), 1456 NAND_OP_DATA_IN(len, buf, 0), 1457 }; 1458 struct nand_operation op = NAND_OPERATION(instrs); 1459 int ret; 1460 1461 /* Drop the DATA_IN instruction if len is set to 0. */ 1462 if (!len) 1463 op.ninstrs--; 1464 1465 if (offset_in_page >= mtd->writesize) 1466 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1467 else if (offset_in_page >= 256 && 1468 !(chip->options & NAND_BUSWIDTH_16)) 1469 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1470 1471 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1472 if (ret < 0) 1473 return ret; 1474 1475 addrs[1] = page; 1476 addrs[2] = page >> 8; 1477 1478 if (chip->options & NAND_ROW_ADDR_3) { 1479 addrs[3] = page >> 16; 1480 instrs[1].ctx.addr.naddrs++; 1481 } 1482 1483 return nand_exec_op(chip, &op); 1484 } 1485 1486 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1487 unsigned int offset_in_page, void *buf, 1488 unsigned int len) 1489 { 1490 const struct nand_sdr_timings *sdr = 1491 nand_get_sdr_timings(&chip->data_interface); 1492 u8 addrs[5]; 1493 struct nand_op_instr instrs[] = { 1494 NAND_OP_CMD(NAND_CMD_READ0, 0), 1495 NAND_OP_ADDR(4, addrs, 0), 1496 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1497 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1498 PSEC_TO_NSEC(sdr->tRR_min)), 1499 NAND_OP_DATA_IN(len, buf, 0), 1500 }; 1501 struct nand_operation op = NAND_OPERATION(instrs); 1502 int ret; 1503 1504 /* Drop the DATA_IN instruction if len is set to 0. */ 1505 if (!len) 1506 op.ninstrs--; 1507 1508 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1509 if (ret < 0) 1510 return ret; 1511 1512 addrs[2] = page; 1513 addrs[3] = page >> 8; 1514 1515 if (chip->options & NAND_ROW_ADDR_3) { 1516 addrs[4] = page >> 16; 1517 instrs[1].ctx.addr.naddrs++; 1518 } 1519 1520 return nand_exec_op(chip, &op); 1521 } 1522 1523 /** 1524 * nand_read_page_op - Do a READ PAGE operation 1525 * @chip: The NAND chip 1526 * @page: page to read 1527 * @offset_in_page: offset within the page 1528 * @buf: buffer used to store the data 1529 * @len: length of the buffer 1530 * 1531 * This function issues a READ PAGE operation. 1532 * This function does not select/unselect the CS line. 1533 * 1534 * Returns 0 on success, a negative error code otherwise. 1535 */ 1536 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1537 unsigned int offset_in_page, void *buf, unsigned int len) 1538 { 1539 struct mtd_info *mtd = nand_to_mtd(chip); 1540 1541 if (len && !buf) 1542 return -EINVAL; 1543 1544 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1545 return -EINVAL; 1546 1547 if (chip->exec_op) { 1548 if (mtd->writesize > 512) 1549 return nand_lp_exec_read_page_op(chip, page, 1550 offset_in_page, buf, 1551 len); 1552 1553 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1554 buf, len); 1555 } 1556 1557 chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); 1558 if (len) 1559 chip->read_buf(mtd, buf, len); 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL_GPL(nand_read_page_op); 1564 1565 /** 1566 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1567 * @chip: The NAND chip 1568 * @page: parameter page to read 1569 * @buf: buffer used to store the data 1570 * @len: length of the buffer 1571 * 1572 * This function issues a READ PARAMETER PAGE operation. 1573 * This function does not select/unselect the CS line. 1574 * 1575 * Returns 0 on success, a negative error code otherwise. 1576 */ 1577 static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1578 unsigned int len) 1579 { 1580 struct mtd_info *mtd = nand_to_mtd(chip); 1581 unsigned int i; 1582 u8 *p = buf; 1583 1584 if (len && !buf) 1585 return -EINVAL; 1586 1587 if (chip->exec_op) { 1588 const struct nand_sdr_timings *sdr = 1589 nand_get_sdr_timings(&chip->data_interface); 1590 struct nand_op_instr instrs[] = { 1591 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1592 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1593 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1594 PSEC_TO_NSEC(sdr->tRR_min)), 1595 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1596 }; 1597 struct nand_operation op = NAND_OPERATION(instrs); 1598 1599 /* Drop the DATA_IN instruction if len is set to 0. */ 1600 if (!len) 1601 op.ninstrs--; 1602 1603 return nand_exec_op(chip, &op); 1604 } 1605 1606 chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); 1607 for (i = 0; i < len; i++) 1608 p[i] = chip->read_byte(mtd); 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1615 * @chip: The NAND chip 1616 * @offset_in_page: offset within the page 1617 * @buf: buffer used to store the data 1618 * @len: length of the buffer 1619 * @force_8bit: force 8-bit bus access 1620 * 1621 * This function issues a CHANGE READ COLUMN operation. 1622 * This function does not select/unselect the CS line. 1623 * 1624 * Returns 0 on success, a negative error code otherwise. 1625 */ 1626 int nand_change_read_column_op(struct nand_chip *chip, 1627 unsigned int offset_in_page, void *buf, 1628 unsigned int len, bool force_8bit) 1629 { 1630 struct mtd_info *mtd = nand_to_mtd(chip); 1631 1632 if (len && !buf) 1633 return -EINVAL; 1634 1635 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1636 return -EINVAL; 1637 1638 /* Small page NANDs do not support column change. */ 1639 if (mtd->writesize <= 512) 1640 return -ENOTSUPP; 1641 1642 if (chip->exec_op) { 1643 const struct nand_sdr_timings *sdr = 1644 nand_get_sdr_timings(&chip->data_interface); 1645 u8 addrs[2] = {}; 1646 struct nand_op_instr instrs[] = { 1647 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1648 NAND_OP_ADDR(2, addrs, 0), 1649 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1650 PSEC_TO_NSEC(sdr->tCCS_min)), 1651 NAND_OP_DATA_IN(len, buf, 0), 1652 }; 1653 struct nand_operation op = NAND_OPERATION(instrs); 1654 int ret; 1655 1656 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1657 if (ret < 0) 1658 return ret; 1659 1660 /* Drop the DATA_IN instruction if len is set to 0. */ 1661 if (!len) 1662 op.ninstrs--; 1663 1664 instrs[3].ctx.data.force_8bit = force_8bit; 1665 1666 return nand_exec_op(chip, &op); 1667 } 1668 1669 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1); 1670 if (len) 1671 chip->read_buf(mtd, buf, len); 1672 1673 return 0; 1674 } 1675 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1676 1677 /** 1678 * nand_read_oob_op - Do a READ OOB operation 1679 * @chip: The NAND chip 1680 * @page: page to read 1681 * @offset_in_oob: offset within the OOB area 1682 * @buf: buffer used to store the data 1683 * @len: length of the buffer 1684 * 1685 * This function issues a READ OOB operation. 1686 * This function does not select/unselect the CS line. 1687 * 1688 * Returns 0 on success, a negative error code otherwise. 1689 */ 1690 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1691 unsigned int offset_in_oob, void *buf, unsigned int len) 1692 { 1693 struct mtd_info *mtd = nand_to_mtd(chip); 1694 1695 if (len && !buf) 1696 return -EINVAL; 1697 1698 if (offset_in_oob + len > mtd->oobsize) 1699 return -EINVAL; 1700 1701 if (chip->exec_op) 1702 return nand_read_page_op(chip, page, 1703 mtd->writesize + offset_in_oob, 1704 buf, len); 1705 1706 chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page); 1707 if (len) 1708 chip->read_buf(mtd, buf, len); 1709 1710 return 0; 1711 } 1712 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1713 1714 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1715 unsigned int offset_in_page, const void *buf, 1716 unsigned int len, bool prog) 1717 { 1718 struct mtd_info *mtd = nand_to_mtd(chip); 1719 const struct nand_sdr_timings *sdr = 1720 nand_get_sdr_timings(&chip->data_interface); 1721 u8 addrs[5] = {}; 1722 struct nand_op_instr instrs[] = { 1723 /* 1724 * The first instruction will be dropped if we're dealing 1725 * with a large page NAND and adjusted if we're dealing 1726 * with a small page NAND and the page offset is > 255. 1727 */ 1728 NAND_OP_CMD(NAND_CMD_READ0, 0), 1729 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1730 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1731 NAND_OP_DATA_OUT(len, buf, 0), 1732 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1733 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1734 }; 1735 struct nand_operation op = NAND_OPERATION(instrs); 1736 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1737 int ret; 1738 u8 status; 1739 1740 if (naddrs < 0) 1741 return naddrs; 1742 1743 addrs[naddrs++] = page; 1744 addrs[naddrs++] = page >> 8; 1745 if (chip->options & NAND_ROW_ADDR_3) 1746 addrs[naddrs++] = page >> 16; 1747 1748 instrs[2].ctx.addr.naddrs = naddrs; 1749 1750 /* Drop the last two instructions if we're not programming the page. */ 1751 if (!prog) { 1752 op.ninstrs -= 2; 1753 /* Also drop the DATA_OUT instruction if empty. */ 1754 if (!len) 1755 op.ninstrs--; 1756 } 1757 1758 if (mtd->writesize <= 512) { 1759 /* 1760 * Small pages need some more tweaking: we have to adjust the 1761 * first instruction depending on the page offset we're trying 1762 * to access. 1763 */ 1764 if (offset_in_page >= mtd->writesize) 1765 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1766 else if (offset_in_page >= 256 && 1767 !(chip->options & NAND_BUSWIDTH_16)) 1768 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1769 } else { 1770 /* 1771 * Drop the first command if we're dealing with a large page 1772 * NAND. 1773 */ 1774 op.instrs++; 1775 op.ninstrs--; 1776 } 1777 1778 ret = nand_exec_op(chip, &op); 1779 if (!prog || ret) 1780 return ret; 1781 1782 ret = nand_status_op(chip, &status); 1783 if (ret) 1784 return ret; 1785 1786 return status; 1787 } 1788 1789 /** 1790 * nand_prog_page_begin_op - starts a PROG PAGE operation 1791 * @chip: The NAND chip 1792 * @page: page to write 1793 * @offset_in_page: offset within the page 1794 * @buf: buffer containing the data to write to the page 1795 * @len: length of the buffer 1796 * 1797 * This function issues the first half of a PROG PAGE operation. 1798 * This function does not select/unselect the CS line. 1799 * 1800 * Returns 0 on success, a negative error code otherwise. 1801 */ 1802 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1803 unsigned int offset_in_page, const void *buf, 1804 unsigned int len) 1805 { 1806 struct mtd_info *mtd = nand_to_mtd(chip); 1807 1808 if (len && !buf) 1809 return -EINVAL; 1810 1811 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1812 return -EINVAL; 1813 1814 if (chip->exec_op) 1815 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1816 len, false); 1817 1818 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); 1819 1820 if (buf) 1821 chip->write_buf(mtd, buf, len); 1822 1823 return 0; 1824 } 1825 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1826 1827 /** 1828 * nand_prog_page_end_op - ends a PROG PAGE operation 1829 * @chip: The NAND chip 1830 * 1831 * This function issues the second half of a PROG PAGE operation. 1832 * This function does not select/unselect the CS line. 1833 * 1834 * Returns 0 on success, a negative error code otherwise. 1835 */ 1836 int nand_prog_page_end_op(struct nand_chip *chip) 1837 { 1838 struct mtd_info *mtd = nand_to_mtd(chip); 1839 int ret; 1840 u8 status; 1841 1842 if (chip->exec_op) { 1843 const struct nand_sdr_timings *sdr = 1844 nand_get_sdr_timings(&chip->data_interface); 1845 struct nand_op_instr instrs[] = { 1846 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1847 PSEC_TO_NSEC(sdr->tWB_max)), 1848 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1849 }; 1850 struct nand_operation op = NAND_OPERATION(instrs); 1851 1852 ret = nand_exec_op(chip, &op); 1853 if (ret) 1854 return ret; 1855 1856 ret = nand_status_op(chip, &status); 1857 if (ret) 1858 return ret; 1859 } else { 1860 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); 1861 ret = chip->waitfunc(mtd, chip); 1862 if (ret < 0) 1863 return ret; 1864 1865 status = ret; 1866 } 1867 1868 if (status & NAND_STATUS_FAIL) 1869 return -EIO; 1870 1871 return 0; 1872 } 1873 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1874 1875 /** 1876 * nand_prog_page_op - Do a full PROG PAGE operation 1877 * @chip: The NAND chip 1878 * @page: page to write 1879 * @offset_in_page: offset within the page 1880 * @buf: buffer containing the data to write to the page 1881 * @len: length of the buffer 1882 * 1883 * This function issues a full PROG PAGE operation. 1884 * This function does not select/unselect the CS line. 1885 * 1886 * Returns 0 on success, a negative error code otherwise. 1887 */ 1888 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1889 unsigned int offset_in_page, const void *buf, 1890 unsigned int len) 1891 { 1892 struct mtd_info *mtd = nand_to_mtd(chip); 1893 int status; 1894 1895 if (!len || !buf) 1896 return -EINVAL; 1897 1898 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1899 return -EINVAL; 1900 1901 if (chip->exec_op) { 1902 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1903 len, true); 1904 } else { 1905 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); 1906 chip->write_buf(mtd, buf, len); 1907 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); 1908 status = chip->waitfunc(mtd, chip); 1909 } 1910 1911 if (status & NAND_STATUS_FAIL) 1912 return -EIO; 1913 1914 return 0; 1915 } 1916 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1917 1918 /** 1919 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1920 * @chip: The NAND chip 1921 * @offset_in_page: offset within the page 1922 * @buf: buffer containing the data to send to the NAND 1923 * @len: length of the buffer 1924 * @force_8bit: force 8-bit bus access 1925 * 1926 * This function issues a CHANGE WRITE COLUMN operation. 1927 * This function does not select/unselect the CS line. 1928 * 1929 * Returns 0 on success, a negative error code otherwise. 1930 */ 1931 int nand_change_write_column_op(struct nand_chip *chip, 1932 unsigned int offset_in_page, 1933 const void *buf, unsigned int len, 1934 bool force_8bit) 1935 { 1936 struct mtd_info *mtd = nand_to_mtd(chip); 1937 1938 if (len && !buf) 1939 return -EINVAL; 1940 1941 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1942 return -EINVAL; 1943 1944 /* Small page NANDs do not support column change. */ 1945 if (mtd->writesize <= 512) 1946 return -ENOTSUPP; 1947 1948 if (chip->exec_op) { 1949 const struct nand_sdr_timings *sdr = 1950 nand_get_sdr_timings(&chip->data_interface); 1951 u8 addrs[2]; 1952 struct nand_op_instr instrs[] = { 1953 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1954 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1955 NAND_OP_DATA_OUT(len, buf, 0), 1956 }; 1957 struct nand_operation op = NAND_OPERATION(instrs); 1958 int ret; 1959 1960 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1961 if (ret < 0) 1962 return ret; 1963 1964 instrs[2].ctx.data.force_8bit = force_8bit; 1965 1966 /* Drop the DATA_OUT instruction if len is set to 0. */ 1967 if (!len) 1968 op.ninstrs--; 1969 1970 return nand_exec_op(chip, &op); 1971 } 1972 1973 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); 1974 if (len) 1975 chip->write_buf(mtd, buf, len); 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1980 1981 /** 1982 * nand_readid_op - Do a READID operation 1983 * @chip: The NAND chip 1984 * @addr: address cycle to pass after the READID command 1985 * @buf: buffer used to store the ID 1986 * @len: length of the buffer 1987 * 1988 * This function sends a READID command and reads back the ID returned by the 1989 * NAND. 1990 * This function does not select/unselect the CS line. 1991 * 1992 * Returns 0 on success, a negative error code otherwise. 1993 */ 1994 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1995 unsigned int len) 1996 { 1997 struct mtd_info *mtd = nand_to_mtd(chip); 1998 unsigned int i; 1999 u8 *id = buf; 2000 2001 if (len && !buf) 2002 return -EINVAL; 2003 2004 if (chip->exec_op) { 2005 const struct nand_sdr_timings *sdr = 2006 nand_get_sdr_timings(&chip->data_interface); 2007 struct nand_op_instr instrs[] = { 2008 NAND_OP_CMD(NAND_CMD_READID, 0), 2009 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 2010 NAND_OP_8BIT_DATA_IN(len, buf, 0), 2011 }; 2012 struct nand_operation op = NAND_OPERATION(instrs); 2013 2014 /* Drop the DATA_IN instruction if len is set to 0. */ 2015 if (!len) 2016 op.ninstrs--; 2017 2018 return nand_exec_op(chip, &op); 2019 } 2020 2021 chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); 2022 2023 for (i = 0; i < len; i++) 2024 id[i] = chip->read_byte(mtd); 2025 2026 return 0; 2027 } 2028 EXPORT_SYMBOL_GPL(nand_readid_op); 2029 2030 /** 2031 * nand_status_op - Do a STATUS operation 2032 * @chip: The NAND chip 2033 * @status: out variable to store the NAND status 2034 * 2035 * This function sends a STATUS command and reads back the status returned by 2036 * the NAND. 2037 * This function does not select/unselect the CS line. 2038 * 2039 * Returns 0 on success, a negative error code otherwise. 2040 */ 2041 int nand_status_op(struct nand_chip *chip, u8 *status) 2042 { 2043 struct mtd_info *mtd = nand_to_mtd(chip); 2044 2045 if (chip->exec_op) { 2046 const struct nand_sdr_timings *sdr = 2047 nand_get_sdr_timings(&chip->data_interface); 2048 struct nand_op_instr instrs[] = { 2049 NAND_OP_CMD(NAND_CMD_STATUS, 2050 PSEC_TO_NSEC(sdr->tADL_min)), 2051 NAND_OP_8BIT_DATA_IN(1, status, 0), 2052 }; 2053 struct nand_operation op = NAND_OPERATION(instrs); 2054 2055 if (!status) 2056 op.ninstrs--; 2057 2058 return nand_exec_op(chip, &op); 2059 } 2060 2061 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); 2062 if (status) 2063 *status = chip->read_byte(mtd); 2064 2065 return 0; 2066 } 2067 EXPORT_SYMBOL_GPL(nand_status_op); 2068 2069 /** 2070 * nand_exit_status_op - Exit a STATUS operation 2071 * @chip: The NAND chip 2072 * 2073 * This function sends a READ0 command to cancel the effect of the STATUS 2074 * command to avoid reading only the status until a new read command is sent. 2075 * 2076 * This function does not select/unselect the CS line. 2077 * 2078 * Returns 0 on success, a negative error code otherwise. 2079 */ 2080 int nand_exit_status_op(struct nand_chip *chip) 2081 { 2082 struct mtd_info *mtd = nand_to_mtd(chip); 2083 2084 if (chip->exec_op) { 2085 struct nand_op_instr instrs[] = { 2086 NAND_OP_CMD(NAND_CMD_READ0, 0), 2087 }; 2088 struct nand_operation op = NAND_OPERATION(instrs); 2089 2090 return nand_exec_op(chip, &op); 2091 } 2092 2093 chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1); 2094 2095 return 0; 2096 } 2097 EXPORT_SYMBOL_GPL(nand_exit_status_op); 2098 2099 /** 2100 * nand_erase_op - Do an erase operation 2101 * @chip: The NAND chip 2102 * @eraseblock: block to erase 2103 * 2104 * This function sends an ERASE command and waits for the NAND to be ready 2105 * before returning. 2106 * This function does not select/unselect the CS line. 2107 * 2108 * Returns 0 on success, a negative error code otherwise. 