1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand_ecc.h> 38 #include <linux/mtd/nand_bch.h> 39 #include <linux/interrupt.h> 40 #include <linux/bitops.h> 41 #include <linux/io.h> 42 #include <linux/mtd/partitions.h> 43 #include <linux/of.h> 44 #include <linux/gpio/consumer.h> 45 46 #include "internals.h" 47 48 /* Define default oob placement schemes for large and small page devices */ 49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 50 struct mtd_oob_region *oobregion) 51 { 52 struct nand_chip *chip = mtd_to_nand(mtd); 53 struct nand_ecc_ctrl *ecc = &chip->ecc; 54 55 if (section > 1) 56 return -ERANGE; 57 58 if (!section) { 59 oobregion->offset = 0; 60 if (mtd->oobsize == 16) 61 oobregion->length = 4; 62 else 63 oobregion->length = 3; 64 } else { 65 if (mtd->oobsize == 8) 66 return -ERANGE; 67 68 oobregion->offset = 6; 69 oobregion->length = ecc->total - 4; 70 } 71 72 return 0; 73 } 74 75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 76 struct mtd_oob_region *oobregion) 77 { 78 if (section > 1) 79 return -ERANGE; 80 81 if (mtd->oobsize == 16) { 82 if (section) 83 return -ERANGE; 84 85 oobregion->length = 8; 86 oobregion->offset = 8; 87 } else { 88 oobregion->length = 2; 89 if (!section) 90 oobregion->offset = 3; 91 else 92 oobregion->offset = 6; 93 } 94 95 return 0; 96 } 97 98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 99 .ecc = nand_ooblayout_ecc_sp, 100 .free = nand_ooblayout_free_sp, 101 }; 102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 103 104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 105 struct mtd_oob_region *oobregion) 106 { 107 struct nand_chip *chip = mtd_to_nand(mtd); 108 struct nand_ecc_ctrl *ecc = &chip->ecc; 109 110 if (section || !ecc->total) 111 return -ERANGE; 112 113 oobregion->length = ecc->total; 114 oobregion->offset = mtd->oobsize - oobregion->length; 115 116 return 0; 117 } 118 119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 120 struct mtd_oob_region *oobregion) 121 { 122 struct nand_chip *chip = mtd_to_nand(mtd); 123 struct nand_ecc_ctrl *ecc = &chip->ecc; 124 125 if (section) 126 return -ERANGE; 127 128 oobregion->length = mtd->oobsize - ecc->total - 2; 129 oobregion->offset = 2; 130 131 return 0; 132 } 133 134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 135 .ecc = nand_ooblayout_ecc_lp, 136 .free = nand_ooblayout_free_lp, 137 }; 138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 139 140 /* 141 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 142 * are placed at a fixed offset. 143 */ 144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 145 struct mtd_oob_region *oobregion) 146 { 147 struct nand_chip *chip = mtd_to_nand(mtd); 148 struct nand_ecc_ctrl *ecc = &chip->ecc; 149 150 if (section) 151 return -ERANGE; 152 153 switch (mtd->oobsize) { 154 case 64: 155 oobregion->offset = 40; 156 break; 157 case 128: 158 oobregion->offset = 80; 159 break; 160 default: 161 return -EINVAL; 162 } 163 164 oobregion->length = ecc->total; 165 if (oobregion->offset + oobregion->length > mtd->oobsize) 166 return -ERANGE; 167 168 return 0; 169 } 170 171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 172 struct mtd_oob_region *oobregion) 173 { 174 struct nand_chip *chip = mtd_to_nand(mtd); 175 struct nand_ecc_ctrl *ecc = &chip->ecc; 176 int ecc_offset = 0; 177 178 if (section < 0 || section > 1) 179 return -ERANGE; 180 181 switch (mtd->oobsize) { 182 case 64: 183 ecc_offset = 40; 184 break; 185 case 128: 186 ecc_offset = 80; 187 break; 188 default: 189 return -EINVAL; 190 } 191 192 if (section == 0) { 193 oobregion->offset = 2; 194 oobregion->length = ecc_offset - 2; 195 } else { 196 oobregion->offset = ecc_offset + ecc->total; 197 oobregion->length = mtd->oobsize - oobregion->offset; 198 } 199 200 return 0; 201 } 202 203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 204 .ecc = nand_ooblayout_ecc_lp_hamming, 205 .free = nand_ooblayout_free_lp_hamming, 206 }; 207 208 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 209 { 210 int ret = 0; 211 212 /* Start address must align on block boundary */ 213 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 214 pr_debug("%s: unaligned address\n", __func__); 215 ret = -EINVAL; 216 } 217 218 /* Length must align on block boundary */ 219 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 220 pr_debug("%s: length not block aligned\n", __func__); 221 ret = -EINVAL; 222 } 223 224 return ret; 225 } 226 227 /** 228 * nand_select_target() - Select a NAND target (A.K.A. die) 229 * @chip: NAND chip object 230 * @cs: the CS line to select. Note that this CS id is always from the chip 231 * PoV, not the controller one 232 * 233 * Select a NAND target so that further operations executed on @chip go to the 234 * selected NAND target. 235 */ 236 void nand_select_target(struct nand_chip *chip, unsigned int cs) 237 { 238 /* 239 * cs should always lie between 0 and nanddev_ntargets(), when that's 240 * not the case it's a bug and the caller should be fixed. 241 */ 242 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 243 return; 244 245 chip->cur_cs = cs; 246 247 if (chip->legacy.select_chip) 248 chip->legacy.select_chip(chip, cs); 249 } 250 EXPORT_SYMBOL_GPL(nand_select_target); 251 252 /** 253 * nand_deselect_target() - Deselect the currently selected target 254 * @chip: NAND chip object 255 * 256 * Deselect the currently selected NAND target. The result of operations 257 * executed on @chip after the target has been deselected is undefined. 258 */ 259 void nand_deselect_target(struct nand_chip *chip) 260 { 261 if (chip->legacy.select_chip) 262 chip->legacy.select_chip(chip, -1); 263 264 chip->cur_cs = -1; 265 } 266 EXPORT_SYMBOL_GPL(nand_deselect_target); 267 268 /** 269 * nand_release_device - [GENERIC] release chip 270 * @chip: NAND chip object 271 * 272 * Release chip lock and wake up anyone waiting on the device. 273 */ 274 static void nand_release_device(struct nand_chip *chip) 275 { 276 /* Release the controller and the chip */ 277 mutex_unlock(&chip->controller->lock); 278 mutex_unlock(&chip->lock); 279 } 280 281 /** 282 * nand_bbm_get_next_page - Get the next page for bad block markers 283 * @chip: NAND chip object 284 * @page: First page to start checking for bad block marker usage 285 * 286 * Returns an integer that corresponds to the page offset within a block, for 287 * a page that is used to store bad block markers. If no more pages are 288 * available, -EINVAL is returned. 289 */ 290 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 291 { 292 struct mtd_info *mtd = nand_to_mtd(chip); 293 int last_page = ((mtd->erasesize - mtd->writesize) >> 294 chip->page_shift) & chip->pagemask; 295 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 296 | NAND_BBM_LASTPAGE; 297 298 if (page == 0 && !(chip->options & bbm_flags)) 299 return 0; 300 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 301 return 0; 302 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 303 return 1; 304 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 305 return last_page; 306 307 return -EINVAL; 308 } 309 310 /** 311 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 312 * @chip: NAND chip object 313 * @ofs: offset from device start 314 * 315 * Check, if the block is bad. 316 */ 317 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 318 { 319 int first_page, page_offset; 320 int res; 321 u8 bad; 322 323 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 324 page_offset = nand_bbm_get_next_page(chip, 0); 325 326 while (page_offset >= 0) { 327 res = chip->ecc.read_oob(chip, first_page + page_offset); 328 if (res < 0) 329 return res; 330 331 bad = chip->oob_poi[chip->badblockpos]; 332 333 if (likely(chip->badblockbits == 8)) 334 res = bad != 0xFF; 335 else 336 res = hweight8(bad) < chip->badblockbits; 337 if (res) 338 return res; 339 340 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 341 } 342 343 return 0; 344 } 345 346 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 347 { 348 if (chip->legacy.block_bad) 349 return chip->legacy.block_bad(chip, ofs); 350 351 return nand_block_bad(chip, ofs); 352 } 353 354 /** 355 * nand_get_device - [GENERIC] Get chip for selected access 356 * @chip: NAND chip structure 357 * 358 * Lock the device and its controller for exclusive access 359 * 360 * Return: -EBUSY if the chip has been suspended, 0 otherwise 361 */ 362 static int nand_get_device(struct nand_chip *chip) 363 { 364 mutex_lock(&chip->lock); 365 if (chip->suspended) { 366 mutex_unlock(&chip->lock); 367 return -EBUSY; 368 } 369 mutex_lock(&chip->controller->lock); 370 371 return 0; 372 } 373 374 /** 375 * nand_check_wp - [GENERIC] check if the chip is write protected 376 * @chip: NAND chip object 377 * 378 * Check, if the device is write protected. The function expects, that the 379 * device is already selected. 380 */ 381 static int nand_check_wp(struct nand_chip *chip) 382 { 383 u8 status; 384 int ret; 385 386 /* Broken xD cards report WP despite being writable */ 387 if (chip->options & NAND_BROKEN_XD) 388 return 0; 389 390 /* Check the WP bit */ 391 ret = nand_status_op(chip, &status); 392 if (ret) 393 return ret; 394 395 return status & NAND_STATUS_WP ? 0 : 1; 396 } 397 398 /** 399 * nand_fill_oob - [INTERN] Transfer client buffer to oob 400 * @chip: NAND chip object 401 * @oob: oob data buffer 402 * @len: oob data write length 403 * @ops: oob ops structure 404 */ 405 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 406 struct mtd_oob_ops *ops) 407 { 408 struct mtd_info *mtd = nand_to_mtd(chip); 409 int ret; 410 411 /* 412 * Initialise to all 0xFF, to avoid the possibility of left over OOB 413 * data from a previous OOB read. 414 */ 415 memset(chip->oob_poi, 0xff, mtd->oobsize); 416 417 switch (ops->mode) { 418 419 case MTD_OPS_PLACE_OOB: 420 case MTD_OPS_RAW: 421 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 422 return oob + len; 423 424 case MTD_OPS_AUTO_OOB: 425 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 426 ops->ooboffs, len); 427 BUG_ON(ret); 428 return oob + len; 429 430 default: 431 BUG(); 432 } 433 return NULL; 434 } 435 436 /** 437 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 438 * @chip: NAND chip object 439 * @to: offset to write to 440 * @ops: oob operation description structure 441 * 442 * NAND write out-of-band. 443 */ 444 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 445 struct mtd_oob_ops *ops) 446 { 447 struct mtd_info *mtd = nand_to_mtd(chip); 448 int chipnr, page, status, len, ret; 449 450 pr_debug("%s: to = 0x%08x, len = %i\n", 451 __func__, (unsigned int)to, (int)ops->ooblen); 452 453 len = mtd_oobavail(mtd, ops); 454 455 /* Do not allow write past end of page */ 456 if ((ops->ooboffs + ops->ooblen) > len) { 457 pr_debug("%s: attempt to write past end of page\n", 458 __func__); 459 return -EINVAL; 460 } 461 462 chipnr = (int)(to >> chip->chip_shift); 463 464 /* 465 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 466 * of my DiskOnChip 2000 test units) will clear the whole data page too 467 * if we don't do this. I have no clue why, but I seem to have 'fixed' 468 * it in the doc2000 driver in August 1999. dwmw2. 469 */ 470 ret = nand_reset(chip, chipnr); 471 if (ret) 472 return ret; 473 474 nand_select_target(chip, chipnr); 475 476 /* Shift to get page */ 477 page = (int)(to >> chip->page_shift); 478 479 /* Check, if it is write protected */ 480 if (nand_check_wp(chip)) { 481 nand_deselect_target(chip); 482 return -EROFS; 483 } 484 485 /* Invalidate the page cache, if we write to the cached page */ 486 if (page == chip->pagecache.page) 487 chip->pagecache.page = -1; 488 489 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 490 491 if (ops->mode == MTD_OPS_RAW) 492 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 493 else 494 status = chip->ecc.write_oob(chip, page & chip->pagemask); 495 496 nand_deselect_target(chip); 497 498 if (status) 499 return status; 500 501 ops->oobretlen = ops->ooblen; 502 503 return 0; 504 } 505 506 /** 507 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 508 * @chip: NAND chip object 509 * @ofs: offset from device start 510 * 511 * This is the default implementation, which can be overridden by a hardware 512 * specific driver. It provides the details for writing a bad block marker to a 513 * block. 514 */ 515 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 516 { 517 struct mtd_info *mtd = nand_to_mtd(chip); 518 struct mtd_oob_ops ops; 519 uint8_t buf[2] = { 0, 0 }; 520 int ret = 0, res, page_offset; 521 522 memset(&ops, 0, sizeof(ops)); 523 ops.oobbuf = buf; 524 ops.ooboffs = chip->badblockpos; 525 if (chip->options & NAND_BUSWIDTH_16) { 526 ops.ooboffs &= ~0x01; 527 ops.len = ops.ooblen = 2; 528 } else { 529 ops.len = ops.ooblen = 1; 530 } 531 ops.mode = MTD_OPS_PLACE_OOB; 532 533 page_offset = nand_bbm_get_next_page(chip, 0); 534 535 while (page_offset >= 0) { 536 res = nand_do_write_oob(chip, 537 ofs + (page_offset * mtd->writesize), 538 &ops); 539 540 if (!ret) 541 ret = res; 542 543 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 544 } 545 546 return ret; 547 } 548 549 /** 550 * nand_markbad_bbm - mark a block by updating the BBM 551 * @chip: NAND chip object 552 * @ofs: offset of the block to mark bad 553 */ 554 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 555 { 556 if (chip->legacy.block_markbad) 557 return chip->legacy.block_markbad(chip, ofs); 558 559 return nand_default_block_markbad(chip, ofs); 560 } 561 562 /** 563 * nand_block_markbad_lowlevel - mark a block bad 564 * @chip: NAND chip object 565 * @ofs: offset from device start 566 * 567 * This function performs the generic NAND bad block marking steps (i.e., bad 568 * block table(s) and/or marker(s)). We only allow the hardware driver to 569 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 570 * 571 * We try operations in the following order: 572 * 573 * (1) erase the affected block, to allow OOB marker to be written cleanly 574 * (2) write bad block marker to OOB area of affected block (unless flag 575 * NAND_BBT_NO_OOB_BBM is present) 576 * (3) update the BBT 577 * 578 * Note that we retain the first error encountered in (2) or (3), finish the 579 * procedures, and dump the error in the end. 580 */ 581 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 582 { 583 struct mtd_info *mtd = nand_to_mtd(chip); 584 int res, ret = 0; 585 586 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 587 struct erase_info einfo; 588 589 /* Attempt erase before marking OOB */ 590 memset(&einfo, 0, sizeof(einfo)); 591 einfo.addr = ofs; 592 einfo.len = 1ULL << chip->phys_erase_shift; 593 nand_erase_nand(chip, &einfo, 0); 594 595 /* Write bad block marker to OOB */ 596 ret = nand_get_device(chip); 597 if (ret) 598 return ret; 599 600 ret = nand_markbad_bbm(chip, ofs); 601 nand_release_device(chip); 602 } 603 604 /* Mark block bad in BBT */ 605 if (chip->bbt) { 606 res = nand_markbad_bbt(chip, ofs); 607 if (!ret) 608 ret = res; 609 } 610 611 if (!ret) 612 mtd->ecc_stats.badblocks++; 613 614 return ret; 615 } 616 617 /** 618 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 619 * @mtd: MTD device structure 620 * @ofs: offset from device start 621 * 622 * Check if the block is marked as reserved. 623 */ 624 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 625 { 626 struct nand_chip *chip = mtd_to_nand(mtd); 627 628 if (!chip->bbt) 629 return 0; 630 /* Return info from the table */ 631 return nand_isreserved_bbt(chip, ofs); 632 } 633 634 /** 635 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 636 * @chip: NAND chip object 637 * @ofs: offset from device start 638 * @allowbbt: 1, if its allowed to access the bbt area 639 * 640 * Check, if the block is bad. Either by reading the bad block table or 641 * calling of the scan function. 642 */ 643 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 644 { 645 /* Return info from the table */ 646 if (chip->bbt) 647 return nand_isbad_bbt(chip, ofs, allowbbt); 648 649 return nand_isbad_bbm(chip, ofs); 650 } 651 652 /** 653 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 654 * @chip: NAND chip structure 655 * @timeout_ms: Timeout in ms 656 * 657 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 658 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 659 * returned. 660 * 661 * This helper is intended to be used when the controller does not have access 662 * to the NAND R/B pin. 663 * 664 * Be aware that calling this helper from an ->exec_op() implementation means 665 * ->exec_op() must be re-entrant. 666 * 667 * Return 0 if the NAND chip is ready, a negative error otherwise. 668 */ 669 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 670 { 671 const struct nand_sdr_timings *timings; 672 u8 status = 0; 673 int ret; 674 675 if (!nand_has_exec_op(chip)) 676 return -ENOTSUPP; 677 678 /* Wait tWB before polling the STATUS reg. */ 679 timings = nand_get_sdr_timings(&chip->data_interface); 680 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 681 682 ret = nand_status_op(chip, NULL); 683 if (ret) 684 return ret; 685 686 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 687 do { 688 ret = nand_read_data_op(chip, &status, sizeof(status), true); 689 if (ret) 690 break; 691 692 if (status & NAND_STATUS_READY) 693 break; 694 695 /* 696 * Typical lowest execution time for a tR on most NANDs is 10us, 697 * use this as polling delay before doing something smarter (ie. 698 * deriving a delay from the timeout value, timeout_ms/ratio). 699 */ 700 udelay(10); 701 } while (time_before(jiffies, timeout_ms)); 702 703 /* 704 * We have to exit READ_STATUS mode in order to read real data on the 705 * bus in case the WAITRDY instruction is preceding a DATA_IN 706 * instruction. 707 */ 708 nand_exit_status_op(chip); 709 710 if (ret) 711 return ret; 712 713 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 714 }; 715 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 716 717 /** 718 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 719 * @chip: NAND chip structure 720 * @gpiod: GPIO descriptor of R/B pin 721 * @timeout_ms: Timeout in ms 722 * 723 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 724 * whitin the specified timeout, -ETIMEDOUT is returned. 725 * 726 * This helper is intended to be used when the controller has access to the 727 * NAND R/B pin over GPIO. 728 * 729 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 730 */ 731 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 732 unsigned long timeout_ms) 733 { 734 /* Wait until R/B pin indicates chip is ready or timeout occurs */ 735 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 736 do { 737 if (gpiod_get_value_cansleep(gpiod)) 738 return 0; 739 740 cond_resched(); 741 } while (time_before(jiffies, timeout_ms)); 742 743 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 744 }; 745 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 746 747 /** 748 * panic_nand_wait - [GENERIC] wait until the command is done 749 * @chip: NAND chip structure 750 * @timeo: timeout 751 * 752 * Wait for command done. This is a helper function for nand_wait used when 753 * we are in interrupt context. May happen when in panic and trying to write 754 * an oops through mtdoops. 755 */ 756 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 757 { 758 int i; 759 for (i = 0; i < timeo; i++) { 760 if (chip->legacy.dev_ready) { 761 if (chip->legacy.dev_ready(chip)) 762 break; 763 } else { 764 int ret; 765 u8 status; 766 767 ret = nand_read_data_op(chip, &status, sizeof(status), 768 true); 769 if (ret) 770 return; 771 772 if (status & NAND_STATUS_READY) 773 break; 774 } 775 mdelay(1); 776 } 777 } 778 779 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 780 { 781 return (chip->parameters.supports_set_get_features && 782 test_bit(addr, chip->parameters.get_feature_list)); 783 } 784 785 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 786 { 787 return (chip->parameters.supports_set_get_features && 788 test_bit(addr, chip->parameters.set_feature_list)); 789 } 790 791 /** 792 * nand_reset_data_interface - Reset data interface and timings 793 * @chip: The NAND chip 794 * @chipnr: Internal die id 795 * 796 * Reset the Data interface and timings to ONFI mode 0. 797 * 798 * Returns 0 for success or negative error code otherwise. 799 */ 800 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) 801 { 802 int ret; 803 804 if (!nand_has_setup_data_iface(chip)) 805 return 0; 806 807 /* 808 * The ONFI specification says: 809 * " 810 * To transition from NV-DDR or NV-DDR2 to the SDR data 811 * interface, the host shall use the Reset (FFh) command 812 * using SDR timing mode 0. A device in any timing mode is 813 * required to recognize Reset (FFh) command issued in SDR 814 * timing mode 0. 815 * " 816 * 817 * Configure the data interface in SDR mode and set the 818 * timings to timing mode 0. 819 */ 820 821 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 822 ret = chip->controller->ops->setup_data_interface(chip, chipnr, 823 &chip->data_interface); 824 if (ret) 825 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 826 827 return ret; 828 } 829 830 /** 831 * nand_setup_data_interface - Setup the best data interface and timings 832 * @chip: The NAND chip 833 * @chipnr: Internal die id 834 * 835 * Find and configure the best data interface and NAND timings supported by 836 * the chip and the driver. 