2109 */ 2110 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 2111 { 2112 struct mtd_info *mtd = nand_to_mtd(chip); 2113 unsigned int page = eraseblock << 2114 (chip->phys_erase_shift - chip->page_shift); 2115 int ret; 2116 u8 status; 2117 2118 if (chip->exec_op) { 2119 const struct nand_sdr_timings *sdr = 2120 nand_get_sdr_timings(&chip->data_interface); 2121 u8 addrs[3] = { page, page >> 8, page >> 16 }; 2122 struct nand_op_instr instrs[] = { 2123 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 2124 NAND_OP_ADDR(2, addrs, 0), 2125 NAND_OP_CMD(NAND_CMD_ERASE2, 2126 PSEC_TO_MSEC(sdr->tWB_max)), 2127 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 2128 }; 2129 struct nand_operation op = NAND_OPERATION(instrs); 2130 2131 if (chip->options & NAND_ROW_ADDR_3) 2132 instrs[1].ctx.addr.naddrs++; 2133 2134 ret = nand_exec_op(chip, &op); 2135 if (ret) 2136 return ret; 2137 2138 ret = nand_status_op(chip, &status); 2139 if (ret) 2140 return ret; 2141 } else { 2142 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); 2143 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); 2144 2145 ret = chip->waitfunc(mtd, chip); 2146 if (ret < 0) 2147 return ret; 2148 2149 status = ret; 2150 } 2151 2152 if (status & NAND_STATUS_FAIL) 2153 return -EIO; 2154 2155 return 0; 2156 } 2157 EXPORT_SYMBOL_GPL(nand_erase_op); 2158 2159 /** 2160 * nand_set_features_op - Do a SET FEATURES operation 2161 * @chip: The NAND chip 2162 * @feature: feature id 2163 * @data: 4 bytes of data 2164 * 2165 * This function sends a SET FEATURES command and waits for the NAND to be 2166 * ready before returning. 2167 * This function does not select/unselect the CS line. 2168 * 2169 * Returns 0 on success, a negative error code otherwise. 2170 */ 2171 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 2172 const void *data) 2173 { 2174 struct mtd_info *mtd = nand_to_mtd(chip); 2175 const u8 *params = data; 2176 int i, ret; 2177 2178 if (chip->exec_op) { 2179 const struct nand_sdr_timings *sdr = 2180 nand_get_sdr_timings(&chip->data_interface); 2181 struct nand_op_instr instrs[] = { 2182 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 2183 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 2184 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 2185 PSEC_TO_NSEC(sdr->tWB_max)), 2186 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 2187 }; 2188 struct nand_operation op = NAND_OPERATION(instrs); 2189 2190 return nand_exec_op(chip, &op); 2191 } 2192 2193 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); 2194 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2195 chip->write_byte(mtd, params[i]); 2196 2197 ret = chip->waitfunc(mtd, chip); 2198 if (ret < 0) 2199 return ret; 2200 2201 if (ret & NAND_STATUS_FAIL) 2202 return -EIO; 2203 2204 return 0; 2205 } 2206 2207 /** 2208 * nand_get_features_op - Do a GET FEATURES operation 2209 * @chip: The NAND chip 2210 * @feature: feature id 2211 * @data: 4 bytes of data 2212 * 2213 * This function sends a GET FEATURES command and waits for the NAND to be 2214 * ready before returning. 2215 * This function does not select/unselect the CS line. 2216 * 2217 * Returns 0 on success, a negative error code otherwise. 2218 */ 2219 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 2220 void *data) 2221 { 2222 struct mtd_info *mtd = nand_to_mtd(chip); 2223 u8 *params = data; 2224 int i; 2225 2226 if (chip->exec_op) { 2227 const struct nand_sdr_timings *sdr = 2228 nand_get_sdr_timings(&chip->data_interface); 2229 struct nand_op_instr instrs[] = { 2230 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 2231 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 2232 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 2233 PSEC_TO_NSEC(sdr->tRR_min)), 2234 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 2235 data, 0), 2236 }; 2237 struct nand_operation op = NAND_OPERATION(instrs); 2238 2239 return nand_exec_op(chip, &op); 2240 } 2241 2242 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); 2243 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2244 params[i] = chip->read_byte(mtd); 2245 2246 return 0; 2247 } 2248 2249 /** 2250 * nand_reset_op - Do a reset operation 2251 * @chip: The NAND chip 2252 * 2253 * This function sends a RESET command and waits for the NAND to be ready 2254 * before returning. 2255 * This function does not select/unselect the CS line. 2256 * 2257 * Returns 0 on success, a negative error code otherwise. 2258 */ 2259 int nand_reset_op(struct nand_chip *chip) 2260 { 2261 struct mtd_info *mtd = nand_to_mtd(chip); 2262 2263 if (chip->exec_op) { 2264 const struct nand_sdr_timings *sdr = 2265 nand_get_sdr_timings(&chip->data_interface); 2266 struct nand_op_instr instrs[] = { 2267 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 2268 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 2269 }; 2270 struct nand_operation op = NAND_OPERATION(instrs); 2271 2272 return nand_exec_op(chip, &op); 2273 } 2274 2275 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); 2276 2277 return 0; 2278 } 2279 EXPORT_SYMBOL_GPL(nand_reset_op); 2280 2281 /** 2282 * nand_read_data_op - Read data from the NAND 2283 * @chip: The NAND chip 2284 * @buf: buffer used to store the data 2285 * @len: length of the buffer 2286 * @force_8bit: force 8-bit bus access 2287 * 2288 * This function does a raw data read on the bus. Usually used after launching 2289 * another NAND operation like nand_read_page_op(). 2290 * This function does not select/unselect the CS line. 2291 * 2292 * Returns 0 on success, a negative error code otherwise. 2293 */ 2294 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2295 bool force_8bit) 2296 { 2297 struct mtd_info *mtd = nand_to_mtd(chip); 2298 2299 if (!len || !buf) 2300 return -EINVAL; 2301 2302 if (chip->exec_op) { 2303 struct nand_op_instr instrs[] = { 2304 NAND_OP_DATA_IN(len, buf, 0), 2305 }; 2306 struct nand_operation op = NAND_OPERATION(instrs); 2307 2308 instrs[0].ctx.data.force_8bit = force_8bit; 2309 2310 return nand_exec_op(chip, &op); 2311 } 2312 2313 if (force_8bit) { 2314 u8 *p = buf; 2315 unsigned int i; 2316 2317 for (i = 0; i < len; i++) 2318 p[i] = chip->read_byte(mtd); 2319 } else { 2320 chip->read_buf(mtd, buf, len); 2321 } 2322 2323 return 0; 2324 } 2325 EXPORT_SYMBOL_GPL(nand_read_data_op); 2326 2327 /** 2328 * nand_write_data_op - Write data from the NAND 2329 * @chip: The NAND chip 2330 * @buf: buffer containing the data to send on the bus 2331 * @len: length of the buffer 2332 * @force_8bit: force 8-bit bus access 2333 * 2334 * This function does a raw data write on the bus. Usually used after launching 2335 * another NAND operation like nand_write_page_begin_op(). 2336 * This function does not select/unselect the CS line. 2337 * 2338 * Returns 0 on success, a negative error code otherwise. 2339 */ 2340 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2341 unsigned int len, bool force_8bit) 2342 { 2343 struct mtd_info *mtd = nand_to_mtd(chip); 2344 2345 if (!len || !buf) 2346 return -EINVAL; 2347 2348 if (chip->exec_op) { 2349 struct nand_op_instr instrs[] = { 2350 NAND_OP_DATA_OUT(len, buf, 0), 2351 }; 2352 struct nand_operation op = NAND_OPERATION(instrs); 2353 2354 instrs[0].ctx.data.force_8bit = force_8bit; 2355 2356 return nand_exec_op(chip, &op); 2357 } 2358 2359 if (force_8bit) { 2360 const u8 *p = buf; 2361 unsigned int i; 2362 2363 for (i = 0; i < len; i++) 2364 chip->write_byte(mtd, p[i]); 2365 } else { 2366 chip->write_buf(mtd, buf, len); 2367 } 2368 2369 return 0; 2370 } 2371 EXPORT_SYMBOL_GPL(nand_write_data_op); 2372 2373 /** 2374 * struct nand_op_parser_ctx - Context used by the parser 2375 * @instrs: array of all the instructions that must be addressed 2376 * @ninstrs: length of the @instrs array 2377 * @subop: Sub-operation to be passed to the NAND controller 2378 * 2379 * This structure is used by the core to split NAND operations into 2380 * sub-operations that can be handled by the NAND controller. 2381 */ 2382 struct nand_op_parser_ctx { 2383 const struct nand_op_instr *instrs; 2384 unsigned int ninstrs; 2385 struct nand_subop subop; 2386 }; 2387 2388 /** 2389 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2390 * @pat: the parser pattern element that matches @instr 2391 * @instr: pointer to the instruction to check 2392 * @start_offset: this is an in/out parameter. If @instr has already been 2393 * split, then @start_offset is the offset from which to start 2394 * (either an address cycle or an offset in the data buffer). 2395 * Conversely, if the function returns true (ie. instr must be 2396 * split), this parameter is updated to point to the first 2397 * data/address cycle that has not been taken care of. 2398 * 2399 * Some NAND controllers are limited and cannot send X address cycles with a 2400 * unique operation, or cannot read/write more than Y bytes at the same time. 2401 * In this case, split the instruction that does not fit in a single 2402 * controller-operation into two or more chunks. 2403 * 2404 * Returns true if the instruction must be split, false otherwise. 2405 * The @start_offset parameter is also updated to the offset at which the next 2406 * bundle of instruction must start (if an address or a data instruction). 2407 */ 2408 static bool 2409 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2410 const struct nand_op_instr *instr, 2411 unsigned int *start_offset) 2412 { 2413 switch (pat->type) { 2414 case NAND_OP_ADDR_INSTR: 2415 if (!pat->ctx.addr.maxcycles) 2416 break; 2417 2418 if (instr->ctx.addr.naddrs - *start_offset > 2419 pat->ctx.addr.maxcycles) { 2420 *start_offset += pat->ctx.addr.maxcycles; 2421 return true; 2422 } 2423 break; 2424 2425 case NAND_OP_DATA_IN_INSTR: 2426 case NAND_OP_DATA_OUT_INSTR: 2427 if (!pat->ctx.data.maxlen) 2428 break; 2429 2430 if (instr->ctx.data.len - *start_offset > 2431 pat->ctx.data.maxlen) { 2432 *start_offset += pat->ctx.data.maxlen; 2433 return true; 2434 } 2435 break; 2436 2437 default: 2438 break; 2439 } 2440 2441 return false; 2442 } 2443 2444 /** 2445 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2446 * remaining in the parser context 2447 * @pat: the pattern to test 2448 * @ctx: the parser context structure to match with the pattern @pat 2449 * 2450 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2451 * Returns true if this is the case, false ortherwise. When true is returned, 2452 * @ctx->subop is updated with the set of instructions to be passed to the 2453 * controller driver. 2454 */ 2455 static bool 2456 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2457 struct nand_op_parser_ctx *ctx) 2458 { 2459 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2460 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2461 const struct nand_op_instr *instr = ctx->subop.instrs; 2462 unsigned int i, ninstrs; 2463 2464 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2465 /* 2466 * The pattern instruction does not match the operation 2467 * instruction. If the instruction is marked optional in the 2468 * pattern definition, we skip the pattern element and continue 2469 * to the next one. If the element is mandatory, there's no 2470 * match and we can return false directly. 2471 */ 2472 if (instr->type != pat->elems[i].type) { 2473 if (!pat->elems[i].optional) 2474 return false; 2475 2476 continue; 2477 } 2478 2479 /* 2480 * Now check the pattern element constraints. If the pattern is 2481 * not able to handle the whole instruction in a single step, 2482 * we have to split it. 2483 * The last_instr_end_off value comes back updated to point to 2484 * the position where we have to split the instruction (the 2485 * start of the next subop chunk). 2486 */ 2487 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2488 &instr_offset)) { 2489 ninstrs++; 2490 i++; 2491 break; 2492 } 2493 2494 instr++; 2495 ninstrs++; 2496 instr_offset = 0; 2497 } 2498 2499 /* 2500 * This can happen if all instructions of a pattern are optional. 2501 * Still, if there's not at least one instruction handled by this 2502 * pattern, this is not a match, and we should try the next one (if 2503 * any). 2504 */ 2505 if (!ninstrs) 2506 return false; 2507 2508 /* 2509 * We had a match on the pattern head, but the pattern may be longer 2510 * than the instructions we're asked to execute. We need to make sure 2511 * there's no mandatory elements in the pattern tail. 2512 */ 2513 for (; i < pat->nelems; i++) { 2514 if (!pat->elems[i].optional) 2515 return false; 2516 } 2517 2518 /* 2519 * We have a match: update the subop structure accordingly and return 2520 * true. 2521 */ 2522 ctx->subop.ninstrs = ninstrs; 2523 ctx->subop.last_instr_end_off = instr_offset; 2524 2525 return true; 2526 } 2527 2528 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2529 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2530 { 2531 const struct nand_op_instr *instr; 2532 char *prefix = " "; 2533 unsigned int i; 2534 2535 pr_debug("executing subop:\n"); 2536 2537 for (i = 0; i < ctx->ninstrs; i++) { 2538 instr = &ctx->instrs[i]; 2539 2540 if (instr == &ctx->subop.instrs[0]) 2541 prefix = " ->"; 2542 2543 switch (instr->type) { 2544 case NAND_OP_CMD_INSTR: 2545 pr_debug("%sCMD [0x%02x]\n", prefix, 2546 instr->ctx.cmd.opcode); 2547 break; 2548 case NAND_OP_ADDR_INSTR: 2549 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 2550 instr->ctx.addr.naddrs, 2551 instr->ctx.addr.naddrs < 64 ? 2552 instr->ctx.addr.naddrs : 64, 2553 instr->ctx.addr.addrs); 2554 break; 2555 case NAND_OP_DATA_IN_INSTR: 2556 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 2557 instr->ctx.data.len, 2558 instr->ctx.data.force_8bit ? 2559 ", force 8-bit" : ""); 2560 break; 2561 case NAND_OP_DATA_OUT_INSTR: 2562 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 2563 instr->ctx.data.len, 2564 instr->ctx.data.force_8bit ? 2565 ", force 8-bit" : ""); 2566 break; 2567 case NAND_OP_WAITRDY_INSTR: 2568 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 2569 instr->ctx.waitrdy.timeout_ms); 2570 break; 2571 } 2572 2573 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2574 prefix = " "; 2575 } 2576 } 2577 #else 2578 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2579 { 2580 /* NOP */ 2581 } 2582 #endif 2583 2584 /** 2585 * nand_op_parser_exec_op - exec_op parser 2586 * @chip: the NAND chip 2587 * @parser: patterns description provided by the controller driver 2588 * @op: the NAND operation to address 2589 * @check_only: when true, the function only checks if @op can be handled but 2590 * does not execute the operation 2591 * 2592 * Helper function designed to ease integration of NAND controller drivers that 2593 * only support a limited set of instruction sequences. The supported sequences 2594 * are described in @parser, and the framework takes care of splitting @op into 2595 * multiple sub-operations (if required) and pass them back to the ->exec() 2596 * callback of the matching pattern if @check_only is set to false. 2597 * 2598 * NAND controller drivers should call this function from their own ->exec_op() 2599 * implementation. 2600 * 2601 * Returns 0 on success, a negative error code otherwise. A failure can be 2602 * caused by an unsupported operation (none of the supported patterns is able 2603 * to handle the requested operation), or an error returned by one of the 2604 * matching pattern->exec() hook. 2605 */ 2606 int nand_op_parser_exec_op(struct nand_chip *chip, 2607 const struct nand_op_parser *parser, 2608 const struct nand_operation *op, bool check_only) 2609 { 2610 struct nand_op_parser_ctx ctx = { 2611 .subop.instrs = op->instrs, 2612 .instrs = op->instrs, 2613 .ninstrs = op->ninstrs, 2614 }; 2615 unsigned int i; 2616 2617 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2618 int ret; 2619 2620 for (i = 0; i < parser->npatterns; i++) { 2621 const struct nand_op_parser_pattern *pattern; 2622 2623 pattern = &parser->patterns[i]; 2624 if (!nand_op_parser_match_pat(pattern, &ctx)) 2625 continue; 2626 2627 nand_op_parser_trace(&ctx); 2628 2629 if (check_only) 2630 break; 2631 2632 ret = pattern->exec(chip, &ctx.subop); 2633 if (ret) 2634 return ret; 2635 2636 break; 2637 } 2638 2639 if (i == parser->npatterns) { 2640 pr_debug("->exec_op() parser: pattern not found!\n"); 2641 return -ENOTSUPP; 2642 } 2643 2644 /* 2645 * Update the context structure by pointing to the start of the 2646 * next subop. 2647 */ 2648 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2649 if (ctx.subop.last_instr_end_off) 2650 ctx.subop.instrs -= 1; 2651 2652 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2653 } 2654 2655 return 0; 2656 } 2657 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2658 2659 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2660 { 2661 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2662 instr->type == NAND_OP_DATA_OUT_INSTR); 2663 } 2664 2665 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2666 unsigned int instr_idx) 2667 { 2668 return subop && instr_idx < subop->ninstrs; 2669 } 2670 2671 static int nand_subop_get_start_off(const struct nand_subop *subop, 2672 unsigned int instr_idx) 2673 { 2674 if (instr_idx) 2675 return 0; 2676 2677 return subop->first_instr_start_off; 2678 } 2679 2680 /** 2681 * nand_subop_get_addr_start_off - Get the start offset in an address array 2682 * @subop: The entire sub-operation 2683 * @instr_idx: Index of the instruction inside the sub-operation 2684 * 2685 * During driver development, one could be tempted to directly use the 2686 * ->addr.addrs field of address instructions. This is wrong as address 2687 * instructions might be split. 2688 * 2689 * Given an address instruction, returns the offset of the first cycle to issue. 2690 */ 2691 int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2692 unsigned int instr_idx) 2693 { 2694 if (!nand_subop_instr_is_valid(subop, instr_idx) || 2695 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) 2696 return -EINVAL; 2697 2698 return nand_subop_get_start_off(subop, instr_idx); 2699 } 2700 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2701 2702 /** 2703 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2704 * @subop: The entire sub-operation 2705 * @instr_idx: Index of the instruction inside the sub-operation 2706 * 2707 * During driver development, one could be tempted to directly use the 2708 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2709 * might be split. 2710 * 2711 * Given an address instruction, returns the number of address cycle to issue. 2712 */ 2713 int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2714 unsigned int instr_idx) 2715 { 2716 int start_off, end_off; 2717 2718 if (!nand_subop_instr_is_valid(subop, instr_idx) || 2719 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) 2720 return -EINVAL; 2721 2722 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2723 2724 if (instr_idx == subop->ninstrs - 1 && 2725 subop->last_instr_end_off) 2726 end_off = subop->last_instr_end_off; 2727 else 2728 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2729 2730 return end_off - start_off; 2731 } 2732 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2733 2734 /** 2735 * nand_subop_get_data_start_off - Get the start offset in a data array 2736 * @subop: The entire sub-operation 2737 * @instr_idx: Index of the instruction inside the sub-operation 2738 * 2739 * During driver development, one could be tempted to directly use the 2740 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2741 * instructions might be split. 2742 * 2743 * Given a data instruction, returns the offset to start from. 2744 */ 2745 int nand_subop_get_data_start_off(const struct nand_subop *subop, 2746 unsigned int instr_idx) 2747 { 2748 if (!nand_subop_instr_is_valid(subop, instr_idx) || 2749 !nand_instr_is_data(&subop->instrs[instr_idx])) 2750 return -EINVAL; 2751 2752 return nand_subop_get_start_off(subop, instr_idx); 2753 } 2754 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2755 2756 /** 2757 * nand_subop_get_data_len - Get the number of bytes to retrieve 2758 * @subop: The entire sub-operation 2759 * @instr_idx: Index of the instruction inside the sub-operation 2760 * 2761 * During driver development, one could be tempted to directly use the 2762 * ->data->len field of a data instruction. This is wrong as data instructions 2763 * might be split. 2764 * 2765 * Returns the length of the chunk of data to send/receive. 2766 */ 2767 int nand_subop_get_data_len(const struct nand_subop *subop, 2768 unsigned int instr_idx) 2769 { 2770 int start_off = 0, end_off; 2771 2772 if (!nand_subop_instr_is_valid(subop, instr_idx) || 2773 !nand_instr_is_data(&subop->instrs[instr_idx])) 2774 return -EINVAL; 2775 2776 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2777 2778 if (instr_idx == subop->ninstrs - 1 && 2779 subop->last_instr_end_off) 2780 end_off = subop->last_instr_end_off; 2781 else 2782 end_off = subop->instrs[instr_idx].ctx.data.len; 2783 2784 return end_off - start_off; 2785 } 2786 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2787 2788 /** 2789 * nand_reset - Reset and initialize a NAND device 2790 * @chip: The NAND chip 2791 * @chipnr: Internal die id 2792 * 2793 * Save the timings data structure, then apply SDR timings mode 0 (see 2794 * nand_reset_data_interface for details), do the reset operation, and 2795 * apply back the previous timings. 2796 * 2797 * Returns 0 on success, a negative error code otherwise. 2798 */ 2799 int nand_reset(struct nand_chip *chip, int chipnr) 2800 { 2801 struct mtd_info *mtd = nand_to_mtd(chip); 2802 struct nand_data_interface saved_data_intf = chip->data_interface; 2803 int ret; 2804 2805 ret = nand_reset_data_interface(chip, chipnr); 2806 if (ret) 2807 return ret; 2808 2809 /* 2810 * The CS line has to be released before we can apply the new NAND 2811 * interface settings, hence this weird ->select_chip() dance. 2812 */ 2813 chip->select_chip(mtd, chipnr); 2814 ret = nand_reset_op(chip); 2815 chip->select_chip(mtd, -1); 2816 if (ret) 2817 return ret; 2818 2819 /* 2820 * A nand_reset_data_interface() put both the NAND chip and the NAND 2821 * controller in timings mode 0. If the default mode for this chip is 2822 * also 0, no need to proceed to the change again. Plus, at probe time, 2823 * nand_setup_data_interface() uses ->set/get_features() which would 2824 * fail anyway as the parameter page is not available yet. 2825 */ 2826 if (!chip->onfi_timing_mode_default) 2827 return 0; 2828 2829 chip->data_interface = saved_data_intf; 2830 ret = nand_setup_data_interface(chip, chipnr); 2831 if (ret) 2832 return ret; 2833 2834 return 0; 2835 } 2836 EXPORT_SYMBOL_GPL(nand_reset); 2837 2838 /** 2839 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2840 * @buf: buffer to test 2841 * @len: buffer length 2842 * @bitflips_threshold: maximum number of bitflips 2843 * 2844 * Check if a buffer contains only 0xff, which means the underlying region 2845 * has been erased and is ready to be programmed. 2846 * The bitflips_threshold specify the maximum number of bitflips before 2847 * considering the region is not erased. 2848 * Note: The logic of this function has been extracted from the memweight 2849 * implementation, except that nand_check_erased_buf function exit before 2850 * testing the whole buffer if the number of bitflips exceed the 2851 * bitflips_threshold value. 2852 * 2853 * Returns a positive number of bitflips less than or equal to 2854 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2855 * threshold. 2856 */ 2857 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2858 { 2859 const unsigned char *bitmap = buf; 2860 int bitflips = 0; 2861 int weight; 2862 2863 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2864 len--, bitmap++) { 2865 weight = hweight8(*bitmap); 2866 bitflips += BITS_PER_BYTE - weight; 2867 if (unlikely(bitflips > bitflips_threshold)) 2868 return -EBADMSG; 2869 } 2870 2871 for (; len >= sizeof(long); 2872 len -= sizeof(long), bitmap += sizeof(long)) { 2873 unsigned long d = *((unsigned long *)bitmap); 2874 if (d == ~0UL) 2875 continue; 2876 weight = hweight_long(d); 2877 bitflips += BITS_PER_LONG - weight; 2878 if (unlikely(bitflips > bitflips_threshold)) 2879 return -EBADMSG; 2880 } 2881 2882 for (; len > 0; len--, bitmap++) { 2883 weight = hweight8(*bitmap); 2884 bitflips += BITS_PER_BYTE - weight; 2885 if (unlikely(bitflips > bitflips_threshold)) 2886 return -EBADMSG; 2887 } 2888 2889 return bitflips; 2890 } 2891 2892 /** 2893 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2894 * 0xff data 2895 * @data: data buffer to test 2896 * @datalen: data length 2897 * @ecc: ECC buffer 2898 * @ecclen: ECC length 2899 * @extraoob: extra OOB buffer 2900 * @extraooblen: extra OOB length 2901 * @bitflips_threshold: maximum number of bitflips 2902 * 2903 * Check if a data buffer and its associated ECC and OOB data contains only 2904 * 0xff pattern, which means the underlying region has been erased and is 2905 * ready to be programmed. 2906 * The bitflips_threshold specify the maximum number of bitflips before 2907 * considering the region as not erased. 2908 * 2909 * Note: 2910 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2911 * different from the NAND page size. When fixing bitflips, ECC engines will 2912 * report the number of errors per chunk, and the NAND core infrastructure 2913 * expect you to return the maximum number of bitflips for the whole page. 2914 * This is why you should always use this function on a single chunk and 2915 * not on the whole page. After checking each chunk you should update your 2916 * max_bitflips value accordingly. 2917 * 2/ When checking for bitflips in erased pages you should not only check 2918 * the payload data but also their associated ECC data, because a user might 2919 * have programmed almost all bits to 1 but a few. In this case, we 2920 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2921 * this case. 2922 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2923 * data are protected by the ECC engine. 2924 * It could also be used if you support subpages and want to attach some 2925 * extra OOB data to an ECC chunk. 2926 * 2927 * Returns a positive number of bitflips less than or equal to 2928 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2929 * threshold. In case of success, the passed buffers are filled with 0xff. 2930 */ 2931 int nand_check_erased_ecc_chunk(void *data, int datalen, 2932 void *ecc, int ecclen, 2933 void *extraoob, int extraooblen, 2934 int bitflips_threshold) 2935 { 2936 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2937 2938 data_bitflips = nand_check_erased_buf(data, datalen, 2939 bitflips_threshold); 2940 if (data_bitflips < 0) 2941 return data_bitflips; 2942 2943 bitflips_threshold -= data_bitflips; 2944 2945 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2946 if (ecc_bitflips < 0) 2947 return ecc_bitflips; 2948 2949 bitflips_threshold -= ecc_bitflips; 2950 2951 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2952 bitflips_threshold); 2953 if (extraoob_bitflips < 0) 2954 return extraoob_bitflips; 2955 2956 if (data_bitflips) 2957 memset(data, 0xff, datalen); 2958 2959 if (ecc_bitflips) 2960 memset(ecc, 0xff, ecclen); 2961 2962 if (extraoob_bitflips) 2963 memset(extraoob, 0xff, extraooblen); 2964 2965 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2966 } 2967 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2968 2969 /** 2970 * nand_read_page_raw - [INTERN] read raw page data without ecc 2971 * @mtd: mtd info structure 2972 * @chip: nand chip info structure 2973 * @buf: buffer to store read data 2974 * @oob_required: caller requires OOB data read to chip->oob_poi 2975 * @page: page number to read 2976 * 2977 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2978 */ 2979 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 2980 uint8_t *buf, int oob_required, int page) 2981 { 2982 int ret; 2983 2984 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2985 if (ret) 2986 return ret; 2987 2988 if (oob_required) { 2989 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2990 false); 2991 if (ret) 2992 return ret; 2993 } 2994 2995 return 0; 2996 } 2997 EXPORT_SYMBOL(nand_read_page_raw); 2998 2999 /** 3000 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 3001 * @mtd: mtd info structure 3002 * @chip: nand chip info structure 3003 * @buf: buffer to store read data 3004 * @oob_required: caller requires OOB data read to chip->oob_poi 3005 * @page: page number to read 3006 * 3007 * We need a special oob layout and handling even when OOB isn't used. 3008 */ 3009 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, 3010 struct nand_chip *chip, uint8_t *buf, 3011 int oob_required, int page) 3012 { 3013 int eccsize = chip->ecc.size; 3014 int eccbytes = chip->ecc.bytes; 3015 uint8_t *oob = chip->oob_poi; 3016 int steps, size, ret; 3017 3018 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3019 if (ret) 3020 return ret; 3021 3022 for (steps = chip->ecc.steps; steps > 0; steps--) { 3023 ret = nand_read_data_op(chip, buf, eccsize, false); 3024 if (ret) 3025 return ret; 3026 3027 buf += eccsize; 3028 3029 if (chip->ecc.prepad) { 3030 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3031 false); 3032 if (ret) 3033 return ret; 3034 3035 oob += chip->ecc.prepad; 3036 } 3037 3038 ret = nand_read_data_op(chip, oob, eccbytes, false); 3039 if (ret) 3040 return ret; 3041 3042 oob += eccbytes; 3043 3044 if (chip->ecc.postpad) { 3045 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3046 false); 3047 if (ret) 3048 return ret; 3049 3050 oob += chip->ecc.postpad; 3051 } 3052 } 3053 3054 size = mtd->oobsize - (oob - chip->oob_poi); 3055 if (size) { 3056 ret = nand_read_data_op(chip, oob, size, false); 3057 if (ret) 3058 return ret; 3059 } 3060 3061 return 0; 3062 } 3063 3064 /** 3065 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 3066 * @mtd: mtd info structure 3067 * @chip: nand chip info structure 3068 * @buf: buffer to store read data 3069 * @oob_required: caller requires OOB data read to chip->oob_poi 3070 * @page: page number to read 3071 */ 3072 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, 3073 uint8_t *buf, int oob_required, int page) 3074 { 3075 int i, eccsize = chip->ecc.size, ret; 3076 int eccbytes = chip->ecc.bytes; 3077 int eccsteps = chip->ecc.steps; 3078 uint8_t *p = buf; 3079 uint8_t *ecc_calc = chip->ecc.calc_buf; 3080 uint8_t *ecc_code = chip->ecc.code_buf; 3081 unsigned int max_bitflips = 0; 3082 3083 chip->ecc.read_page_raw(mtd, chip, buf, 1, page); 3084 3085 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3086 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 3087 3088 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3089 chip->ecc.total); 3090 if (ret) 3091 return ret; 3092 3093 eccsteps = chip->ecc.steps; 3094 p = buf; 3095 3096 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3097 int stat; 3098 3099 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 3100 if (stat < 0) { 3101 mtd->ecc_stats.failed++; 3102 } else { 3103 mtd->ecc_stats.corrected += stat; 3104 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3105 } 3106 } 3107 return max_bitflips; 3108 } 3109 3110 /** 3111 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 3112 * @mtd: mtd info structure 3113 * @chip: nand chip info structure 3114 * @data_offs: offset of requested data within the page 3115 * @readlen: data length 3116 * @bufpoi: buffer to store read data 3117 * @page: page number to read 3118 */ 3119 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, 3120 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, 3121 int page) 3122 { 3123 int start_step, end_step, num_steps, ret; 3124 uint8_t *p; 3125 int data_col_addr, i, gaps = 0; 3126 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 3127 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 3128 int index, section = 0; 3129 unsigned int max_bitflips = 0; 3130 struct mtd_oob_region oobregion = { }; 3131 3132 /* Column address within the page aligned to ECC size (256bytes) */ 3133 start_step = data_offs / chip->ecc.size; 3134 end_step = (data_offs + readlen - 1) / chip->ecc.size; 3135 num_steps = end_step - start_step + 1; 3136 index = start_step * chip->ecc.bytes; 3137 3138 /* Data size aligned to ECC ecc.size */ 3139 datafrag_len = num_steps * chip->ecc.size; 3140 eccfrag_len = num_steps * chip->ecc.bytes; 3141 3142 data_col_addr = start_step * chip->ecc.size; 3143 /* If we read not a page aligned data */ 3144 p = bufpoi + data_col_addr; 3145 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 3146 if (ret) 3147 return ret; 3148 3149 /* Calculate ECC */ 3150 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 3151 chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]); 3152 3153 /* 3154 * The performance is faster if we position offsets according to 3155 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 3156 */ 3157 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 3158 if (ret) 3159 return ret; 3160 3161 if (oobregion.length < eccfrag_len) 3162 gaps = 1; 3163 3164 if (gaps) { 3165 ret = nand_change_read_column_op(chip, mtd->writesize, 3166 chip->oob_poi, mtd->oobsize, 3167 false); 3168 if (ret) 3169 return ret; 3170 } else { 3171 /* 3172 * Send the command to read the particular ECC bytes take care 3173 * about buswidth alignment in read_buf. 3174 */ 3175 aligned_pos = oobregion.offset & ~(busw - 1); 3176 aligned_len = eccfrag_len; 3177 if (oobregion.offset & (busw - 1)) 3178 aligned_len++; 3179 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 3180 (busw - 1)) 3181 aligned_len++; 3182 3183 ret = nand_change_read_column_op(chip, 3184 mtd->writesize + aligned_pos, 3185 &chip->oob_poi[aligned_pos], 3186 aligned_len, false); 3187 if (ret) 3188 return ret; 3189 } 3190 3191 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3192 chip->oob_poi, index, eccfrag_len); 3193 if (ret) 3194 return ret; 3195 3196 p = bufpoi + data_col_addr; 3197 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3198 int stat; 3199 3200 stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i], 3201 &chip->ecc.calc_buf[i]); 3202 if (stat == -EBADMSG && 3203 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3204 /* check for empty pages with bitflips */ 3205 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3206 &chip->ecc.code_buf[i], 3207 chip->ecc.bytes, 3208 NULL, 0, 3209 chip->ecc.strength); 3210 } 3211 3212 if (stat < 0) { 3213 mtd->ecc_stats.failed++; 3214 } else { 3215 mtd->ecc_stats.corrected += stat; 3216 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3217 } 3218 } 3219 return max_bitflips; 3220 } 3221 3222 /** 3223 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3224 * @mtd: mtd info structure 3225 * @chip: nand chip info structure 3226 * @buf: buffer to store read data 3227 * @oob_required: caller requires OOB data read to chip->oob_poi 3228 * @page: page number to read 3229 * 3230 * Not for syndrome calculating ECC controllers which need a special oob layout. 3231 */ 3232 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, 3233 uint8_t *buf, int oob_required, int page) 3234 { 3235 int i, eccsize = chip->ecc.size, ret; 3236 int eccbytes = chip->ecc.bytes; 3237 int eccsteps = chip->ecc.steps; 3238 uint8_t *p = buf; 3239 uint8_t *ecc_calc = chip->ecc.calc_buf; 3240 uint8_t *ecc_code = chip->ecc.code_buf; 3241 unsigned int max_bitflips = 0; 3242 3243 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3244 if (ret) 3245 return ret; 3246 3247 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3248 chip->ecc.hwctl(mtd, NAND_ECC_READ); 3249 3250 ret = nand_read_data_op(chip, p, eccsize, false); 3251 if (ret) 3252 return ret; 3253 3254 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 3255 } 3256 3257 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3258 if (ret) 3259 return ret; 3260 3261 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3262 chip->ecc.total); 3263 if (ret) 3264 return ret; 3265 3266 eccsteps = chip->ecc.steps; 3267 p = buf; 3268 3269 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3270 int stat; 3271 3272 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 3273 if (stat == -EBADMSG && 3274 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3275 /* check for empty pages with bitflips */ 3276 stat = nand_check_erased_ecc_chunk(p, eccsize, 3277 &ecc_code[i], eccbytes, 3278 NULL, 0, 3279 chip->ecc.strength); 3280 } 3281 3282 if (stat < 0) { 3283 mtd->ecc_stats.failed++; 3284 } else { 3285 mtd->ecc_stats.corrected += stat; 3286 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3287 } 3288 } 3289 return max_bitflips; 3290 } 3291 3292 /** 3293 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first 3294 * @mtd: mtd info structure 3295 * @chip: nand chip info structure 3296 * @buf: buffer to store read data 3297 * @oob_required: caller requires OOB data read to chip->oob_poi 3298 * @page: page number to read 3299 * 3300 * Hardware ECC for large page chips, require OOB to be read first. For this 3301 * ECC mode, the write_page method is re-used from ECC_HW. These methods 3302 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with 3303 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from 3304 * the data area, by overwriting the NAND manufacturer bad block markings. 3305 */ 3306 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, 3307 struct nand_chip *chip, uint8_t *buf, int oob_required, int page) 3308 { 3309 int i, eccsize = chip->ecc.size, ret; 3310 int eccbytes = chip->ecc.bytes; 3311 int eccsteps = chip->ecc.steps; 3312 uint8_t *p = buf; 3313 uint8_t *ecc_code = chip->ecc.code_buf; 3314 uint8_t *ecc_calc = chip->ecc.calc_buf; 3315 unsigned int max_bitflips = 0; 3316 3317 /* Read the OOB area first */ 3318 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3319 if (ret) 3320 return ret; 3321 3322 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3323 if (ret) 3324 return ret; 3325 3326 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3327 chip->ecc.total); 3328 if (ret) 3329 return ret; 3330 3331 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3332 int stat; 3333 3334 chip->ecc.hwctl(mtd, NAND_ECC_READ); 3335 3336 ret = nand_read_data_op(chip, p, eccsize, false); 3337 if (ret) 3338 return ret; 3339 3340 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 3341 3342 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); 3343 if (stat == -EBADMSG && 3344 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3345 /* check for empty pages with bitflips */ 3346 stat = nand_check_erased_ecc_chunk(p, eccsize, 3347 &ecc_code[i], eccbytes, 3348 NULL, 0, 3349 chip->ecc.strength); 3350 } 3351 3352 if (stat < 0) { 3353 mtd->ecc_stats.failed++; 3354 } else { 3355 mtd->ecc_stats.corrected += stat; 3356 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3357 } 3358 } 3359 return max_bitflips; 3360 } 3361 3362 /** 3363 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3364 * @mtd: mtd info structure 3365 * @chip: nand chip info structure 3366 * @buf: buffer to store read data 3367 * @oob_required: caller requires OOB data read to chip->oob_poi 3368 * @page: page number to read 3369 * 3370 * The hw generator calculates the error syndrome automatically. Therefore we 3371 * need a special oob layout and handling. 