837 * First tries to retrieve supported timing modes from ONFI information, 838 * and if the NAND chip does not support ONFI, relies on the 839 * ->onfi_timing_mode_default specified in the nand_ids table. 840 * 841 * Returns 0 for success or negative error code otherwise. 842 */ 843 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) 844 { 845 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { 846 chip->onfi_timing_mode_default, 847 }; 848 int ret; 849 850 if (!nand_has_setup_data_iface(chip)) 851 return 0; 852 853 /* Change the mode on the chip side (if supported by the NAND chip) */ 854 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 855 nand_select_target(chip, chipnr); 856 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 857 tmode_param); 858 nand_deselect_target(chip); 859 if (ret) 860 return ret; 861 } 862 863 /* Change the mode on the controller side */ 864 ret = chip->controller->ops->setup_data_interface(chip, chipnr, 865 &chip->data_interface); 866 if (ret) 867 return ret; 868 869 /* Check the mode has been accepted by the chip, if supported */ 870 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 871 return 0; 872 873 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 874 nand_select_target(chip, chipnr); 875 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 876 tmode_param); 877 nand_deselect_target(chip); 878 if (ret) 879 goto err_reset_chip; 880 881 if (tmode_param[0] != chip->onfi_timing_mode_default) { 882 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 883 chip->onfi_timing_mode_default); 884 goto err_reset_chip; 885 } 886 887 return 0; 888 889 err_reset_chip: 890 /* 891 * Fallback to mode 0 if the chip explicitly did not ack the chosen 892 * timing mode. 893 */ 894 nand_reset_data_interface(chip, chipnr); 895 nand_select_target(chip, chipnr); 896 nand_reset_op(chip); 897 nand_deselect_target(chip); 898 899 return ret; 900 } 901 902 /** 903 * nand_init_data_interface - find the best data interface and timings 904 * @chip: The NAND chip 905 * 906 * Find the best data interface and NAND timings supported by the chip 907 * and the driver. 908 * First tries to retrieve supported timing modes from ONFI information, 909 * and if the NAND chip does not support ONFI, relies on the 910 * ->onfi_timing_mode_default specified in the nand_ids table. After this 911 * function nand_chip->data_interface is initialized with the best timing mode 912 * available. 913 * 914 * Returns 0 for success or negative error code otherwise. 915 */ 916 static int nand_init_data_interface(struct nand_chip *chip) 917 { 918 int modes, mode, ret; 919 920 if (!nand_has_setup_data_iface(chip)) 921 return 0; 922 923 /* 924 * First try to identify the best timings from ONFI parameters and 925 * if the NAND does not support ONFI, fallback to the default ONFI 926 * timing mode. 927 */ 928 if (chip->parameters.onfi) { 929 modes = chip->parameters.onfi->async_timing_mode; 930 } else { 931 if (!chip->onfi_timing_mode_default) 932 return 0; 933 934 modes = GENMASK(chip->onfi_timing_mode_default, 0); 935 } 936 937 for (mode = fls(modes) - 1; mode >= 0; mode--) { 938 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); 939 if (ret) 940 continue; 941 942 /* 943 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the 944 * controller supports the requested timings. 945 */ 946 ret = chip->controller->ops->setup_data_interface(chip, 947 NAND_DATA_IFACE_CHECK_ONLY, 948 &chip->data_interface); 949 if (!ret) { 950 chip->onfi_timing_mode_default = mode; 951 break; 952 } 953 } 954 955 return 0; 956 } 957 958 /** 959 * nand_fill_column_cycles - fill the column cycles of an address 960 * @chip: The NAND chip 961 * @addrs: Array of address cycles to fill 962 * @offset_in_page: The offset in the page 963 * 964 * Fills the first or the first two bytes of the @addrs field depending 965 * on the NAND bus width and the page size. 966 * 967 * Returns the number of cycles needed to encode the column, or a negative 968 * error code in case one of the arguments is invalid. 969 */ 970 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 971 unsigned int offset_in_page) 972 { 973 struct mtd_info *mtd = nand_to_mtd(chip); 974 975 /* Make sure the offset is less than the actual page size. */ 976 if (offset_in_page > mtd->writesize + mtd->oobsize) 977 return -EINVAL; 978 979 /* 980 * On small page NANDs, there's a dedicated command to access the OOB 981 * area, and the column address is relative to the start of the OOB 982 * area, not the start of the page. Asjust the address accordingly. 983 */ 984 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 985 offset_in_page -= mtd->writesize; 986 987 /* 988 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 989 * wide, then it must be divided by 2. 990 */ 991 if (chip->options & NAND_BUSWIDTH_16) { 992 if (WARN_ON(offset_in_page % 2)) 993 return -EINVAL; 994 995 offset_in_page /= 2; 996 } 997 998 addrs[0] = offset_in_page; 999 1000 /* 1001 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1002 * need 2 1003 */ 1004 if (mtd->writesize <= 512) 1005 return 1; 1006 1007 addrs[1] = offset_in_page >> 8; 1008 1009 return 2; 1010 } 1011 1012 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1013 unsigned int offset_in_page, void *buf, 1014 unsigned int len) 1015 { 1016 struct mtd_info *mtd = nand_to_mtd(chip); 1017 const struct nand_sdr_timings *sdr = 1018 nand_get_sdr_timings(&chip->data_interface); 1019 u8 addrs[4]; 1020 struct nand_op_instr instrs[] = { 1021 NAND_OP_CMD(NAND_CMD_READ0, 0), 1022 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1023 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1024 PSEC_TO_NSEC(sdr->tRR_min)), 1025 NAND_OP_DATA_IN(len, buf, 0), 1026 }; 1027 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1028 int ret; 1029 1030 /* Drop the DATA_IN instruction if len is set to 0. */ 1031 if (!len) 1032 op.ninstrs--; 1033 1034 if (offset_in_page >= mtd->writesize) 1035 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1036 else if (offset_in_page >= 256 && 1037 !(chip->options & NAND_BUSWIDTH_16)) 1038 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1039 1040 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1041 if (ret < 0) 1042 return ret; 1043 1044 addrs[1] = page; 1045 addrs[2] = page >> 8; 1046 1047 if (chip->options & NAND_ROW_ADDR_3) { 1048 addrs[3] = page >> 16; 1049 instrs[1].ctx.addr.naddrs++; 1050 } 1051 1052 return nand_exec_op(chip, &op); 1053 } 1054 1055 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1056 unsigned int offset_in_page, void *buf, 1057 unsigned int len) 1058 { 1059 const struct nand_sdr_timings *sdr = 1060 nand_get_sdr_timings(&chip->data_interface); 1061 u8 addrs[5]; 1062 struct nand_op_instr instrs[] = { 1063 NAND_OP_CMD(NAND_CMD_READ0, 0), 1064 NAND_OP_ADDR(4, addrs, 0), 1065 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1066 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1067 PSEC_TO_NSEC(sdr->tRR_min)), 1068 NAND_OP_DATA_IN(len, buf, 0), 1069 }; 1070 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1071 int ret; 1072 1073 /* Drop the DATA_IN instruction if len is set to 0. */ 1074 if (!len) 1075 op.ninstrs--; 1076 1077 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1078 if (ret < 0) 1079 return ret; 1080 1081 addrs[2] = page; 1082 addrs[3] = page >> 8; 1083 1084 if (chip->options & NAND_ROW_ADDR_3) { 1085 addrs[4] = page >> 16; 1086 instrs[1].ctx.addr.naddrs++; 1087 } 1088 1089 return nand_exec_op(chip, &op); 1090 } 1091 1092 /** 1093 * nand_read_page_op - Do a READ PAGE operation 1094 * @chip: The NAND chip 1095 * @page: page to read 1096 * @offset_in_page: offset within the page 1097 * @buf: buffer used to store the data 1098 * @len: length of the buffer 1099 * 1100 * This function issues a READ PAGE operation. 1101 * This function does not select/unselect the CS line. 1102 * 1103 * Returns 0 on success, a negative error code otherwise. 1104 */ 1105 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1106 unsigned int offset_in_page, void *buf, unsigned int len) 1107 { 1108 struct mtd_info *mtd = nand_to_mtd(chip); 1109 1110 if (len && !buf) 1111 return -EINVAL; 1112 1113 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1114 return -EINVAL; 1115 1116 if (nand_has_exec_op(chip)) { 1117 if (mtd->writesize > 512) 1118 return nand_lp_exec_read_page_op(chip, page, 1119 offset_in_page, buf, 1120 len); 1121 1122 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1123 buf, len); 1124 } 1125 1126 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1127 if (len) 1128 chip->legacy.read_buf(chip, buf, len); 1129 1130 return 0; 1131 } 1132 EXPORT_SYMBOL_GPL(nand_read_page_op); 1133 1134 /** 1135 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1136 * @chip: The NAND chip 1137 * @page: parameter page to read 1138 * @buf: buffer used to store the data 1139 * @len: length of the buffer 1140 * 1141 * This function issues a READ PARAMETER PAGE operation. 1142 * This function does not select/unselect the CS line. 1143 * 1144 * Returns 0 on success, a negative error code otherwise. 1145 */ 1146 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1147 unsigned int len) 1148 { 1149 unsigned int i; 1150 u8 *p = buf; 1151 1152 if (len && !buf) 1153 return -EINVAL; 1154 1155 if (nand_has_exec_op(chip)) { 1156 const struct nand_sdr_timings *sdr = 1157 nand_get_sdr_timings(&chip->data_interface); 1158 struct nand_op_instr instrs[] = { 1159 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1160 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1161 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1162 PSEC_TO_NSEC(sdr->tRR_min)), 1163 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1164 }; 1165 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1166 1167 /* Drop the DATA_IN instruction if len is set to 0. */ 1168 if (!len) 1169 op.ninstrs--; 1170 1171 return nand_exec_op(chip, &op); 1172 } 1173 1174 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1175 for (i = 0; i < len; i++) 1176 p[i] = chip->legacy.read_byte(chip); 1177 1178 return 0; 1179 } 1180 1181 /** 1182 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1183 * @chip: The NAND chip 1184 * @offset_in_page: offset within the page 1185 * @buf: buffer used to store the data 1186 * @len: length of the buffer 1187 * @force_8bit: force 8-bit bus access 1188 * 1189 * This function issues a CHANGE READ COLUMN operation. 1190 * This function does not select/unselect the CS line. 1191 * 1192 * Returns 0 on success, a negative error code otherwise. 1193 */ 1194 int nand_change_read_column_op(struct nand_chip *chip, 1195 unsigned int offset_in_page, void *buf, 1196 unsigned int len, bool force_8bit) 1197 { 1198 struct mtd_info *mtd = nand_to_mtd(chip); 1199 1200 if (len && !buf) 1201 return -EINVAL; 1202 1203 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1204 return -EINVAL; 1205 1206 /* Small page NANDs do not support column change. */ 1207 if (mtd->writesize <= 512) 1208 return -ENOTSUPP; 1209 1210 if (nand_has_exec_op(chip)) { 1211 const struct nand_sdr_timings *sdr = 1212 nand_get_sdr_timings(&chip->data_interface); 1213 u8 addrs[2] = {}; 1214 struct nand_op_instr instrs[] = { 1215 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1216 NAND_OP_ADDR(2, addrs, 0), 1217 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1218 PSEC_TO_NSEC(sdr->tCCS_min)), 1219 NAND_OP_DATA_IN(len, buf, 0), 1220 }; 1221 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1222 int ret; 1223 1224 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1225 if (ret < 0) 1226 return ret; 1227 1228 /* Drop the DATA_IN instruction if len is set to 0. */ 1229 if (!len) 1230 op.ninstrs--; 1231 1232 instrs[3].ctx.data.force_8bit = force_8bit; 1233 1234 return nand_exec_op(chip, &op); 1235 } 1236 1237 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1238 if (len) 1239 chip->legacy.read_buf(chip, buf, len); 1240 1241 return 0; 1242 } 1243 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1244 1245 /** 1246 * nand_read_oob_op - Do a READ OOB operation 1247 * @chip: The NAND chip 1248 * @page: page to read 1249 * @offset_in_oob: offset within the OOB area 1250 * @buf: buffer used to store the data 1251 * @len: length of the buffer 1252 * 1253 * This function issues a READ OOB operation. 1254 * This function does not select/unselect the CS line. 1255 * 1256 * Returns 0 on success, a negative error code otherwise. 1257 */ 1258 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1259 unsigned int offset_in_oob, void *buf, unsigned int len) 1260 { 1261 struct mtd_info *mtd = nand_to_mtd(chip); 1262 1263 if (len && !buf) 1264 return -EINVAL; 1265 1266 if (offset_in_oob + len > mtd->oobsize) 1267 return -EINVAL; 1268 1269 if (nand_has_exec_op(chip)) 1270 return nand_read_page_op(chip, page, 1271 mtd->writesize + offset_in_oob, 1272 buf, len); 1273 1274 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1275 if (len) 1276 chip->legacy.read_buf(chip, buf, len); 1277 1278 return 0; 1279 } 1280 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1281 1282 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1283 unsigned int offset_in_page, const void *buf, 1284 unsigned int len, bool prog) 1285 { 1286 struct mtd_info *mtd = nand_to_mtd(chip); 1287 const struct nand_sdr_timings *sdr = 1288 nand_get_sdr_timings(&chip->data_interface); 1289 u8 addrs[5] = {}; 1290 struct nand_op_instr instrs[] = { 1291 /* 1292 * The first instruction will be dropped if we're dealing 1293 * with a large page NAND and adjusted if we're dealing 1294 * with a small page NAND and the page offset is > 255. 1295 */ 1296 NAND_OP_CMD(NAND_CMD_READ0, 0), 1297 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1298 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1299 NAND_OP_DATA_OUT(len, buf, 0), 1300 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1301 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1302 }; 1303 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1304 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1305 int ret; 1306 u8 status; 1307 1308 if (naddrs < 0) 1309 return naddrs; 1310 1311 addrs[naddrs++] = page; 1312 addrs[naddrs++] = page >> 8; 1313 if (chip->options & NAND_ROW_ADDR_3) 1314 addrs[naddrs++] = page >> 16; 1315 1316 instrs[2].ctx.addr.naddrs = naddrs; 1317 1318 /* Drop the last two instructions if we're not programming the page. */ 1319 if (!prog) { 1320 op.ninstrs -= 2; 1321 /* Also drop the DATA_OUT instruction if empty. */ 1322 if (!len) 1323 op.ninstrs--; 1324 } 1325 1326 if (mtd->writesize <= 512) { 1327 /* 1328 * Small pages need some more tweaking: we have to adjust the 1329 * first instruction depending on the page offset we're trying 1330 * to access. 1331 */ 1332 if (offset_in_page >= mtd->writesize) 1333 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1334 else if (offset_in_page >= 256 && 1335 !(chip->options & NAND_BUSWIDTH_16)) 1336 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1337 } else { 1338 /* 1339 * Drop the first command if we're dealing with a large page 1340 * NAND. 1341 */ 1342 op.instrs++; 1343 op.ninstrs--; 1344 } 1345 1346 ret = nand_exec_op(chip, &op); 1347 if (!prog || ret) 1348 return ret; 1349 1350 ret = nand_status_op(chip, &status); 1351 if (ret) 1352 return ret; 1353 1354 return status; 1355 } 1356 1357 /** 1358 * nand_prog_page_begin_op - starts a PROG PAGE operation 1359 * @chip: The NAND chip 1360 * @page: page to write 1361 * @offset_in_page: offset within the page 1362 * @buf: buffer containing the data to write to the page 1363 * @len: length of the buffer 1364 * 1365 * This function issues the first half of a PROG PAGE operation. 1366 * This function does not select/unselect the CS line. 1367 * 1368 * Returns 0 on success, a negative error code otherwise. 1369 */ 1370 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1371 unsigned int offset_in_page, const void *buf, 1372 unsigned int len) 1373 { 1374 struct mtd_info *mtd = nand_to_mtd(chip); 1375 1376 if (len && !buf) 1377 return -EINVAL; 1378 1379 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1380 return -EINVAL; 1381 1382 if (nand_has_exec_op(chip)) 1383 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1384 len, false); 1385 1386 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1387 1388 if (buf) 1389 chip->legacy.write_buf(chip, buf, len); 1390 1391 return 0; 1392 } 1393 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1394 1395 /** 1396 * nand_prog_page_end_op - ends a PROG PAGE operation 1397 * @chip: The NAND chip 1398 * 1399 * This function issues the second half of a PROG PAGE operation. 1400 * This function does not select/unselect the CS line. 1401 * 1402 * Returns 0 on success, a negative error code otherwise. 1403 */ 1404 int nand_prog_page_end_op(struct nand_chip *chip) 1405 { 1406 int ret; 1407 u8 status; 1408 1409 if (nand_has_exec_op(chip)) { 1410 const struct nand_sdr_timings *sdr = 1411 nand_get_sdr_timings(&chip->data_interface); 1412 struct nand_op_instr instrs[] = { 1413 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1414 PSEC_TO_NSEC(sdr->tWB_max)), 1415 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1416 }; 1417 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1418 1419 ret = nand_exec_op(chip, &op); 1420 if (ret) 1421 return ret; 1422 1423 ret = nand_status_op(chip, &status); 1424 if (ret) 1425 return ret; 1426 } else { 1427 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1428 ret = chip->legacy.waitfunc(chip); 1429 if (ret < 0) 1430 return ret; 1431 1432 status = ret; 1433 } 1434 1435 if (status & NAND_STATUS_FAIL) 1436 return -EIO; 1437 1438 return 0; 1439 } 1440 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1441 1442 /** 1443 * nand_prog_page_op - Do a full PROG PAGE operation 1444 * @chip: The NAND chip 1445 * @page: page to write 1446 * @offset_in_page: offset within the page 1447 * @buf: buffer containing the data to write to the page 1448 * @len: length of the buffer 1449 * 1450 * This function issues a full PROG PAGE operation. 1451 * This function does not select/unselect the CS line. 1452 * 1453 * Returns 0 on success, a negative error code otherwise. 1454 */ 1455 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1456 unsigned int offset_in_page, const void *buf, 1457 unsigned int len) 1458 { 1459 struct mtd_info *mtd = nand_to_mtd(chip); 1460 int status; 1461 1462 if (!len || !buf) 1463 return -EINVAL; 1464 1465 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1466 return -EINVAL; 1467 1468 if (nand_has_exec_op(chip)) { 1469 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1470 len, true); 1471 } else { 1472 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1473 page); 1474 chip->legacy.write_buf(chip, buf, len); 1475 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1476 status = chip->legacy.waitfunc(chip); 1477 } 1478 1479 if (status & NAND_STATUS_FAIL) 1480 return -EIO; 1481 1482 return 0; 1483 } 1484 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1485 1486 /** 1487 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1488 * @chip: The NAND chip 1489 * @offset_in_page: offset within the page 1490 * @buf: buffer containing the data to send to the NAND 1491 * @len: length of the buffer 1492 * @force_8bit: force 8-bit bus access 1493 * 1494 * This function issues a CHANGE WRITE COLUMN operation. 1495 * This function does not select/unselect the CS line. 1496 * 1497 * Returns 0 on success, a negative error code otherwise. 1498 */ 1499 int nand_change_write_column_op(struct nand_chip *chip, 1500 unsigned int offset_in_page, 1501 const void *buf, unsigned int len, 1502 bool force_8bit) 1503 { 1504 struct mtd_info *mtd = nand_to_mtd(chip); 1505 1506 if (len && !buf) 1507 return -EINVAL; 1508 1509 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1510 return -EINVAL; 1511 1512 /* Small page NANDs do not support column change. */ 1513 if (mtd->writesize <= 512) 1514 return -ENOTSUPP; 1515 1516 if (nand_has_exec_op(chip)) { 1517 const struct nand_sdr_timings *sdr = 1518 nand_get_sdr_timings(&chip->data_interface); 1519 u8 addrs[2]; 1520 struct nand_op_instr instrs[] = { 1521 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1522 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1523 NAND_OP_DATA_OUT(len, buf, 0), 1524 }; 1525 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1526 int ret; 1527 1528 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1529 if (ret < 0) 1530 return ret; 1531 1532 instrs[2].ctx.data.force_8bit = force_8bit; 1533 1534 /* Drop the DATA_OUT instruction if len is set to 0. */ 1535 if (!len) 1536 op.ninstrs--; 1537 1538 return nand_exec_op(chip, &op); 1539 } 1540 1541 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1542 if (len) 1543 chip->legacy.write_buf(chip, buf, len); 1544 1545 return 0; 1546 } 1547 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1548 1549 /** 1550 * nand_readid_op - Do a READID operation 1551 * @chip: The NAND chip 1552 * @addr: address cycle to pass after the READID command 1553 * @buf: buffer used to store the ID 1554 * @len: length of the buffer 1555 * 1556 * This function sends a READID command and reads back the ID returned by the 1557 * NAND. 1558 * This function does not select/unselect the CS line. 1559 * 1560 * Returns 0 on success, a negative error code otherwise. 