3372 */ 3373 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 3374 uint8_t *buf, int oob_required, int page) 3375 { 3376 int ret, i, eccsize = chip->ecc.size; 3377 int eccbytes = chip->ecc.bytes; 3378 int eccsteps = chip->ecc.steps; 3379 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3380 uint8_t *p = buf; 3381 uint8_t *oob = chip->oob_poi; 3382 unsigned int max_bitflips = 0; 3383 3384 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3385 if (ret) 3386 return ret; 3387 3388 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3389 int stat; 3390 3391 chip->ecc.hwctl(mtd, NAND_ECC_READ); 3392 3393 ret = nand_read_data_op(chip, p, eccsize, false); 3394 if (ret) 3395 return ret; 3396 3397 if (chip->ecc.prepad) { 3398 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3399 false); 3400 if (ret) 3401 return ret; 3402 3403 oob += chip->ecc.prepad; 3404 } 3405 3406 chip->ecc.hwctl(mtd, NAND_ECC_READSYN); 3407 3408 ret = nand_read_data_op(chip, oob, eccbytes, false); 3409 if (ret) 3410 return ret; 3411 3412 stat = chip->ecc.correct(mtd, p, oob, NULL); 3413 3414 oob += eccbytes; 3415 3416 if (chip->ecc.postpad) { 3417 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3418 false); 3419 if (ret) 3420 return ret; 3421 3422 oob += chip->ecc.postpad; 3423 } 3424 3425 if (stat == -EBADMSG && 3426 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3427 /* check for empty pages with bitflips */ 3428 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3429 oob - eccpadbytes, 3430 eccpadbytes, 3431 NULL, 0, 3432 chip->ecc.strength); 3433 } 3434 3435 if (stat < 0) { 3436 mtd->ecc_stats.failed++; 3437 } else { 3438 mtd->ecc_stats.corrected += stat; 3439 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3440 } 3441 } 3442 3443 /* Calculate remaining oob bytes */ 3444 i = mtd->oobsize - (oob - chip->oob_poi); 3445 if (i) { 3446 ret = nand_read_data_op(chip, oob, i, false); 3447 if (ret) 3448 return ret; 3449 } 3450 3451 return max_bitflips; 3452 } 3453 3454 /** 3455 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3456 * @mtd: mtd info structure 3457 * @oob: oob destination address 3458 * @ops: oob ops structure 3459 * @len: size of oob to transfer 3460 */ 3461 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob, 3462 struct mtd_oob_ops *ops, size_t len) 3463 { 3464 struct nand_chip *chip = mtd_to_nand(mtd); 3465 int ret; 3466 3467 switch (ops->mode) { 3468 3469 case MTD_OPS_PLACE_OOB: 3470 case MTD_OPS_RAW: 3471 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3472 return oob + len; 3473 3474 case MTD_OPS_AUTO_OOB: 3475 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3476 ops->ooboffs, len); 3477 BUG_ON(ret); 3478 return oob + len; 3479 3480 default: 3481 BUG(); 3482 } 3483 return NULL; 3484 } 3485 3486 /** 3487 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3488 * @mtd: MTD device structure 3489 * @retry_mode: the retry mode to use 3490 * 3491 * Some vendors supply a special command to shift the Vt threshold, to be used 3492 * when there are too many bitflips in a page (i.e., ECC error). After setting 3493 * a new threshold, the host should retry reading the page. 3494 */ 3495 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) 3496 { 3497 struct nand_chip *chip = mtd_to_nand(mtd); 3498 3499 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3500 3501 if (retry_mode >= chip->read_retries) 3502 return -EINVAL; 3503 3504 if (!chip->setup_read_retry) 3505 return -EOPNOTSUPP; 3506 3507 return chip->setup_read_retry(mtd, retry_mode); 3508 } 3509 3510 /** 3511 * nand_do_read_ops - [INTERN] Read data with ECC 3512 * @mtd: MTD device structure 3513 * @from: offset to read from 3514 * @ops: oob ops structure 3515 * 3516 * Internal function. Called with chip held. 3517 */ 3518 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, 3519 struct mtd_oob_ops *ops) 3520 { 3521 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3522 struct nand_chip *chip = mtd_to_nand(mtd); 3523 int ret = 0; 3524 uint32_t readlen = ops->len; 3525 uint32_t oobreadlen = ops->ooblen; 3526 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3527 3528 uint8_t *bufpoi, *oob, *buf; 3529 int use_bufpoi; 3530 unsigned int max_bitflips = 0; 3531 int retry_mode = 0; 3532 bool ecc_fail = false; 3533 3534 chipnr = (int)(from >> chip->chip_shift); 3535 chip->select_chip(mtd, chipnr); 3536 3537 realpage = (int)(from >> chip->page_shift); 3538 page = realpage & chip->pagemask; 3539 3540 col = (int)(from & (mtd->writesize - 1)); 3541 3542 buf = ops->datbuf; 3543 oob = ops->oobbuf; 3544 oob_required = oob ? 1 : 0; 3545 3546 while (1) { 3547 unsigned int ecc_failures = mtd->ecc_stats.failed; 3548 3549 bytes = min(mtd->writesize - col, readlen); 3550 aligned = (bytes == mtd->writesize); 3551 3552 if (!aligned) 3553 use_bufpoi = 1; 3554 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3555 use_bufpoi = !virt_addr_valid(buf) || 3556 !IS_ALIGNED((unsigned long)buf, 3557 chip->buf_align); 3558 else 3559 use_bufpoi = 0; 3560 3561 /* Is the current page in the buffer? */ 3562 if (realpage != chip->pagebuf || oob) { 3563 bufpoi = use_bufpoi ? chip->data_buf : buf; 3564 3565 if (use_bufpoi && aligned) 3566 pr_debug("%s: using read bounce buffer for buf@%p\n", 3567 __func__, buf); 3568 3569 read_retry: 3570 /* 3571 * Now read the page into the buffer. Absent an error, 3572 * the read methods return max bitflips per ecc step. 3573 */ 3574 if (unlikely(ops->mode == MTD_OPS_RAW)) 3575 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, 3576 oob_required, 3577 page); 3578 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3579 !oob) 3580 ret = chip->ecc.read_subpage(mtd, chip, 3581 col, bytes, bufpoi, 3582 page); 3583 else 3584 ret = chip->ecc.read_page(mtd, chip, bufpoi, 3585 oob_required, page); 3586 if (ret < 0) { 3587 if (use_bufpoi) 3588 /* Invalidate page cache */ 3589 chip->pagebuf = -1; 3590 break; 3591 } 3592 3593 /* Transfer not aligned data */ 3594 if (use_bufpoi) { 3595 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3596 !(mtd->ecc_stats.failed - ecc_failures) && 3597 (ops->mode != MTD_OPS_RAW)) { 3598 chip->pagebuf = realpage; 3599 chip->pagebuf_bitflips = ret; 3600 } else { 3601 /* Invalidate page cache */ 3602 chip->pagebuf = -1; 3603 } 3604 memcpy(buf, chip->data_buf + col, bytes); 3605 } 3606 3607 if (unlikely(oob)) { 3608 int toread = min(oobreadlen, max_oobsize); 3609 3610 if (toread) { 3611 oob = nand_transfer_oob(mtd, 3612 oob, ops, toread); 3613 oobreadlen -= toread; 3614 } 3615 } 3616 3617 if (chip->options & NAND_NEED_READRDY) { 3618 /* Apply delay or wait for ready/busy pin */ 3619 if (!chip->dev_ready) 3620 udelay(chip->chip_delay); 3621 else 3622 nand_wait_ready(mtd); 3623 } 3624 3625 if (mtd->ecc_stats.failed - ecc_failures) { 3626 if (retry_mode + 1 < chip->read_retries) { 3627 retry_mode++; 3628 ret = nand_setup_read_retry(mtd, 3629 retry_mode); 3630 if (ret < 0) 3631 break; 3632 3633 /* Reset failures; retry */ 3634 mtd->ecc_stats.failed = ecc_failures; 3635 goto read_retry; 3636 } else { 3637 /* No more retry modes; real failure */ 3638 ecc_fail = true; 3639 } 3640 } 3641 3642 buf += bytes; 3643 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3644 } else { 3645 memcpy(buf, chip->data_buf + col, bytes); 3646 buf += bytes; 3647 max_bitflips = max_t(unsigned int, max_bitflips, 3648 chip->pagebuf_bitflips); 3649 } 3650 3651 readlen -= bytes; 3652 3653 /* Reset to retry mode 0 */ 3654 if (retry_mode) { 3655 ret = nand_setup_read_retry(mtd, 0); 3656 if (ret < 0) 3657 break; 3658 retry_mode = 0; 3659 } 3660 3661 if (!readlen) 3662 break; 3663 3664 /* For subsequent reads align to page boundary */ 3665 col = 0; 3666 /* Increment page address */ 3667 realpage++; 3668 3669 page = realpage & chip->pagemask; 3670 /* Check, if we cross a chip boundary */ 3671 if (!page) { 3672 chipnr++; 3673 chip->select_chip(mtd, -1); 3674 chip->select_chip(mtd, chipnr); 3675 } 3676 } 3677 chip->select_chip(mtd, -1); 3678 3679 ops->retlen = ops->len - (size_t) readlen; 3680 if (oob) 3681 ops->oobretlen = ops->ooblen - oobreadlen; 3682 3683 if (ret < 0) 3684 return ret; 3685 3686 if (ecc_fail) 3687 return -EBADMSG; 3688 3689 return max_bitflips; 3690 } 3691 3692 /** 3693 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3694 * @mtd: mtd info structure 3695 * @chip: nand chip info structure 3696 * @page: page number to read 3697 */ 3698 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) 3699 { 3700 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3701 } 3702 EXPORT_SYMBOL(nand_read_oob_std); 3703 3704 /** 3705 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3706 * with syndromes 3707 * @mtd: mtd info structure 3708 * @chip: nand chip info structure 3709 * @page: page number to read 3710 */ 3711 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 3712 int page) 3713 { 3714 int length = mtd->oobsize; 3715 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3716 int eccsize = chip->ecc.size; 3717 uint8_t *bufpoi = chip->oob_poi; 3718 int i, toread, sndrnd = 0, pos, ret; 3719 3720 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3721 if (ret) 3722 return ret; 3723 3724 for (i = 0; i < chip->ecc.steps; i++) { 3725 if (sndrnd) { 3726 int ret; 3727 3728 pos = eccsize + i * (eccsize + chunk); 3729 if (mtd->writesize > 512) 3730 ret = nand_change_read_column_op(chip, pos, 3731 NULL, 0, 3732 false); 3733 else 3734 ret = nand_read_page_op(chip, page, pos, NULL, 3735 0); 3736 3737 if (ret) 3738 return ret; 3739 } else 3740 sndrnd = 1; 3741 toread = min_t(int, length, chunk); 3742 3743 ret = nand_read_data_op(chip, bufpoi, toread, false); 3744 if (ret) 3745 return ret; 3746 3747 bufpoi += toread; 3748 length -= toread; 3749 } 3750 if (length > 0) { 3751 ret = nand_read_data_op(chip, bufpoi, length, false); 3752 if (ret) 3753 return ret; 3754 } 3755 3756 return 0; 3757 } 3758 EXPORT_SYMBOL(nand_read_oob_syndrome); 3759 3760 /** 3761 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3762 * @mtd: mtd info structure 3763 * @chip: nand chip info structure 3764 * @page: page number to write 3765 */ 3766 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) 3767 { 3768 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3769 mtd->oobsize); 3770 } 3771 EXPORT_SYMBOL(nand_write_oob_std); 3772 3773 /** 3774 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3775 * with syndrome - only for large page flash 3776 * @mtd: mtd info structure 3777 * @chip: nand chip info structure 3778 * @page: page number to write 3779 */ 3780 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 3781 int page) 3782 { 3783 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3784 int eccsize = chip->ecc.size, length = mtd->oobsize; 3785 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3786 const uint8_t *bufpoi = chip->oob_poi; 3787 3788 /* 3789 * data-ecc-data-ecc ... ecc-oob 3790 * or 3791 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3792 */ 3793 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3794 pos = steps * (eccsize + chunk); 3795 steps = 0; 3796 } else 3797 pos = eccsize; 3798 3799 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3800 if (ret) 3801 return ret; 3802 3803 for (i = 0; i < steps; i++) { 3804 if (sndcmd) { 3805 if (mtd->writesize <= 512) { 3806 uint32_t fill = 0xFFFFFFFF; 3807 3808 len = eccsize; 3809 while (len > 0) { 3810 int num = min_t(int, len, 4); 3811 3812 ret = nand_write_data_op(chip, &fill, 3813 num, false); 3814 if (ret) 3815 return ret; 3816 3817 len -= num; 3818 } 3819 } else { 3820 pos = eccsize + i * (eccsize + chunk); 3821 ret = nand_change_write_column_op(chip, pos, 3822 NULL, 0, 3823 false); 3824 if (ret) 3825 return ret; 3826 } 3827 } else 3828 sndcmd = 1; 3829 len = min_t(int, length, chunk); 3830 3831 ret = nand_write_data_op(chip, bufpoi, len, false); 3832 if (ret) 3833 return ret; 3834 3835 bufpoi += len; 3836 length -= len; 3837 } 3838 if (length > 0) { 3839 ret = nand_write_data_op(chip, bufpoi, length, false); 3840 if (ret) 3841 return ret; 3842 } 3843 3844 return nand_prog_page_end_op(chip); 3845 } 3846 EXPORT_SYMBOL(nand_write_oob_syndrome); 3847 3848 /** 3849 * nand_do_read_oob - [INTERN] NAND read out-of-band 3850 * @mtd: MTD device structure 3851 * @from: offset to read from 3852 * @ops: oob operations description structure 3853 * 3854 * NAND read out-of-band data from the spare area. 3855 */ 3856 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, 3857 struct mtd_oob_ops *ops) 3858 { 3859 unsigned int max_bitflips = 0; 3860 int page, realpage, chipnr; 3861 struct nand_chip *chip = mtd_to_nand(mtd); 3862 struct mtd_ecc_stats stats; 3863 int readlen = ops->ooblen; 3864 int len; 3865 uint8_t *buf = ops->oobbuf; 3866 int ret = 0; 3867 3868 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3869 __func__, (unsigned long long)from, readlen); 3870 3871 stats = mtd->ecc_stats; 3872 3873 len = mtd_oobavail(mtd, ops); 3874 3875 chipnr = (int)(from >> chip->chip_shift); 3876 chip->select_chip(mtd, chipnr); 3877 3878 /* Shift to get page */ 3879 realpage = (int)(from >> chip->page_shift); 3880 page = realpage & chip->pagemask; 3881 3882 while (1) { 3883 if (ops->mode == MTD_OPS_RAW) 3884 ret = chip->ecc.read_oob_raw(mtd, chip, page); 3885 else 3886 ret = chip->ecc.read_oob(mtd, chip, page); 3887 3888 if (ret < 0) 3889 break; 3890 3891 len = min(len, readlen); 3892 buf = nand_transfer_oob(mtd, buf, ops, len); 3893 3894 if (chip->options & NAND_NEED_READRDY) { 3895 /* Apply delay or wait for ready/busy pin */ 3896 if (!chip->dev_ready) 3897 udelay(chip->chip_delay); 3898 else 3899 nand_wait_ready(mtd); 3900 } 3901 3902 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3903 3904 readlen -= len; 3905 if (!readlen) 3906 break; 3907 3908 /* Increment page address */ 3909 realpage++; 3910 3911 page = realpage & chip->pagemask; 3912 /* Check, if we cross a chip boundary */ 3913 if (!page) { 3914 chipnr++; 3915 chip->select_chip(mtd, -1); 3916 chip->select_chip(mtd, chipnr); 3917 } 3918 } 3919 chip->select_chip(mtd, -1); 3920 3921 ops->oobretlen = ops->ooblen - readlen; 3922 3923 if (ret < 0) 3924 return ret; 3925 3926 if (mtd->ecc_stats.failed - stats.failed) 3927 return -EBADMSG; 3928 3929 return max_bitflips; 3930 } 3931 3932 /** 3933 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3934 * @mtd: MTD device structure 3935 * @from: offset to read from 3936 * @ops: oob operation description structure 3937 * 3938 * NAND read data and/or out-of-band data. 3939 */ 3940 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3941 struct mtd_oob_ops *ops) 3942 { 3943 int ret; 3944 3945 ops->retlen = 0; 3946 3947 if (ops->mode != MTD_OPS_PLACE_OOB && 3948 ops->mode != MTD_OPS_AUTO_OOB && 3949 ops->mode != MTD_OPS_RAW) 3950 return -ENOTSUPP; 3951 3952 nand_get_device(mtd, FL_READING); 3953 3954 if (!ops->datbuf) 3955 ret = nand_do_read_oob(mtd, from, ops); 3956 else 3957 ret = nand_do_read_ops(mtd, from, ops); 3958 3959 nand_release_device(mtd); 3960 return ret; 3961 } 3962 3963 3964 /** 3965 * nand_write_page_raw - [INTERN] raw page write function 3966 * @mtd: mtd info structure 3967 * @chip: nand chip info structure 3968 * @buf: data buffer 3969 * @oob_required: must write chip->oob_poi to OOB 3970 * @page: page number to write 3971 * 3972 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3973 */ 3974 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 3975 const uint8_t *buf, int oob_required, int page) 3976 { 3977 int ret; 3978 3979 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3980 if (ret) 3981 return ret; 3982 3983 if (oob_required) { 3984 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3985 false); 3986 if (ret) 3987 return ret; 3988 } 3989 3990 return nand_prog_page_end_op(chip); 3991 } 3992 EXPORT_SYMBOL(nand_write_page_raw); 3993 3994 /** 3995 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3996 * @mtd: mtd info structure 3997 * @chip: nand chip info structure 3998 * @buf: data buffer 3999 * @oob_required: must write chip->oob_poi to OOB 4000 * @page: page number to write 4001 * 4002 * We need a special oob layout and handling even when ECC isn't checked. 4003 */ 4004 static int nand_write_page_raw_syndrome(struct mtd_info *mtd, 4005 struct nand_chip *chip, 4006 const uint8_t *buf, int oob_required, 4007 int page) 4008 { 4009 int eccsize = chip->ecc.size; 4010 int eccbytes = chip->ecc.bytes; 4011 uint8_t *oob = chip->oob_poi; 4012 int steps, size, ret; 4013 4014 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4015 if (ret) 4016 return ret; 4017 4018 for (steps = chip->ecc.steps; steps > 0; steps--) { 4019 ret = nand_write_data_op(chip, buf, eccsize, false); 4020 if (ret) 4021 return ret; 4022 4023 buf += eccsize; 4024 4025 if (chip->ecc.prepad) { 4026 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4027 false); 4028 if (ret) 4029 return ret; 4030 4031 oob += chip->ecc.prepad; 4032 } 4033 4034 ret = nand_write_data_op(chip, oob, eccbytes, false); 4035 if (ret) 4036 return ret; 4037 4038 oob += eccbytes; 4039 4040 if (chip->ecc.postpad) { 4041 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4042 false); 4043 if (ret) 4044 return ret; 4045 4046 oob += chip->ecc.postpad; 4047 } 4048 } 4049 4050 size = mtd->oobsize - (oob - chip->oob_poi); 4051 if (size) { 4052 ret = nand_write_data_op(chip, oob, size, false); 4053 if (ret) 4054 return ret; 4055 } 4056 4057 return nand_prog_page_end_op(chip); 4058 } 4059 /** 4060 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 4061 * @mtd: mtd info structure 4062 * @chip: nand chip info structure 4063 * @buf: data buffer 4064 * @oob_required: must write chip->oob_poi to OOB 4065 * @page: page number to write 4066 */ 4067 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, 4068 const uint8_t *buf, int oob_required, 4069 int page) 4070 { 4071 int i, eccsize = chip->ecc.size, ret; 4072 int eccbytes = chip->ecc.bytes; 4073 int eccsteps = chip->ecc.steps; 4074 uint8_t *ecc_calc = chip->ecc.calc_buf; 4075 const uint8_t *p = buf; 4076 4077 /* Software ECC calculation */ 4078 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 4079 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 4080 4081 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4082 chip->ecc.total); 4083 if (ret) 4084 return ret; 4085 4086 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); 4087 } 4088 4089 /** 4090 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 4091 * @mtd: mtd info structure 4092 * @chip: nand chip info structure 4093 * @buf: data buffer 4094 * @oob_required: must write chip->oob_poi to OOB 4095 * @page: page number to write 4096 */ 4097 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, 4098 const uint8_t *buf, int oob_required, 4099 int page) 4100 { 4101 int i, eccsize = chip->ecc.size, ret; 4102 int eccbytes = chip->ecc.bytes; 4103 int eccsteps = chip->ecc.steps; 4104 uint8_t *ecc_calc = chip->ecc.calc_buf; 4105 const uint8_t *p = buf; 4106 4107 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4108 if (ret) 4109 return ret; 4110 4111 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4112 chip->ecc.hwctl(mtd, NAND_ECC_WRITE); 4113 4114 ret = nand_write_data_op(chip, p, eccsize, false); 4115 if (ret) 4116 return ret; 4117 4118 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 4119 } 4120 4121 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4122 chip->ecc.total); 4123 if (ret) 4124 return ret; 4125 4126 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4127 if (ret) 4128 return ret; 4129 4130 return nand_prog_page_end_op(chip); 4131 } 4132 4133 4134 /** 4135 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 4136 * @mtd: mtd info structure 4137 * @chip: nand chip info structure 4138 * @offset: column address of subpage within the page 4139 * @data_len: data length 4140 * @buf: data buffer 4141 * @oob_required: must write chip->oob_poi to OOB 4142 * @page: page number to write 4143 */ 4144 static int nand_write_subpage_hwecc(struct mtd_info *mtd, 4145 struct nand_chip *chip, uint32_t offset, 4146 uint32_t data_len, const uint8_t *buf, 4147 int oob_required, int page) 4148 { 4149 uint8_t *oob_buf = chip->oob_poi; 4150 uint8_t *ecc_calc = chip->ecc.calc_buf; 4151 int ecc_size = chip->ecc.size; 4152 int ecc_bytes = chip->ecc.bytes; 4153 int ecc_steps = chip->ecc.steps; 4154 uint32_t start_step = offset / ecc_size; 4155 uint32_t end_step = (offset + data_len - 1) / ecc_size; 4156 int oob_bytes = mtd->oobsize / ecc_steps; 4157 int step, ret; 4158 4159 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4160 if (ret) 4161 return ret; 4162 4163 for (step = 0; step < ecc_steps; step++) { 4164 /* configure controller for WRITE access */ 4165 chip->ecc.hwctl(mtd, NAND_ECC_WRITE); 4166 4167 /* write data (untouched subpages already masked by 0xFF) */ 4168 ret = nand_write_data_op(chip, buf, ecc_size, false); 4169 if (ret) 4170 return ret; 4171 4172 /* mask ECC of un-touched subpages by padding 0xFF */ 4173 if ((step < start_step) || (step > end_step)) 4174 memset(ecc_calc, 0xff, ecc_bytes); 4175 else 4176 chip->ecc.calculate(mtd, buf, ecc_calc); 4177 4178 /* mask OOB of un-touched subpages by padding 0xFF */ 4179 /* if oob_required, preserve OOB metadata of written subpage */ 4180 if (!oob_required || (step < start_step) || (step > end_step)) 4181 memset(oob_buf, 0xff, oob_bytes); 4182 4183 buf += ecc_size; 4184 ecc_calc += ecc_bytes; 4185 oob_buf += oob_bytes; 4186 } 4187 4188 /* copy calculated ECC for whole page to chip->buffer->oob */ 4189 /* this include masked-value(0xFF) for unwritten subpages */ 4190 ecc_calc = chip->ecc.calc_buf; 4191 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4192 chip->ecc.total); 4193 if (ret) 4194 return ret; 4195 4196 /* write OOB buffer to NAND device */ 4197 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4198 if (ret) 4199 return ret; 4200 4201 return nand_prog_page_end_op(chip); 4202 } 4203 4204 4205 /** 4206 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 4207 * @mtd: mtd info structure 4208 * @chip: nand chip info structure 4209 * @buf: data buffer 4210 * @oob_required: must write chip->oob_poi to OOB 4211 * @page: page number to write 4212 * 4213 * The hw generator calculates the error syndrome automatically. Therefore we 4214 * need a special oob layout and handling. 4215 */ 4216 static int nand_write_page_syndrome(struct mtd_info *mtd, 4217 struct nand_chip *chip, 4218 const uint8_t *buf, int oob_required, 4219 int page) 4220 { 4221 int i, eccsize = chip->ecc.size; 4222 int eccbytes = chip->ecc.bytes; 4223 int eccsteps = chip->ecc.steps; 4224 const uint8_t *p = buf; 4225 uint8_t *oob = chip->oob_poi; 4226 int ret; 4227 4228 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4229 if (ret) 4230 return ret; 4231 4232 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4233 chip->ecc.hwctl(mtd, NAND_ECC_WRITE); 4234 4235 ret = nand_write_data_op(chip, p, eccsize, false); 4236 if (ret) 4237 return ret; 4238 4239 if (chip->ecc.prepad) { 4240 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4241 false); 4242 if (ret) 4243 return ret; 4244 4245 oob += chip->ecc.prepad; 4246 } 4247 4248 chip->ecc.calculate(mtd, p, oob); 4249 4250 ret = nand_write_data_op(chip, oob, eccbytes, false); 4251 if (ret) 4252 return ret; 4253 4254 oob += eccbytes; 4255 4256 if (chip->ecc.postpad) { 4257 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4258 false); 4259 if (ret) 4260 return ret; 4261 4262 oob += chip->ecc.postpad; 4263 } 4264 } 4265 4266 /* Calculate remaining oob bytes */ 4267 i = mtd->oobsize - (oob - chip->oob_poi); 4268 if (i) { 4269 ret = nand_write_data_op(chip, oob, i, false); 4270 if (ret) 4271 return ret; 4272 } 4273 4274 return nand_prog_page_end_op(chip); 4275 } 4276 4277 /** 4278 * nand_write_page - write one page 4279 * @mtd: MTD device structure 4280 * @chip: NAND chip descriptor 4281 * @offset: address offset within the page 4282 * @data_len: length of actual data to be written 4283 * @buf: the data to write 4284 * @oob_required: must write chip->oob_poi to OOB 4285 * @page: page number to write 4286 * @raw: use _raw version of write_page 4287 */ 4288 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, 4289 uint32_t offset, int data_len, const uint8_t *buf, 4290 int oob_required, int page, int raw) 4291 { 4292 int status, subpage; 4293 4294 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4295 chip->ecc.write_subpage) 4296 subpage = offset || (data_len < mtd->writesize); 4297 else 4298 subpage = 0; 4299 4300 if (unlikely(raw)) 4301 status = chip->ecc.write_page_raw(mtd, chip, buf, 4302 oob_required, page); 4303 else if (subpage) 4304 status = chip->ecc.write_subpage(mtd, chip, offset, data_len, 4305 buf, oob_required, page); 4306 else 4307 status = chip->ecc.write_page(mtd, chip, buf, oob_required, 4308 page); 4309 4310 if (status < 0) 4311 return status; 4312 4313 return 0; 4314 } 4315 4316 /** 4317 * nand_fill_oob - [INTERN] Transfer client buffer to oob 4318 * @mtd: MTD device structure 4319 * @oob: oob data buffer 4320 * @len: oob data write length 4321 * @ops: oob ops structure 4322 */ 4323 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, 4324 struct mtd_oob_ops *ops) 4325 { 4326 struct nand_chip *chip = mtd_to_nand(mtd); 4327 int ret; 4328 4329 /* 4330 * Initialise to all 0xFF, to avoid the possibility of left over OOB 4331 * data from a previous OOB read. 4332 */ 4333 memset(chip->oob_poi, 0xff, mtd->oobsize); 4334 4335 switch (ops->mode) { 4336 4337 case MTD_OPS_PLACE_OOB: 4338 case MTD_OPS_RAW: 4339 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 4340 return oob + len; 4341 4342 case MTD_OPS_AUTO_OOB: 4343 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 4344 ops->ooboffs, len); 4345 BUG_ON(ret); 4346 return oob + len; 4347 4348 default: 4349 BUG(); 4350 } 4351 return NULL; 4352 } 4353 4354 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4355 4356 /** 4357 * nand_do_write_ops - [INTERN] NAND write with ECC 4358 * @mtd: MTD device structure 4359 * @to: offset to write to 4360 * @ops: oob operations description structure 4361 * 4362 * NAND write with ECC. 4363 */ 4364 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, 4365 struct mtd_oob_ops *ops) 4366 { 4367 int chipnr, realpage, page, column; 4368 struct nand_chip *chip = mtd_to_nand(mtd); 4369 uint32_t writelen = ops->len; 4370 4371 uint32_t oobwritelen = ops->ooblen; 4372 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4373 4374 uint8_t *oob = ops->oobbuf; 4375 uint8_t *buf = ops->datbuf; 4376 int ret; 4377 int oob_required = oob ? 1 : 0; 4378 4379 ops->retlen = 0; 4380 if (!writelen) 4381 return 0; 4382 4383 /* Reject writes, which are not page aligned */ 4384 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4385 pr_notice("%s: attempt to write non page aligned data\n", 4386 __func__); 4387 return -EINVAL; 4388 } 4389 4390 column = to & (mtd->writesize - 1); 4391 4392 chipnr = (int)(to >> chip->chip_shift); 4393 chip->select_chip(mtd, chipnr); 4394 4395 /* Check, if it is write protected */ 4396 if (nand_check_wp(mtd)) { 4397 ret = -EIO; 4398 goto err_out; 4399 } 4400 4401 realpage = (int)(to >> chip->page_shift); 4402 page = realpage & chip->pagemask; 4403 4404 /* Invalidate the page cache, when we write to the cached page */ 4405 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && 4406 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) 4407 chip->pagebuf = -1; 4408 4409 /* Don't allow multipage oob writes with offset */ 4410 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4411 ret = -EINVAL; 4412 goto err_out; 4413 } 4414 4415 while (1) { 4416 int bytes = mtd->writesize; 4417 uint8_t *wbuf = buf; 4418 int use_bufpoi; 4419 int part_pagewr = (column || writelen < mtd->writesize); 4420 4421 if (part_pagewr) 4422 use_bufpoi = 1; 4423 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 4424 use_bufpoi = !virt_addr_valid(buf) || 4425 !IS_ALIGNED((unsigned long)buf, 4426 chip->buf_align); 4427 else 4428 use_bufpoi = 0; 4429 4430 /* Partial page write?, or need to use bounce buffer */ 4431 if (use_bufpoi) { 4432 pr_debug("%s: using write bounce buffer for buf@%p\n", 4433 __func__, buf); 4434 if (part_pagewr) 4435 bytes = min_t(int, bytes - column, writelen); 4436 chip->pagebuf = -1; 4437 memset(chip->data_buf, 0xff, mtd->writesize); 4438 memcpy(&chip->data_buf[column], buf, bytes); 4439 wbuf = chip->data_buf; 4440 } 4441 4442 if (unlikely(oob)) { 4443 size_t len = min(oobwritelen, oobmaxlen); 4444 oob = nand_fill_oob(mtd, oob, len, ops); 4445 oobwritelen -= len; 4446 } else { 4447 /* We still need to erase leftover OOB data */ 4448 memset(chip->oob_poi, 0xff, mtd->oobsize); 4449 } 4450 4451 ret = nand_write_page(mtd, chip, column, bytes, wbuf, 4452 oob_required, page, 4453 (ops->mode == MTD_OPS_RAW)); 4454 if (ret) 4455 break; 4456 4457 writelen -= bytes; 4458 if (!writelen) 4459 break; 4460 4461 column = 0; 4462 buf += bytes; 4463 realpage++; 4464 4465 page = realpage & chip->pagemask; 4466 /* Check, if we cross a chip boundary */ 4467 if (!page) { 4468 chipnr++; 4469 chip->select_chip(mtd, -1); 4470 chip->select_chip(mtd, chipnr); 4471 } 4472 } 4473 4474 ops->retlen = ops->len - writelen; 4475 if (unlikely(oob)) 4476 ops->oobretlen = ops->ooblen; 4477 4478 err_out: 4479 chip->select_chip(mtd, -1); 4480 return ret; 4481 } 4482 4483 /** 4484 * panic_nand_write - [MTD Interface] NAND write with ECC 4485 * @mtd: MTD device structure 4486 * @to: offset to write to 4487 * @len: number of bytes to write 4488 * @retlen: pointer to variable to store the number of written bytes 4489 * @buf: the data to write 4490 * 4491 * NAND write with ECC. Used when performing writes in interrupt context, this 4492 * may for example be called by mtdoops when writing an oops while in panic. 4493 */ 4494 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4495 size_t *retlen, const uint8_t *buf) 4496 { 4497 struct nand_chip *chip = mtd_to_nand(mtd); 4498 int chipnr = (int)(to >> chip->chip_shift); 4499 struct mtd_oob_ops ops; 4500 int ret; 4501 4502 /* Grab the device */ 4503 panic_nand_get_device(chip, mtd, FL_WRITING); 4504 4505 chip->select_chip(mtd, chipnr); 4506 4507 /* Wait for the device to get ready */ 4508 panic_nand_wait(mtd, chip, 400); 4509 4510 memset(&ops, 0, sizeof(ops)); 4511 ops.len = len; 4512 ops.datbuf = (uint8_t *)buf; 4513 ops.mode = MTD_OPS_PLACE_OOB; 4514 4515 ret = nand_do_write_ops(mtd, to, &ops); 4516 4517 *retlen = ops.retlen; 4518 return ret; 4519 } 4520 4521 /** 4522 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 4523 * @mtd: MTD device structure 4524 * @to: offset to write to 4525 * @ops: oob operation description structure 4526 * 4527 * NAND write out-of-band. 4528 */ 4529 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, 4530 struct mtd_oob_ops *ops) 4531 { 4532 int chipnr, page, status, len; 4533 struct nand_chip *chip = mtd_to_nand(mtd); 4534 4535 pr_debug("%s: to = 0x%08x, len = %i\n", 4536 __func__, (unsigned int)to, (int)ops->ooblen); 4537 4538 len = mtd_oobavail(mtd, ops); 4539 4540 /* Do not allow write past end of page */ 4541 if ((ops->ooboffs + ops->ooblen) > len) { 4542 pr_debug("%s: attempt to write past end of page\n", 4543 __func__); 4544 return -EINVAL; 4545 } 4546 4547 chipnr = (int)(to >> chip->chip_shift); 4548 4549 /* 4550 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 4551 * of my DiskOnChip 2000 test units) will clear the whole data page too 4552 * if we don't do this. I have no clue why, but I seem to have 'fixed' 4553 * it in the doc2000 driver in August 1999. dwmw2. 4554 */ 4555 nand_reset(chip, chipnr); 4556 4557 chip->select_chip(mtd, chipnr); 4558 4559 /* Shift to get page */ 4560 page = (int)(to >> chip->page_shift); 4561 4562 /* Check, if it is write protected */ 4563 if (nand_check_wp(mtd)) { 4564 chip->select_chip(mtd, -1); 4565 return -EROFS; 4566 } 4567 4568 /* Invalidate the page cache, if we write to the cached page */ 4569 if (page == chip->pagebuf) 4570 chip->pagebuf = -1; 4571 4572 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); 4573 4574 if (ops->mode == MTD_OPS_RAW) 4575 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); 4576 else 4577 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); 4578 4579 chip->select_chip(mtd, -1); 4580 4581 if (status) 4582 return status; 4583 4584 ops->oobretlen = ops->ooblen; 4585 4586 return 0; 4587 } 4588 4589 /** 4590 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4591 * @mtd: MTD device structure 4592 * @to: offset to write to 4593 * @ops: oob operation description structure 4594 */ 4595 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4596 struct mtd_oob_ops *ops) 4597 { 4598 int ret = -ENOTSUPP; 4599 4600 ops->retlen = 0; 4601 4602 nand_get_device(mtd, FL_WRITING); 4603 4604 switch (ops->mode) { 4605 case MTD_OPS_PLACE_OOB: 4606 case MTD_OPS_AUTO_OOB: 4607 case MTD_OPS_RAW: 4608 break; 4609 4610 default: 4611 goto out; 4612 } 4613 4614 if (!ops->datbuf) 4615 ret = nand_do_write_oob(mtd, to, ops); 4616 else 4617 ret = nand_do_write_ops(mtd, to, ops); 4618 4619 out: 4620 nand_release_device(mtd); 4621 return ret; 4622 } 4623 4624 /** 4625 * single_erase - [GENERIC] NAND standard block erase command function 4626 * @mtd: MTD device structure 4627 * @page: the page address of the block which will be erased 4628 * 4629 * Standard erase command for NAND chips. Returns NAND status. 4630 */ 4631 static int single_erase(struct mtd_info *mtd, int page) 4632 { 4633 struct nand_chip *chip = mtd_to_nand(mtd); 4634 unsigned int eraseblock; 4635 4636 /* Send commands to erase a block */ 4637 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); 4638 4639 return nand_erase_op(chip, eraseblock); 4640 } 4641 4642 /** 4643 * nand_erase - [MTD Interface] erase block(s) 4644 * @mtd: MTD device structure 4645 * @instr: erase instruction 4646 * 4647 * Erase one ore more blocks. 4648 */ 4649 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4650 { 4651 return nand_erase_nand(mtd, instr, 0); 4652 } 4653 4654 /** 4655 * nand_erase_nand - [INTERN] erase block(s) 4656 * @mtd: MTD device structure 4657 * @instr: erase instruction 4658 * @allowbbt: allow erasing the bbt area 4659 * 4660 * Erase one ore more blocks. 4661 */ 4662 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, 4663 int allowbbt) 4664 { 4665 int page, status, pages_per_block, ret, chipnr; 4666 struct nand_chip *chip = mtd_to_nand(mtd); 4667 loff_t len; 4668 4669 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4670 __func__, (unsigned long long)instr->addr, 4671 (unsigned long long)instr->len); 4672 4673 if (check_offs_len(mtd, instr->addr, instr->len)) 4674 return -EINVAL; 4675 4676 /* Grab the lock and see if the device is available */ 4677 nand_get_device(mtd, FL_ERASING); 4678 4679 /* Shift to get first page */ 4680 page = (int)(instr->addr >> chip->page_shift); 4681 chipnr = (int)(instr->addr >> chip->chip_shift); 4682 4683 /* Calculate pages in each block */ 4684 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4685 4686 /* Select the NAND device */ 4687 chip->select_chip(mtd, chipnr); 4688 4689 /* Check, if it is write protected */ 4690 if (nand_check_wp(mtd)) { 4691 pr_debug("%s: device is write protected!\n", 4692 __func__); 4693 ret = -EIO; 4694 goto erase_exit; 4695 } 4696 4697 /* Loop through the pages */ 4698 len = instr->len; 4699 4700 while (len) { 4701 /* Check if we have a bad block, we do not erase bad blocks! */ 4702 if (nand_block_checkbad(mtd, ((loff_t) page) << 4703 chip->page_shift, allowbbt)) { 4704 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4705 __func__, page); 4706 ret = -EIO; 4707 goto erase_exit; 4708 } 4709 4710 /* 4711 * Invalidate the page cache, if we erase the block which 4712 * contains the current cached page. 4713 */ 4714 if (page <= chip->pagebuf && chip->pagebuf < 4715 (page + pages_per_block)) 4716 chip->pagebuf = -1; 4717 4718 status = chip->erase(mtd, page & chip->pagemask); 4719 4720 /* See if block erase succeeded */ 4721 if (status) { 4722 pr_debug("%s: failed erase, page 0x%08x\n", 4723 __func__, page); 4724 ret = -EIO; 4725 instr->fail_addr = 4726 ((loff_t)page << chip->page_shift); 4727 goto erase_exit; 4728 } 4729 4730 /* Increment page address and decrement length */ 4731 len -= (1ULL << chip->phys_erase_shift); 4732 page += pages_per_block; 4733 4734 /* Check, if we cross a chip boundary */ 4735 if (len && !(page & chip->pagemask)) { 4736 chipnr++; 4737 chip->select_chip(mtd, -1); 4738 chip->select_chip(mtd, chipnr); 4739 } 4740 } 4741 4742 ret = 0; 4743 erase_exit: 4744 4745 /* Deselect and wake up anyone waiting on the device */ 4746 chip->select_chip(mtd, -1); 4747 nand_release_device(mtd); 4748 4749 /* Return more or less happy */ 4750 return ret; 4751 } 4752 4753 /** 4754 * nand_sync - [MTD Interface] sync 4755 * @mtd: MTD device structure 4756 * 4757 * Sync is actually a wait for chip ready function. 4758 */ 4759 static void nand_sync(struct mtd_info *mtd) 4760 { 4761 pr_debug("%s: called\n", __func__); 4762 4763 /* Grab the lock and see if the device is available */ 4764 nand_get_device(mtd, FL_SYNCING); 4765 /* Release it and go back */ 4766 nand_release_device(mtd); 4767 } 4768 4769 /** 4770 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4771 * @mtd: MTD device structure 4772 * @offs: offset relative to mtd start 4773 */ 4774 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4775 { 4776 struct nand_chip *chip = mtd_to_nand(mtd); 4777 int chipnr = (int)(offs >> chip->chip_shift); 4778 int ret; 4779 4780 /* Select the NAND device */ 4781 nand_get_device(mtd, FL_READING); 4782 chip->select_chip(mtd, chipnr); 4783 4784 ret = nand_block_checkbad(mtd, offs, 0); 4785 4786 chip->select_chip(mtd, -1); 4787 nand_release_device(mtd); 4788 4789 return ret; 4790 } 4791 4792 /** 4793 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4794 * @mtd: MTD device structure 4795 * @ofs: offset relative to mtd start 4796 */ 4797 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4798 { 4799 int ret; 4800 4801 ret = nand_block_isbad(mtd, ofs); 4802 if (ret) { 4803 /* If it was bad already, return success and do nothing */ 4804 if (ret > 0) 4805 return 0; 4806 return ret; 4807 } 4808 4809 return nand_block_markbad_lowlevel(mtd, ofs); 4810 } 4811 4812 /** 4813 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd 4814 * @mtd: MTD device structure 4815 * @ofs: offset relative to mtd start 4816 * @len: length of mtd 4817 */ 4818 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 4819 { 4820 struct nand_chip *chip = mtd_to_nand(mtd); 4821 u32 part_start_block; 4822 u32 part_end_block; 4823 u32 part_start_die; 4824 u32 part_end_die; 4825 4826 /* 4827 * max_bb_per_die and blocks_per_die used to determine 4828 * the maximum bad block count. 