1561 */ 1562 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1563 unsigned int len) 1564 { 1565 unsigned int i; 1566 u8 *id = buf; 1567 1568 if (len && !buf) 1569 return -EINVAL; 1570 1571 if (nand_has_exec_op(chip)) { 1572 const struct nand_sdr_timings *sdr = 1573 nand_get_sdr_timings(&chip->data_interface); 1574 struct nand_op_instr instrs[] = { 1575 NAND_OP_CMD(NAND_CMD_READID, 0), 1576 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1577 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1578 }; 1579 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1580 1581 /* Drop the DATA_IN instruction if len is set to 0. */ 1582 if (!len) 1583 op.ninstrs--; 1584 1585 return nand_exec_op(chip, &op); 1586 } 1587 1588 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1589 1590 for (i = 0; i < len; i++) 1591 id[i] = chip->legacy.read_byte(chip); 1592 1593 return 0; 1594 } 1595 EXPORT_SYMBOL_GPL(nand_readid_op); 1596 1597 /** 1598 * nand_status_op - Do a STATUS operation 1599 * @chip: The NAND chip 1600 * @status: out variable to store the NAND status 1601 * 1602 * This function sends a STATUS command and reads back the status returned by 1603 * the NAND. 1604 * This function does not select/unselect the CS line. 1605 * 1606 * Returns 0 on success, a negative error code otherwise. 1607 */ 1608 int nand_status_op(struct nand_chip *chip, u8 *status) 1609 { 1610 if (nand_has_exec_op(chip)) { 1611 const struct nand_sdr_timings *sdr = 1612 nand_get_sdr_timings(&chip->data_interface); 1613 struct nand_op_instr instrs[] = { 1614 NAND_OP_CMD(NAND_CMD_STATUS, 1615 PSEC_TO_NSEC(sdr->tADL_min)), 1616 NAND_OP_8BIT_DATA_IN(1, status, 0), 1617 }; 1618 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1619 1620 if (!status) 1621 op.ninstrs--; 1622 1623 return nand_exec_op(chip, &op); 1624 } 1625 1626 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1627 if (status) 1628 *status = chip->legacy.read_byte(chip); 1629 1630 return 0; 1631 } 1632 EXPORT_SYMBOL_GPL(nand_status_op); 1633 1634 /** 1635 * nand_exit_status_op - Exit a STATUS operation 1636 * @chip: The NAND chip 1637 * 1638 * This function sends a READ0 command to cancel the effect of the STATUS 1639 * command to avoid reading only the status until a new read command is sent. 1640 * 1641 * This function does not select/unselect the CS line. 1642 * 1643 * Returns 0 on success, a negative error code otherwise. 1644 */ 1645 int nand_exit_status_op(struct nand_chip *chip) 1646 { 1647 if (nand_has_exec_op(chip)) { 1648 struct nand_op_instr instrs[] = { 1649 NAND_OP_CMD(NAND_CMD_READ0, 0), 1650 }; 1651 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1652 1653 return nand_exec_op(chip, &op); 1654 } 1655 1656 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1657 1658 return 0; 1659 } 1660 1661 /** 1662 * nand_erase_op - Do an erase operation 1663 * @chip: The NAND chip 1664 * @eraseblock: block to erase 1665 * 1666 * This function sends an ERASE command and waits for the NAND to be ready 1667 * before returning. 1668 * This function does not select/unselect the CS line. 1669 * 1670 * Returns 0 on success, a negative error code otherwise. 1671 */ 1672 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1673 { 1674 unsigned int page = eraseblock << 1675 (chip->phys_erase_shift - chip->page_shift); 1676 int ret; 1677 u8 status; 1678 1679 if (nand_has_exec_op(chip)) { 1680 const struct nand_sdr_timings *sdr = 1681 nand_get_sdr_timings(&chip->data_interface); 1682 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1683 struct nand_op_instr instrs[] = { 1684 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1685 NAND_OP_ADDR(2, addrs, 0), 1686 NAND_OP_CMD(NAND_CMD_ERASE2, 1687 PSEC_TO_MSEC(sdr->tWB_max)), 1688 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1689 }; 1690 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1691 1692 if (chip->options & NAND_ROW_ADDR_3) 1693 instrs[1].ctx.addr.naddrs++; 1694 1695 ret = nand_exec_op(chip, &op); 1696 if (ret) 1697 return ret; 1698 1699 ret = nand_status_op(chip, &status); 1700 if (ret) 1701 return ret; 1702 } else { 1703 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1704 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1705 1706 ret = chip->legacy.waitfunc(chip); 1707 if (ret < 0) 1708 return ret; 1709 1710 status = ret; 1711 } 1712 1713 if (status & NAND_STATUS_FAIL) 1714 return -EIO; 1715 1716 return 0; 1717 } 1718 EXPORT_SYMBOL_GPL(nand_erase_op); 1719 1720 /** 1721 * nand_set_features_op - Do a SET FEATURES operation 1722 * @chip: The NAND chip 1723 * @feature: feature id 1724 * @data: 4 bytes of data 1725 * 1726 * This function sends a SET FEATURES command and waits for the NAND to be 1727 * ready before returning. 1728 * This function does not select/unselect the CS line. 1729 * 1730 * Returns 0 on success, a negative error code otherwise. 1731 */ 1732 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1733 const void *data) 1734 { 1735 const u8 *params = data; 1736 int i, ret; 1737 1738 if (nand_has_exec_op(chip)) { 1739 const struct nand_sdr_timings *sdr = 1740 nand_get_sdr_timings(&chip->data_interface); 1741 struct nand_op_instr instrs[] = { 1742 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1743 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1744 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1745 PSEC_TO_NSEC(sdr->tWB_max)), 1746 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1747 }; 1748 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1749 1750 return nand_exec_op(chip, &op); 1751 } 1752 1753 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1754 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1755 chip->legacy.write_byte(chip, params[i]); 1756 1757 ret = chip->legacy.waitfunc(chip); 1758 if (ret < 0) 1759 return ret; 1760 1761 if (ret & NAND_STATUS_FAIL) 1762 return -EIO; 1763 1764 return 0; 1765 } 1766 1767 /** 1768 * nand_get_features_op - Do a GET FEATURES operation 1769 * @chip: The NAND chip 1770 * @feature: feature id 1771 * @data: 4 bytes of data 1772 * 1773 * This function sends a GET FEATURES command and waits for the NAND to be 1774 * ready before returning. 1775 * This function does not select/unselect the CS line. 1776 * 1777 * Returns 0 on success, a negative error code otherwise. 1778 */ 1779 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1780 void *data) 1781 { 1782 u8 *params = data; 1783 int i; 1784 1785 if (nand_has_exec_op(chip)) { 1786 const struct nand_sdr_timings *sdr = 1787 nand_get_sdr_timings(&chip->data_interface); 1788 struct nand_op_instr instrs[] = { 1789 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1790 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1791 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1792 PSEC_TO_NSEC(sdr->tRR_min)), 1793 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1794 data, 0), 1795 }; 1796 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1797 1798 return nand_exec_op(chip, &op); 1799 } 1800 1801 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1802 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1803 params[i] = chip->legacy.read_byte(chip); 1804 1805 return 0; 1806 } 1807 1808 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1809 unsigned int delay_ns) 1810 { 1811 if (nand_has_exec_op(chip)) { 1812 struct nand_op_instr instrs[] = { 1813 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1814 PSEC_TO_NSEC(delay_ns)), 1815 }; 1816 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1817 1818 return nand_exec_op(chip, &op); 1819 } 1820 1821 /* Apply delay or wait for ready/busy pin */ 1822 if (!chip->legacy.dev_ready) 1823 udelay(chip->legacy.chip_delay); 1824 else 1825 nand_wait_ready(chip); 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * nand_reset_op - Do a reset operation 1832 * @chip: The NAND chip 1833 * 1834 * This function sends a RESET command and waits for the NAND to be ready 1835 * before returning. 1836 * This function does not select/unselect the CS line. 1837 * 1838 * Returns 0 on success, a negative error code otherwise. 1839 */ 1840 int nand_reset_op(struct nand_chip *chip) 1841 { 1842 if (nand_has_exec_op(chip)) { 1843 const struct nand_sdr_timings *sdr = 1844 nand_get_sdr_timings(&chip->data_interface); 1845 struct nand_op_instr instrs[] = { 1846 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1847 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1848 }; 1849 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1850 1851 return nand_exec_op(chip, &op); 1852 } 1853 1854 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 1855 1856 return 0; 1857 } 1858 EXPORT_SYMBOL_GPL(nand_reset_op); 1859 1860 /** 1861 * nand_read_data_op - Read data from the NAND 1862 * @chip: The NAND chip 1863 * @buf: buffer used to store the data 1864 * @len: length of the buffer 1865 * @force_8bit: force 8-bit bus access 1866 * 1867 * This function does a raw data read on the bus. Usually used after launching 1868 * another NAND operation like nand_read_page_op(). 1869 * This function does not select/unselect the CS line. 1870 * 1871 * Returns 0 on success, a negative error code otherwise. 1872 */ 1873 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1874 bool force_8bit) 1875 { 1876 if (!len || !buf) 1877 return -EINVAL; 1878 1879 if (nand_has_exec_op(chip)) { 1880 struct nand_op_instr instrs[] = { 1881 NAND_OP_DATA_IN(len, buf, 0), 1882 }; 1883 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1884 1885 instrs[0].ctx.data.force_8bit = force_8bit; 1886 1887 return nand_exec_op(chip, &op); 1888 } 1889 1890 if (force_8bit) { 1891 u8 *p = buf; 1892 unsigned int i; 1893 1894 for (i = 0; i < len; i++) 1895 p[i] = chip->legacy.read_byte(chip); 1896 } else { 1897 chip->legacy.read_buf(chip, buf, len); 1898 } 1899 1900 return 0; 1901 } 1902 EXPORT_SYMBOL_GPL(nand_read_data_op); 1903 1904 /** 1905 * nand_write_data_op - Write data from the NAND 1906 * @chip: The NAND chip 1907 * @buf: buffer containing the data to send on the bus 1908 * @len: length of the buffer 1909 * @force_8bit: force 8-bit bus access 1910 * 1911 * This function does a raw data write on the bus. Usually used after launching 1912 * another NAND operation like nand_write_page_begin_op(). 1913 * This function does not select/unselect the CS line. 1914 * 1915 * Returns 0 on success, a negative error code otherwise. 1916 */ 1917 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1918 unsigned int len, bool force_8bit) 1919 { 1920 if (!len || !buf) 1921 return -EINVAL; 1922 1923 if (nand_has_exec_op(chip)) { 1924 struct nand_op_instr instrs[] = { 1925 NAND_OP_DATA_OUT(len, buf, 0), 1926 }; 1927 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1928 1929 instrs[0].ctx.data.force_8bit = force_8bit; 1930 1931 return nand_exec_op(chip, &op); 1932 } 1933 1934 if (force_8bit) { 1935 const u8 *p = buf; 1936 unsigned int i; 1937 1938 for (i = 0; i < len; i++) 1939 chip->legacy.write_byte(chip, p[i]); 1940 } else { 1941 chip->legacy.write_buf(chip, buf, len); 1942 } 1943 1944 return 0; 1945 } 1946 EXPORT_SYMBOL_GPL(nand_write_data_op); 1947 1948 /** 1949 * struct nand_op_parser_ctx - Context used by the parser 1950 * @instrs: array of all the instructions that must be addressed 1951 * @ninstrs: length of the @instrs array 1952 * @subop: Sub-operation to be passed to the NAND controller 1953 * 1954 * This structure is used by the core to split NAND operations into 1955 * sub-operations that can be handled by the NAND controller. 1956 */ 1957 struct nand_op_parser_ctx { 1958 const struct nand_op_instr *instrs; 1959 unsigned int ninstrs; 1960 struct nand_subop subop; 1961 }; 1962 1963 /** 1964 * nand_op_parser_must_split_instr - Checks if an instruction must be split 1965 * @pat: the parser pattern element that matches @instr 1966 * @instr: pointer to the instruction to check 1967 * @start_offset: this is an in/out parameter. If @instr has already been 1968 * split, then @start_offset is the offset from which to start 1969 * (either an address cycle or an offset in the data buffer). 1970 * Conversely, if the function returns true (ie. instr must be 1971 * split), this parameter is updated to point to the first 1972 * data/address cycle that has not been taken care of. 1973 * 1974 * Some NAND controllers are limited and cannot send X address cycles with a 1975 * unique operation, or cannot read/write more than Y bytes at the same time. 1976 * In this case, split the instruction that does not fit in a single 1977 * controller-operation into two or more chunks. 1978 * 1979 * Returns true if the instruction must be split, false otherwise. 1980 * The @start_offset parameter is also updated to the offset at which the next 1981 * bundle of instruction must start (if an address or a data instruction). 1982 */ 1983 static bool 1984 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 1985 const struct nand_op_instr *instr, 1986 unsigned int *start_offset) 1987 { 1988 switch (pat->type) { 1989 case NAND_OP_ADDR_INSTR: 1990 if (!pat->ctx.addr.maxcycles) 1991 break; 1992 1993 if (instr->ctx.addr.naddrs - *start_offset > 1994 pat->ctx.addr.maxcycles) { 1995 *start_offset += pat->ctx.addr.maxcycles; 1996 return true; 1997 } 1998 break; 1999 2000 case NAND_OP_DATA_IN_INSTR: 2001 case NAND_OP_DATA_OUT_INSTR: 2002 if (!pat->ctx.data.maxlen) 2003 break; 2004 2005 if (instr->ctx.data.len - *start_offset > 2006 pat->ctx.data.maxlen) { 2007 *start_offset += pat->ctx.data.maxlen; 2008 return true; 2009 } 2010 break; 2011 2012 default: 2013 break; 2014 } 2015 2016 return false; 2017 } 2018 2019 /** 2020 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2021 * remaining in the parser context 2022 * @pat: the pattern to test 2023 * @ctx: the parser context structure to match with the pattern @pat 2024 * 2025 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2026 * Returns true if this is the case, false ortherwise. When true is returned, 2027 * @ctx->subop is updated with the set of instructions to be passed to the 2028 * controller driver. 2029 */ 2030 static bool 2031 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2032 struct nand_op_parser_ctx *ctx) 2033 { 2034 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2035 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2036 const struct nand_op_instr *instr = ctx->subop.instrs; 2037 unsigned int i, ninstrs; 2038 2039 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2040 /* 2041 * The pattern instruction does not match the operation 2042 * instruction. If the instruction is marked optional in the 2043 * pattern definition, we skip the pattern element and continue 2044 * to the next one. If the element is mandatory, there's no 2045 * match and we can return false directly. 2046 */ 2047 if (instr->type != pat->elems[i].type) { 2048 if (!pat->elems[i].optional) 2049 return false; 2050 2051 continue; 2052 } 2053 2054 /* 2055 * Now check the pattern element constraints. If the pattern is 2056 * not able to handle the whole instruction in a single step, 2057 * we have to split it. 2058 * The last_instr_end_off value comes back updated to point to 2059 * the position where we have to split the instruction (the 2060 * start of the next subop chunk). 2061 */ 2062 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2063 &instr_offset)) { 2064 ninstrs++; 2065 i++; 2066 break; 2067 } 2068 2069 instr++; 2070 ninstrs++; 2071 instr_offset = 0; 2072 } 2073 2074 /* 2075 * This can happen if all instructions of a pattern are optional. 2076 * Still, if there's not at least one instruction handled by this 2077 * pattern, this is not a match, and we should try the next one (if 2078 * any). 2079 */ 2080 if (!ninstrs) 2081 return false; 2082 2083 /* 2084 * We had a match on the pattern head, but the pattern may be longer 2085 * than the instructions we're asked to execute. We need to make sure 2086 * there's no mandatory elements in the pattern tail. 2087 */ 2088 for (; i < pat->nelems; i++) { 2089 if (!pat->elems[i].optional) 2090 return false; 2091 } 2092 2093 /* 2094 * We have a match: update the subop structure accordingly and return 2095 * true. 2096 */ 2097 ctx->subop.ninstrs = ninstrs; 2098 ctx->subop.last_instr_end_off = instr_offset; 2099 2100 return true; 2101 } 2102 2103 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2104 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2105 { 2106 const struct nand_op_instr *instr; 2107 char *prefix = " "; 2108 unsigned int i; 2109 2110 pr_debug("executing subop:\n"); 2111 2112 for (i = 0; i < ctx->ninstrs; i++) { 2113 instr = &ctx->instrs[i]; 2114 2115 if (instr == &ctx->subop.instrs[0]) 2116 prefix = " ->"; 2117 2118 nand_op_trace(prefix, instr); 2119 2120 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2121 prefix = " "; 2122 } 2123 } 2124 #else 2125 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2126 { 2127 /* NOP */ 2128 } 2129 #endif 2130 2131 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2132 const struct nand_op_parser_ctx *b) 2133 { 2134 if (a->subop.ninstrs < b->subop.ninstrs) 2135 return -1; 2136 else if (a->subop.ninstrs > b->subop.ninstrs) 2137 return 1; 2138 2139 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2140 return -1; 2141 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2142 return 1; 2143 2144 return 0; 2145 } 2146 2147 /** 2148 * nand_op_parser_exec_op - exec_op parser 2149 * @chip: the NAND chip 2150 * @parser: patterns description provided by the controller driver 2151 * @op: the NAND operation to address 2152 * @check_only: when true, the function only checks if @op can be handled but 2153 * does not execute the operation 2154 * 2155 * Helper function designed to ease integration of NAND controller drivers that 2156 * only support a limited set of instruction sequences. The supported sequences 2157 * are described in @parser, and the framework takes care of splitting @op into 2158 * multiple sub-operations (if required) and pass them back to the ->exec() 2159 * callback of the matching pattern if @check_only is set to false. 2160 * 2161 * NAND controller drivers should call this function from their own ->exec_op() 2162 * implementation. 2163 * 2164 * Returns 0 on success, a negative error code otherwise. A failure can be 2165 * caused by an unsupported operation (none of the supported patterns is able 2166 * to handle the requested operation), or an error returned by one of the 2167 * matching pattern->exec() hook. 2168 */ 2169 int nand_op_parser_exec_op(struct nand_chip *chip, 2170 const struct nand_op_parser *parser, 2171 const struct nand_operation *op, bool check_only) 2172 { 2173 struct nand_op_parser_ctx ctx = { 2174 .subop.instrs = op->instrs, 2175 .instrs = op->instrs, 2176 .ninstrs = op->ninstrs, 2177 }; 2178 unsigned int i; 2179 2180 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2181 const struct nand_op_parser_pattern *pattern; 2182 struct nand_op_parser_ctx best_ctx; 2183 int ret, best_pattern = -1; 2184 2185 for (i = 0; i < parser->npatterns; i++) { 2186 struct nand_op_parser_ctx test_ctx = ctx; 2187 2188 pattern = &parser->patterns[i]; 2189 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2190 continue; 2191 2192 if (best_pattern >= 0 && 2193 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2194 continue; 2195 2196 best_pattern = i; 2197 best_ctx = test_ctx; 2198 } 2199 2200 if (best_pattern < 0) { 2201 pr_debug("->exec_op() parser: pattern not found!\n"); 2202 return -ENOTSUPP; 2203 } 2204 2205 ctx = best_ctx; 2206 nand_op_parser_trace(&ctx); 2207 2208 if (!check_only) { 2209 pattern = &parser->patterns[best_pattern]; 2210 ret = pattern->exec(chip, &ctx.subop); 2211 if (ret) 2212 return ret; 2213 } 2214 2215 /* 2216 * Update the context structure by pointing to the start of the 2217 * next subop. 2218 */ 2219 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2220 if (ctx.subop.last_instr_end_off) 2221 ctx.subop.instrs -= 1; 2222 2223 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2224 } 2225 2226 return 0; 2227 } 2228 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2229 2230 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2231 { 2232 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2233 instr->type == NAND_OP_DATA_OUT_INSTR); 2234 } 2235 2236 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2237 unsigned int instr_idx) 2238 { 2239 return subop && instr_idx < subop->ninstrs; 2240 } 2241 2242 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2243 unsigned int instr_idx) 2244 { 2245 if (instr_idx) 2246 return 0; 2247 2248 return subop->first_instr_start_off; 2249 } 2250 2251 /** 2252 * nand_subop_get_addr_start_off - Get the start offset in an address array 2253 * @subop: The entire sub-operation 2254 * @instr_idx: Index of the instruction inside the sub-operation 2255 * 2256 * During driver development, one could be tempted to directly use the 2257 * ->addr.addrs field of address instructions. This is wrong as address 2258 * instructions might be split. 