4829 */ 4830 if (!chip->max_bb_per_die || !chip->blocks_per_die) 4831 return -ENOTSUPP; 4832 4833 /* Get the start and end of the partition in erase blocks. */ 4834 part_start_block = mtd_div_by_eb(ofs, mtd); 4835 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; 4836 4837 /* Get the start and end LUNs of the partition. */ 4838 part_start_die = part_start_block / chip->blocks_per_die; 4839 part_end_die = part_end_block / chip->blocks_per_die; 4840 4841 /* 4842 * Look up the bad blocks per unit and multiply by the number of units 4843 * that the partition spans. 4844 */ 4845 return chip->max_bb_per_die * (part_end_die - part_start_die + 1); 4846 } 4847 4848 /** 4849 * nand_default_set_features- [REPLACEABLE] set NAND chip features 4850 * @mtd: MTD device structure 4851 * @chip: nand chip info structure 4852 * @addr: feature address. 4853 * @subfeature_param: the subfeature parameters, a four bytes array. 4854 */ 4855 static int nand_default_set_features(struct mtd_info *mtd, 4856 struct nand_chip *chip, int addr, 4857 uint8_t *subfeature_param) 4858 { 4859 return nand_set_features_op(chip, addr, subfeature_param); 4860 } 4861 4862 /** 4863 * nand_default_get_features- [REPLACEABLE] get NAND chip features 4864 * @mtd: MTD device structure 4865 * @chip: nand chip info structure 4866 * @addr: feature address. 4867 * @subfeature_param: the subfeature parameters, a four bytes array. 4868 */ 4869 static int nand_default_get_features(struct mtd_info *mtd, 4870 struct nand_chip *chip, int addr, 4871 uint8_t *subfeature_param) 4872 { 4873 return nand_get_features_op(chip, addr, subfeature_param); 4874 } 4875 4876 /** 4877 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP 4878 * @mtd: MTD device structure 4879 * @chip: nand chip info structure 4880 * @addr: feature address. 4881 * @subfeature_param: the subfeature parameters, a four bytes array. 4882 * 4883 * Should be used by NAND controller drivers that do not support the SET/GET 4884 * FEATURES operations. 4885 */ 4886 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 4887 int addr, u8 *subfeature_param) 4888 { 4889 return -ENOTSUPP; 4890 } 4891 EXPORT_SYMBOL(nand_get_set_features_notsupp); 4892 4893 /** 4894 * nand_suspend - [MTD Interface] Suspend the NAND flash 4895 * @mtd: MTD device structure 4896 */ 4897 static int nand_suspend(struct mtd_info *mtd) 4898 { 4899 return nand_get_device(mtd, FL_PM_SUSPENDED); 4900 } 4901 4902 /** 4903 * nand_resume - [MTD Interface] Resume the NAND flash 4904 * @mtd: MTD device structure 4905 */ 4906 static void nand_resume(struct mtd_info *mtd) 4907 { 4908 struct nand_chip *chip = mtd_to_nand(mtd); 4909 4910 if (chip->state == FL_PM_SUSPENDED) 4911 nand_release_device(mtd); 4912 else 4913 pr_err("%s called for a chip which is not in suspended state\n", 4914 __func__); 4915 } 4916 4917 /** 4918 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4919 * prevent further operations 4920 * @mtd: MTD device structure 4921 */ 4922 static void nand_shutdown(struct mtd_info *mtd) 4923 { 4924 nand_get_device(mtd, FL_PM_SUSPENDED); 4925 } 4926 4927 /* Set default functions */ 4928 static void nand_set_defaults(struct nand_chip *chip) 4929 { 4930 unsigned int busw = chip->options & NAND_BUSWIDTH_16; 4931 4932 /* check for proper chip_delay setup, set 20us if not */ 4933 if (!chip->chip_delay) 4934 chip->chip_delay = 20; 4935 4936 /* check, if a user supplied command function given */ 4937 if (!chip->cmdfunc && !chip->exec_op) 4938 chip->cmdfunc = nand_command; 4939 4940 /* check, if a user supplied wait function given */ 4941 if (chip->waitfunc == NULL) 4942 chip->waitfunc = nand_wait; 4943 4944 if (!chip->select_chip) 4945 chip->select_chip = nand_select_chip; 4946 4947 /* set for ONFI nand */ 4948 if (!chip->set_features) 4949 chip->set_features = nand_default_set_features; 4950 if (!chip->get_features) 4951 chip->get_features = nand_default_get_features; 4952 4953 /* If called twice, pointers that depend on busw may need to be reset */ 4954 if (!chip->read_byte || chip->read_byte == nand_read_byte) 4955 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; 4956 if (!chip->read_word) 4957 chip->read_word = nand_read_word; 4958 if (!chip->block_bad) 4959 chip->block_bad = nand_block_bad; 4960 if (!chip->block_markbad) 4961 chip->block_markbad = nand_default_block_markbad; 4962 if (!chip->write_buf || chip->write_buf == nand_write_buf) 4963 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; 4964 if (!chip->write_byte || chip->write_byte == nand_write_byte) 4965 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; 4966 if (!chip->read_buf || chip->read_buf == nand_read_buf) 4967 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; 4968 if (!chip->scan_bbt) 4969 chip->scan_bbt = nand_default_bbt; 4970 4971 if (!chip->controller) { 4972 chip->controller = &chip->hwcontrol; 4973 nand_hw_control_init(chip->controller); 4974 } 4975 4976 if (!chip->buf_align) 4977 chip->buf_align = 1; 4978 } 4979 4980 /* Sanitize ONFI strings so we can safely print them */ 4981 static void sanitize_string(uint8_t *s, size_t len) 4982 { 4983 ssize_t i; 4984 4985 /* Null terminate */ 4986 s[len - 1] = 0; 4987 4988 /* Remove non printable chars */ 4989 for (i = 0; i < len - 1; i++) { 4990 if (s[i] < ' ' || s[i] > 127) 4991 s[i] = '?'; 4992 } 4993 4994 /* Remove trailing spaces */ 4995 strim(s); 4996 } 4997 4998 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) 4999 { 5000 int i; 5001 while (len--) { 5002 crc ^= *p++ << 8; 5003 for (i = 0; i < 8; i++) 5004 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); 5005 } 5006 5007 return crc; 5008 } 5009 5010 /* Parse the Extended Parameter Page. */ 5011 static int nand_flash_detect_ext_param_page(struct nand_chip *chip, 5012 struct nand_onfi_params *p) 5013 { 5014 struct onfi_ext_param_page *ep; 5015 struct onfi_ext_section *s; 5016 struct onfi_ext_ecc_info *ecc; 5017 uint8_t *cursor; 5018 int ret; 5019 int len; 5020 int i; 5021 5022 len = le16_to_cpu(p->ext_param_page_length) * 16; 5023 ep = kmalloc(len, GFP_KERNEL); 5024 if (!ep) 5025 return -ENOMEM; 5026 5027 /* Send our own NAND_CMD_PARAM. */ 5028 ret = nand_read_param_page_op(chip, 0, NULL, 0); 5029 if (ret) 5030 goto ext_out; 5031 5032 /* Use the Change Read Column command to skip the ONFI param pages. */ 5033 ret = nand_change_read_column_op(chip, 5034 sizeof(*p) * p->num_of_param_pages, 5035 ep, len, true); 5036 if (ret) 5037 goto ext_out; 5038 5039 ret = -EINVAL; 5040 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) 5041 != le16_to_cpu(ep->crc))) { 5042 pr_debug("fail in the CRC.\n"); 5043 goto ext_out; 5044 } 5045 5046 /* 5047 * Check the signature. 5048 * Do not strictly follow the ONFI spec, maybe changed in future. 5049 */ 5050 if (strncmp(ep->sig, "EPPS", 4)) { 5051 pr_debug("The signature is invalid.\n"); 5052 goto ext_out; 5053 } 5054 5055 /* find the ECC section. */ 5056 cursor = (uint8_t *)(ep + 1); 5057 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { 5058 s = ep->sections + i; 5059 if (s->type == ONFI_SECTION_TYPE_2) 5060 break; 5061 cursor += s->length * 16; 5062 } 5063 if (i == ONFI_EXT_SECTION_MAX) { 5064 pr_debug("We can not find the ECC section.\n"); 5065 goto ext_out; 5066 } 5067 5068 /* get the info we want. */ 5069 ecc = (struct onfi_ext_ecc_info *)cursor; 5070 5071 if (!ecc->codeword_size) { 5072 pr_debug("Invalid codeword size\n"); 5073 goto ext_out; 5074 } 5075 5076 chip->ecc_strength_ds = ecc->ecc_bits; 5077 chip->ecc_step_ds = 1 << ecc->codeword_size; 5078 ret = 0; 5079 5080 ext_out: 5081 kfree(ep); 5082 return ret; 5083 } 5084 5085 /* 5086 * Recover data with bit-wise majority 5087 */ 5088 static void nand_bit_wise_majority(const void **srcbufs, 5089 unsigned int nsrcbufs, 5090 void *dstbuf, 5091 unsigned int bufsize) 5092 { 5093 int i, j, k; 5094 5095 for (i = 0; i < bufsize; i++) { 5096 u8 val = 0; 5097 5098 for (j = 0; j < 8; j++) { 5099 unsigned int cnt = 0; 5100 5101 for (k = 0; k < nsrcbufs; k++) { 5102 const u8 *srcbuf = srcbufs[k]; 5103 5104 if (srcbuf[i] & BIT(j)) 5105 cnt++; 5106 } 5107 5108 if (cnt > nsrcbufs / 2) 5109 val |= BIT(j); 5110 } 5111 5112 ((u8 *)dstbuf)[i] = val; 5113 } 5114 } 5115 5116 /* 5117 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. 5118 */ 5119 static int nand_flash_detect_onfi(struct nand_chip *chip) 5120 { 5121 struct mtd_info *mtd = nand_to_mtd(chip); 5122 struct nand_onfi_params *p; 5123 char id[4]; 5124 int i, ret, val; 5125 5126 /* Try ONFI for unknown chip or LP */ 5127 ret = nand_readid_op(chip, 0x20, id, sizeof(id)); 5128 if (ret || strncmp(id, "ONFI", 4)) 5129 return 0; 5130 5131 /* ONFI chip: allocate a buffer to hold its parameter page */ 5132 p = kzalloc((sizeof(*p) * 3), GFP_KERNEL); 5133 if (!p) 5134 return -ENOMEM; 5135 5136 ret = nand_read_param_page_op(chip, 0, NULL, 0); 5137 if (ret) { 5138 ret = 0; 5139 goto free_onfi_param_page; 5140 } 5141 5142 for (i = 0; i < 3; i++) { 5143 ret = nand_read_data_op(chip, &p[i], sizeof(*p), true); 5144 if (ret) { 5145 ret = 0; 5146 goto free_onfi_param_page; 5147 } 5148 5149 if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) == 5150 le16_to_cpu(p->crc)) { 5151 if (i) 5152 memcpy(p, &p[i], sizeof(*p)); 5153 break; 5154 } 5155 } 5156 5157 if (i == 3) { 5158 const void *srcbufs[3] = {p, p + 1, p + 2}; 5159 5160 pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n"); 5161 nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p, 5162 sizeof(*p)); 5163 5164 if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) != 5165 le16_to_cpu(p->crc)) { 5166 pr_err("ONFI parameter recovery failed, aborting\n"); 5167 goto free_onfi_param_page; 5168 } 5169 } 5170 5171 /* Check version */ 5172 val = le16_to_cpu(p->revision); 5173 if (val & (1 << 5)) 5174 chip->parameters.onfi.version = 23; 5175 else if (val & (1 << 4)) 5176 chip->parameters.onfi.version = 22; 5177 else if (val & (1 << 3)) 5178 chip->parameters.onfi.version = 21; 5179 else if (val & (1 << 2)) 5180 chip->parameters.onfi.version = 20; 5181 else if (val & (1 << 1)) 5182 chip->parameters.onfi.version = 10; 5183 5184 if (!chip->parameters.onfi.version) { 5185 pr_info("unsupported ONFI version: %d\n", val); 5186 goto free_onfi_param_page; 5187 } else { 5188 ret = 1; 5189 } 5190 5191 sanitize_string(p->manufacturer, sizeof(p->manufacturer)); 5192 sanitize_string(p->model, sizeof(p->model)); 5193 strncpy(chip->parameters.model, p->model, 5194 sizeof(chip->parameters.model) - 1); 5195 5196 mtd->writesize = le32_to_cpu(p->byte_per_page); 5197 5198 /* 5199 * pages_per_block and blocks_per_lun may not be a power-of-2 size 5200 * (don't ask me who thought of this...). MTD assumes that these 5201 * dimensions will be power-of-2, so just truncate the remaining area. 5202 */ 5203 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); 5204 mtd->erasesize *= mtd->writesize; 5205 5206 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); 5207 5208 /* See erasesize comment */ 5209 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); 5210 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; 5211 chip->bits_per_cell = p->bits_per_cell; 5212 5213 chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun); 5214 chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); 5215 5216 if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS) 5217 chip->options |= NAND_BUSWIDTH_16; 5218 5219 if (p->ecc_bits != 0xff) { 5220 chip->ecc_strength_ds = p->ecc_bits; 5221 chip->ecc_step_ds = 512; 5222 } else if (chip->parameters.onfi.version >= 21 && 5223 (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) { 5224 5225 /* 5226 * The nand_flash_detect_ext_param_page() uses the 5227 * Change Read Column command which maybe not supported 5228 * by the chip->cmdfunc. So try to update the chip->cmdfunc 5229 * now. We do not replace user supplied command function. 5230 */ 5231 if (mtd->writesize > 512 && chip->cmdfunc == nand_command) 5232 chip->cmdfunc = nand_command_lp; 5233 5234 /* The Extended Parameter Page is supported since ONFI 2.1. */ 5235 if (nand_flash_detect_ext_param_page(chip, p)) 5236 pr_warn("Failed to detect ONFI extended param page\n"); 5237 } else { 5238 pr_warn("Could not retrieve ONFI ECC requirements\n"); 5239 } 5240 5241 /* Save some parameters from the parameter page for future use */ 5242 if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) { 5243 chip->parameters.supports_set_get_features = true; 5244 bitmap_set(chip->parameters.get_feature_list, 5245 ONFI_FEATURE_ADDR_TIMING_MODE, 1); 5246 bitmap_set(chip->parameters.set_feature_list, 5247 ONFI_FEATURE_ADDR_TIMING_MODE, 1); 5248 } 5249 chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog); 5250 chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers); 5251 chip->parameters.onfi.tR = le16_to_cpu(p->t_r); 5252 chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs); 5253 chip->parameters.onfi.async_timing_mode = 5254 le16_to_cpu(p->async_timing_mode); 5255 chip->parameters.onfi.vendor_revision = 5256 le16_to_cpu(p->vendor_revision); 5257 memcpy(chip->parameters.onfi.vendor, p->vendor, 5258 sizeof(p->vendor)); 5259 5260 free_onfi_param_page: 5261 kfree(p); 5262 return ret; 5263 } 5264 5265 /* 5266 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. 5267 */ 5268 static int nand_flash_detect_jedec(struct nand_chip *chip) 5269 { 5270 struct mtd_info *mtd = nand_to_mtd(chip); 5271 struct nand_jedec_params *p; 5272 struct jedec_ecc_info *ecc; 5273 int jedec_version = 0; 5274 char id[5]; 5275 int i, val, ret; 5276 5277 /* Try JEDEC for unknown chip or LP */ 5278 ret = nand_readid_op(chip, 0x40, id, sizeof(id)); 5279 if (ret || strncmp(id, "JEDEC", sizeof(id))) 5280 return 0; 5281 5282 /* JEDEC chip: allocate a buffer to hold its parameter page */ 5283 p = kzalloc(sizeof(*p), GFP_KERNEL); 5284 if (!p) 5285 return -ENOMEM; 5286 5287 ret = nand_read_param_page_op(chip, 0x40, NULL, 0); 5288 if (ret) { 5289 ret = 0; 5290 goto free_jedec_param_page; 5291 } 5292 5293 for (i = 0; i < 3; i++) { 5294 ret = nand_read_data_op(chip, p, sizeof(*p), true); 5295 if (ret) { 5296 ret = 0; 5297 goto free_jedec_param_page; 5298 } 5299 5300 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == 5301 le16_to_cpu(p->crc)) 5302 break; 5303 } 5304 5305 if (i == 3) { 5306 pr_err("Could not find valid JEDEC parameter page; aborting\n"); 5307 goto free_jedec_param_page; 5308 } 5309 5310 /* Check version */ 5311 val = le16_to_cpu(p->revision); 5312 if (val & (1 << 2)) 5313 jedec_version = 10; 5314 else if (val & (1 << 1)) 5315 jedec_version = 1; /* vendor specific version */ 5316 5317 if (!jedec_version) { 5318 pr_info("unsupported JEDEC version: %d\n", val); 5319 goto free_jedec_param_page; 5320 } 5321 5322 sanitize_string(p->manufacturer, sizeof(p->manufacturer)); 5323 sanitize_string(p->model, sizeof(p->model)); 5324 strncpy(chip->parameters.model, p->model, 5325 sizeof(chip->parameters.model) - 1); 5326 5327 mtd->writesize = le32_to_cpu(p->byte_per_page); 5328 5329 /* Please reference to the comment for nand_flash_detect_onfi. */ 5330 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); 5331 mtd->erasesize *= mtd->writesize; 5332 5333 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); 5334 5335 /* Please reference to the comment for nand_flash_detect_onfi. */ 5336 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); 5337 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; 5338 chip->bits_per_cell = p->bits_per_cell; 5339 5340 if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS) 5341 chip->options |= NAND_BUSWIDTH_16; 5342 5343 /* ECC info */ 5344 ecc = &p->ecc_info[0]; 5345 5346 if (ecc->codeword_size >= 9) { 5347 chip->ecc_strength_ds = ecc->ecc_bits; 5348 chip->ecc_step_ds = 1 << ecc->codeword_size; 5349 } else { 5350 pr_warn("Invalid codeword size\n"); 5351 } 5352 5353 free_jedec_param_page: 5354 kfree(p); 5355 return ret; 5356 } 5357 5358 /* 5359 * nand_id_has_period - Check if an ID string has a given wraparound period 5360 * @id_data: the ID string 5361 * @arrlen: the length of the @id_data array 5362 * @period: the period of repitition 5363 * 5364 * Check if an ID string is repeated within a given sequence of bytes at 5365 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 5366 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 5367 * if the repetition has a period of @period; otherwise, returns zero. 5368 */ 5369 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 5370 { 5371 int i, j; 5372 for (i = 0; i < period; i++) 5373 for (j = i + period; j < arrlen; j += period) 5374 if (id_data[i] != id_data[j]) 5375 return 0; 5376 return 1; 5377 } 5378 5379 /* 5380 * nand_id_len - Get the length of an ID string returned by CMD_READID 5381 * @id_data: the ID string 5382 * @arrlen: the length of the @id_data array 5383 5384 * Returns the length of the ID string, according to known wraparound/trailing 5385 * zero patterns. If no pattern exists, returns the length of the array. 5386 */ 5387 static int nand_id_len(u8 *id_data, int arrlen) 5388 { 5389 int last_nonzero, period; 5390 5391 /* Find last non-zero byte */ 5392 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 5393 if (id_data[last_nonzero]) 5394 break; 5395 5396 /* All zeros */ 5397 if (last_nonzero < 0) 5398 return 0; 5399 5400 /* Calculate wraparound period */ 5401 for (period = 1; period < arrlen; period++) 5402 if (nand_id_has_period(id_data, arrlen, period)) 5403 break; 5404 5405 /* There's a repeated pattern */ 5406 if (period < arrlen) 5407 return period; 5408 5409 /* There are trailing zeros */ 5410 if (last_nonzero < arrlen - 1) 5411 return last_nonzero + 1; 5412 5413 /* No pattern detected */ 5414 return arrlen; 5415 } 5416 5417 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 5418 static int nand_get_bits_per_cell(u8 cellinfo) 5419 { 5420 int bits; 5421 5422 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 5423 bits >>= NAND_CI_CELLTYPE_SHIFT; 5424 return bits + 1; 5425 } 5426 5427 /* 5428 * Many new NAND share similar device ID codes, which represent the size of the 5429 * chip. The rest of the parameters must be decoded according to generic or 5430 * manufacturer-specific "extended ID" decoding patterns. 