2259 * 2260 * Given an address instruction, returns the offset of the first cycle to issue. 2261 */ 2262 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2263 unsigned int instr_idx) 2264 { 2265 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2266 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2267 return 0; 2268 2269 return nand_subop_get_start_off(subop, instr_idx); 2270 } 2271 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2272 2273 /** 2274 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2275 * @subop: The entire sub-operation 2276 * @instr_idx: Index of the instruction inside the sub-operation 2277 * 2278 * During driver development, one could be tempted to directly use the 2279 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2280 * might be split. 2281 * 2282 * Given an address instruction, returns the number of address cycle to issue. 2283 */ 2284 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2285 unsigned int instr_idx) 2286 { 2287 int start_off, end_off; 2288 2289 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2290 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2291 return 0; 2292 2293 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2294 2295 if (instr_idx == subop->ninstrs - 1 && 2296 subop->last_instr_end_off) 2297 end_off = subop->last_instr_end_off; 2298 else 2299 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2300 2301 return end_off - start_off; 2302 } 2303 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2304 2305 /** 2306 * nand_subop_get_data_start_off - Get the start offset in a data array 2307 * @subop: The entire sub-operation 2308 * @instr_idx: Index of the instruction inside the sub-operation 2309 * 2310 * During driver development, one could be tempted to directly use the 2311 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2312 * instructions might be split. 2313 * 2314 * Given a data instruction, returns the offset to start from. 2315 */ 2316 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2317 unsigned int instr_idx) 2318 { 2319 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2320 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2321 return 0; 2322 2323 return nand_subop_get_start_off(subop, instr_idx); 2324 } 2325 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2326 2327 /** 2328 * nand_subop_get_data_len - Get the number of bytes to retrieve 2329 * @subop: The entire sub-operation 2330 * @instr_idx: Index of the instruction inside the sub-operation 2331 * 2332 * During driver development, one could be tempted to directly use the 2333 * ->data->len field of a data instruction. This is wrong as data instructions 2334 * might be split. 2335 * 2336 * Returns the length of the chunk of data to send/receive. 2337 */ 2338 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2339 unsigned int instr_idx) 2340 { 2341 int start_off = 0, end_off; 2342 2343 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2344 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2345 return 0; 2346 2347 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2348 2349 if (instr_idx == subop->ninstrs - 1 && 2350 subop->last_instr_end_off) 2351 end_off = subop->last_instr_end_off; 2352 else 2353 end_off = subop->instrs[instr_idx].ctx.data.len; 2354 2355 return end_off - start_off; 2356 } 2357 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2358 2359 /** 2360 * nand_reset - Reset and initialize a NAND device 2361 * @chip: The NAND chip 2362 * @chipnr: Internal die id 2363 * 2364 * Save the timings data structure, then apply SDR timings mode 0 (see 2365 * nand_reset_data_interface for details), do the reset operation, and 2366 * apply back the previous timings. 2367 * 2368 * Returns 0 on success, a negative error code otherwise. 2369 */ 2370 int nand_reset(struct nand_chip *chip, int chipnr) 2371 { 2372 struct nand_data_interface saved_data_intf = chip->data_interface; 2373 int ret; 2374 2375 ret = nand_reset_data_interface(chip, chipnr); 2376 if (ret) 2377 return ret; 2378 2379 /* 2380 * The CS line has to be released before we can apply the new NAND 2381 * interface settings, hence this weird nand_select_target() 2382 * nand_deselect_target() dance. 2383 */ 2384 nand_select_target(chip, chipnr); 2385 ret = nand_reset_op(chip); 2386 nand_deselect_target(chip); 2387 if (ret) 2388 return ret; 2389 2390 /* 2391 * A nand_reset_data_interface() put both the NAND chip and the NAND 2392 * controller in timings mode 0. If the default mode for this chip is 2393 * also 0, no need to proceed to the change again. Plus, at probe time, 2394 * nand_setup_data_interface() uses ->set/get_features() which would 2395 * fail anyway as the parameter page is not available yet. 2396 */ 2397 if (!chip->onfi_timing_mode_default) 2398 return 0; 2399 2400 chip->data_interface = saved_data_intf; 2401 ret = nand_setup_data_interface(chip, chipnr); 2402 if (ret) 2403 return ret; 2404 2405 return 0; 2406 } 2407 EXPORT_SYMBOL_GPL(nand_reset); 2408 2409 /** 2410 * nand_get_features - wrapper to perform a GET_FEATURE 2411 * @chip: NAND chip info structure 2412 * @addr: feature address 2413 * @subfeature_param: the subfeature parameters, a four bytes array 2414 * 2415 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2416 * operation cannot be handled. 2417 */ 2418 int nand_get_features(struct nand_chip *chip, int addr, 2419 u8 *subfeature_param) 2420 { 2421 if (!nand_supports_get_features(chip, addr)) 2422 return -ENOTSUPP; 2423 2424 if (chip->legacy.get_features) 2425 return chip->legacy.get_features(chip, addr, subfeature_param); 2426 2427 return nand_get_features_op(chip, addr, subfeature_param); 2428 } 2429 2430 /** 2431 * nand_set_features - wrapper to perform a SET_FEATURE 2432 * @chip: NAND chip info structure 2433 * @addr: feature address 2434 * @subfeature_param: the subfeature parameters, a four bytes array 2435 * 2436 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2437 * operation cannot be handled. 2438 */ 2439 int nand_set_features(struct nand_chip *chip, int addr, 2440 u8 *subfeature_param) 2441 { 2442 if (!nand_supports_set_features(chip, addr)) 2443 return -ENOTSUPP; 2444 2445 if (chip->legacy.set_features) 2446 return chip->legacy.set_features(chip, addr, subfeature_param); 2447 2448 return nand_set_features_op(chip, addr, subfeature_param); 2449 } 2450 2451 /** 2452 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2453 * @buf: buffer to test 2454 * @len: buffer length 2455 * @bitflips_threshold: maximum number of bitflips 2456 * 2457 * Check if a buffer contains only 0xff, which means the underlying region 2458 * has been erased and is ready to be programmed. 2459 * The bitflips_threshold specify the maximum number of bitflips before 2460 * considering the region is not erased. 2461 * Note: The logic of this function has been extracted from the memweight 2462 * implementation, except that nand_check_erased_buf function exit before 2463 * testing the whole buffer if the number of bitflips exceed the 2464 * bitflips_threshold value. 2465 * 2466 * Returns a positive number of bitflips less than or equal to 2467 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2468 * threshold. 2469 */ 2470 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2471 { 2472 const unsigned char *bitmap = buf; 2473 int bitflips = 0; 2474 int weight; 2475 2476 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2477 len--, bitmap++) { 2478 weight = hweight8(*bitmap); 2479 bitflips += BITS_PER_BYTE - weight; 2480 if (unlikely(bitflips > bitflips_threshold)) 2481 return -EBADMSG; 2482 } 2483 2484 for (; len >= sizeof(long); 2485 len -= sizeof(long), bitmap += sizeof(long)) { 2486 unsigned long d = *((unsigned long *)bitmap); 2487 if (d == ~0UL) 2488 continue; 2489 weight = hweight_long(d); 2490 bitflips += BITS_PER_LONG - weight; 2491 if (unlikely(bitflips > bitflips_threshold)) 2492 return -EBADMSG; 2493 } 2494 2495 for (; len > 0; len--, bitmap++) { 2496 weight = hweight8(*bitmap); 2497 bitflips += BITS_PER_BYTE - weight; 2498 if (unlikely(bitflips > bitflips_threshold)) 2499 return -EBADMSG; 2500 } 2501 2502 return bitflips; 2503 } 2504 2505 /** 2506 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2507 * 0xff data 2508 * @data: data buffer to test 2509 * @datalen: data length 2510 * @ecc: ECC buffer 2511 * @ecclen: ECC length 2512 * @extraoob: extra OOB buffer 2513 * @extraooblen: extra OOB length 2514 * @bitflips_threshold: maximum number of bitflips 2515 * 2516 * Check if a data buffer and its associated ECC and OOB data contains only 2517 * 0xff pattern, which means the underlying region has been erased and is 2518 * ready to be programmed. 2519 * The bitflips_threshold specify the maximum number of bitflips before 2520 * considering the region as not erased. 2521 * 2522 * Note: 2523 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2524 * different from the NAND page size. When fixing bitflips, ECC engines will 2525 * report the number of errors per chunk, and the NAND core infrastructure 2526 * expect you to return the maximum number of bitflips for the whole page. 2527 * This is why you should always use this function on a single chunk and 2528 * not on the whole page. After checking each chunk you should update your 2529 * max_bitflips value accordingly. 2530 * 2/ When checking for bitflips in erased pages you should not only check 2531 * the payload data but also their associated ECC data, because a user might 2532 * have programmed almost all bits to 1 but a few. In this case, we 2533 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2534 * this case. 2535 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2536 * data are protected by the ECC engine. 2537 * It could also be used if you support subpages and want to attach some 2538 * extra OOB data to an ECC chunk. 2539 * 2540 * Returns a positive number of bitflips less than or equal to 2541 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2542 * threshold. In case of success, the passed buffers are filled with 0xff. 2543 */ 2544 int nand_check_erased_ecc_chunk(void *data, int datalen, 2545 void *ecc, int ecclen, 2546 void *extraoob, int extraooblen, 2547 int bitflips_threshold) 2548 { 2549 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2550 2551 data_bitflips = nand_check_erased_buf(data, datalen, 2552 bitflips_threshold); 2553 if (data_bitflips < 0) 2554 return data_bitflips; 2555 2556 bitflips_threshold -= data_bitflips; 2557 2558 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2559 if (ecc_bitflips < 0) 2560 return ecc_bitflips; 2561 2562 bitflips_threshold -= ecc_bitflips; 2563 2564 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2565 bitflips_threshold); 2566 if (extraoob_bitflips < 0) 2567 return extraoob_bitflips; 2568 2569 if (data_bitflips) 2570 memset(data, 0xff, datalen); 2571 2572 if (ecc_bitflips) 2573 memset(ecc, 0xff, ecclen); 2574 2575 if (extraoob_bitflips) 2576 memset(extraoob, 0xff, extraooblen); 2577 2578 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2579 } 2580 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2581 2582 /** 2583 * nand_read_page_raw_notsupp - dummy read raw page function 2584 * @chip: nand chip info structure 2585 * @buf: buffer to store read data 2586 * @oob_required: caller requires OOB data read to chip->oob_poi 2587 * @page: page number to read 2588 * 2589 * Returns -ENOTSUPP unconditionally. 2590 */ 2591 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2592 int oob_required, int page) 2593 { 2594 return -ENOTSUPP; 2595 } 2596 2597 /** 2598 * nand_read_page_raw - [INTERN] read raw page data without ecc 2599 * @chip: nand chip info structure 2600 * @buf: buffer to store read data 2601 * @oob_required: caller requires OOB data read to chip->oob_poi 2602 * @page: page number to read 2603 * 2604 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2605 */ 2606 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2607 int page) 2608 { 2609 struct mtd_info *mtd = nand_to_mtd(chip); 2610 int ret; 2611 2612 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2613 if (ret) 2614 return ret; 2615 2616 if (oob_required) { 2617 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2618 false); 2619 if (ret) 2620 return ret; 2621 } 2622 2623 return 0; 2624 } 2625 EXPORT_SYMBOL(nand_read_page_raw); 2626 2627 /** 2628 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2629 * @chip: nand chip info structure 2630 * @buf: buffer to store read data 2631 * @oob_required: caller requires OOB data read to chip->oob_poi 2632 * @page: page number to read 2633 * 2634 * We need a special oob layout and handling even when OOB isn't used. 2635 */ 2636 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2637 int oob_required, int page) 2638 { 2639 struct mtd_info *mtd = nand_to_mtd(chip); 2640 int eccsize = chip->ecc.size; 2641 int eccbytes = chip->ecc.bytes; 2642 uint8_t *oob = chip->oob_poi; 2643 int steps, size, ret; 2644 2645 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2646 if (ret) 2647 return ret; 2648 2649 for (steps = chip->ecc.steps; steps > 0; steps--) { 2650 ret = nand_read_data_op(chip, buf, eccsize, false); 2651 if (ret) 2652 return ret; 2653 2654 buf += eccsize; 2655 2656 if (chip->ecc.prepad) { 2657 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2658 false); 2659 if (ret) 2660 return ret; 2661 2662 oob += chip->ecc.prepad; 2663 } 2664 2665 ret = nand_read_data_op(chip, oob, eccbytes, false); 2666 if (ret) 2667 return ret; 2668 2669 oob += eccbytes; 2670 2671 if (chip->ecc.postpad) { 2672 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2673 false); 2674 if (ret) 2675 return ret; 2676 2677 oob += chip->ecc.postpad; 2678 } 2679 } 2680 2681 size = mtd->oobsize - (oob - chip->oob_poi); 2682 if (size) { 2683 ret = nand_read_data_op(chip, oob, size, false); 2684 if (ret) 2685 return ret; 2686 } 2687 2688 return 0; 2689 } 2690 2691 /** 2692 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2693 * @chip: nand chip info structure 2694 * @buf: buffer to store read data 2695 * @oob_required: caller requires OOB data read to chip->oob_poi 2696 * @page: page number to read 2697 */ 2698 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2699 int oob_required, int page) 2700 { 2701 struct mtd_info *mtd = nand_to_mtd(chip); 2702 int i, eccsize = chip->ecc.size, ret; 2703 int eccbytes = chip->ecc.bytes; 2704 int eccsteps = chip->ecc.steps; 2705 uint8_t *p = buf; 2706 uint8_t *ecc_calc = chip->ecc.calc_buf; 2707 uint8_t *ecc_code = chip->ecc.code_buf; 2708 unsigned int max_bitflips = 0; 2709 2710 chip->ecc.read_page_raw(chip, buf, 1, page); 2711 2712 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2713 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2714 2715 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2716 chip->ecc.total); 2717 if (ret) 2718 return ret; 2719 2720 eccsteps = chip->ecc.steps; 2721 p = buf; 2722 2723 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2724 int stat; 2725 2726 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2727 if (stat < 0) { 2728 mtd->ecc_stats.failed++; 2729 } else { 2730 mtd->ecc_stats.corrected += stat; 2731 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2732 } 2733 } 2734 return max_bitflips; 2735 } 2736 2737 /** 2738 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2739 * @chip: nand chip info structure 2740 * @data_offs: offset of requested data within the page 2741 * @readlen: data length 2742 * @bufpoi: buffer to store read data 2743 * @page: page number to read 2744 */ 2745 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2746 uint32_t readlen, uint8_t *bufpoi, int page) 2747 { 2748 struct mtd_info *mtd = nand_to_mtd(chip); 2749 int start_step, end_step, num_steps, ret; 2750 uint8_t *p; 2751 int data_col_addr, i, gaps = 0; 2752 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2753 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2754 int index, section = 0; 2755 unsigned int max_bitflips = 0; 2756 struct mtd_oob_region oobregion = { }; 2757 2758 /* Column address within the page aligned to ECC size (256bytes) */ 2759 start_step = data_offs / chip->ecc.size; 2760 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2761 num_steps = end_step - start_step + 1; 2762 index = start_step * chip->ecc.bytes; 2763 2764 /* Data size aligned to ECC ecc.size */ 2765 datafrag_len = num_steps * chip->ecc.size; 2766 eccfrag_len = num_steps * chip->ecc.bytes; 2767 2768 data_col_addr = start_step * chip->ecc.size; 2769 /* If we read not a page aligned data */ 2770 p = bufpoi + data_col_addr; 2771 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2772 if (ret) 2773 return ret; 2774 2775 /* Calculate ECC */ 2776 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2777 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2778 2779 /* 2780 * The performance is faster if we position offsets according to 2781 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2782 */ 2783 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2784 if (ret) 2785 return ret; 2786 2787 if (oobregion.length < eccfrag_len) 2788 gaps = 1; 2789 2790 if (gaps) { 2791 ret = nand_change_read_column_op(chip, mtd->writesize, 2792 chip->oob_poi, mtd->oobsize, 2793 false); 2794 if (ret) 2795 return ret; 2796 } else { 2797 /* 2798 * Send the command to read the particular ECC bytes take care 2799 * about buswidth alignment in read_buf. 2800 */ 2801 aligned_pos = oobregion.offset & ~(busw - 1); 2802 aligned_len = eccfrag_len; 2803 if (oobregion.offset & (busw - 1)) 2804 aligned_len++; 2805 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2806 (busw - 1)) 2807 aligned_len++; 2808 2809 ret = nand_change_read_column_op(chip, 2810 mtd->writesize + aligned_pos, 2811 &chip->oob_poi[aligned_pos], 2812 aligned_len, false); 2813 if (ret) 2814 return ret; 2815 } 2816 2817 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 2818 chip->oob_poi, index, eccfrag_len); 2819 if (ret) 2820 return ret; 2821 2822 p = bufpoi + data_col_addr; 2823 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 2824 int stat; 2825 2826 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 2827 &chip->ecc.calc_buf[i]); 2828 if (stat == -EBADMSG && 2829 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2830 /* check for empty pages with bitflips */ 2831 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2832 &chip->ecc.code_buf[i], 2833 chip->ecc.bytes, 2834 NULL, 0, 2835 chip->ecc.strength); 2836 } 2837 2838 if (stat < 0) { 2839 mtd->ecc_stats.failed++; 2840 } else { 2841 mtd->ecc_stats.corrected += stat; 2842 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2843 } 2844 } 2845 return max_bitflips; 2846 } 2847 2848 /** 2849 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 2850 * @chip: nand chip info structure 2851 * @buf: buffer to store read data 2852 * @oob_required: caller requires OOB data read to chip->oob_poi 2853 * @page: page number to read 2854 * 2855 * Not for syndrome calculating ECC controllers which need a special oob layout. 2856 */ 2857 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 2858 int oob_required, int page) 2859 { 2860 struct mtd_info *mtd = nand_to_mtd(chip); 2861 int i, eccsize = chip->ecc.size, ret; 2862 int eccbytes = chip->ecc.bytes; 2863 int eccsteps = chip->ecc.steps; 2864 uint8_t *p = buf; 2865 uint8_t *ecc_calc = chip->ecc.calc_buf; 2866 uint8_t *ecc_code = chip->ecc.code_buf; 2867 unsigned int max_bitflips = 0; 2868 2869 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2870 if (ret) 2871 return ret; 2872 2873 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2874 chip->ecc.hwctl(chip, NAND_ECC_READ); 2875 2876 ret = nand_read_data_op(chip, p, eccsize, false); 2877 if (ret) 2878 return ret; 2879 2880 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2881 } 2882 2883 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); 2884 if (ret) 2885 return ret; 2886 2887 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2888 chip->ecc.total); 2889 if (ret) 2890 return ret; 2891 2892 eccsteps = chip->ecc.steps; 2893 p = buf; 2894 2895 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2896 int stat; 2897 2898 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2899 if (stat == -EBADMSG && 2900 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2901 /* check for empty pages with bitflips */ 2902 stat = nand_check_erased_ecc_chunk(p, eccsize, 2903 &ecc_code[i], eccbytes, 2904 NULL, 0, 2905 chip->ecc.strength); 2906 } 2907 2908 if (stat < 0) { 2909 mtd->ecc_stats.failed++; 2910 } else { 2911 mtd->ecc_stats.corrected += stat; 2912 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2913 } 2914 } 2915 return max_bitflips; 2916 } 2917 2918 /** 2919 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first 2920 * @chip: nand chip info structure 2921 * @buf: buffer to store read data 2922 * @oob_required: caller requires OOB data read to chip->oob_poi 2923 * @page: page number to read 2924 * 2925 * Hardware ECC for large page chips, require OOB to be read first. For this 2926 * ECC mode, the write_page method is re-used from ECC_HW. These methods 2927 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with 2928 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from 2929 * the data area, by overwriting the NAND manufacturer bad block markings. 