5431 */ 5432 void nand_decode_ext_id(struct nand_chip *chip) 5433 { 5434 struct mtd_info *mtd = nand_to_mtd(chip); 5435 int extid; 5436 u8 *id_data = chip->id.data; 5437 /* The 3rd id byte holds MLC / multichip data */ 5438 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5439 /* The 4th id byte is the important one */ 5440 extid = id_data[3]; 5441 5442 /* Calc pagesize */ 5443 mtd->writesize = 1024 << (extid & 0x03); 5444 extid >>= 2; 5445 /* Calc oobsize */ 5446 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 5447 extid >>= 2; 5448 /* Calc blocksize. Blocksize is multiples of 64KiB */ 5449 mtd->erasesize = (64 * 1024) << (extid & 0x03); 5450 extid >>= 2; 5451 /* Get buswidth information */ 5452 if (extid & 0x1) 5453 chip->options |= NAND_BUSWIDTH_16; 5454 } 5455 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 5456 5457 /* 5458 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 5459 * decodes a matching ID table entry and assigns the MTD size parameters for 5460 * the chip. 5461 */ 5462 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 5463 { 5464 struct mtd_info *mtd = nand_to_mtd(chip); 5465 5466 mtd->erasesize = type->erasesize; 5467 mtd->writesize = type->pagesize; 5468 mtd->oobsize = mtd->writesize / 32; 5469 5470 /* All legacy ID NAND are small-page, SLC */ 5471 chip->bits_per_cell = 1; 5472 } 5473 5474 /* 5475 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 5476 * heuristic patterns using various detected parameters (e.g., manufacturer, 5477 * page size, cell-type information). 5478 */ 5479 static void nand_decode_bbm_options(struct nand_chip *chip) 5480 { 5481 struct mtd_info *mtd = nand_to_mtd(chip); 5482 5483 /* Set the bad block position */ 5484 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 5485 chip->badblockpos = NAND_LARGE_BADBLOCK_POS; 5486 else 5487 chip->badblockpos = NAND_SMALL_BADBLOCK_POS; 5488 } 5489 5490 static inline bool is_full_id_nand(struct nand_flash_dev *type) 5491 { 5492 return type->id_len; 5493 } 5494 5495 static bool find_full_id_nand(struct nand_chip *chip, 5496 struct nand_flash_dev *type) 5497 { 5498 struct mtd_info *mtd = nand_to_mtd(chip); 5499 u8 *id_data = chip->id.data; 5500 5501 if (!strncmp(type->id, id_data, type->id_len)) { 5502 mtd->writesize = type->pagesize; 5503 mtd->erasesize = type->erasesize; 5504 mtd->oobsize = type->oobsize; 5505 5506 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5507 chip->chipsize = (uint64_t)type->chipsize << 20; 5508 chip->options |= type->options; 5509 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); 5510 chip->ecc_step_ds = NAND_ECC_STEP(type); 5511 chip->onfi_timing_mode_default = 5512 type->onfi_timing_mode_default; 5513 5514 strncpy(chip->parameters.model, type->name, 5515 sizeof(chip->parameters.model) - 1); 5516 5517 return true; 5518 } 5519 return false; 5520 } 5521 5522 /* 5523 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 5524 * compliant and does not have a full-id or legacy-id entry in the nand_ids 5525 * table. 5526 */ 5527 static void nand_manufacturer_detect(struct nand_chip *chip) 5528 { 5529 /* 5530 * Try manufacturer detection if available and use 5531 * nand_decode_ext_id() otherwise. 5532 */ 5533 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5534 chip->manufacturer.desc->ops->detect) { 5535 /* The 3rd id byte holds MLC / multichip data */ 5536 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 5537 chip->manufacturer.desc->ops->detect(chip); 5538 } else { 5539 nand_decode_ext_id(chip); 5540 } 5541 } 5542 5543 /* 5544 * Manufacturer initialization. This function is called for all NANDs including 5545 * ONFI and JEDEC compliant ones. 5546 * Manufacturer drivers should put all their specific initialization code in 5547 * their ->init() hook. 5548 */ 5549 static int nand_manufacturer_init(struct nand_chip *chip) 5550 { 5551 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 5552 !chip->manufacturer.desc->ops->init) 5553 return 0; 5554 5555 return chip->manufacturer.desc->ops->init(chip); 5556 } 5557 5558 /* 5559 * Manufacturer cleanup. This function is called for all NANDs including 5560 * ONFI and JEDEC compliant ones. 5561 * Manufacturer drivers should put all their specific cleanup code in their 5562 * ->cleanup() hook. 5563 */ 5564 static void nand_manufacturer_cleanup(struct nand_chip *chip) 5565 { 5566 /* Release manufacturer private data */ 5567 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5568 chip->manufacturer.desc->ops->cleanup) 5569 chip->manufacturer.desc->ops->cleanup(chip); 5570 } 5571 5572 /* 5573 * Get the flash and manufacturer id and lookup if the type is supported. 5574 */ 5575 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 5576 { 5577 const struct nand_manufacturer *manufacturer; 5578 struct mtd_info *mtd = nand_to_mtd(chip); 5579 int busw, ret; 5580 u8 *id_data = chip->id.data; 5581 u8 maf_id, dev_id; 5582 5583 /* 5584 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 5585 * after power-up. 5586 */ 5587 ret = nand_reset(chip, 0); 5588 if (ret) 5589 return ret; 5590 5591 /* Select the device */ 5592 chip->select_chip(mtd, 0); 5593 5594 /* Send the command for reading device ID */ 5595 ret = nand_readid_op(chip, 0, id_data, 2); 5596 if (ret) 5597 return ret; 5598 5599 /* Read manufacturer and device IDs */ 5600 maf_id = id_data[0]; 5601 dev_id = id_data[1]; 5602 5603 /* 5604 * Try again to make sure, as some systems the bus-hold or other 5605 * interface concerns can cause random data which looks like a 5606 * possibly credible NAND flash to appear. If the two results do 5607 * not match, ignore the device completely. 5608 */ 5609 5610 /* Read entire ID string */ 5611 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 5612 if (ret) 5613 return ret; 5614 5615 if (id_data[0] != maf_id || id_data[1] != dev_id) { 5616 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 5617 maf_id, dev_id, id_data[0], id_data[1]); 5618 return -ENODEV; 5619 } 5620 5621 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 5622 5623 /* Try to identify manufacturer */ 5624 manufacturer = nand_get_manufacturer(maf_id); 5625 chip->manufacturer.desc = manufacturer; 5626 5627 if (!type) 5628 type = nand_flash_ids; 5629 5630 /* 5631 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 5632 * override it. 5633 * This is required to make sure initial NAND bus width set by the 5634 * NAND controller driver is coherent with the real NAND bus width 5635 * (extracted by auto-detection code). 5636 */ 5637 busw = chip->options & NAND_BUSWIDTH_16; 5638 5639 /* 5640 * The flag is only set (never cleared), reset it to its default value 5641 * before starting auto-detection. 5642 */ 5643 chip->options &= ~NAND_BUSWIDTH_16; 5644 5645 for (; type->name != NULL; type++) { 5646 if (is_full_id_nand(type)) { 5647 if (find_full_id_nand(chip, type)) 5648 goto ident_done; 5649 } else if (dev_id == type->dev_id) { 5650 break; 5651 } 5652 } 5653 5654 chip->parameters.onfi.version = 0; 5655 if (!type->name || !type->pagesize) { 5656 /* Check if the chip is ONFI compliant */ 5657 ret = nand_flash_detect_onfi(chip); 5658 if (ret < 0) 5659 return ret; 5660 else if (ret) 5661 goto ident_done; 5662 5663 /* Check if the chip is JEDEC compliant */ 5664 ret = nand_flash_detect_jedec(chip); 5665 if (ret < 0) 5666 return ret; 5667 else if (ret) 5668 goto ident_done; 5669 } 5670 5671 if (!type->name) 5672 return -ENODEV; 5673 5674 strncpy(chip->parameters.model, type->name, 5675 sizeof(chip->parameters.model) - 1); 5676 5677 chip->chipsize = (uint64_t)type->chipsize << 20; 5678 5679 if (!type->pagesize) 5680 nand_manufacturer_detect(chip); 5681 else 5682 nand_decode_id(chip, type); 5683 5684 /* Get chip options */ 5685 chip->options |= type->options; 5686 5687 ident_done: 5688 if (!mtd->name) 5689 mtd->name = chip->parameters.model; 5690 5691 if (chip->options & NAND_BUSWIDTH_AUTO) { 5692 WARN_ON(busw & NAND_BUSWIDTH_16); 5693 nand_set_defaults(chip); 5694 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 5695 /* 5696 * Check, if buswidth is correct. Hardware drivers should set 5697 * chip correct! 5698 */ 5699 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5700 maf_id, dev_id); 5701 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 5702 mtd->name); 5703 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 5704 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 5705 return -EINVAL; 5706 } 5707 5708 nand_decode_bbm_options(chip); 5709 5710 /* Calculate the address shift from the page size */ 5711 chip->page_shift = ffs(mtd->writesize) - 1; 5712 /* Convert chipsize to number of pages per chip -1 */ 5713 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; 5714 5715 chip->bbt_erase_shift = chip->phys_erase_shift = 5716 ffs(mtd->erasesize) - 1; 5717 if (chip->chipsize & 0xffffffff) 5718 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; 5719 else { 5720 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); 5721 chip->chip_shift += 32 - 1; 5722 } 5723 5724 if (chip->chip_shift - chip->page_shift > 16) 5725 chip->options |= NAND_ROW_ADDR_3; 5726 5727 chip->badblockbits = 8; 5728 chip->erase = single_erase; 5729 5730 /* Do not replace user supplied command function! */ 5731 if (mtd->writesize > 512 && chip->cmdfunc == nand_command) 5732 chip->cmdfunc = nand_command_lp; 5733 5734 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5735 maf_id, dev_id); 5736 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 5737 chip->parameters.model); 5738 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5739 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5740 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5741 return 0; 5742 } 5743 5744 static const char * const nand_ecc_modes[] = { 5745 [NAND_ECC_NONE] = "none", 5746 [NAND_ECC_SOFT] = "soft", 5747 [NAND_ECC_HW] = "hw", 5748 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5749 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", 5750 [NAND_ECC_ON_DIE] = "on-die", 5751 }; 5752 5753 static int of_get_nand_ecc_mode(struct device_node *np) 5754 { 5755 const char *pm; 5756 int err, i; 5757 5758 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5759 if (err < 0) 5760 return err; 5761 5762 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) 5763 if (!strcasecmp(pm, nand_ecc_modes[i])) 5764 return i; 5765 5766 /* 5767 * For backward compatibility we support few obsoleted values that don't 5768 * have their mappings into nand_ecc_modes_t anymore (they were merged 5769 * with other enums). 5770 */ 5771 if (!strcasecmp(pm, "soft_bch")) 5772 return NAND_ECC_SOFT; 5773 5774 return -ENODEV; 5775 } 5776 5777 static const char * const nand_ecc_algos[] = { 5778 [NAND_ECC_HAMMING] = "hamming", 5779 [NAND_ECC_BCH] = "bch", 5780 }; 5781 5782 static int of_get_nand_ecc_algo(struct device_node *np) 5783 { 5784 const char *pm; 5785 int err, i; 5786 5787 err = of_property_read_string(np, "nand-ecc-algo", &pm); 5788 if (!err) { 5789 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) 5790 if (!strcasecmp(pm, nand_ecc_algos[i])) 5791 return i; 5792 return -ENODEV; 5793 } 5794 5795 /* 5796 * For backward compatibility we also read "nand-ecc-mode" checking 5797 * for some obsoleted values that were specifying ECC algorithm. 5798 */ 5799 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5800 if (err < 0) 5801 return err; 5802 5803 if (!strcasecmp(pm, "soft")) 5804 return NAND_ECC_HAMMING; 5805 else if (!strcasecmp(pm, "soft_bch")) 5806 return NAND_ECC_BCH; 5807 5808 return -ENODEV; 5809 } 5810 5811 static int of_get_nand_ecc_step_size(struct device_node *np) 5812 { 5813 int ret; 5814 u32 val; 5815 5816 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 5817 return ret ? ret : val; 5818 } 5819 5820 static int of_get_nand_ecc_strength(struct device_node *np) 5821 { 5822 int ret; 5823 u32 val; 5824 5825 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 5826 return ret ? ret : val; 5827 } 5828 5829 static int of_get_nand_bus_width(struct device_node *np) 5830 { 5831 u32 val; 5832 5833 if (of_property_read_u32(np, "nand-bus-width", &val)) 5834 return 8; 5835 5836 switch (val) { 5837 case 8: 5838 case 16: 5839 return val; 5840 default: 5841 return -EIO; 5842 } 5843 } 5844 5845 static bool of_get_nand_on_flash_bbt(struct device_node *np) 5846 { 5847 return of_property_read_bool(np, "nand-on-flash-bbt"); 5848 } 5849 5850 static int nand_dt_init(struct nand_chip *chip) 5851 { 5852 struct device_node *dn = nand_get_flash_node(chip); 5853 int ecc_mode, ecc_algo, ecc_strength, ecc_step; 5854 5855 if (!dn) 5856 return 0; 5857 5858 if (of_get_nand_bus_width(dn) == 16) 5859 chip->options |= NAND_BUSWIDTH_16; 5860 5861 if (of_get_nand_on_flash_bbt(dn)) 5862 chip->bbt_options |= NAND_BBT_USE_FLASH; 5863 5864 ecc_mode = of_get_nand_ecc_mode(dn); 5865 ecc_algo = of_get_nand_ecc_algo(dn); 5866 ecc_strength = of_get_nand_ecc_strength(dn); 5867 ecc_step = of_get_nand_ecc_step_size(dn); 5868 5869 if (ecc_mode >= 0) 5870 chip->ecc.mode = ecc_mode; 5871 5872 if (ecc_algo >= 0) 5873 chip->ecc.algo = ecc_algo; 5874 5875 if (ecc_strength >= 0) 5876 chip->ecc.strength = ecc_strength; 5877 5878 if (ecc_step > 0) 5879 chip->ecc.size = ecc_step; 5880 5881 if (of_property_read_bool(dn, "nand-ecc-maximize")) 5882 chip->ecc.options |= NAND_ECC_MAXIMIZE; 5883 5884 return 0; 5885 } 5886 5887 /** 5888 * nand_scan_ident - [NAND Interface] Scan for the NAND device 5889 * @mtd: MTD device structure 5890 * @maxchips: number of chips to scan for 5891 * @table: alternative NAND ID table 5892 * 5893 * This is the first phase of the normal nand_scan() function. It reads the 5894 * flash ID and sets up MTD fields accordingly. 5895 * 5896 */ 5897 int nand_scan_ident(struct mtd_info *mtd, int maxchips, 5898 struct nand_flash_dev *table) 5899 { 5900 int i, nand_maf_id, nand_dev_id; 5901 struct nand_chip *chip = mtd_to_nand(mtd); 5902 int ret; 5903 5904 /* Enforce the right timings for reset/detection */ 5905 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 5906 5907 ret = nand_dt_init(chip); 5908 if (ret) 5909 return ret; 5910 5911 if (!mtd->name && mtd->dev.parent) 5912 mtd->name = dev_name(mtd->dev.parent); 5913 5914 /* 5915 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not 5916 * populated. 5917 */ 5918 if (!chip->exec_op) { 5919 /* 5920 * Default functions assigned for ->cmdfunc() and 5921 * ->select_chip() both expect ->cmd_ctrl() to be populated. 5922 */ 5923 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { 5924 pr_err("->cmd_ctrl() should be provided\n"); 5925 return -EINVAL; 5926 } 5927 } 5928 5929 /* Set the default functions */ 5930 nand_set_defaults(chip); 5931 5932 /* Read the flash type */ 5933 ret = nand_detect(chip, table); 5934 if (ret) { 5935 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5936 pr_warn("No NAND device found\n"); 5937 chip->select_chip(mtd, -1); 5938 return ret; 5939 } 5940 5941 nand_maf_id = chip->id.data[0]; 5942 nand_dev_id = chip->id.data[1]; 5943 5944 chip->select_chip(mtd, -1); 5945 5946 /* Check for a chip array */ 5947 for (i = 1; i < maxchips; i++) { 5948 u8 id[2]; 5949 5950 /* See comment in nand_get_flash_type for reset */ 5951 nand_reset(chip, i); 5952 5953 chip->select_chip(mtd, i); 5954 /* Send the command for reading device ID */ 5955 nand_readid_op(chip, 0, id, sizeof(id)); 5956 /* Read manufacturer and device IDs */ 5957 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5958 chip->select_chip(mtd, -1); 5959 break; 5960 } 5961 chip->select_chip(mtd, -1); 5962 } 5963 if (i > 1) 5964 pr_info("%d chips detected\n", i); 5965 5966 /* Store the number of chips and calc total size for mtd */ 5967 chip->numchips = i; 5968 mtd->size = i * chip->chipsize; 5969 5970 return 0; 5971 } 5972 EXPORT_SYMBOL(nand_scan_ident); 5973 5974 static int nand_set_ecc_soft_ops(struct mtd_info *mtd) 5975 { 5976 struct nand_chip *chip = mtd_to_nand(mtd); 5977 struct nand_ecc_ctrl *ecc = &chip->ecc; 5978 5979 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 5980 return -EINVAL; 5981 5982 switch (ecc->algo) { 5983 case NAND_ECC_HAMMING: 5984 ecc->calculate = nand_calculate_ecc; 5985 ecc->correct = nand_correct_data; 5986 ecc->read_page = nand_read_page_swecc; 5987 ecc->read_subpage = nand_read_subpage; 5988 ecc->write_page = nand_write_page_swecc; 5989 ecc->read_page_raw = nand_read_page_raw; 5990 ecc->write_page_raw = nand_write_page_raw; 5991 ecc->read_oob = nand_read_oob_std; 5992 ecc->write_oob = nand_write_oob_std; 5993 if (!ecc->size) 5994 ecc->size = 256; 5995 ecc->bytes = 3; 5996 ecc->strength = 1; 5997 return 0; 5998 case NAND_ECC_BCH: 5999 if (!mtd_nand_has_bch()) { 6000 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); 6001 return -EINVAL; 6002 } 6003 ecc->calculate = nand_bch_calculate_ecc; 6004 ecc->correct = nand_bch_correct_data; 6005 ecc->read_page = nand_read_page_swecc; 6006 ecc->read_subpage = nand_read_subpage; 6007 ecc->write_page = nand_write_page_swecc; 6008 ecc->read_page_raw = nand_read_page_raw; 6009 ecc->write_page_raw = nand_write_page_raw; 6010 ecc->read_oob = nand_read_oob_std; 6011 ecc->write_oob = nand_write_oob_std; 6012 6013 /* 6014 * Board driver should supply ecc.size and ecc.strength 6015 * values to select how many bits are correctable. 6016 * Otherwise, default to 4 bits for large page devices. 6017 */ 6018 if (!ecc->size && (mtd->oobsize >= 64)) { 6019 ecc->size = 512; 6020 ecc->strength = 4; 6021 } 6022 6023 /* 6024 * if no ecc placement scheme was provided pickup the default 6025 * large page one. 6026 */ 6027 if (!mtd->ooblayout) { 6028 /* handle large page devices only */ 6029 if (mtd->oobsize < 64) { 6030 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 6031 return -EINVAL; 6032 } 6033 6034 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 6035 6036 } 6037 6038 /* 6039 * We can only maximize ECC config when the default layout is 6040 * used, otherwise we don't know how many bytes can really be 6041 * used. 6042 */ 6043 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 6044 ecc->options & NAND_ECC_MAXIMIZE) { 6045 int steps, bytes; 6046 6047 /* Always prefer 1k blocks over 512bytes ones */ 6048 ecc->size = 1024; 6049 steps = mtd->writesize / ecc->size; 6050 6051 /* Reserve 2 bytes for the BBM */ 6052 bytes = (mtd->oobsize - 2) / steps; 6053 ecc->strength = bytes * 8 / fls(8 * ecc->size); 6054 } 6055 6056 /* See nand_bch_init() for details. */ 6057 ecc->bytes = 0; 6058 ecc->priv = nand_bch_init(mtd); 6059 if (!ecc->priv) { 6060 WARN(1, "BCH ECC initialization failed!\n"); 6061 return -EINVAL; 6062 } 6063 return 0; 6064 default: 6065 WARN(1, "Unsupported ECC algorithm!