2930 */ 2931 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 2932 int oob_required, int page) 2933 { 2934 struct mtd_info *mtd = nand_to_mtd(chip); 2935 int i, eccsize = chip->ecc.size, ret; 2936 int eccbytes = chip->ecc.bytes; 2937 int eccsteps = chip->ecc.steps; 2938 uint8_t *p = buf; 2939 uint8_t *ecc_code = chip->ecc.code_buf; 2940 uint8_t *ecc_calc = chip->ecc.calc_buf; 2941 unsigned int max_bitflips = 0; 2942 2943 /* Read the OOB area first */ 2944 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 2945 if (ret) 2946 return ret; 2947 2948 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2949 if (ret) 2950 return ret; 2951 2952 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2953 chip->ecc.total); 2954 if (ret) 2955 return ret; 2956 2957 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2958 int stat; 2959 2960 chip->ecc.hwctl(chip, NAND_ECC_READ); 2961 2962 ret = nand_read_data_op(chip, p, eccsize, false); 2963 if (ret) 2964 return ret; 2965 2966 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2967 2968 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 2969 if (stat == -EBADMSG && 2970 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2971 /* check for empty pages with bitflips */ 2972 stat = nand_check_erased_ecc_chunk(p, eccsize, 2973 &ecc_code[i], eccbytes, 2974 NULL, 0, 2975 chip->ecc.strength); 2976 } 2977 2978 if (stat < 0) { 2979 mtd->ecc_stats.failed++; 2980 } else { 2981 mtd->ecc_stats.corrected += stat; 2982 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2983 } 2984 } 2985 return max_bitflips; 2986 } 2987 2988 /** 2989 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 2990 * @chip: nand chip info structure 2991 * @buf: buffer to store read data 2992 * @oob_required: caller requires OOB data read to chip->oob_poi 2993 * @page: page number to read 2994 * 2995 * The hw generator calculates the error syndrome automatically. Therefore we 2996 * need a special oob layout and handling. 2997 */ 2998 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 2999 int oob_required, int page) 3000 { 3001 struct mtd_info *mtd = nand_to_mtd(chip); 3002 int ret, i, eccsize = chip->ecc.size; 3003 int eccbytes = chip->ecc.bytes; 3004 int eccsteps = chip->ecc.steps; 3005 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3006 uint8_t *p = buf; 3007 uint8_t *oob = chip->oob_poi; 3008 unsigned int max_bitflips = 0; 3009 3010 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3011 if (ret) 3012 return ret; 3013 3014 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3015 int stat; 3016 3017 chip->ecc.hwctl(chip, NAND_ECC_READ); 3018 3019 ret = nand_read_data_op(chip, p, eccsize, false); 3020 if (ret) 3021 return ret; 3022 3023 if (chip->ecc.prepad) { 3024 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3025 false); 3026 if (ret) 3027 return ret; 3028 3029 oob += chip->ecc.prepad; 3030 } 3031 3032 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3033 3034 ret = nand_read_data_op(chip, oob, eccbytes, false); 3035 if (ret) 3036 return ret; 3037 3038 stat = chip->ecc.correct(chip, p, oob, NULL); 3039 3040 oob += eccbytes; 3041 3042 if (chip->ecc.postpad) { 3043 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3044 false); 3045 if (ret) 3046 return ret; 3047 3048 oob += chip->ecc.postpad; 3049 } 3050 3051 if (stat == -EBADMSG && 3052 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3053 /* check for empty pages with bitflips */ 3054 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3055 oob - eccpadbytes, 3056 eccpadbytes, 3057 NULL, 0, 3058 chip->ecc.strength); 3059 } 3060 3061 if (stat < 0) { 3062 mtd->ecc_stats.failed++; 3063 } else { 3064 mtd->ecc_stats.corrected += stat; 3065 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3066 } 3067 } 3068 3069 /* Calculate remaining oob bytes */ 3070 i = mtd->oobsize - (oob - chip->oob_poi); 3071 if (i) { 3072 ret = nand_read_data_op(chip, oob, i, false); 3073 if (ret) 3074 return ret; 3075 } 3076 3077 return max_bitflips; 3078 } 3079 3080 /** 3081 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3082 * @chip: NAND chip object 3083 * @oob: oob destination address 3084 * @ops: oob ops structure 3085 * @len: size of oob to transfer 3086 */ 3087 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3088 struct mtd_oob_ops *ops, size_t len) 3089 { 3090 struct mtd_info *mtd = nand_to_mtd(chip); 3091 int ret; 3092 3093 switch (ops->mode) { 3094 3095 case MTD_OPS_PLACE_OOB: 3096 case MTD_OPS_RAW: 3097 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3098 return oob + len; 3099 3100 case MTD_OPS_AUTO_OOB: 3101 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3102 ops->ooboffs, len); 3103 BUG_ON(ret); 3104 return oob + len; 3105 3106 default: 3107 BUG(); 3108 } 3109 return NULL; 3110 } 3111 3112 /** 3113 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3114 * @chip: NAND chip object 3115 * @retry_mode: the retry mode to use 3116 * 3117 * Some vendors supply a special command to shift the Vt threshold, to be used 3118 * when there are too many bitflips in a page (i.e., ECC error). After setting 3119 * a new threshold, the host should retry reading the page. 3120 */ 3121 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3122 { 3123 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3124 3125 if (retry_mode >= chip->read_retries) 3126 return -EINVAL; 3127 3128 if (!chip->setup_read_retry) 3129 return -EOPNOTSUPP; 3130 3131 return chip->setup_read_retry(chip, retry_mode); 3132 } 3133 3134 static void nand_wait_readrdy(struct nand_chip *chip) 3135 { 3136 const struct nand_sdr_timings *sdr; 3137 3138 if (!(chip->options & NAND_NEED_READRDY)) 3139 return; 3140 3141 sdr = nand_get_sdr_timings(&chip->data_interface); 3142 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 3143 } 3144 3145 /** 3146 * nand_do_read_ops - [INTERN] Read data with ECC 3147 * @chip: NAND chip object 3148 * @from: offset to read from 3149 * @ops: oob ops structure 3150 * 3151 * Internal function. Called with chip held. 3152 */ 3153 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3154 struct mtd_oob_ops *ops) 3155 { 3156 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3157 struct mtd_info *mtd = nand_to_mtd(chip); 3158 int ret = 0; 3159 uint32_t readlen = ops->len; 3160 uint32_t oobreadlen = ops->ooblen; 3161 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3162 3163 uint8_t *bufpoi, *oob, *buf; 3164 int use_bufpoi; 3165 unsigned int max_bitflips = 0; 3166 int retry_mode = 0; 3167 bool ecc_fail = false; 3168 3169 chipnr = (int)(from >> chip->chip_shift); 3170 nand_select_target(chip, chipnr); 3171 3172 realpage = (int)(from >> chip->page_shift); 3173 page = realpage & chip->pagemask; 3174 3175 col = (int)(from & (mtd->writesize - 1)); 3176 3177 buf = ops->datbuf; 3178 oob = ops->oobbuf; 3179 oob_required = oob ? 1 : 0; 3180 3181 while (1) { 3182 unsigned int ecc_failures = mtd->ecc_stats.failed; 3183 3184 bytes = min(mtd->writesize - col, readlen); 3185 aligned = (bytes == mtd->writesize); 3186 3187 if (!aligned) 3188 use_bufpoi = 1; 3189 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3190 use_bufpoi = !virt_addr_valid(buf) || 3191 !IS_ALIGNED((unsigned long)buf, 3192 chip->buf_align); 3193 else 3194 use_bufpoi = 0; 3195 3196 /* Is the current page in the buffer? */ 3197 if (realpage != chip->pagecache.page || oob) { 3198 bufpoi = use_bufpoi ? chip->data_buf : buf; 3199 3200 if (use_bufpoi && aligned) 3201 pr_debug("%s: using read bounce buffer for buf@%p\n", 3202 __func__, buf); 3203 3204 read_retry: 3205 /* 3206 * Now read the page into the buffer. Absent an error, 3207 * the read methods return max bitflips per ecc step. 3208 */ 3209 if (unlikely(ops->mode == MTD_OPS_RAW)) 3210 ret = chip->ecc.read_page_raw(chip, bufpoi, 3211 oob_required, 3212 page); 3213 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3214 !oob) 3215 ret = chip->ecc.read_subpage(chip, col, bytes, 3216 bufpoi, page); 3217 else 3218 ret = chip->ecc.read_page(chip, bufpoi, 3219 oob_required, page); 3220 if (ret < 0) { 3221 if (use_bufpoi) 3222 /* Invalidate page cache */ 3223 chip->pagecache.page = -1; 3224 break; 3225 } 3226 3227 /* Transfer not aligned data */ 3228 if (use_bufpoi) { 3229 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3230 !(mtd->ecc_stats.failed - ecc_failures) && 3231 (ops->mode != MTD_OPS_RAW)) { 3232 chip->pagecache.page = realpage; 3233 chip->pagecache.bitflips = ret; 3234 } else { 3235 /* Invalidate page cache */ 3236 chip->pagecache.page = -1; 3237 } 3238 memcpy(buf, chip->data_buf + col, bytes); 3239 } 3240 3241 if (unlikely(oob)) { 3242 int toread = min(oobreadlen, max_oobsize); 3243 3244 if (toread) { 3245 oob = nand_transfer_oob(chip, oob, ops, 3246 toread); 3247 oobreadlen -= toread; 3248 } 3249 } 3250 3251 nand_wait_readrdy(chip); 3252 3253 if (mtd->ecc_stats.failed - ecc_failures) { 3254 if (retry_mode + 1 < chip->read_retries) { 3255 retry_mode++; 3256 ret = nand_setup_read_retry(chip, 3257 retry_mode); 3258 if (ret < 0) 3259 break; 3260 3261 /* Reset failures; retry */ 3262 mtd->ecc_stats.failed = ecc_failures; 3263 goto read_retry; 3264 } else { 3265 /* No more retry modes; real failure */ 3266 ecc_fail = true; 3267 } 3268 } 3269 3270 buf += bytes; 3271 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3272 } else { 3273 memcpy(buf, chip->data_buf + col, bytes); 3274 buf += bytes; 3275 max_bitflips = max_t(unsigned int, max_bitflips, 3276 chip->pagecache.bitflips); 3277 } 3278 3279 readlen -= bytes; 3280 3281 /* Reset to retry mode 0 */ 3282 if (retry_mode) { 3283 ret = nand_setup_read_retry(chip, 0); 3284 if (ret < 0) 3285 break; 3286 retry_mode = 0; 3287 } 3288 3289 if (!readlen) 3290 break; 3291 3292 /* For subsequent reads align to page boundary */ 3293 col = 0; 3294 /* Increment page address */ 3295 realpage++; 3296 3297 page = realpage & chip->pagemask; 3298 /* Check, if we cross a chip boundary */ 3299 if (!page) { 3300 chipnr++; 3301 nand_deselect_target(chip); 3302 nand_select_target(chip, chipnr); 3303 } 3304 } 3305 nand_deselect_target(chip); 3306 3307 ops->retlen = ops->len - (size_t) readlen; 3308 if (oob) 3309 ops->oobretlen = ops->ooblen - oobreadlen; 3310 3311 if (ret < 0) 3312 return ret; 3313 3314 if (ecc_fail) 3315 return -EBADMSG; 3316 3317 return max_bitflips; 3318 } 3319 3320 /** 3321 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3322 * @chip: nand chip info structure 3323 * @page: page number to read 3324 */ 3325 int nand_read_oob_std(struct nand_chip *chip, int page) 3326 { 3327 struct mtd_info *mtd = nand_to_mtd(chip); 3328 3329 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3330 } 3331 EXPORT_SYMBOL(nand_read_oob_std); 3332 3333 /** 3334 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3335 * with syndromes 3336 * @chip: nand chip info structure 3337 * @page: page number to read 3338 */ 3339 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3340 { 3341 struct mtd_info *mtd = nand_to_mtd(chip); 3342 int length = mtd->oobsize; 3343 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3344 int eccsize = chip->ecc.size; 3345 uint8_t *bufpoi = chip->oob_poi; 3346 int i, toread, sndrnd = 0, pos, ret; 3347 3348 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3349 if (ret) 3350 return ret; 3351 3352 for (i = 0; i < chip->ecc.steps; i++) { 3353 if (sndrnd) { 3354 int ret; 3355 3356 pos = eccsize + i * (eccsize + chunk); 3357 if (mtd->writesize > 512) 3358 ret = nand_change_read_column_op(chip, pos, 3359 NULL, 0, 3360 false); 3361 else 3362 ret = nand_read_page_op(chip, page, pos, NULL, 3363 0); 3364 3365 if (ret) 3366 return ret; 3367 } else 3368 sndrnd = 1; 3369 toread = min_t(int, length, chunk); 3370 3371 ret = nand_read_data_op(chip, bufpoi, toread, false); 3372 if (ret) 3373 return ret; 3374 3375 bufpoi += toread; 3376 length -= toread; 3377 } 3378 if (length > 0) { 3379 ret = nand_read_data_op(chip, bufpoi, length, false); 3380 if (ret) 3381 return ret; 3382 } 3383 3384 return 0; 3385 } 3386 3387 /** 3388 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3389 * @chip: nand chip info structure 3390 * @page: page number to write 3391 */ 3392 int nand_write_oob_std(struct nand_chip *chip, int page) 3393 { 3394 struct mtd_info *mtd = nand_to_mtd(chip); 3395 3396 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3397 mtd->oobsize); 3398 } 3399 EXPORT_SYMBOL(nand_write_oob_std); 3400 3401 /** 3402 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3403 * with syndrome - only for large page flash 3404 * @chip: nand chip info structure 3405 * @page: page number to write 3406 */ 3407 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3408 { 3409 struct mtd_info *mtd = nand_to_mtd(chip); 3410 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3411 int eccsize = chip->ecc.size, length = mtd->oobsize; 3412 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3413 const uint8_t *bufpoi = chip->oob_poi; 3414 3415 /* 3416 * data-ecc-data-ecc ... ecc-oob 3417 * or 3418 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3419 */ 3420 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3421 pos = steps * (eccsize + chunk); 3422 steps = 0; 3423 } else 3424 pos = eccsize; 3425 3426 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3427 if (ret) 3428 return ret; 3429 3430 for (i = 0; i < steps; i++) { 3431 if (sndcmd) { 3432 if (mtd->writesize <= 512) { 3433 uint32_t fill = 0xFFFFFFFF; 3434 3435 len = eccsize; 3436 while (len > 0) { 3437 int num = min_t(int, len, 4); 3438 3439 ret = nand_write_data_op(chip, &fill, 3440 num, false); 3441 if (ret) 3442 return ret; 3443 3444 len -= num; 3445 } 3446 } else { 3447 pos = eccsize + i * (eccsize + chunk); 3448 ret = nand_change_write_column_op(chip, pos, 3449 NULL, 0, 3450 false); 3451 if (ret) 3452 return ret; 3453 } 3454 } else 3455 sndcmd = 1; 3456 len = min_t(int, length, chunk); 3457 3458 ret = nand_write_data_op(chip, bufpoi, len, false); 3459 if (ret) 3460 return ret; 3461 3462 bufpoi += len; 3463 length -= len; 3464 } 3465 if (length > 0) { 3466 ret = nand_write_data_op(chip, bufpoi, length, false); 3467 if (ret) 3468 return ret; 3469 } 3470 3471 return nand_prog_page_end_op(chip); 3472 } 3473 3474 /** 3475 * nand_do_read_oob - [INTERN] NAND read out-of-band 3476 * @chip: NAND chip object 3477 * @from: offset to read from 3478 * @ops: oob operations description structure 3479 * 3480 * NAND read out-of-band data from the spare area. 3481 */ 3482 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3483 struct mtd_oob_ops *ops) 3484 { 3485 struct mtd_info *mtd = nand_to_mtd(chip); 3486 unsigned int max_bitflips = 0; 3487 int page, realpage, chipnr; 3488 struct mtd_ecc_stats stats; 3489 int readlen = ops->ooblen; 3490 int len; 3491 uint8_t *buf = ops->oobbuf; 3492 int ret = 0; 3493 3494 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3495 __func__, (unsigned long long)from, readlen); 3496 3497 stats = mtd->ecc_stats; 3498 3499 len = mtd_oobavail(mtd, ops); 3500 3501 chipnr = (int)(from >> chip->chip_shift); 3502 nand_select_target(chip, chipnr); 3503 3504 /* Shift to get page */ 3505 realpage = (int)(from >> chip->page_shift); 3506 page = realpage & chip->pagemask; 3507 3508 while (1) { 3509 if (ops->mode == MTD_OPS_RAW) 3510 ret = chip->ecc.read_oob_raw(chip, page); 3511 else 3512 ret = chip->ecc.read_oob(chip, page); 3513 3514 if (ret < 0) 3515 break; 3516 3517 len = min(len, readlen); 3518 buf = nand_transfer_oob(chip, buf, ops, len); 3519 3520 nand_wait_readrdy(chip); 3521 3522 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3523 3524 readlen -= len; 3525 if (!readlen) 3526 break; 3527 3528 /* Increment page address */ 3529 realpage++; 3530 3531 page = realpage & chip->pagemask; 3532 /* Check, if we cross a chip boundary */ 3533 if (!page) { 3534 chipnr++; 3535 nand_deselect_target(chip); 3536 nand_select_target(chip, chipnr); 3537 } 3538 } 3539 nand_deselect_target(chip); 3540 3541 ops->oobretlen = ops->ooblen - readlen; 3542 3543 if (ret < 0) 3544 return ret; 3545 3546 if (mtd->ecc_stats.failed - stats.failed) 3547 return -EBADMSG; 3548 3549 return max_bitflips; 3550 } 3551 3552 /** 3553 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3554 * @mtd: MTD device structure 3555 * @from: offset to read from 3556 * @ops: oob operation description structure 3557 * 3558 * NAND read data and/or out-of-band data. 3559 */ 3560 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3561 struct mtd_oob_ops *ops) 3562 { 3563 struct nand_chip *chip = mtd_to_nand(mtd); 3564 int ret; 3565 3566 ops->retlen = 0; 3567 3568 if (ops->mode != MTD_OPS_PLACE_OOB && 3569 ops->mode != MTD_OPS_AUTO_OOB && 3570 ops->mode != MTD_OPS_RAW) 3571 return -ENOTSUPP; 3572 3573 ret = nand_get_device(chip); 3574 if (ret) 3575 return ret; 3576 3577 if (!ops->datbuf) 3578 ret = nand_do_read_oob(chip, from, ops); 3579 else 3580 ret = nand_do_read_ops(chip, from, ops); 3581 3582 nand_release_device(chip); 3583 return ret; 3584 } 3585 3586 /** 3587 * nand_write_page_raw_notsupp - dummy raw page write function 3588 * @chip: nand chip info structure 3589 * @buf: data buffer 3590 * @oob_required: must write chip->oob_poi to OOB 3591 * @page: page number to write 3592 * 3593 * Returns -ENOTSUPP unconditionally. 3594 */ 3595 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3596 int oob_required, int page) 3597 { 3598 return -ENOTSUPP; 3599 } 3600 3601 /** 3602 * nand_write_page_raw - [INTERN] raw page write function 3603 * @chip: nand chip info structure 3604 * @buf: data buffer 3605 * @oob_required: must write chip->oob_poi to OOB 3606 * @page: page number to write 3607 * 3608 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3609 */ 3610 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3611 int oob_required, int page) 3612 { 3613 struct mtd_info *mtd = nand_to_mtd(chip); 3614 int ret; 3615 3616 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3617 if (ret) 3618 return ret; 3619 3620 if (oob_required) { 3621 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3622 false); 3623 if (ret) 3624 return ret; 3625 } 3626 3627 return nand_prog_page_end_op(chip); 3628 } 3629 EXPORT_SYMBOL(nand_write_page_raw); 3630 3631 /** 3632 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3633 * @chip: nand chip info structure 3634 * @buf: data buffer 3635 * @oob_required: must write chip->oob_poi to OOB 3636 * @page: page number to write 3637 * 3638 * We need a special oob layout and handling even when ECC isn't checked. 3639 */ 3640 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3641 const uint8_t *buf, int oob_required, 3642 int page) 3643 { 3644 struct mtd_info *mtd = nand_to_mtd(chip); 3645 int eccsize = chip->ecc.size; 3646 int eccbytes = chip->ecc.bytes; 3647 uint8_t *oob = chip->oob_poi; 3648 int steps, size, ret; 3649 3650 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3651 if (ret) 3652 return ret; 3653 3654 for (steps = chip->ecc.steps; steps > 0; steps--) { 3655 ret = nand_write_data_op(chip, buf, eccsize, false); 3656 if (ret) 3657 return ret; 3658 3659 buf += eccsize; 3660 3661 if (chip->ecc.prepad) { 3662 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3663 false); 3664 if (ret) 3665 return ret; 3666 3667 oob += chip->ecc.prepad; 3668 } 3669 3670 ret = nand_write_data_op(chip, oob, eccbytes, false); 3671 if (ret) 3672 return ret; 3673 3674 oob += eccbytes; 3675 3676 if (chip->ecc.postpad) { 3677 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3678 false); 3679 if (ret) 3680 return ret; 3681 3682 oob += chip->ecc.postpad; 3683 } 3684 } 3685 3686 size = mtd->oobsize - (oob - chip->oob_poi); 3687 if (size) { 3688 ret = nand_write_data_op(chip, oob, size, false); 3689 if (ret) 3690 return ret; 3691 } 3692 3693 return nand_prog_page_end_op(chip); 3694 } 3695 /** 3696 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3697 * @chip: nand chip info structure 3698 * @buf: data buffer 3699 * @oob_required: must write chip->oob_poi to OOB 3700 * @page: page number to write 3701 */ 3702 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3703 int oob_required, int page) 3704 { 3705 struct mtd_info *mtd = nand_to_mtd(chip); 3706 int i, eccsize = chip->ecc.size, ret; 3707 int eccbytes = chip->ecc.bytes; 3708 int eccsteps = chip->ecc.steps; 3709 uint8_t *ecc_calc = chip->ecc.calc_buf; 3710 const uint8_t *p = buf; 3711 3712 /* Software ECC calculation */ 3713 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3714 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3715 3716 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3717 chip->ecc.total); 3718 if (ret) 3719 return ret; 3720 3721 return chip->ecc.write_page_raw(chip, buf, 1, page); 3722 } 3723 3724 /** 3725 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3726 * @chip: nand chip info structure 3727 * @buf: data buffer 3728 * @oob_required: must write chip->oob_poi to OOB 3729 * @page: page number to write 3730 */ 3731 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3732 int oob_required, int page) 3733 { 3734 struct mtd_info *mtd = nand_to_mtd(chip); 3735 int i, eccsize = chip->ecc.size, ret; 3736 int eccbytes = chip->ecc.bytes; 3737 int eccsteps = chip->ecc.steps; 3738 uint8_t *ecc_calc = chip->ecc.calc_buf; 3739 const uint8_t *p = buf; 3740 3741 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3742 if (ret) 3743 return ret; 3744 3745 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3746 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3747 3748 ret = nand_write_data_op(chip, p, eccsize, false); 3749 if (ret) 3750 return ret; 3751 3752 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3753 } 3754 3755 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3756 chip->ecc.total); 3757 if (ret) 3758 return ret; 3759 3760 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3761 if (ret) 3762 return ret; 3763 3764 return nand_prog_page_end_op(chip); 3765 } 3766 3767 3768 /** 3769 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3770 * @chip: nand chip info structure 3771 * @offset: column address of subpage within the page 3772 * @data_len: data length 3773 * @buf: data buffer 3774 * @oob_required: must write chip->oob_poi to OOB 3775 * @page: page number to write 3776 */ 3777 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3778 uint32_t data_len, const uint8_t *buf, 3779 int oob_required, int page) 3780 { 3781 struct mtd_info *mtd = nand_to_mtd(chip); 3782 uint8_t *oob_buf = chip->oob_poi; 3783 uint8_t *ecc_calc = chip->ecc.calc_buf; 3784 int ecc_size = chip->ecc.size; 3785 int ecc_bytes = chip->ecc.bytes; 3786 int ecc_steps = chip->ecc.steps; 3787 uint32_t start_step = offset / ecc_size; 3788 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3789 int oob_bytes = mtd->oobsize / ecc_steps; 3790 int step, ret; 3791 3792 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3793 if (ret) 3794 return ret; 3795 3796 for (step = 0; step < ecc_steps; step++) { 3797 /* configure controller for WRITE access */ 3798 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3799 3800 /* write data (untouched subpages already masked by 0xFF) */ 3801 ret = nand_write_data_op(chip, buf, ecc_size, false); 3802 if (ret) 3803 return ret; 3804 3805 /* mask ECC of un-touched subpages by padding 0xFF */ 3806 if ((step < start_step) || (step > end_step)) 3807 memset(ecc_calc, 0xff, ecc_bytes); 3808 else 3809 chip->ecc.calculate(chip, buf, ecc_calc); 3810 3811 /* mask OOB of un-touched subpages by padding 0xFF */ 3812 /* if oob_required, preserve OOB metadata of written subpage */ 3813 if (!oob_required || (step < start_step) || (step > end_step)) 3814 memset(oob_buf, 0xff, oob_bytes); 3815 3816 buf += ecc_size; 3817 ecc_calc += ecc_bytes; 3818 oob_buf += oob_bytes; 3819 } 3820 3821 /* copy calculated ECC for whole page to chip->buffer->oob */ 3822 /* this include masked-value(0xFF) for unwritten subpages */ 3823 ecc_calc = chip->ecc.calc_buf; 3824 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3825 chip->ecc.total); 3826 if (ret) 3827 return ret; 3828 3829 /* write OOB buffer to NAND device */ 3830 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3831 if (ret) 3832 return ret; 3833 3834 return nand_prog_page_end_op(chip); 3835 } 3836 3837 3838 /** 3839 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3840 * @chip: nand chip info structure 3841 * @buf: data buffer 3842 * @oob_required: must write chip->oob_poi to OOB 3843 * @page: page number to write 3844 * 3845 * The hw generator calculates the error syndrome automatically. Therefore we 3846 * need a special oob layout and handling. 3847 */ 3848 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 3849 int oob_required, int page) 3850 { 3851 struct mtd_info *mtd = nand_to_mtd(chip); 3852 int i, eccsize = chip->ecc.size; 3853 int eccbytes = chip->ecc.bytes; 3854 int eccsteps = chip->ecc.steps; 3855 const uint8_t *p = buf; 3856 uint8_t *oob = chip->oob_poi; 3857 int ret; 3858 3859 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3860 if (ret) 3861 return ret; 3862 3863 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3864 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3865 3866 ret = nand_write_data_op(chip, p, eccsize, false); 3867 if (ret) 3868 return ret; 3869 3870 if (chip->ecc.prepad) { 3871 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3872 false); 3873 if (ret) 3874 return ret; 3875 3876 oob += chip->ecc.prepad; 3877 } 3878 3879 chip->ecc.calculate(chip, p, oob); 3880 3881 ret = nand_write_data_op(chip, oob, eccbytes, false); 3882 if (ret) 3883 return ret; 3884 3885 oob += eccbytes; 3886 3887 if (chip->ecc.postpad) { 3888 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3889 false); 3890 if (ret) 3891 return ret; 3892 3893 oob += chip->ecc.postpad; 3894 } 3895 } 3896 3897 /* Calculate remaining oob bytes */ 3898 i = mtd->oobsize - (oob - chip->oob_poi); 3899 if (i) { 3900 ret = nand_write_data_op(chip, oob, i, false); 3901 if (ret) 3902 return ret; 3903 } 3904 3905 return nand_prog_page_end_op(chip); 3906 } 3907 3908 /** 3909 * nand_write_page - write one page 3910 * @chip: NAND chip descriptor 3911 * @offset: address offset within the page 3912 * @data_len: length of actual data to be written 3913 * @buf: the data to write 3914 * @oob_required: must write chip->oob_poi to OOB 3915 * @page: page number to write 3916 * @raw: use _raw version of write_page 3917 */ 3918 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 3919 int data_len, const uint8_t *buf, int oob_required, 3920 int page, int raw) 3921 { 3922 struct mtd_info *mtd = nand_to_mtd(chip); 3923 int status, subpage; 3924 3925 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 3926 chip->ecc.write_subpage) 3927 subpage = offset || (data_len < mtd->writesize); 3928 else 3929 subpage = 0; 3930 3931 if (unlikely(raw)) 3932 status = chip->ecc.write_page_raw(chip, buf, oob_required, 3933 page); 3934 else if (subpage) 3935 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 3936 oob_required, page); 3937 else 3938 status = chip->ecc.write_page(chip, buf, oob_required, page); 3939 3940 if (status < 0) 3941 return status; 3942 3943 return 0; 3944 } 3945 3946 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 3947 3948 /** 3949 * nand_do_write_ops - [INTERN] NAND write with ECC 3950 * @chip: NAND chip object 3951 * @to: offset to write to 3952 * @ops: oob operations description structure 3953 * 3954 * NAND write with ECC. 3955 */ 3956 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 3957 struct mtd_oob_ops *ops) 3958 { 3959 struct mtd_info *mtd = nand_to_mtd(chip); 3960 int chipnr, realpage, page, column; 3961 uint32_t writelen = ops->len; 3962 3963 uint32_t oobwritelen = ops->ooblen; 3964 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 3965 3966 uint8_t *oob = ops->oobbuf; 3967 uint8_t *buf = ops->datbuf; 3968 int ret; 3969 int oob_required = oob ? 1 : 0; 3970 3971 ops->retlen = 0; 3972 if (!writelen) 3973 return 0; 3974 3975 /* Reject writes, which are not page aligned */ 3976 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 3977 pr_notice("%s: attempt to write non page aligned data\n", 3978 __func__); 3979 return -EINVAL; 3980 } 3981 3982 column = to & (mtd->writesize - 1); 3983 3984 chipnr = (int)(to >> chip->chip_shift); 3985 nand_select_target(chip, chipnr); 3986 3987 /* Check, if it is write protected */ 3988 if (nand_check_wp(chip)) { 3989 ret = -EIO; 3990 goto err_out; 3991 } 3992 3993 realpage = (int)(to >> chip->page_shift); 3994 page = realpage & chip->pagemask; 3995 3996 /* Invalidate the page cache, when we write to the cached page */ 3997 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 3998 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 3999 chip->pagecache.page = -1; 4000 4001 /* Don't allow multipage oob writes with offset */ 4002 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4003 ret = -EINVAL; 4004 goto err_out; 4005 } 4006 4007 while (1) { 4008 int bytes = mtd->writesize; 4009 uint8_t *wbuf = buf; 4010 int use_bufpoi; 4011 int part_pagewr = (column || writelen < mtd->writesize); 4012 4013 if (part_pagewr) 4014 use_bufpoi = 1; 4015 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 4016 use_bufpoi = !virt_addr_valid(buf) || 4017 !IS_ALIGNED((unsigned long)buf, 4018 chip->buf_align); 4019 else 4020 use_bufpoi = 0; 4021 4022 /* Partial page write?, or need to use bounce buffer */ 4023 if (use_bufpoi) { 4024 pr_debug("%s: using write bounce buffer for buf@%p\n", 4025 __func__, buf); 4026 if (part_pagewr) 4027 bytes = min_t(int, bytes - column, writelen); 4028 wbuf = nand_get_data_buf(chip); 4029 memset(wbuf, 0xff, mtd->writesize); 4030 memcpy(&wbuf[column], buf, bytes); 4031 } 4032 4033 if (unlikely(oob)) { 4034 size_t len = min(oobwritelen, oobmaxlen); 4035 oob = nand_fill_oob(chip, oob, len, ops); 4036 oobwritelen -= len; 4037 } else { 4038 /* We still need to erase leftover OOB data */ 4039 memset(chip->oob_poi, 0xff, mtd->oobsize); 4040 } 4041 4042 ret = nand_write_page(chip, column, bytes, wbuf, 4043 oob_required, page, 4044 (ops->mode == MTD_OPS_RAW)); 4045 if (ret) 4046 break; 4047 4048 writelen -= bytes; 4049 if (!writelen) 4050 break; 4051 4052 column = 0; 4053 buf += bytes; 4054 realpage++; 4055 4056 page = realpage & chip->pagemask; 4057 /* Check, if we cross a chip boundary */ 4058 if (!page) { 4059 chipnr++; 4060 nand_deselect_target(chip); 4061 nand_select_target(chip, chipnr); 4062 } 4063 } 4064 4065 ops->retlen = ops->len - writelen; 4066 if (unlikely(oob)) 4067 ops->oobretlen = ops->ooblen; 4068 4069 err_out: 4070 nand_deselect_target(chip); 4071 return ret; 4072 } 4073 4074 /** 4075 * panic_nand_write - [MTD Interface] NAND write with ECC 4076 * @mtd: MTD device structure 4077 * @to: offset to write to 4078 * @len: number of bytes to write 4079 * @retlen: pointer to variable to store the number of written bytes 4080 * @buf: the data to write 4081 * 4082 * NAND write with ECC. Used when performing writes in interrupt context, this 4083 * may for example be called by mtdoops when writing an oops while in panic. 4084 */ 4085 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4086 size_t *retlen, const uint8_t *buf) 4087 { 4088 struct nand_chip *chip = mtd_to_nand(mtd); 4089 int chipnr = (int)(to >> chip->chip_shift); 4090 struct mtd_oob_ops ops; 4091 int ret; 4092 4093 nand_select_target(chip, chipnr); 4094 4095 /* Wait for the device to get ready */ 4096 panic_nand_wait(chip, 400); 4097 4098 memset(&ops, 0, sizeof(ops)); 4099 ops.len = len; 4100 ops.datbuf = (uint8_t *)buf; 4101 ops.mode = MTD_OPS_PLACE_OOB; 4102 4103 ret = nand_do_write_ops(chip, to, &ops); 4104 4105 *retlen = ops.retlen; 4106 return ret; 4107 } 4108 4109 /** 4110 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4111 * @mtd: MTD device structure 4112 * @to: offset to write to 4113 * @ops: oob operation description structure 4114 */ 4115 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4116 struct mtd_oob_ops *ops) 4117 { 4118 struct nand_chip *chip = mtd_to_nand(mtd); 4119 int ret; 4120 4121 ops->retlen = 0; 4122 4123 ret = nand_get_device(chip); 4124 if (ret) 4125 return ret; 4126 4127 switch (ops->mode) { 4128 case MTD_OPS_PLACE_OOB: 4129 case MTD_OPS_AUTO_OOB: 4130 case MTD_OPS_RAW: 4131 break; 4132 4133 default: 4134 goto out; 4135 } 4136 4137 if (!ops->datbuf) 4138 ret = nand_do_write_oob(chip, to, ops); 4139 else 4140 ret = nand_do_write_ops(chip, to, ops); 4141 4142 out: 4143 nand_release_device(chip); 4144 return ret; 4145 } 4146 4147 /** 4148 * nand_erase - [MTD Interface] erase block(s) 4149 * @mtd: MTD device structure 4150 * @instr: erase instruction 4151 * 4152 * Erase one ore more blocks. 4153 */ 4154 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4155 { 4156 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4157 } 4158 4159 /** 4160 * nand_erase_nand - [INTERN] erase block(s) 4161 * @chip: NAND chip object 4162 * @instr: erase instruction 4163 * @allowbbt: allow erasing the bbt area 4164 * 4165 * Erase one ore more blocks. 4166 */ 4167 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4168 int allowbbt) 4169 { 4170 int page, pages_per_block, ret, chipnr; 4171 loff_t len; 4172 4173 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4174 __func__, (unsigned long long)instr->addr, 4175 (unsigned long long)instr->len); 4176 4177 if (check_offs_len(chip, instr->addr, instr->len)) 4178 return -EINVAL; 4179 4180 /* Grab the lock and see if the device is available */ 4181 ret = nand_get_device(chip); 4182 if (ret) 4183 return ret; 4184 4185 /* Shift to get first page */ 4186 page = (int)(instr->addr >> chip->page_shift); 4187 chipnr = (int)(instr->addr >> chip->chip_shift); 4188 4189 /* Calculate pages in each block */ 4190 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4191 4192 /* Select the NAND device */ 4193 nand_select_target(chip, chipnr); 4194 4195 /* Check, if it is write protected */ 4196 if (nand_check_wp(chip)) { 4197 pr_debug("%s: device is write protected!\n", 4198 __func__); 4199 ret = -EIO; 4200 goto erase_exit; 4201 } 4202 4203 /* Loop through the pages */ 4204 len = instr->len; 4205 4206 while (len) { 4207 /* Check if we have a bad block, we do not erase bad blocks! */ 4208 if (nand_block_checkbad(chip, ((loff_t) page) << 4209 chip->page_shift, allowbbt)) { 4210 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4211 __func__, page); 4212 ret = -EIO; 4213 goto erase_exit; 4214 } 4215 4216 /* 4217 * Invalidate the page cache, if we erase the block which 4218 * contains the current cached page. 4219 */ 4220 if (page <= chip->pagecache.page && chip->pagecache.page < 4221 (page + pages_per_block)) 4222 chip->pagecache.page = -1; 4223 4224 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4225 (chip->phys_erase_shift - chip->page_shift)); 4226 if (ret) { 4227 pr_debug("%s: failed erase, page 0x%08x\n", 4228 __func__, page); 4229 instr->fail_addr = 4230 ((loff_t)page << chip->page_shift); 4231 goto erase_exit; 4232 } 4233 4234 /* Increment page address and decrement length */ 4235 len -= (1ULL << chip->phys_erase_shift); 4236 page += pages_per_block; 4237 4238 /* Check, if we cross a chip boundary */ 4239 if (len && !(page & chip->pagemask)) { 4240 chipnr++; 4241 nand_deselect_target(chip); 4242 nand_select_target(chip, chipnr); 4243 } 4244 } 4245 4246 ret = 0; 4247 erase_exit: 4248 4249 /* Deselect and wake up anyone waiting on the device */ 4250 nand_deselect_target(chip); 4251 nand_release_device(chip); 4252 4253 /* Return more or less happy */ 4254 return ret; 4255 } 4256 4257 /** 4258 * nand_sync - [MTD Interface] sync 4259 * @mtd: MTD device structure 4260 * 4261 * Sync is actually a wait for chip ready function. 4262 */ 4263 static void nand_sync(struct mtd_info *mtd) 4264 { 4265 struct nand_chip *chip = mtd_to_nand(mtd); 4266 4267 pr_debug("%s: called\n", __func__); 4268 4269 /* Grab the lock and see if the device is available */ 4270 WARN_ON(nand_get_device(chip)); 4271 /* Release it and go back */ 4272 nand_release_device(chip); 4273 } 4274 4275 /** 4276 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4277 * @mtd: MTD device structure 4278 * @offs: offset relative to mtd start 4279 */ 4280 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4281 { 4282 struct nand_chip *chip = mtd_to_nand(mtd); 4283 int chipnr = (int)(offs >> chip->chip_shift); 4284 int ret; 4285 4286 /* Select the NAND device */ 4287 ret = nand_get_device(chip); 4288 if (ret) 4289 return ret; 4290 4291 nand_select_target(chip, chipnr); 4292 4293 ret = nand_block_checkbad(chip, offs, 0); 4294 4295 nand_deselect_target(chip); 4296 nand_release_device(chip); 4297 4298 return ret; 4299 } 4300 4301 /** 4302 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4303 * @mtd: MTD device structure 4304 * @ofs: offset relative to mtd start 4305 */ 4306 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4307 { 4308 int ret; 4309 4310 ret = nand_block_isbad(mtd, ofs); 4311 if (ret) { 4312 /* If it was bad already, return success and do nothing */ 4313 if (ret > 0) 4314 return 0; 4315 return ret; 4316 } 4317 4318 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4319 } 4320 4321 /** 4322 * nand_suspend - [MTD Interface] Suspend the NAND flash 4323 * @mtd: MTD device structure 4324 */ 4325 static int nand_suspend(struct mtd_info *mtd) 4326 { 4327 struct nand_chip *chip = mtd_to_nand(mtd); 4328 4329 mutex_lock(&chip->lock); 4330 chip->suspended = 1; 4331 mutex_unlock(&chip->lock); 4332 4333 return 0; 4334 } 4335 4336 /** 4337 * nand_resume - [MTD Interface] Resume the NAND flash 4338 * @mtd: MTD device structure 4339 */ 4340 static void nand_resume(struct mtd_info *mtd) 4341 { 4342 struct nand_chip *chip = mtd_to_nand(mtd); 4343 4344 mutex_lock(&chip->lock); 4345 if (chip->suspended) 4346 chip->suspended = 0; 4347 else 4348 pr_err("%s called for a chip which is not in suspended state\n", 4349 __func__); 4350 mutex_unlock(&chip->lock); 4351 } 4352 4353 /** 4354 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4355 * prevent further operations 4356 * @mtd: MTD device structure 4357 */ 4358 static void nand_shutdown(struct mtd_info *mtd) 4359 { 4360 nand_suspend(mtd); 4361 } 4362 4363 /* Set default functions */ 4364 static void nand_set_defaults(struct nand_chip *chip) 4365 { 4366 /* If no controller is provided, use the dummy, legacy one. */ 4367 if (!chip->controller) { 4368 chip->controller = &chip->legacy.dummy_controller; 4369 nand_controller_init(chip->controller); 4370 } 4371 4372 nand_legacy_set_defaults(chip); 4373 4374 if (!chip->buf_align) 4375 chip->buf_align = 1; 4376 } 4377 4378 /* Sanitize ONFI strings so we can safely print them */ 4379 void sanitize_string(uint8_t *s, size_t len) 4380 { 4381 ssize_t i; 4382 4383 /* Null terminate */ 4384 s[len - 1] = 0; 4385 4386 /* Remove non printable chars */ 4387 for (i = 0; i < len - 1; i++) { 4388 if (s[i] < ' ' || s[i] > 127) 4389 s[i] = '?'; 4390 } 4391 4392 /* Remove trailing spaces */ 4393 strim(s); 4394 } 4395 4396 /* 4397 * nand_id_has_period - Check if an ID string has a given wraparound period 4398 * @id_data: the ID string 4399 * @arrlen: the length of the @id_data array 4400 * @period: the period of repitition 4401 * 4402 * Check if an ID string is repeated within a given sequence of bytes at 4403 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4404 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4405 * if the repetition has a period of @period; otherwise, returns zero. 4406 */ 4407 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4408 { 4409 int i, j; 4410 for (i = 0; i < period; i++) 4411 for (j = i + period; j < arrlen; j += period) 4412 if (id_data[i] != id_data[j]) 4413 return 0; 4414 return 1; 4415 } 4416 4417 /* 4418 * nand_id_len - Get the length of an ID string returned by CMD_READID 4419 * @id_data: the ID string 4420 * @arrlen: the length of the @id_data array 4421 4422 * Returns the length of the ID string, according to known wraparound/trailing 4423 * zero patterns. If no pattern exists, returns the length of the array. 4424 */ 4425 static int nand_id_len(u8 *id_data, int arrlen) 4426 { 4427 int last_nonzero, period; 4428 4429 /* Find last non-zero byte */ 4430 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4431 if (id_data[last_nonzero]) 4432 break; 4433 4434 /* All zeros */ 4435 if (last_nonzero < 0) 4436 return 0; 4437 4438 /* Calculate wraparound period */ 4439 for (period = 1; period < arrlen; period++) 4440 if (nand_id_has_period(id_data, arrlen, period)) 4441 break; 4442 4443 /* There's a repeated pattern */ 4444 if (period < arrlen) 4445 return period; 4446 4447 /* There are trailing zeros */ 4448 if (last_nonzero < arrlen - 1) 4449 return last_nonzero + 1; 4450 4451 /* No pattern detected */ 4452 return arrlen; 4453 } 4454 4455 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4456 static int nand_get_bits_per_cell(u8 cellinfo) 4457 { 4458 int bits; 4459 4460 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4461 bits >>= NAND_CI_CELLTYPE_SHIFT; 4462 return bits + 1; 4463 } 4464 4465 /* 4466 * Many new NAND share similar device ID codes, which represent the size of the 4467 * chip. The rest of the parameters must be decoded according to generic or 4468 * manufacturer-specific "extended ID" decoding patterns. 4469 */ 4470 void nand_decode_ext_id(struct nand_chip *chip) 4471 { 4472 struct nand_memory_organization *memorg; 4473 struct mtd_info *mtd = nand_to_mtd(chip); 4474 int extid; 4475 u8 *id_data = chip->id.data; 4476 4477 memorg = nanddev_get_memorg(&chip->base); 4478 4479 /* The 3rd id byte holds MLC / multichip data */ 4480 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4481 /* The 4th id byte is the important one */ 4482 extid = id_data[3]; 4483 4484 /* Calc pagesize */ 4485 memorg->pagesize = 1024 << (extid & 0x03); 4486 mtd->writesize = memorg->pagesize; 4487 extid >>= 2; 4488 /* Calc oobsize */ 4489 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4490 mtd->oobsize = memorg->oobsize; 4491 extid >>= 2; 4492 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4493 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4494 memorg->pagesize; 4495 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4496 extid >>= 2; 4497 /* Get buswidth information */ 4498 if (extid & 0x1) 4499 chip->options |= NAND_BUSWIDTH_16; 4500 } 4501 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4502 4503 /* 4504 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4505 * decodes a matching ID table entry and assigns the MTD size parameters for 4506 * the chip. 4507 */ 4508 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4509 { 4510 struct mtd_info *mtd = nand_to_mtd(chip); 4511 struct nand_memory_organization *memorg; 4512 4513 memorg = nanddev_get_memorg(&chip->base); 4514 4515 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4516 mtd->erasesize = type->erasesize; 4517 memorg->pagesize = type->pagesize; 4518 mtd->writesize = memorg->pagesize; 4519 memorg->oobsize = memorg->pagesize / 32; 4520 mtd->oobsize = memorg->oobsize; 4521 4522 /* All legacy ID NAND are small-page, SLC */ 4523 memorg->bits_per_cell = 1; 4524 } 4525 4526 /* 4527 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4528 * heuristic patterns using various detected parameters (e.g., manufacturer, 4529 * page size, cell-type information). 