\n"); 6066 return -EINVAL; 6067 } 6068 } 6069 6070 /** 6071 * nand_check_ecc_caps - check the sanity of preset ECC settings 6072 * @chip: nand chip info structure 6073 * @caps: ECC caps info structure 6074 * @oobavail: OOB size that the ECC engine can use 6075 * 6076 * When ECC step size and strength are already set, check if they are supported 6077 * by the controller and the calculated ECC bytes fit within the chip's OOB. 6078 * On success, the calculated ECC bytes is set. 6079 */ 6080 int nand_check_ecc_caps(struct nand_chip *chip, 6081 const struct nand_ecc_caps *caps, int oobavail) 6082 { 6083 struct mtd_info *mtd = nand_to_mtd(chip); 6084 const struct nand_ecc_step_info *stepinfo; 6085 int preset_step = chip->ecc.size; 6086 int preset_strength = chip->ecc.strength; 6087 int nsteps, ecc_bytes; 6088 int i, j; 6089 6090 if (WARN_ON(oobavail < 0)) 6091 return -EINVAL; 6092 6093 if (!preset_step || !preset_strength) 6094 return -ENODATA; 6095 6096 nsteps = mtd->writesize / preset_step; 6097 6098 for (i = 0; i < caps->nstepinfos; i++) { 6099 stepinfo = &caps->stepinfos[i]; 6100 6101 if (stepinfo->stepsize != preset_step) 6102 continue; 6103 6104 for (j = 0; j < stepinfo->nstrengths; j++) { 6105 if (stepinfo->strengths[j] != preset_strength) 6106 continue; 6107 6108 ecc_bytes = caps->calc_ecc_bytes(preset_step, 6109 preset_strength); 6110 if (WARN_ON_ONCE(ecc_bytes < 0)) 6111 return ecc_bytes; 6112 6113 if (ecc_bytes * nsteps > oobavail) { 6114 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 6115 preset_step, preset_strength); 6116 return -ENOSPC; 6117 } 6118 6119 chip->ecc.bytes = ecc_bytes; 6120 6121 return 0; 6122 } 6123 } 6124 6125 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 6126 preset_step, preset_strength); 6127 6128 return -ENOTSUPP; 6129 } 6130 EXPORT_SYMBOL_GPL(nand_check_ecc_caps); 6131 6132 /** 6133 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 6134 * @chip: nand chip info structure 6135 * @caps: ECC engine caps info structure 6136 * @oobavail: OOB size that the ECC engine can use 6137 * 6138 * If a chip's ECC requirement is provided, try to meet it with the least 6139 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 6140 * On success, the chosen ECC settings are set. 6141 */ 6142 int nand_match_ecc_req(struct nand_chip *chip, 6143 const struct nand_ecc_caps *caps, int oobavail) 6144 { 6145 struct mtd_info *mtd = nand_to_mtd(chip); 6146 const struct nand_ecc_step_info *stepinfo; 6147 int req_step = chip->ecc_step_ds; 6148 int req_strength = chip->ecc_strength_ds; 6149 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 6150 int best_step, best_strength, best_ecc_bytes; 6151 int best_ecc_bytes_total = INT_MAX; 6152 int i, j; 6153 6154 if (WARN_ON(oobavail < 0)) 6155 return -EINVAL; 6156 6157 /* No information provided by the NAND chip */ 6158 if (!req_step || !req_strength) 6159 return -ENOTSUPP; 6160 6161 /* number of correctable bits the chip requires in a page */ 6162 req_corr = mtd->writesize / req_step * req_strength; 6163 6164 for (i = 0; i < caps->nstepinfos; i++) { 6165 stepinfo = &caps->stepinfos[i]; 6166 step_size = stepinfo->stepsize; 6167 6168 for (j = 0; j < stepinfo->nstrengths; j++) { 6169 strength = stepinfo->strengths[j]; 6170 6171 /* 6172 * If both step size and strength are smaller than the 6173 * chip's requirement, it is not easy to compare the 6174 * resulted reliability. 6175 */ 6176 if (step_size < req_step && strength < req_strength) 6177 continue; 6178 6179 if (mtd->writesize % step_size) 6180 continue; 6181 6182 nsteps = mtd->writesize / step_size; 6183 6184 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6185 if (WARN_ON_ONCE(ecc_bytes < 0)) 6186 continue; 6187 ecc_bytes_total = ecc_bytes * nsteps; 6188 6189 if (ecc_bytes_total > oobavail || 6190 strength * nsteps < req_corr) 6191 continue; 6192 6193 /* 6194 * We assume the best is to meet the chip's requrement 6195 * with the least number of ECC bytes. 6196 */ 6197 if (ecc_bytes_total < best_ecc_bytes_total) { 6198 best_ecc_bytes_total = ecc_bytes_total; 6199 best_step = step_size; 6200 best_strength = strength; 6201 best_ecc_bytes = ecc_bytes; 6202 } 6203 } 6204 } 6205 6206 if (best_ecc_bytes_total == INT_MAX) 6207 return -ENOTSUPP; 6208 6209 chip->ecc.size = best_step; 6210 chip->ecc.strength = best_strength; 6211 chip->ecc.bytes = best_ecc_bytes; 6212 6213 return 0; 6214 } 6215 EXPORT_SYMBOL_GPL(nand_match_ecc_req); 6216 6217 /** 6218 * nand_maximize_ecc - choose the max ECC strength available 6219 * @chip: nand chip info structure 6220 * @caps: ECC engine caps info structure 6221 * @oobavail: OOB size that the ECC engine can use 6222 * 6223 * Choose the max ECC strength that is supported on the controller, and can fit 6224 * within the chip's OOB. On success, the chosen ECC settings are set. 6225 */ 6226 int nand_maximize_ecc(struct nand_chip *chip, 6227 const struct nand_ecc_caps *caps, int oobavail) 6228 { 6229 struct mtd_info *mtd = nand_to_mtd(chip); 6230 const struct nand_ecc_step_info *stepinfo; 6231 int step_size, strength, nsteps, ecc_bytes, corr; 6232 int best_corr = 0; 6233 int best_step = 0; 6234 int best_strength, best_ecc_bytes; 6235 int i, j; 6236 6237 if (WARN_ON(oobavail < 0)) 6238 return -EINVAL; 6239 6240 for (i = 0; i < caps->nstepinfos; i++) { 6241 stepinfo = &caps->stepinfos[i]; 6242 step_size = stepinfo->stepsize; 6243 6244 /* If chip->ecc.size is already set, respect it */ 6245 if (chip->ecc.size && step_size != chip->ecc.size) 6246 continue; 6247 6248 for (j = 0; j < stepinfo->nstrengths; j++) { 6249 strength = stepinfo->strengths[j]; 6250 6251 if (mtd->writesize % step_size) 6252 continue; 6253 6254 nsteps = mtd->writesize / step_size; 6255 6256 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6257 if (WARN_ON_ONCE(ecc_bytes < 0)) 6258 continue; 6259 6260 if (ecc_bytes * nsteps > oobavail) 6261 continue; 6262 6263 corr = strength * nsteps; 6264 6265 /* 6266 * If the number of correctable bits is the same, 6267 * bigger step_size has more reliability. 6268 */ 6269 if (corr > best_corr || 6270 (corr == best_corr && step_size > best_step)) { 6271 best_corr = corr; 6272 best_step = step_size; 6273 best_strength = strength; 6274 best_ecc_bytes = ecc_bytes; 6275 } 6276 } 6277 } 6278 6279 if (!best_corr) 6280 return -ENOTSUPP; 6281 6282 chip->ecc.size = best_step; 6283 chip->ecc.strength = best_strength; 6284 chip->ecc.bytes = best_ecc_bytes; 6285 6286 return 0; 6287 } 6288 EXPORT_SYMBOL_GPL(nand_maximize_ecc); 6289 6290 /* 6291 * Check if the chip configuration meet the datasheet requirements. 6292 6293 * If our configuration corrects A bits per B bytes and the minimum 6294 * required correction level is X bits per Y bytes, then we must ensure 6295 * both of the following are true: 6296 * 6297 * (1) A / B >= X / Y 6298 * (2) A >= X 6299 * 6300 * Requirement (1) ensures we can correct for the required bitflip density. 6301 * Requirement (2) ensures we can correct even when all bitflips are clumped 6302 * in the same sector. 6303 */ 6304 static bool nand_ecc_strength_good(struct mtd_info *mtd) 6305 { 6306 struct nand_chip *chip = mtd_to_nand(mtd); 6307 struct nand_ecc_ctrl *ecc = &chip->ecc; 6308 int corr, ds_corr; 6309 6310 if (ecc->size == 0 || chip->ecc_step_ds == 0) 6311 /* Not enough information */ 6312 return true; 6313 6314 /* 6315 * We get the number of corrected bits per page to compare 6316 * the correction density. 6317 */ 6318 corr = (mtd->writesize * ecc->strength) / ecc->size; 6319 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; 6320 6321 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; 6322 } 6323 6324 /** 6325 * nand_scan_tail - [NAND Interface] Scan for the NAND device 6326 * @mtd: MTD device structure 6327 * 6328 * This is the second phase of the normal nand_scan() function. It fills out 6329 * all the uninitialized function pointers with the defaults and scans for a 6330 * bad block table if appropriate. 6331 */ 6332 int nand_scan_tail(struct mtd_info *mtd) 6333 { 6334 struct nand_chip *chip = mtd_to_nand(mtd); 6335 struct nand_ecc_ctrl *ecc = &chip->ecc; 6336 int ret, i; 6337 6338 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 6339 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 6340 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 6341 return -EINVAL; 6342 } 6343 6344 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 6345 if (!chip->data_buf) 6346 return -ENOMEM; 6347 6348 /* 6349 * FIXME: some NAND manufacturer drivers expect the first die to be 6350 * selected when manufacturer->init() is called. They should be fixed 6351 * to explictly select the relevant die when interacting with the NAND 6352 * chip. 6353 */ 6354 chip->select_chip(mtd, 0); 6355 ret = nand_manufacturer_init(chip); 6356 chip->select_chip(mtd, -1); 6357 if (ret) 6358 goto err_free_buf; 6359 6360 /* Set the internal oob buffer location, just after the page data */ 6361 chip->oob_poi = chip->data_buf + mtd->writesize; 6362 6363 /* 6364 * If no default placement scheme is given, select an appropriate one. 6365 */ 6366 if (!mtd->ooblayout && 6367 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 6368 switch (mtd->oobsize) { 6369 case 8: 6370 case 16: 6371 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 6372 break; 6373 case 64: 6374 case 128: 6375 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 6376 break; 6377 default: 6378 /* 6379 * Expose the whole OOB area to users if ECC_NONE 6380 * is passed. We could do that for all kind of 6381 * ->oobsize, but we must keep the old large/small 6382 * page with ECC layout when ->oobsize <= 128 for 6383 * compatibility reasons. 6384 */ 6385 if (ecc->mode == NAND_ECC_NONE) { 6386 mtd_set_ooblayout(mtd, 6387 &nand_ooblayout_lp_ops); 6388 break; 6389 } 6390 6391 WARN(1, "No oob scheme defined for oobsize %d\n", 6392 mtd->oobsize); 6393 ret = -EINVAL; 6394 goto err_nand_manuf_cleanup; 6395 } 6396 } 6397 6398 /* 6399 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 6400 * selected and we have 256 byte pagesize fallback to software ECC 6401 */ 6402 6403 switch (ecc->mode) { 6404 case NAND_ECC_HW_OOB_FIRST: 6405 /* Similar to NAND_ECC_HW, but a separate read_page handle */ 6406 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { 6407 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 6408 ret = -EINVAL; 6409 goto err_nand_manuf_cleanup; 6410 } 6411 if (!ecc->read_page) 6412 ecc->read_page = nand_read_page_hwecc_oob_first; 6413 6414 case NAND_ECC_HW: 6415 /* Use standard hwecc read page function? */ 6416 if (!ecc->read_page) 6417 ecc->read_page = nand_read_page_hwecc; 6418 if (!ecc->write_page) 6419 ecc->write_page = nand_write_page_hwecc; 6420 if (!ecc->read_page_raw) 6421 ecc->read_page_raw = nand_read_page_raw; 6422 if (!ecc->write_page_raw) 6423 ecc->write_page_raw = nand_write_page_raw; 6424 if (!ecc->read_oob) 6425 ecc->read_oob = nand_read_oob_std; 6426 if (!ecc->write_oob) 6427 ecc->write_oob = nand_write_oob_std; 6428 if (!ecc->read_subpage) 6429 ecc->read_subpage = nand_read_subpage; 6430 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 6431 ecc->write_subpage = nand_write_subpage_hwecc; 6432 6433 case NAND_ECC_HW_SYNDROME: 6434 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 6435 (!ecc->read_page || 6436 ecc->read_page == nand_read_page_hwecc || 6437 !ecc->write_page || 6438 ecc->write_page == nand_write_page_hwecc)) { 6439 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 6440 ret = -EINVAL; 6441 goto err_nand_manuf_cleanup; 6442 } 6443 /* Use standard syndrome read/write page function? */ 6444 if (!ecc->read_page) 6445 ecc->read_page = nand_read_page_syndrome; 6446 if (!ecc->write_page) 6447 ecc->write_page = nand_write_page_syndrome; 6448 if (!ecc->read_page_raw) 6449 ecc->read_page_raw = nand_read_page_raw_syndrome; 6450 if (!ecc->write_page_raw) 6451 ecc->write_page_raw = nand_write_page_raw_syndrome; 6452 if (!ecc->read_oob) 6453 ecc->read_oob = nand_read_oob_syndrome; 6454 if (!ecc->write_oob) 6455 ecc->write_oob = nand_write_oob_syndrome; 6456 6457 if (mtd->writesize >= ecc->size) { 6458 if (!ecc->strength) { 6459 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 6460 ret = -EINVAL; 6461 goto err_nand_manuf_cleanup; 6462 } 6463 break; 6464 } 6465 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 6466 ecc->size, mtd->writesize); 6467 ecc->mode = NAND_ECC_SOFT; 6468 ecc->algo = NAND_ECC_HAMMING; 6469 6470 case NAND_ECC_SOFT: 6471 ret = nand_set_ecc_soft_ops(mtd); 6472 if (ret) { 6473 ret = -EINVAL; 6474 goto err_nand_manuf_cleanup; 6475 } 6476 break; 6477 6478 case NAND_ECC_ON_DIE: 6479 if (!ecc->read_page || !ecc->write_page) { 6480 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 6481 ret = -EINVAL; 6482 goto err_nand_manuf_cleanup; 6483 } 6484 if (!ecc->read_oob) 6485 ecc->read_oob = nand_read_oob_std; 6486 if (!ecc->write_oob) 6487 ecc->write_oob = nand_write_oob_std; 6488 break; 6489 6490 case NAND_ECC_NONE: 6491 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 6492 ecc->read_page = nand_read_page_raw; 6493 ecc->write_page = nand_write_page_raw; 6494 ecc->read_oob = nand_read_oob_std; 6495 ecc->read_page_raw = nand_read_page_raw; 6496 ecc->write_page_raw = nand_write_page_raw; 6497 ecc->write_oob = nand_write_oob_std; 6498 ecc->size = mtd->writesize; 6499 ecc->bytes = 0; 6500 ecc->strength = 0; 6501 break; 6502 6503 default: 6504 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 6505 ret = -EINVAL; 6506 goto err_nand_manuf_cleanup; 6507 } 6508 6509 if (ecc->correct || ecc->calculate) { 6510 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6511 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6512 if (!ecc->calc_buf || !ecc->code_buf) { 6513 ret = -ENOMEM; 6514 goto err_nand_manuf_cleanup; 6515 } 6516 } 6517 6518 /* For many systems, the standard OOB write also works for raw */ 6519 if (!ecc->read_oob_raw) 6520 ecc->read_oob_raw = ecc->read_oob; 6521 if (!ecc->write_oob_raw) 6522 ecc->write_oob_raw = ecc->write_oob; 6523 6524 /* propagate ecc info to mtd_info */ 6525 mtd->ecc_strength = ecc->strength; 6526 mtd->ecc_step_size = ecc->size; 6527 6528 /* 6529 * Set the number of read / write steps for one page depending on ECC 6530 * mode. 6531 */ 6532 ecc->steps = mtd->writesize / ecc->size; 6533 if (ecc->steps * ecc->size != mtd->writesize) { 6534 WARN(1, "Invalid ECC parameters\n"); 6535 ret = -EINVAL; 6536 goto err_nand_manuf_cleanup; 6537 } 6538 ecc->total = ecc->steps * ecc->bytes; 6539 if (ecc->total > mtd->oobsize) { 6540 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 6541 ret = -EINVAL; 6542 goto err_nand_manuf_cleanup; 6543 } 6544 6545 /* 6546 * The number of bytes available for a client to place data into 6547 * the out of band area. 6548 */ 6549 ret = mtd_ooblayout_count_freebytes(mtd); 6550 if (ret < 0) 6551 ret = 0; 6552 6553 mtd->oobavail = ret; 6554 6555 /* ECC sanity check: warn if it's too weak */ 6556 if (!nand_ecc_strength_good(mtd)) 6557 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 6558 mtd->name); 6559 6560 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 6561 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 6562 switch (ecc->steps) { 6563 case 2: 6564 mtd->subpage_sft = 1; 6565 break; 6566 case 4: 6567 case 8: 6568 case 16: 6569 mtd->subpage_sft = 2; 6570 break; 6571 } 6572 } 6573 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 6574 6575 /* Initialize state */ 6576 chip->state = FL_READY; 6577 6578 /* Invalidate the pagebuffer reference */ 6579 chip->pagebuf = -1; 6580 6581 /* Large page NAND with SOFT_ECC should support subpage reads */ 6582 switch (ecc->mode) { 6583 case NAND_ECC_SOFT: 6584 if (chip->page_shift > 9) 6585 chip->options |= NAND_SUBPAGE_READ; 6586 break; 6587 6588 default: 6589 break; 6590 } 6591 6592 /* Fill in remaining MTD driver data */ 6593 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; 6594 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : 6595 MTD_CAP_NANDFLASH; 6596 mtd->_erase = nand_erase; 6597 mtd->_point = NULL; 6598 mtd->_unpoint = NULL; 6599 mtd->_panic_write = panic_nand_write; 6600 mtd->_read_oob = nand_read_oob; 6601 mtd->_write_oob = nand_write_oob; 6602 mtd->_sync = nand_sync; 6603 mtd->_lock = NULL; 6604 mtd->_unlock = NULL; 6605 mtd->_suspend = nand_suspend; 6606 mtd->_resume = nand_resume; 6607 mtd->_reboot = nand_shutdown; 6608 mtd->_block_isreserved = nand_block_isreserved; 6609 mtd->_block_isbad = nand_block_isbad; 6610 mtd->_block_markbad = nand_block_markbad; 6611 mtd->_max_bad_blocks = nand_max_bad_blocks; 6612 mtd->writebufsize = mtd->writesize; 6613 6614 /* 6615 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6616 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6617 * properly set. 6618 */ 6619 if (!mtd->bitflip_threshold) 6620 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6621 6622 /* Initialize the ->data_interface field. */ 6623 ret = nand_init_data_interface(chip); 6624 if (ret) 6625 goto err_nand_manuf_cleanup; 6626 6627 /* Enter fastest possible mode on all dies. */ 6628 for (i = 0; i < chip->numchips; i++) { 6629 ret = nand_setup_data_interface(chip, i); 6630 if (ret) 6631 goto err_nand_manuf_cleanup; 6632 } 6633 6634 /* Check, if we should skip the bad block table scan */ 6635 if (chip->options & NAND_SKIP_BBTSCAN) 6636 return 0; 6637 6638 /* Build bad block table */ 6639 ret = chip->scan_bbt(mtd); 6640 if (ret) 6641 goto err_nand_manuf_cleanup; 6642 6643 return 0; 6644 6645 6646 err_nand_manuf_cleanup: 6647 nand_manufacturer_cleanup(chip); 6648 6649 err_free_buf: 6650 kfree(chip->data_buf); 6651 kfree(ecc->code_buf); 6652 kfree(ecc->calc_buf); 6653 6654 return ret; 6655 } 6656 EXPORT_SYMBOL(nand_scan_tail); 6657 6658 /* 6659 * is_module_text_address() isn't exported, and it's mostly a pointless 6660 * test if this is a module _anyway_ -- they'd have to try _really_ hard 6661 * to call us from in-kernel code if the core NAND support is modular. 6662 */ 6663 #ifdef MODULE 6664 #define caller_is_module() (1) 6665 #else 6666 #define caller_is_module() \ 6667 is_module_text_address((unsigned long)__builtin_return_address(0)) 6668 #endif 6669 6670 /** 6671 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6672 * @mtd: MTD device structure 6673 * @maxchips: number of chips to scan for 6674 * @ids: optional flash IDs table 6675 * 6676 * This fills out all the uninitialized function pointers with the defaults. 6677 * The flash ID is read and the mtd/chip structures are filled with the 6678 * appropriate values. 6679 */ 6680 int nand_scan_with_ids(struct mtd_info *mtd, int maxchips, 6681 struct nand_flash_dev *ids) 6682 { 6683 int ret; 6684 6685 ret = nand_scan_ident(mtd, maxchips, ids); 6686 if (!ret) 6687 ret = nand_scan_tail(mtd); 6688 return ret; 6689 } 6690 EXPORT_SYMBOL(nand_scan_with_ids); 6691 6692 /** 6693 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6694 * @chip: NAND chip object 6695 */ 6696 void nand_cleanup(struct nand_chip *chip) 6697 { 6698 if (chip->ecc.mode == NAND_ECC_SOFT && 6699 chip->ecc.algo == NAND_ECC_BCH) 6700 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 6701 6702 /* Free bad block table memory */ 6703 kfree(chip->bbt); 6704 kfree(chip->data_buf); 6705 kfree(chip->ecc.code_buf); 6706 kfree(chip->ecc.calc_buf); 6707 6708 /* Free bad block descriptor memory */ 6709 if (chip->badblock_pattern && chip->badblock_pattern->options 6710 & NAND_BBT_DYNAMICSTRUCT) 6711 kfree(chip->badblock_pattern); 6712 6713 /* Free manufacturer priv data. */ 6714 nand_manufacturer_cleanup(chip); 6715 } 6716 EXPORT_SYMBOL_GPL(nand_cleanup); 6717 6718 /** 6719 * nand_release - [NAND Interface] Unregister the MTD device and free resources 6720 * held by the NAND device 6721 * @mtd: MTD device structure 6722 */ 6723 void nand_release(struct mtd_info *mtd) 6724 { 6725 mtd_device_unregister(mtd); 6726 nand_cleanup(mtd_to_nand(mtd)); 6727 } 6728 EXPORT_SYMBOL_GPL(nand_release); 6729 6730 MODULE_LICENSE("GPL"); 6731 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6732 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6733 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6734