4530 */ 4531 static void nand_decode_bbm_options(struct nand_chip *chip) 4532 { 4533 struct mtd_info *mtd = nand_to_mtd(chip); 4534 4535 /* Set the bad block position */ 4536 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4537 chip->badblockpos = NAND_BBM_POS_LARGE; 4538 else 4539 chip->badblockpos = NAND_BBM_POS_SMALL; 4540 } 4541 4542 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4543 { 4544 return type->id_len; 4545 } 4546 4547 static bool find_full_id_nand(struct nand_chip *chip, 4548 struct nand_flash_dev *type) 4549 { 4550 struct mtd_info *mtd = nand_to_mtd(chip); 4551 struct nand_memory_organization *memorg; 4552 u8 *id_data = chip->id.data; 4553 4554 memorg = nanddev_get_memorg(&chip->base); 4555 4556 if (!strncmp(type->id, id_data, type->id_len)) { 4557 memorg->pagesize = type->pagesize; 4558 mtd->writesize = memorg->pagesize; 4559 memorg->pages_per_eraseblock = type->erasesize / 4560 type->pagesize; 4561 mtd->erasesize = type->erasesize; 4562 memorg->oobsize = type->oobsize; 4563 mtd->oobsize = memorg->oobsize; 4564 4565 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4566 memorg->eraseblocks_per_lun = 4567 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4568 memorg->pagesize * 4569 memorg->pages_per_eraseblock); 4570 chip->options |= type->options; 4571 chip->base.eccreq.strength = NAND_ECC_STRENGTH(type); 4572 chip->base.eccreq.step_size = NAND_ECC_STEP(type); 4573 chip->onfi_timing_mode_default = 4574 type->onfi_timing_mode_default; 4575 4576 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4577 if (!chip->parameters.model) 4578 return false; 4579 4580 return true; 4581 } 4582 return false; 4583 } 4584 4585 /* 4586 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4587 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4588 * table. 4589 */ 4590 static void nand_manufacturer_detect(struct nand_chip *chip) 4591 { 4592 /* 4593 * Try manufacturer detection if available and use 4594 * nand_decode_ext_id() otherwise. 4595 */ 4596 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4597 chip->manufacturer.desc->ops->detect) { 4598 struct nand_memory_organization *memorg; 4599 4600 memorg = nanddev_get_memorg(&chip->base); 4601 4602 /* The 3rd id byte holds MLC / multichip data */ 4603 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4604 chip->manufacturer.desc->ops->detect(chip); 4605 } else { 4606 nand_decode_ext_id(chip); 4607 } 4608 } 4609 4610 /* 4611 * Manufacturer initialization. This function is called for all NANDs including 4612 * ONFI and JEDEC compliant ones. 4613 * Manufacturer drivers should put all their specific initialization code in 4614 * their ->init() hook. 4615 */ 4616 static int nand_manufacturer_init(struct nand_chip *chip) 4617 { 4618 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4619 !chip->manufacturer.desc->ops->init) 4620 return 0; 4621 4622 return chip->manufacturer.desc->ops->init(chip); 4623 } 4624 4625 /* 4626 * Manufacturer cleanup. This function is called for all NANDs including 4627 * ONFI and JEDEC compliant ones. 4628 * Manufacturer drivers should put all their specific cleanup code in their 4629 * ->cleanup() hook. 4630 */ 4631 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4632 { 4633 /* Release manufacturer private data */ 4634 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4635 chip->manufacturer.desc->ops->cleanup) 4636 chip->manufacturer.desc->ops->cleanup(chip); 4637 } 4638 4639 static const char * 4640 nand_manufacturer_name(const struct nand_manufacturer *manufacturer) 4641 { 4642 return manufacturer ? manufacturer->name : "Unknown"; 4643 } 4644 4645 /* 4646 * Get the flash and manufacturer id and lookup if the type is supported. 4647 */ 4648 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4649 { 4650 const struct nand_manufacturer *manufacturer; 4651 struct mtd_info *mtd = nand_to_mtd(chip); 4652 struct nand_memory_organization *memorg; 4653 int busw, ret; 4654 u8 *id_data = chip->id.data; 4655 u8 maf_id, dev_id; 4656 u64 targetsize; 4657 4658 /* 4659 * Let's start by initializing memorg fields that might be left 4660 * unassigned by the ID-based detection logic. 4661 */ 4662 memorg = nanddev_get_memorg(&chip->base); 4663 memorg->planes_per_lun = 1; 4664 memorg->luns_per_target = 1; 4665 4666 /* 4667 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4668 * after power-up. 4669 */ 4670 ret = nand_reset(chip, 0); 4671 if (ret) 4672 return ret; 4673 4674 /* Select the device */ 4675 nand_select_target(chip, 0); 4676 4677 /* Send the command for reading device ID */ 4678 ret = nand_readid_op(chip, 0, id_data, 2); 4679 if (ret) 4680 return ret; 4681 4682 /* Read manufacturer and device IDs */ 4683 maf_id = id_data[0]; 4684 dev_id = id_data[1]; 4685 4686 /* 4687 * Try again to make sure, as some systems the bus-hold or other 4688 * interface concerns can cause random data which looks like a 4689 * possibly credible NAND flash to appear. If the two results do 4690 * not match, ignore the device completely. 4691 */ 4692 4693 /* Read entire ID string */ 4694 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4695 if (ret) 4696 return ret; 4697 4698 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4699 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4700 maf_id, dev_id, id_data[0], id_data[1]); 4701 return -ENODEV; 4702 } 4703 4704 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4705 4706 /* Try to identify manufacturer */ 4707 manufacturer = nand_get_manufacturer(maf_id); 4708 chip->manufacturer.desc = manufacturer; 4709 4710 if (!type) 4711 type = nand_flash_ids; 4712 4713 /* 4714 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4715 * override it. 4716 * This is required to make sure initial NAND bus width set by the 4717 * NAND controller driver is coherent with the real NAND bus width 4718 * (extracted by auto-detection code). 4719 */ 4720 busw = chip->options & NAND_BUSWIDTH_16; 4721 4722 /* 4723 * The flag is only set (never cleared), reset it to its default value 4724 * before starting auto-detection. 4725 */ 4726 chip->options &= ~NAND_BUSWIDTH_16; 4727 4728 for (; type->name != NULL; type++) { 4729 if (is_full_id_nand(type)) { 4730 if (find_full_id_nand(chip, type)) 4731 goto ident_done; 4732 } else if (dev_id == type->dev_id) { 4733 break; 4734 } 4735 } 4736 4737 if (!type->name || !type->pagesize) { 4738 /* Check if the chip is ONFI compliant */ 4739 ret = nand_onfi_detect(chip); 4740 if (ret < 0) 4741 return ret; 4742 else if (ret) 4743 goto ident_done; 4744 4745 /* Check if the chip is JEDEC compliant */ 4746 ret = nand_jedec_detect(chip); 4747 if (ret < 0) 4748 return ret; 4749 else if (ret) 4750 goto ident_done; 4751 } 4752 4753 if (!type->name) 4754 return -ENODEV; 4755 4756 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4757 if (!chip->parameters.model) 4758 return -ENOMEM; 4759 4760 if (!type->pagesize) 4761 nand_manufacturer_detect(chip); 4762 else 4763 nand_decode_id(chip, type); 4764 4765 /* Get chip options */ 4766 chip->options |= type->options; 4767 4768 memorg->eraseblocks_per_lun = 4769 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4770 memorg->pagesize * 4771 memorg->pages_per_eraseblock); 4772 4773 ident_done: 4774 if (!mtd->name) 4775 mtd->name = chip->parameters.model; 4776 4777 if (chip->options & NAND_BUSWIDTH_AUTO) { 4778 WARN_ON(busw & NAND_BUSWIDTH_16); 4779 nand_set_defaults(chip); 4780 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4781 /* 4782 * Check, if buswidth is correct. Hardware drivers should set 4783 * chip correct! 4784 */ 4785 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4786 maf_id, dev_id); 4787 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4788 mtd->name); 4789 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4790 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4791 ret = -EINVAL; 4792 4793 goto free_detect_allocation; 4794 } 4795 4796 nand_decode_bbm_options(chip); 4797 4798 /* Calculate the address shift from the page size */ 4799 chip->page_shift = ffs(mtd->writesize) - 1; 4800 /* Convert chipsize to number of pages per chip -1 */ 4801 targetsize = nanddev_target_size(&chip->base); 4802 chip->pagemask = (targetsize >> chip->page_shift) - 1; 4803 4804 chip->bbt_erase_shift = chip->phys_erase_shift = 4805 ffs(mtd->erasesize) - 1; 4806 if (targetsize & 0xffffffff) 4807 chip->chip_shift = ffs((unsigned)targetsize) - 1; 4808 else { 4809 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 4810 chip->chip_shift += 32 - 1; 4811 } 4812 4813 if (chip->chip_shift - chip->page_shift > 16) 4814 chip->options |= NAND_ROW_ADDR_3; 4815 4816 chip->badblockbits = 8; 4817 4818 nand_legacy_adjust_cmdfunc(chip); 4819 4820 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4821 maf_id, dev_id); 4822 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4823 chip->parameters.model); 4824 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 4825 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 4826 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 4827 return 0; 4828 4829 free_detect_allocation: 4830 kfree(chip->parameters.model); 4831 4832 return ret; 4833 } 4834 4835 static const char * const nand_ecc_modes[] = { 4836 [NAND_ECC_NONE] = "none", 4837 [NAND_ECC_SOFT] = "soft", 4838 [NAND_ECC_HW] = "hw", 4839 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 4840 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", 4841 [NAND_ECC_ON_DIE] = "on-die", 4842 }; 4843 4844 static int of_get_nand_ecc_mode(struct device_node *np) 4845 { 4846 const char *pm; 4847 int err, i; 4848 4849 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4850 if (err < 0) 4851 return err; 4852 4853 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) 4854 if (!strcasecmp(pm, nand_ecc_modes[i])) 4855 return i; 4856 4857 /* 4858 * For backward compatibility we support few obsoleted values that don't 4859 * have their mappings into nand_ecc_modes_t anymore (they were merged 4860 * with other enums). 4861 */ 4862 if (!strcasecmp(pm, "soft_bch")) 4863 return NAND_ECC_SOFT; 4864 4865 return -ENODEV; 4866 } 4867 4868 static const char * const nand_ecc_algos[] = { 4869 [NAND_ECC_HAMMING] = "hamming", 4870 [NAND_ECC_BCH] = "bch", 4871 [NAND_ECC_RS] = "rs", 4872 }; 4873 4874 static int of_get_nand_ecc_algo(struct device_node *np) 4875 { 4876 const char *pm; 4877 int err, i; 4878 4879 err = of_property_read_string(np, "nand-ecc-algo", &pm); 4880 if (!err) { 4881 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) 4882 if (!strcasecmp(pm, nand_ecc_algos[i])) 4883 return i; 4884 return -ENODEV; 4885 } 4886 4887 /* 4888 * For backward compatibility we also read "nand-ecc-mode" checking 4889 * for some obsoleted values that were specifying ECC algorithm. 4890 */ 4891 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4892 if (err < 0) 4893 return err; 4894 4895 if (!strcasecmp(pm, "soft")) 4896 return NAND_ECC_HAMMING; 4897 else if (!strcasecmp(pm, "soft_bch")) 4898 return NAND_ECC_BCH; 4899 4900 return -ENODEV; 4901 } 4902 4903 static int of_get_nand_ecc_step_size(struct device_node *np) 4904 { 4905 int ret; 4906 u32 val; 4907 4908 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 4909 return ret ? ret : val; 4910 } 4911 4912 static int of_get_nand_ecc_strength(struct device_node *np) 4913 { 4914 int ret; 4915 u32 val; 4916 4917 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 4918 return ret ? ret : val; 4919 } 4920 4921 static int of_get_nand_bus_width(struct device_node *np) 4922 { 4923 u32 val; 4924 4925 if (of_property_read_u32(np, "nand-bus-width", &val)) 4926 return 8; 4927 4928 switch (val) { 4929 case 8: 4930 case 16: 4931 return val; 4932 default: 4933 return -EIO; 4934 } 4935 } 4936 4937 static bool of_get_nand_on_flash_bbt(struct device_node *np) 4938 { 4939 return of_property_read_bool(np, "nand-on-flash-bbt"); 4940 } 4941 4942 static int nand_dt_init(struct nand_chip *chip) 4943 { 4944 struct device_node *dn = nand_get_flash_node(chip); 4945 int ecc_mode, ecc_algo, ecc_strength, ecc_step; 4946 4947 if (!dn) 4948 return 0; 4949 4950 if (of_get_nand_bus_width(dn) == 16) 4951 chip->options |= NAND_BUSWIDTH_16; 4952 4953 if (of_property_read_bool(dn, "nand-is-boot-medium")) 4954 chip->options |= NAND_IS_BOOT_MEDIUM; 4955 4956 if (of_get_nand_on_flash_bbt(dn)) 4957 chip->bbt_options |= NAND_BBT_USE_FLASH; 4958 4959 ecc_mode = of_get_nand_ecc_mode(dn); 4960 ecc_algo = of_get_nand_ecc_algo(dn); 4961 ecc_strength = of_get_nand_ecc_strength(dn); 4962 ecc_step = of_get_nand_ecc_step_size(dn); 4963 4964 if (ecc_mode >= 0) 4965 chip->ecc.mode = ecc_mode; 4966 4967 if (ecc_algo >= 0) 4968 chip->ecc.algo = ecc_algo; 4969 4970 if (ecc_strength >= 0) 4971 chip->ecc.strength = ecc_strength; 4972 4973 if (ecc_step > 0) 4974 chip->ecc.size = ecc_step; 4975 4976 if (of_property_read_bool(dn, "nand-ecc-maximize")) 4977 chip->ecc.options |= NAND_ECC_MAXIMIZE; 4978 4979 return 0; 4980 } 4981 4982 /** 4983 * nand_scan_ident - Scan for the NAND device 4984 * @chip: NAND chip object 4985 * @maxchips: number of chips to scan for 4986 * @table: alternative NAND ID table 4987 * 4988 * This is the first phase of the normal nand_scan() function. It reads the 4989 * flash ID and sets up MTD fields accordingly. 4990 * 4991 * This helper used to be called directly from controller drivers that needed 4992 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 4993 * prevented dynamic allocations during this phase which was unconvenient and 4994 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 4995 */ 4996 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 4997 struct nand_flash_dev *table) 4998 { 4999 struct mtd_info *mtd = nand_to_mtd(chip); 5000 struct nand_memory_organization *memorg; 5001 int nand_maf_id, nand_dev_id; 5002 unsigned int i; 5003 int ret; 5004 5005 memorg = nanddev_get_memorg(&chip->base); 5006 5007 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5008 chip->cur_cs = -1; 5009 5010 mutex_init(&chip->lock); 5011 5012 /* Enforce the right timings for reset/detection */ 5013 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 5014 5015 ret = nand_dt_init(chip); 5016 if (ret) 5017 return ret; 5018 5019 if (!mtd->name && mtd->dev.parent) 5020 mtd->name = dev_name(mtd->dev.parent); 5021 5022 /* Set the default functions */ 5023 nand_set_defaults(chip); 5024 5025 ret = nand_legacy_check_hooks(chip); 5026 if (ret) 5027 return ret; 5028 5029 memorg->ntargets = maxchips; 5030 5031 /* Read the flash type */ 5032 ret = nand_detect(chip, table); 5033 if (ret) { 5034 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5035 pr_warn("No NAND device found\n"); 5036 nand_deselect_target(chip); 5037 return ret; 5038 } 5039 5040 nand_maf_id = chip->id.data[0]; 5041 nand_dev_id = chip->id.data[1]; 5042 5043 nand_deselect_target(chip); 5044 5045 /* Check for a chip array */ 5046 for (i = 1; i < maxchips; i++) { 5047 u8 id[2]; 5048 5049 /* See comment in nand_get_flash_type for reset */ 5050 ret = nand_reset(chip, i); 5051 if (ret) 5052 break; 5053 5054 nand_select_target(chip, i); 5055 /* Send the command for reading device ID */ 5056 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5057 if (ret) 5058 break; 5059 /* Read manufacturer and device IDs */ 5060 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5061 nand_deselect_target(chip); 5062 break; 5063 } 5064 nand_deselect_target(chip); 5065 } 5066 if (i > 1) 5067 pr_info("%d chips detected\n", i); 5068 5069 /* Store the number of chips and calc total size for mtd */ 5070 memorg->ntargets = i; 5071 mtd->size = i * nanddev_target_size(&chip->base); 5072 5073 return 0; 5074 } 5075 5076 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5077 { 5078 kfree(chip->parameters.model); 5079 kfree(chip->parameters.onfi); 5080 } 5081 5082 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5083 { 5084 struct mtd_info *mtd = nand_to_mtd(chip); 5085 struct nand_ecc_ctrl *ecc = &chip->ecc; 5086 5087 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 5088 return -EINVAL; 5089 5090 switch (ecc->algo) { 5091 case NAND_ECC_HAMMING: 5092 ecc->calculate = nand_calculate_ecc; 5093 ecc->correct = nand_correct_data; 5094 ecc->read_page = nand_read_page_swecc; 5095 ecc->read_subpage = nand_read_subpage; 5096 ecc->write_page = nand_write_page_swecc; 5097 ecc->read_page_raw = nand_read_page_raw; 5098 ecc->write_page_raw = nand_write_page_raw; 5099 ecc->read_oob = nand_read_oob_std; 5100 ecc->write_oob = nand_write_oob_std; 5101 if (!ecc->size) 5102 ecc->size = 256; 5103 ecc->bytes = 3; 5104 ecc->strength = 1; 5105 5106 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5107 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5108 5109 return 0; 5110 case NAND_ECC_BCH: 5111 if (!mtd_nand_has_bch()) { 5112 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5113 return -EINVAL; 5114 } 5115 ecc->calculate = nand_bch_calculate_ecc; 5116 ecc->correct = nand_bch_correct_data; 5117 ecc->read_page = nand_read_page_swecc; 5118 ecc->read_subpage = nand_read_subpage; 5119 ecc->write_page = nand_write_page_swecc; 5120 ecc->read_page_raw = nand_read_page_raw; 5121 ecc->write_page_raw = nand_write_page_raw; 5122 ecc->read_oob = nand_read_oob_std; 5123 ecc->write_oob = nand_write_oob_std; 5124 5125 /* 5126 * Board driver should supply ecc.size and ecc.strength 5127 * values to select how many bits are correctable. 5128 * Otherwise, default to 4 bits for large page devices. 5129 */ 5130 if (!ecc->size && (mtd->oobsize >= 64)) { 5131 ecc->size = 512; 5132 ecc->strength = 4; 5133 } 5134 5135 /* 5136 * if no ecc placement scheme was provided pickup the default 5137 * large page one. 5138 */ 5139 if (!mtd->ooblayout) { 5140 /* handle large page devices only */ 5141 if (mtd->oobsize < 64) { 5142 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 5143 return -EINVAL; 5144 } 5145 5146 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 5147 5148 } 5149 5150 /* 5151 * We can only maximize ECC config when the default layout is 5152 * used, otherwise we don't know how many bytes can really be 5153 * used. 5154 */ 5155 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 5156 ecc->options & NAND_ECC_MAXIMIZE) { 5157 int steps, bytes; 5158 5159 /* Always prefer 1k blocks over 512bytes ones */ 5160 ecc->size = 1024; 5161 steps = mtd->writesize / ecc->size; 5162 5163 /* Reserve 2 bytes for the BBM */ 5164 bytes = (mtd->oobsize - 2) / steps; 5165 ecc->strength = bytes * 8 / fls(8 * ecc->size); 5166 } 5167 5168 /* See nand_bch_init() for details. */ 5169 ecc->bytes = 0; 5170 ecc->priv = nand_bch_init(mtd); 5171 if (!ecc->priv) { 5172 WARN(1, "BCH ECC initialization failed!\n"); 5173 return -EINVAL; 5174 } 5175 return 0; 5176 default: 5177 WARN(1, "Unsupported ECC algorithm!\n"); 5178 return -EINVAL; 5179 } 5180 } 5181 5182 /** 5183 * nand_check_ecc_caps - check the sanity of preset ECC settings 5184 * @chip: nand chip info structure 5185 * @caps: ECC caps info structure 5186 * @oobavail: OOB size that the ECC engine can use 5187 * 5188 * When ECC step size and strength are already set, check if they are supported 5189 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5190 * On success, the calculated ECC bytes is set. 5191 */ 5192 static int 5193 nand_check_ecc_caps(struct nand_chip *chip, 5194 const struct nand_ecc_caps *caps, int oobavail) 5195 { 5196 struct mtd_info *mtd = nand_to_mtd(chip); 5197 const struct nand_ecc_step_info *stepinfo; 5198 int preset_step = chip->ecc.size; 5199 int preset_strength = chip->ecc.strength; 5200 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5201 int i, j; 5202 5203 for (i = 0; i < caps->nstepinfos; i++) { 5204 stepinfo = &caps->stepinfos[i]; 5205 5206 if (stepinfo->stepsize != preset_step) 5207 continue; 5208 5209 for (j = 0; j < stepinfo->nstrengths; j++) { 5210 if (stepinfo->strengths[j] != preset_strength) 5211 continue; 5212 5213 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5214 preset_strength); 5215 if (WARN_ON_ONCE(ecc_bytes < 0)) 5216 return ecc_bytes; 5217 5218 if (ecc_bytes * nsteps > oobavail) { 5219 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5220 preset_step, preset_strength); 5221 return -ENOSPC; 5222 } 5223 5224 chip->ecc.bytes = ecc_bytes; 5225 5226 return 0; 5227 } 5228 } 5229 5230 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5231 preset_step, preset_strength); 5232 5233 return -ENOTSUPP; 5234 } 5235 5236 /** 5237 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5238 * @chip: nand chip info structure 5239 * @caps: ECC engine caps info structure 5240 * @oobavail: OOB size that the ECC engine can use 5241 * 5242 * If a chip's ECC requirement is provided, try to meet it with the least 5243 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5244 * On success, the chosen ECC settings are set. 5245 */ 5246 static int 5247 nand_match_ecc_req(struct nand_chip *chip, 5248 const struct nand_ecc_caps *caps, int oobavail) 5249 { 5250 struct mtd_info *mtd = nand_to_mtd(chip); 5251 const struct nand_ecc_step_info *stepinfo; 5252 int req_step = chip->base.eccreq.step_size; 5253 int req_strength = chip->base.eccreq.strength; 5254 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5255 int best_step, best_strength, best_ecc_bytes; 5256 int best_ecc_bytes_total = INT_MAX; 5257 int i, j; 5258 5259 /* No information provided by the NAND chip */ 5260 if (!req_step || !req_strength) 5261 return -ENOTSUPP; 5262 5263 /* number of correctable bits the chip requires in a page */ 5264 req_corr = mtd->writesize / req_step * req_strength; 5265 5266 for (i = 0; i < caps->nstepinfos; i++) { 5267 stepinfo = &caps->stepinfos[i]; 5268 step_size = stepinfo->stepsize; 5269 5270 for (j = 0; j < stepinfo->nstrengths; j++) { 5271 strength = stepinfo->strengths[j]; 5272 5273 /* 5274 * If both step size and strength are smaller than the 5275 * chip's requirement, it is not easy to compare the 5276 * resulted reliability. 5277 */ 5278 if (step_size < req_step && strength < req_strength) 5279 continue; 5280 5281 if (mtd->writesize % step_size) 5282 continue; 5283 5284 nsteps = mtd->writesize / step_size; 5285 5286 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5287 if (WARN_ON_ONCE(ecc_bytes < 0)) 5288 continue; 5289 ecc_bytes_total = ecc_bytes * nsteps; 5290 5291 if (ecc_bytes_total > oobavail || 5292 strength * nsteps < req_corr) 5293 continue; 5294 5295 /* 5296 * We assume the best is to meet the chip's requrement 5297 * with the least number of ECC bytes. 5298 */ 5299 if (ecc_bytes_total < best_ecc_bytes_total) { 5300 best_ecc_bytes_total = ecc_bytes_total; 5301 best_step = step_size; 5302 best_strength = strength; 5303 best_ecc_bytes = ecc_bytes; 5304 } 5305 } 5306 } 5307 5308 if (best_ecc_bytes_total == INT_MAX) 5309 return -ENOTSUPP; 5310 5311 chip->ecc.size = best_step; 5312 chip->ecc.strength = best_strength; 5313 chip->ecc.bytes = best_ecc_bytes; 5314 5315 return 0; 5316 } 5317 5318 /** 5319 * nand_maximize_ecc - choose the max ECC strength available 5320 * @chip: nand chip info structure 5321 * @caps: ECC engine caps info structure 5322 * @oobavail: OOB size that the ECC engine can use 5323 * 5324 * Choose the max ECC strength that is supported on the controller, and can fit 5325 * within the chip's OOB. On success, the chosen ECC settings are set. 5326 */ 5327 static int 5328 nand_maximize_ecc(struct nand_chip *chip, 5329 const struct nand_ecc_caps *caps, int oobavail) 5330 { 5331 struct mtd_info *mtd = nand_to_mtd(chip); 5332 const struct nand_ecc_step_info *stepinfo; 5333 int step_size, strength, nsteps, ecc_bytes, corr; 5334 int best_corr = 0; 5335 int best_step = 0; 5336 int best_strength, best_ecc_bytes; 5337 int i, j; 5338 5339 for (i = 0; i < caps->nstepinfos; i++) { 5340 stepinfo = &caps->stepinfos[i]; 5341 step_size = stepinfo->stepsize; 5342 5343 /* If chip->ecc.size is already set, respect it */ 5344 if (chip->ecc.size && step_size != chip->ecc.size) 5345 continue; 5346 5347 for (j = 0; j < stepinfo->nstrengths; j++) { 5348 strength = stepinfo->strengths[j]; 5349 5350 if (mtd->writesize % step_size) 5351 continue; 5352 5353 nsteps = mtd->writesize / step_size; 5354 5355 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5356 if (WARN_ON_ONCE(ecc_bytes < 0)) 5357 continue; 5358 5359 if (ecc_bytes * nsteps > oobavail) 5360 continue; 5361 5362 corr = strength * nsteps; 5363 5364 /* 5365 * If the number of correctable bits is the same, 5366 * bigger step_size has more reliability. 5367 */ 5368 if (corr > best_corr || 5369 (corr == best_corr && step_size > best_step)) { 5370 best_corr = corr; 5371 best_step = step_size; 5372 best_strength = strength; 5373 best_ecc_bytes = ecc_bytes; 5374 } 5375 } 5376 } 5377 5378 if (!best_corr) 5379 return -ENOTSUPP; 5380 5381 chip->ecc.size = best_step; 5382 chip->ecc.strength = best_strength; 5383 chip->ecc.bytes = best_ecc_bytes; 5384 5385 return 0; 5386 } 5387 5388 /** 5389 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5390 * @chip: nand chip info structure 5391 * @caps: ECC engine caps info structure 5392 * @oobavail: OOB size that the ECC engine can use 5393 * 5394 * Choose the ECC configuration according to following logic 5395 * 5396 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5397 * then check if it is supported by this controller. 5398 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. 5399 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5400 * to the chip's requirement. If available OOB size can't fit the chip 5401 * requirement then fallback to the maximum ECC step size and ECC strength. 5402 * 5403 * On success, the chosen ECC settings are set. 5404 */ 5405 int nand_ecc_choose_conf(struct nand_chip *chip, 5406 const struct nand_ecc_caps *caps, int oobavail) 5407 { 5408 struct mtd_info *mtd = nand_to_mtd(chip); 5409 5410 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5411 return -EINVAL; 5412 5413 if (chip->ecc.size && chip->ecc.strength) 5414 return nand_check_ecc_caps(chip, caps, oobavail); 5415 5416 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 5417 return nand_maximize_ecc(chip, caps, oobavail); 5418 5419 if (!nand_match_ecc_req(chip, caps, oobavail)) 5420 return 0; 5421 5422 return nand_maximize_ecc(chip, caps, oobavail); 5423 } 5424 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5425 5426 /* 5427 * Check if the chip configuration meet the datasheet requirements. 5428 5429 * If our configuration corrects A bits per B bytes and the minimum 5430 * required correction level is X bits per Y bytes, then we must ensure 5431 * both of the following are true: 5432 * 5433 * (1) A / B >= X / Y 5434 * (2) A >= X 5435 * 5436 * Requirement (1) ensures we can correct for the required bitflip density. 5437 * Requirement (2) ensures we can correct even when all bitflips are clumped 5438 * in the same sector. 5439 */ 5440 static bool nand_ecc_strength_good(struct nand_chip *chip) 5441 { 5442 struct mtd_info *mtd = nand_to_mtd(chip); 5443 struct nand_ecc_ctrl *ecc = &chip->ecc; 5444 int corr, ds_corr; 5445 5446 if (ecc->size == 0 || chip->base.eccreq.step_size == 0) 5447 /* Not enough information */ 5448 return true; 5449 5450 /* 5451 * We get the number of corrected bits per page to compare 5452 * the correction density. 5453 */ 5454 corr = (mtd->writesize * ecc->strength) / ecc->size; 5455 ds_corr = (mtd->writesize * chip->base.eccreq.strength) / 5456 chip->base.eccreq.step_size; 5457 5458 return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength; 5459 } 5460 5461 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 5462 { 5463 struct nand_chip *chip = container_of(nand, struct nand_chip, 5464 base); 5465 unsigned int eb = nanddev_pos_to_row(nand, pos); 5466 int ret; 5467 5468 eb >>= nand->rowconv.eraseblock_addr_shift; 5469 5470 nand_select_target(chip, pos->target); 5471 ret = nand_erase_op(chip, eb); 5472 nand_deselect_target(chip); 5473 5474 return ret; 5475 } 5476 5477 static int rawnand_markbad(struct nand_device *nand, 5478 const struct nand_pos *pos) 5479 { 5480 struct nand_chip *chip = container_of(nand, struct nand_chip, 5481 base); 5482 5483 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5484 } 5485 5486 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 5487 { 5488 struct nand_chip *chip = container_of(nand, struct nand_chip, 5489 base); 5490 int ret; 5491 5492 nand_select_target(chip, pos->target); 5493 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5494 nand_deselect_target(chip); 5495 5496 return ret; 5497 } 5498 5499 static const struct nand_ops rawnand_ops = { 5500 .erase = rawnand_erase, 5501 .markbad = rawnand_markbad, 5502 .isbad = rawnand_isbad, 5503 }; 5504 5505 /** 5506 * nand_scan_tail - Scan for the NAND device 5507 * @chip: NAND chip object 5508 * 5509 * This is the second phase of the normal nand_scan() function. It fills out 5510 * all the uninitialized function pointers with the defaults and scans for a 5511 * bad block table if appropriate. 5512 */ 5513 static int nand_scan_tail(struct nand_chip *chip) 5514 { 5515 struct mtd_info *mtd = nand_to_mtd(chip); 5516 struct nand_ecc_ctrl *ecc = &chip->ecc; 5517 int ret, i; 5518 5519 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5520 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5521 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5522 return -EINVAL; 5523 } 5524 5525 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5526 if (!chip->data_buf) 5527 return -ENOMEM; 5528 5529 /* 5530 * FIXME: some NAND manufacturer drivers expect the first die to be 5531 * selected when manufacturer->init() is called. They should be fixed 5532 * to explictly select the relevant die when interacting with the NAND 5533 * chip. 5534 */ 5535 nand_select_target(chip, 0); 5536 ret = nand_manufacturer_init(chip); 5537 nand_deselect_target(chip); 5538 if (ret) 5539 goto err_free_buf; 5540 5541 /* Set the internal oob buffer location, just after the page data */ 5542 chip->oob_poi = chip->data_buf + mtd->writesize; 5543 5544 /* 5545 * If no default placement scheme is given, select an appropriate one. 5546 */ 5547 if (!mtd->ooblayout && 5548 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 5549 switch (mtd->oobsize) { 5550 case 8: 5551 case 16: 5552 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 5553 break; 5554 case 64: 5555 case 128: 5556 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 5557 break; 5558 default: 5559 /* 5560 * Expose the whole OOB area to users if ECC_NONE 5561 * is passed. We could do that for all kind of 5562 * ->oobsize, but we must keep the old large/small 5563 * page with ECC layout when ->oobsize <= 128 for 5564 * compatibility reasons. 5565 */ 5566 if (ecc->mode == NAND_ECC_NONE) { 5567 mtd_set_ooblayout(mtd, 5568 &nand_ooblayout_lp_ops); 5569 break; 5570 } 5571 5572 WARN(1, "No oob scheme defined for oobsize %d\n", 5573 mtd->oobsize); 5574 ret = -EINVAL; 5575 goto err_nand_manuf_cleanup; 5576 } 5577 } 5578 5579 /* 5580 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5581 * selected and we have 256 byte pagesize fallback to software ECC 5582 */ 5583 5584 switch (ecc->mode) { 5585 case NAND_ECC_HW_OOB_FIRST: 5586 /* Similar to NAND_ECC_HW, but a separate read_page handle */ 5587 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { 5588 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5589 ret = -EINVAL; 5590 goto err_nand_manuf_cleanup; 5591 } 5592 if (!ecc->read_page) 5593 ecc->read_page = nand_read_page_hwecc_oob_first; 5594 /* fall through */ 5595 5596 case NAND_ECC_HW: 5597 /* Use standard hwecc read page function? */ 5598 if (!ecc->read_page) 5599 ecc->read_page = nand_read_page_hwecc; 5600 if (!ecc->write_page) 5601 ecc->write_page = nand_write_page_hwecc; 5602 if (!ecc->read_page_raw) 5603 ecc->read_page_raw = nand_read_page_raw; 5604 if (!ecc->write_page_raw) 5605 ecc->write_page_raw = nand_write_page_raw; 5606 if (!ecc->read_oob) 5607 ecc->read_oob = nand_read_oob_std; 5608 if (!ecc->write_oob) 5609 ecc->write_oob = nand_write_oob_std; 5610 if (!ecc->read_subpage) 5611 ecc->read_subpage = nand_read_subpage; 5612 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5613 ecc->write_subpage = nand_write_subpage_hwecc; 5614 /* fall through */ 5615 5616 case NAND_ECC_HW_SYNDROME: 5617 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5618 (!ecc->read_page || 5619 ecc->read_page == nand_read_page_hwecc || 5620 !ecc->write_page || 5621 ecc->write_page == nand_write_page_hwecc)) { 5622 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5623 ret = -EINVAL; 5624 goto err_nand_manuf_cleanup; 5625 } 5626 /* Use standard syndrome read/write page function? */ 5627 if (!ecc->read_page) 5628 ecc->read_page = nand_read_page_syndrome; 5629 if (!ecc->write_page) 5630 ecc->write_page = nand_write_page_syndrome; 5631 if (!ecc->read_page_raw) 5632 ecc->read_page_raw = nand_read_page_raw_syndrome; 5633 if (!ecc->write_page_raw) 5634 ecc->write_page_raw = nand_write_page_raw_syndrome; 5635 if (!ecc->read_oob) 5636 ecc->read_oob = nand_read_oob_syndrome; 5637 if (!ecc->write_oob) 5638 ecc->write_oob = nand_write_oob_syndrome; 5639 5640 if (mtd->writesize >= ecc->size) { 5641 if (!ecc->strength) { 5642 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5643 ret = -EINVAL; 5644 goto err_nand_manuf_cleanup; 5645 } 5646 break; 5647 } 5648 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5649 ecc->size, mtd->writesize); 5650 ecc->mode = NAND_ECC_SOFT; 5651 ecc->algo = NAND_ECC_HAMMING; 5652 /* fall through */ 5653 5654 case NAND_ECC_SOFT: 5655 ret = nand_set_ecc_soft_ops(chip); 5656 if (ret) { 5657 ret = -EINVAL; 5658 goto err_nand_manuf_cleanup; 5659 } 5660 break; 5661 5662 case NAND_ECC_ON_DIE: 5663 if (!ecc->read_page || !ecc->write_page) { 5664 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5665 ret = -EINVAL; 5666 goto err_nand_manuf_cleanup; 5667 } 5668 if (!ecc->read_oob) 5669 ecc->read_oob = nand_read_oob_std; 5670 if (!ecc->write_oob) 5671 ecc->write_oob = nand_write_oob_std; 5672 break; 5673 5674 case NAND_ECC_NONE: 5675 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 5676 ecc->read_page = nand_read_page_raw; 5677 ecc->write_page = nand_write_page_raw; 5678 ecc->read_oob = nand_read_oob_std; 5679 ecc->read_page_raw = nand_read_page_raw; 5680 ecc->write_page_raw = nand_write_page_raw; 5681 ecc->write_oob = nand_write_oob_std; 5682 ecc->size = mtd->writesize; 5683 ecc->bytes = 0; 5684 ecc->strength = 0; 5685 break; 5686 5687 default: 5688 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 5689 ret = -EINVAL; 5690 goto err_nand_manuf_cleanup; 5691 } 5692 5693 if (ecc->correct || ecc->calculate) { 5694 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5695 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5696 if (!ecc->calc_buf || !ecc->code_buf) { 5697 ret = -ENOMEM; 5698 goto err_nand_manuf_cleanup; 5699 } 5700 } 5701 5702 /* For many systems, the standard OOB write also works for raw */ 5703 if (!ecc->read_oob_raw) 5704 ecc->read_oob_raw = ecc->read_oob; 5705 if (!ecc->write_oob_raw) 5706 ecc->write_oob_raw = ecc->write_oob; 5707 5708 /* propagate ecc info to mtd_info */ 5709 mtd->ecc_strength = ecc->strength; 5710 mtd->ecc_step_size = ecc->size; 5711 5712 /* 5713 * Set the number of read / write steps for one page depending on ECC 5714 * mode. 5715 */ 5716 ecc->steps = mtd->writesize / ecc->size; 5717 if (ecc->steps * ecc->size != mtd->writesize) { 5718 WARN(1, "Invalid ECC parameters\n"); 5719 ret = -EINVAL; 5720 goto err_nand_manuf_cleanup; 5721 } 5722 ecc->total = ecc->steps * ecc->bytes; 5723 if (ecc->total > mtd->oobsize) { 5724 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5725 ret = -EINVAL; 5726 goto err_nand_manuf_cleanup; 5727 } 5728 5729 /* 5730 * The number of bytes available for a client to place data into 5731 * the out of band area. 5732 */ 5733 ret = mtd_ooblayout_count_freebytes(mtd); 5734 if (ret < 0) 5735 ret = 0; 5736 5737 mtd->oobavail = ret; 5738 5739 /* ECC sanity check: warn if it's too weak */ 5740 if (!nand_ecc_strength_good(chip)) 5741 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 5742 mtd->name); 5743 5744 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5745 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5746 switch (ecc->steps) { 5747 case 2: 5748 mtd->subpage_sft = 1; 5749 break; 5750 case 4: 5751 case 8: 5752 case 16: 5753 mtd->subpage_sft = 2; 5754 break; 5755 } 5756 } 5757 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5758 5759 /* Invalidate the pagebuffer reference */ 5760 chip->pagecache.page = -1; 5761 5762 /* Large page NAND with SOFT_ECC should support subpage reads */ 5763 switch (ecc->mode) { 5764 case NAND_ECC_SOFT: 5765 if (chip->page_shift > 9) 5766 chip->options |= NAND_SUBPAGE_READ; 5767 break; 5768 5769 default: 5770 break; 5771 } 5772 5773 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 5774 if (ret) 5775 goto err_nand_manuf_cleanup; 5776 5777 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 5778 if (chip->options & NAND_ROM) 5779 mtd->flags = MTD_CAP_ROM; 5780 5781 /* Fill in remaining MTD driver data */ 5782 mtd->_erase = nand_erase; 5783 mtd->_point = NULL; 5784 mtd->_unpoint = NULL; 5785 mtd->_panic_write = panic_nand_write; 5786 mtd->_read_oob = nand_read_oob; 5787 mtd->_write_oob = nand_write_oob; 5788 mtd->_sync = nand_sync; 5789 mtd->_lock = NULL; 5790 mtd->_unlock = NULL; 5791 mtd->_suspend = nand_suspend; 5792 mtd->_resume = nand_resume; 5793 mtd->_reboot = nand_shutdown; 5794 mtd->_block_isreserved = nand_block_isreserved; 5795 mtd->_block_isbad = nand_block_isbad; 5796 mtd->_block_markbad = nand_block_markbad; 5797 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 5798 5799 /* 5800 * Initialize bitflip_threshold to its default prior scan_bbt() call. 5801 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 5802 * properly set. 5803 */ 5804 if (!mtd->bitflip_threshold) 5805 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 5806 5807 /* Initialize the ->data_interface field. */ 5808 ret = nand_init_data_interface(chip); 5809 if (ret) 5810 goto err_nanddev_cleanup; 5811 5812 /* Enter fastest possible mode on all dies. */ 5813 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 5814 ret = nand_setup_data_interface(chip, i); 5815 if (ret) 5816 goto err_nanddev_cleanup; 5817 } 5818 5819 /* Check, if we should skip the bad block table scan */ 5820 if (chip->options & NAND_SKIP_BBTSCAN) 5821 return 0; 5822 5823 /* Build bad block table */ 5824 ret = nand_create_bbt(chip); 5825 if (ret) 5826 goto err_nanddev_cleanup; 5827 5828 return 0; 5829 5830 5831 err_nanddev_cleanup: 5832 nanddev_cleanup(&chip->base); 5833 5834 err_nand_manuf_cleanup: 5835 nand_manufacturer_cleanup(chip); 5836 5837 err_free_buf: 5838 kfree(chip->data_buf); 5839 kfree(ecc->code_buf); 5840 kfree(ecc->calc_buf); 5841 5842 return ret; 5843 } 5844 5845 static int nand_attach(struct nand_chip *chip) 5846 { 5847 if (chip->controller->ops && chip->controller->ops->attach_chip) 5848 return chip->controller->ops->attach_chip(chip); 5849 5850 return 0; 5851 } 5852 5853 static void nand_detach(struct nand_chip *chip) 5854 { 5855 if (chip->controller->ops && chip->controller->ops->detach_chip) 5856 chip->controller->ops->detach_chip(chip); 5857 } 5858 5859 /** 5860 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 5861 * @chip: NAND chip object 5862 * @maxchips: number of chips to scan for. 5863 * @ids: optional flash IDs table 5864 * 5865 * This fills out all the uninitialized function pointers with the defaults. 5866 * The flash ID is read and the mtd/chip structures are filled with the 5867 * appropriate values. 5868 */ 5869 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 5870 struct nand_flash_dev *ids) 5871 { 5872 int ret; 5873 5874 if (!maxchips) 5875 return -EINVAL; 5876 5877 ret = nand_scan_ident(chip, maxchips, ids); 5878 if (ret) 5879 return ret; 5880 5881 ret = nand_attach(chip); 5882 if (ret) 5883 goto cleanup_ident; 5884 5885 ret = nand_scan_tail(chip); 5886 if (ret) 5887 goto detach_chip; 5888 5889 return 0; 5890 5891 detach_chip: 5892 nand_detach(chip); 5893 cleanup_ident: 5894 nand_scan_ident_cleanup(chip); 5895 5896 return ret; 5897 } 5898 EXPORT_SYMBOL(nand_scan_with_ids); 5899 5900 /** 5901 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 5902 * @chip: NAND chip object 5903 */ 5904 void nand_cleanup(struct nand_chip *chip) 5905 { 5906 if (chip->ecc.mode == NAND_ECC_SOFT && 5907 chip->ecc.algo == NAND_ECC_BCH) 5908 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 5909 5910 /* Free bad block table memory */ 5911 kfree(chip->bbt); 5912 kfree(chip->data_buf); 5913 kfree(chip->ecc.code_buf); 5914 kfree(chip->ecc.calc_buf); 5915 5916 /* Free bad block descriptor memory */ 5917 if (chip->badblock_pattern && chip->badblock_pattern->options 5918 & NAND_BBT_DYNAMICSTRUCT) 5919 kfree(chip->badblock_pattern); 5920 5921 /* Free manufacturer priv data. */ 5922 nand_manufacturer_cleanup(chip); 5923 5924 /* Free controller specific allocations after chip identification */ 5925 nand_detach(chip); 5926 5927 /* Free identification phase allocations */ 5928 nand_scan_ident_cleanup(chip); 5929 } 5930 5931 EXPORT_SYMBOL_GPL(nand_cleanup); 5932 5933 /** 5934 * nand_release - [NAND Interface] Unregister the MTD device and free resources 5935 * held by the NAND device 5936 * @chip: NAND chip object 5937 */ 5938 void nand_release(struct nand_chip *chip) 5939 { 5940 mtd_device_unregister(nand_to_mtd(chip)); 5941 nand_cleanup(chip); 5942 } 5943 EXPORT_SYMBOL_GPL(nand_release); 5944 5945 MODULE_LICENSE("GPL"); 5946 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 5947 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 5948 MODULE_DESCRIPTION("Generic NAND flash driver code"); 5949